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Abstract: Actors of the Cooperative Intelligent Transport Systems (C-ITS) generate various amounts
of data. Useful information on various issues such as anomalies, failures, road profiles, etc., could
be revealed from the analysis of these data. The analysis, could be managed by operators and
vehicles, and its output could be very helpful for future decision making. In this study, we collected
real data extracted from road operators. We analyzed these streams in order to verify whether
abnormal behaviors could be observed in the data. Our main target was a very sensitive C-ITS
failure, which is when a road-side unit (RSU) experiences transmission failure. The detection of such
failure is to be achieved by end users (vehicles), which in turn would inform road operators which
would then recover the failure. The data we analyzed were collected from various roads in Europe
(France, Germany, and Italy) with the aim of studying the RSUs’ behavior. Our mechanism offers
compelling results regarding the early detection of RSU failures. We also proposed a new C-ITS
message dedicated to raise alerts to road operators when required.

Keywords: C-ITS; failure detection; road-side unit; data analysis; machine learning

1. Introduction

C-ITS is a system that allows vehicles to connect with each other. Its development
focuses on improving safety, comfort, traffic and energy efficiency. Its main communication
strategy is the vehicle-to-everything (V2X), in which data sharing is performed through
vehicle-to-vehicle communication (V2V) and vehicle-to-infrastructure communication (V2I).
In a C-ITS environment, cooperative awareness messages (CAMs) [1] share real-time
information on individual vehicles, whereas the decentralized environmental notification
messages (DENMs) [2] include information on events that may have an influence on road
safety or traffic conditions (e.g., roadworks, accidents, vehicle breakdowns, and so on),
allowing for proactive incident prevention. Nonetheless, given the concept’s novelty,
the influence of C-ITS services on road networks has yet to be completely recorded and
analyzed [3].

Due to the cooperative aspects of the C-ITS, its actors share large amounts of data.
The analysis of these data could reveal important information on the performance of the
system. Critical information such as system failures, anomalies, or road profiles could be
detected by the road and telecommunication operators, as well as end users.

Road-side units (RSUs) are one of the key actors in the C-ITS environment. They are
stationary units installed on the side of roads, and act as access points for the vehicles
with the infrastructure ensuring V2I communications. They are most useful and become
essential in the case of a low-density of C-ITS-equipped vehicles [4]. In addition to the CAM
and DENM transmissions, RSUs provide the vehicles with services that are implemented
on the infrastructure. These services include [5]:
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1. Traffic light maneuver (TLM), which is a service that administrates the generation and
sending of Signal Phase and Timing Messages (SPATEMs). Its objective is to control
vehicle access to intersections and conflict zones. It sends safety information to the
vehicles present in an intersection and informs them of the real-time status of the
traffic light and its future status as well as the time period between the two.

2. Road and lane topology (RLT), which is a service that manages the generation and
reception of Map Extended Messages (MAPEMs). A MAPEM is a message containing
a digital topology map of the geometry of an area. This topology describes lanes,
crosswalks, conflict zones, and permitted maneuvers.

3. Infrastructure to vehicle information (IVI) is a road sign service; it uses the Infrastruc-
ture to Vehicle Information Message (IVIM) to provide information about physical or
virtual road signs such as contextual speeds or road warnings, as well as the presence
of roadworks.

Thus, an RSU failure may imply an unavailability (or partial availability) of the
infrastructure services in an area of supposed coverage, and it may also imply a degradation
of the whole C-ITS system in the case of low-density scenarios. Thus, in order to ensure a
proper functioning of the system, RSUs must be monitored and their failures detected and
reported promptly.

In this study, we analyze real data that were extracted from road operators and
collected through packet capturing using a test vehicle in various roads in Europe (France,
Germany, and Italy). We present a specific study objective, which is to detect when an RSU
experiences transmission failures. This detection is to be achieved by end users (vehicles),
which in turn would inform road operators to recover it.

In this article, the following contributions are proposed:

1. A new methodology that allows vehicles to automatically detect RSU failures.
2. The evaluation of the methodology using a real dataset of CAMs generated in a C-ITS

naturalistic driving environment in three countries (France, Germany, and Italy).
3. The proposition of a new C-ITS message to be used to raise alerts regarding de-

tected failures.

The rest of this paper is structured as follows: Section 2 presents the state of the art on
RSU failure detection and data analysis techniques and briefly presents the C-ITS in order
to understand the role of the communication stack used over the C-ITS. Section 3 presents
our solution and the mechanisms used to detect RSU failures. Section 4 is dedicated to
describe the alarm message which has to be sent from a vehicle regarding the status of an
RSU. Section 5 presents the conclusions and future work.

2. State of the Art

In this section, we discuss various aspects related to our work: the C-ITS, which is the
system which we analyzed in this paper; the anomaly detection using relevant datasets;
and the clustering algorithms used to classify the data.

2.1. C-ITS Systems

In Europe, the C-ITS uses a rich communication protocol stack which has been defined
and standardized by the ETSI standardization institute. Over the Network layer (defined
as geo-networking layer), the Facilities layer has been designed in order to be an efficient
interface with the application layer (close to the driver and the vehicle sensors). Various
types of messages are provided by this layer in order to cover a set of use cases (road works
warning, traffic jam detection, traffic light control, logistics management). In this study, we
base our work mostly on one particular message type, which is the CAM.

The goal of CAMs is to create a cooperative awareness among vehicles; its use is to
provide dynamic information about the vehicle such as its position, speed, heading, etc. A
CAM is a periodic message that is sent at a frequency from 1 Hz to 10 Hz depending on the
speed of the vehicle. It can be sent using V2V or V2I communications.
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The architecture of V2V communications is presented in Figure 1, where each vehicle
is supposed to have a pseudonym certificate. The messages sent by the vehicle could reach
distant vehicles thanks to multi-hop forwarding.

Figure 1. A General Scheme for Vehicle-to-Vehicle Communication.

The general architecture of V2I communications is presented in Figure 2.

Figure 2. A General Scheme for Vehicle-to-Infrastructure Communication.

An RSU plays the role of the infrastructure as it handles all the received messages
from the vehicles and runs the road operator’s computations such as traffic management
and event recording. It also plays the role of a vehicle for the forwarding aspect and in
some cases it disseminates events toward other RSUs within the operator’s network if they
are in its range.

For the forwarding mechanisms, they are achieved with the geo-networking protocol [6]
in the ITS-G5 protocol stack which has been defined by the ETSI. The protocol plays the
role of the networking layer. Moreover, in our work, in addition to the CAMs, we also use
the geo-networking layer of the packets to access additional information, such as a more
precise localization of the concerned stations. Ref. [7] proposes a methodology to check for
anomalies on the energy consumption of wireless devices.

2.2. Anomaly Detection

In [8], an anomaly detection approach is the process of defining a region of normal
behavior within a set of data and declare whichever data points that do not belong to this
region as anomalies. Moreover, anomalies are classified into three categories: (a) point
anomalies, which is when a data point is considered aberrant from the rest of the data,
(b) contextual anomalies, which is when a data instance is anomalous in a specific con-
text, and (c) collective anomalies, which is when a collection of related data instances is
anomalous while the individual data instances may not be anomalous themselves.

Vehicular communication applications are known for their high mobility, which quali-
fies them as critical applications that require a reliable infrastructure and communication
scheme. RSUs are one of the key components of a C-ITS; they mainly ensure the V2I
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communication type. An omnidirectional antenna of an RSU is assumed to have equal
radio propagation in all directions, but the presence of obstacles such as buildings, tunnels,
rivers, or ground elevations can cause signal attenuation in certain directions. Such an RSU
is not technically defective. However, a high signal attenuation in some areas of effective
coverage could indicate failure.

In [9], antenna failure detection was implemented using a probabilistic model. The
model was constructed using real data from field tests, whereas the health assessment
of RSUs was performed through a comparison between their behaviors in terms of radio
propagation. In [10], a failure detector of VANET systems is proposed, which has some
notions of signal attenuation. In [11], numerical simulations were performed in various
radio-propagation scenarios, where it was shown that various factors affect the attenuation
of a signal. A signal tends to attenuate over large distances in line-of-sight (LOS) contexts,
whereas in non-line-of-sight (NLOS) contexts, the presence of a building or obstacle can
greatly affect signal intensity (in dBm). Thus, the behavior of radio propagation is highly
dependent on the geographical context, be it interurban or urban.

In terms of range, we have observed in our work that, in the interurban context, and
with the absence of obstacles, the in-distance (ID) of communication is greater than the
out-distance (OD), which are, respectively, the range of the first point where the RSU signal
is detected and the range of the last point. This was also observed in [12], where the range
of communication between a vehicle and an RSU tends to be greater when the vehicle is
moving toward the RSU. Moreover, the authors observed a relationship between vehicle
velocity and range and they explain it as a consequence of the Doppler effect. This can
also be observed in [13]. The inverse case is, however, observed in [14], where the OD is
greater than the ID; however, the authors explain that this is due to the time needed for the
mechanism of signal validation in the Wi-Fi access points during a first connection.

DeepADV [15] is an anomaly detection framework for VANETs based on deep neural
networks. A threshold is calculated based on the difference between a genuine and an
anomalous message and then used to classify them. The algorithm is to be deployed on
RSUs and its aim is to detect faulty messages. In [16], an anomaly detection scheme on
VANETs using edge computing was proposed. The faults concerned transmission omission
and were detected using RSU-based edge network and vehicular edge computing (VEC).
These RSUs guard information about a number of vehicles and a number of collected pack-
ets, which are then used to determine whether an anomaly (a change in the numbers) has
occurred. They tested their anomaly detection strategy on a simulation and found that the
strategy was highly effective at high rates of fault ratio (25%). EVAD is a method proposed
in [17] to detect anomalies in vehicles using edge computing, wherein a correlation between
sensor variables is drawn and used for anomaly detection where, for an observation, if two
supposedly correlated variables do not correlate, an anomaly is detected.

In [18], a CNN is used to extract the spatial, temporal, and spatio-temporal traffic
features then used for anomaly detection by the means of employing thresholds. In [19],
an anomaly detection approach that takes into account the spatio-temporal features of
VANET traffic is proposed. The approach consists of two phases; first, deep learning based
on a CNN architecture is used for network traffic estimation; second, a decision-making
approach based on reinforcement learning is used to identify the normal and anomalous
traffic entries.

When it comes to security anomalies, DAMASCO [20] is a security-based system
that aims to detect DoS attacks. A statistical approach was used to detect anomalies in
vehicular communications where the MAC layer was addressed and assessed to identify
potentially malicious nodes by the number of sent packets and block their activity. In [21],
a certification-less authentication method was adopted, wherein the RSUs are only trusted
partially and are granted the vehicle’s information only partially. Moreover, anomaly detec-
tion was performed through clustering; precisely, the agglomerative clustering was used
on the traffic data represented as time series using the dynamic time wrap distance [22].
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In [23], a methodology was proposed to analyze data collected from agriculture areas
during many years and verify the anomalies on the productions and their relationship with
weathers conditions. In [24] a Mobile phone Network Data (MNF) based framework to
detect anomalies in real time was proposed. The framework is based on two steps, the first
one is an offline unsupervised learning done on the MND, the second step is the online real
time detection of anomalies.

To the best of our knowledge, only a few works have focused on V2I fault detection
and we are not aware of any work that proposes an online method for the fault detection
of RSUs.

2.3. Clustering Algorithms

In machine learning, different approaches to handle the data and to extract information
exist. A detail of some of them is proposed this section.

2.3.1. Hierarchical-Based Algorithms

The hierarchical clustering algorithm is based on algorithms denoted as linkage. The
linkage is an algorithm which focuses on merging or splitting within a cluster. Some
examples of this algorithm are as follows:

• Single linkage: handles the two closest points in the cluster;
• Complete linkage that handles the two farthest points;
• Average linkage that uses an average fictive point to represent the cluster;
• Centroid linkage that uses the most representative point of the clusters.

Slink [25] and Clink [26] are two algorithms that optimize the basic principle of
agglomerative clustering using, respectively, the single and the complete linkage also
denoted Agnes (agglomerative nesting) and Diana (divisive analysis) algorithms.

BIRCH (balanced iterative reducing and clustering using hierarchies) [27] is used
to find clusters in large datasets using less memory and run-time. It uses the concept of
clustering feature (CF), which is a kind of summary of a cluster and CF-Tree. It is known as
an algorithm that builds a cluster with only one scan of the dataset but it can improve the
result with more small scans.

2.3.2. Partitioning-Based Algorithms

The k-means [28] algorithm is used to select at random k (k is a number defined by
the user) data points, to consider them as a cluster and to regroup the other points in the
closest cluster until all points are inside a cluster. The center of the cluster is the mean of all
the data points of the cluster and it is updated after a new point is added to the cluster. It is
light and efficient for many small datasets.

The K-Medoïds [29] algorithm works as the k-means algorithm but does not rely on
an average of a cluster center but on the most representative data point of the cluster.

2.3.3. Artificial Neural Network (ANN) Algorithms

Unlike the previous algorithms, the algorithm which uses an artificial neural network
cannot handle a dataset immediately but needs to be trained beforehand. Once trained,
it can efficiently handle larger amounts of data than the previous algorithms with higher
accuracy. SOM (self-organized map) [30] is an artificial neural network trained to pro-
duce a low-dimensional and discrete representation of the data. This makes it a strong
visualization tool for high-dimensional data.

In our study, the collected data have to be injected into a classification method. We
have chosen the K-Medoïds algorithm in order to build clusters. We intend to use the
resulting clusters in order to be able to distinguish between proper behavior and improper
behavior. To the best of our knowledge, there is no study about the automatic detection
of anomalies on C-ITS devices, even though some recent studies focus on collaborative
learning of communication routes [31] and selfish behaviors [32].
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3. RSU Failure Detection

In this section, we detail our failure detection technique mainly based on verifying
whether the coverage which should be ensured by an RSU is effective. For this issue, we
propose a new C-ITS message denoted "Alarm Message", which is sent by each vehicle
entering a zone covered by an RSU. The idea is to insert in this message some information
about the observed signals by the vehicle, mainly in the ID and the OD. The RSU collects
all received data and runs an on-the-fly analysis in order to identify whether an anomaly
has occurred.

An antenna is a fundamental component of telecommunication systems such as radio,
cellular networks, Wi-Fi, and satellite communications. It is a device that is used to transmit
and receive signals in the form of electromagnetic waves. When used for transmission,
it takes an electrical signal and converts it into electromagnetic waves that propagate
through the surrounding space. When used for reception, it captures the electromagnetic
waves from the environment and converts them back into electrical signals. Overall,
there exist three kinds of antennas based on radiation patterns. An isotropic antenna is a
hypothetical one and radiates over all directions in the horizontal plane as well the vertical
one. Its radiation diagram resembles that of a sphere and can be seen in Figure 3. An
omnidirectional antenna radiates over all directions in the horizontal plane, as can be seen
in Figure 4. It is commonly used in applications wherein signals need to be transmitted and
received in multiple directions; an example of the omnidirectional antenna is the dipole
antenna. Meanwhile, a directional antenna radiates in the form of a concentrated blob
over one direction, as can be seen in Figure 5. Examples of directional antennas include
parabolic antennas and the phased array antenna.

Figure 3. Radiation Diagram for an Isotropic Antenna: (a) vertical plane and (b) horizontal plane.

Figure 4. Radiation Diagram for an Omnidirectional Antenna: (a) vertical plane and (b) horizon-
tal plane.
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Figure 5. Radiation Diagram for a Directional Antenna: (a) vertical plane and (b) horizontal plane.

The used RSUs in this study are either omnidirectional or have two directional an-
tennas each. Each antenna is directed toward a side of the road and has a relatively high
directivity. As long as the road is relatively parallel to the antenna’s lobes, the vehicle will
be able to receive messages from the RSU. Our target is a specific failure which is when one
of the two antennas fails, and the bidirectional RSU thus behaves as a directional antenna
and radiates over only one side of the road.

Within the C-roads and the Indid projects (two European—Connecting Europe Facilities-
projects), we collected many datasets through real conditions on more than 300 km of
highway roads in Italy, Germany, and France. More than 1 gigabytes of traces were
collected in PCAP format (this format is the one used by network analyzers) produced by
one driving vehicle and more than 50 road-side units, both in ITS-G5 and C-V2X. For each
RSU, more than 20 megabytes were collected in each experiment. This work, however, only
focuses on ITS-G5 RSUs, which have shorter ranges than their C-V2X counterparts. More
than 10,000 messages were collected by the experimentation vehicle.

In the experiment, each captured packet comes with a radiotap information layer.
Radio is a protocol which is the standard for the 802.11 frame injection and reception. It
does not belong to the original ITS-G5 protocol stack, but it is created at the moment of
capture of a packet. The test vehicle that was used had the ability to generate the radiotap
layer concerning the captured packet. The recorded information in the radiotap layer
concerns the radio transmission, such as the signal intensity at the moment of capture. If
the packet was sent from the vehicle, then the transmission power (in dBm) is stored, and
if the packet was received then the signal intensity at the reception moment is stored. We
are interested in the latter, since it provides us with the signal intensity of transmissions
coming from the RSU.

One way to determine whether the packet was sent or received by the vehicle without
looking at the source address is via radiotap. The difference between a sent and received
packet is the format of the signal intensity; in the first case, it is denominated transmission
power and concerns the signal power that was used to send the packet from the vehicle,
whereas in the latter it is denominated antenna signal and concerns the transmission power
at the moment of reception of the packet by the test vehicle.

We then need to identify which packets were sent by an RSU in contact with the
vehicle. Assuming that each RSU has sent at least one CAM, we search through all CAM
instances for the field station-type. The station-type of a vehicle is equal to 5, whereas that
of an RSU is equal to 15. We can therefore identify all CAMs that were sent by RSUs and
save their MAC addresses. We use the MAC address rather than the CAM’s station-ID for
identification because the station-ID is supposed to change every 10 min, whilst the MAC
address remains static during the experiment.

An RSU could also be identified through its positioning. A vehicle moves, whereas an
RSU remains static; therefore, if a station does not change its location in the C-ITS stack in



Vehicles 2023, 5 1474

all records, it is assumed to be an RSU. Concerning the pcap dataset, and so far, we verified
that all static position stations have sent at least one CAM with a station-type of 15.

A vehicle is assumed to be under the coverage of an RSU once it starts receiving
packets from it until it stops. This method may give false indications as the vehicle could
leave the coverage area and enter once again, having thus two coverage periods or more
and still be considered as one single coverage. This verification is however not needed
since we only consider the packets sent by an RSU in the analysis and the coverage remains
irrelevant for the study topic. The comparison between the ID and OD is also taken from
the absolute point of view (meaning, as one coverage). Therefore, coverage from the point
of view of the vehicle as a metric is dismissed.

To calculate the ID and OD from the pcap files, the Euclidean distance D between
two points on the Earth’s globe is given by:

D = 6378× arccos[(sin(lat1)× sin(lat2)) + cos(lat1)× cos(lat2)× cos(lon2 − lon1)]

where 6378 is the radius of the Earth in kilometers, lat1 and lon1 are the longitude and
latitude of the first point, and lat2, lon2 are those of the second point.

Each figure from Figures 6–8 represents a set of captured packets by the vehicle from
the RSU during the vehicle’s travel in the area of coverage. Each packet is represented by
the tuple (range, signal), where red dots represent the distance of the packets and blue
dots represent their signal intensity. In order to correlate them, both these variables were
normalized between zero and one.

Overall, and for the ITS-G5, packets were captured from 23 RSUs from France, Ger-
many, and Italy. These RSUs are located both in urban and interurban locations. Since the
presence of buildings and other factors in the urban context causes signal attenuation, the
RSU’s range can be modified by these factors. Therefore, we chose the interurban context
for the comparative study of the RSUs.

When analyzing the data, we have observed several characteristics concerning the
properly functioning RSUs. Mainly, that the ID is usually larger than the OD, which is
validated by [12]. This particular behavior can be observed in Figures 6 and 7, which concern
two proper functioning RSUs both in France; the first one is located in Reims which is in
the north eastern part of the country and the second one in Saint Maurice in the suburbs
of Paris.

Figure 8 represents the behavioral profile of a defective RSU located in Reims. This
RSU is bidirectional but behaves as a uni-directional one.

Another characteristic of a functioning RSU in this context is that range is inversely
proportional to the intensity of the received signal. We verify this relation by calculating
the Pearson’s correlation coefficient of all records of range and signal during the coverage
period. Thus, well-functioning RSUs should give a negative value below a certain threshold.
The relationship between distance and the signal intensity of RSUs that are assumed to
function well is not perfectly linear, as the factors that contribute to the signal attenuation
are environmental such as air quality and the presence of various obstacles. Thus, the
inversely proportional relation does not give a Pearson’s correlation coefficient that is
strictly equal to −1. We therefore chose a certain threshold to determine the RSUs that are
behaving properly and those which are not. We also consider that both distances should be
superior to 50 m for interurban RSUs; otherwise, it is considered failure.

Figure 6 addresses the first discussed RSU in the city of Reims. We can observe here
that both characteristics are present. The calculated ID is 1229 m, which is the largest
distance recorded in the set, and the OD is 671 m. In terms of the relation between distance
and signal, we can observe in the figure that the signal tends to increase when the distance
becomes shorter. Therefore, the Pearson’s coefficient in this set is equal to −0.69.

The RSU in Figure 7 has a lower range than the previous one; thus, fewer packets were
captured. But the pattern remains the same and the ID of coverage was calculated to be
407 m, whereas the OD was 300 m. The inverted relation between distance and signal is
more visible here, and the correlation coefficient calculated here is equal to −0.83.
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For the defective RSU in Figure 8, however, the ID is way smaller than the OD. In
fact, this RSU is located on the side of the road that the vehicle was traveling on. The first
contact the vehicle had with this RSU was after it had surpassed it on the road by around
297 m, which is the recorded ID, while the OD is at 1572 m. The relationship between signal
intensity and range is also not as in the case of previously discussed RSUs. We see in the
figure that, in the first 300 packets, the signal and range have a direct relationship, whereas
in the last packets, the relationship becomes inverted. The Pearson’s correlation coefficient
for this set is equal to 0.01. This means that the rule of correlation could not be applied in
this context. This RSU is definitely experiencing failure.

Figure 6. The Correlation between Signal and Distance for a Normal RSU in Reims. Values are
normalized between 0 and 1.

Figure 7. Correlation between Signal and Distance for a Normal RSU in Saint Maurice (Paris). Values
are normalized between 0 and 1.
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Figure 8. The Correlation between Signal and Distance for a Failing RSU in Reims. Values are
normalized between 0 and 1.

The proposed method to determine failure in the case of omnidirectional and bi-
directional RSUs requires to verify these properties:

• The ID is greater than the OD.
• The Pearson’s correlation coefficient of the coverage data is less than a certain threshold.

In our case, we choose it to be less than −0.4. This value was chosen by assessing the
whole list of RSUs (Table 1), given that the smallest Pearson coefficient of a functioning
RSU in the interurban context is of −0.457 (RSU number 20).

• The coverage should be larger than a threshold, and we chose the threshold to be 50 m.
This is a threshold that excludes interurban RSUs in our data and only concerns the
urban ones, like RSU numbers 16 and 23, respectively, as seen in Table 1.

In Table 1 can be seen the summary of all calculations made in regards to the RSUs.
For each RSU, its context is given, be it interurban or urban. The max range is given, as
well as the ID and OD, and the Pearson coefficient. The RSUs in Figures 6–8 are numbered
4, 8, and 2, respectively. We can see that RSUs 2, 9, 10, 13, 14, 17, 18, and 23 have the
Pearson’s correlation coefficient condition as false, meaning that there is no sufficient
inverse linear relationship between range and signal intensity in their schemes. For RSU
2, it is a known failure for it is in the interurban context; as for the rest of the RSUs, their
context is urban, and the low correlation may be due to the variation in signal intensity due
to the environment or due to a failure. We can also observe that for RSUs 2, 6, 13, 14, 19,
and 22, the OD inferior to the ID condition is false; for RSU 2, it is due to a failure, whereas
for RSU 6 it is likely due to environmental reasons even though its context is interurban.
Another explanation could be as the one discussed in [14], where the ID is smaller than
the OD due to the time taken to validate the signal coming from the RSU. This is also
applicable to RSU 19; both RSUs have significant correlation between signal and range.
Meanwhile, RSUs 13, 14, 19, and 22 are urban RSUs, and thus the condition is false due to
environmental reasons.

Moreover, we used the K-Medoïds algorithm in order to classify the behavior of RSUs
using the following variables: range, signal strength, vehicle speed, and Pearson’s coefficient
of the signal-to-range correlation. The latter attribute is repeated for all packets from the
same RSU. The classification results are shown in Figure 9, wherein the orange cluster
regroups the packets that are transmitted from a failing RSU. The Medoïds of each cluster
are represented by the cyan larger dots. This classification will be enhanced in order to give
a more precise classification, which will be used in the future on all vehicles in order to be
able to detect non-proper RSUs.

Then, an alarm will be sent through a specific message defined in the next section.
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Table 1. Recorded communications with the RSUs.

RSU Context Max
Range

In-
Distance

Out-
Distance

Pearson’s
Coef

Coef
Condition

ID > OD
Cond Range > 50 Cond

1 interurban 979 m 979 m 393 m −0.6048 correct correct correct

2 interurban 1572 m 297 m 1572 m 0.0108 incorrect incorrect correct

3 interurban 1546 m 1546 m 1112 m −0.5705 correct correct correct

4 interurban 1229 m 1229 m 671 m −0.6921 correct correct correct

5 interurban 2871 m 2871 m 1139 m −0.6213 correct correct correct

6 interurban 502 m 447 m 502 m −0.6198 correct incorrect correct

7 interurban 580 m 580 m 398 m −0.807 correct correct correct

8 interurban 407 m 407 m 300 m −0.8393 correct correct correct

9 Urban 501 m 501 m 467 m −0.1690 incorrect correct correct

10 Urban 502 m 502 m 436 m −0.3441 incorrect correct correct

11 Urban 289 m 289 m 225 m −0.5013 correct correct correct

12 Urban 296 m 296 m 220 m −0.7935 correct correct correct

13 Urban 218 m 155 m 197 m 0.8439 incorrect incorrect correct

14 Urban 280 m 196 m 280 m 0.1489 incorrect incorrect correct

15 Urban 350 m 329 m 241 m −0.7976 correct correct correct

16 Urban 456 m 320 m 15 m −0.5148 correct correct incorrect

17 Urban 1023 m 1023 m 936 m −0.3466 incorrect correct correct

18 Urban 537 m 537 m 503 m −0.0266 incorrect correct correct

19 interurban 1857 m 548 m 1857 m −0.6720 correct incorrect correct

20 interurban 410 m 410 m 100 m −0.4571 correct correct correct

21 Urban 249 m 249 m 214 m −0.5072 correct correct correct

22 Urban 1542 m 202 m 667 m −0.5235 correct incorrect correct

23 Urban 709 m 709 m 48 m −0.1011 incorrect correct incorrect

Figure 9. Clustering of Behavior of RSUs.

4. Alarm Message

In this section, we detail the structure of our proposed message, which makes it
possible to raise an alarm about RSU failures. This message is composed of the timestamp



Vehicles 2023, 5 1478

and the location when the RSU is met the first time and the timestamp and the location
when it is met the last time. The vehicle records the timestamp and location of received
messages from the RSU and filters the last one and the first one. As an option, we add
the signal strength RSSI. This message has to be sent to the road operator using ITS-G5
or C-V2X channels. Unlike the typical C-ITS messages, this message will target the RSU
which has been analyzed. It will be sent through an uni-cast protocol. If ITS-G5 is used,
that means the message will be forwarded by vehicles driving in the opposite roads. The
structure of the packet is shown in Figure 10.

Figure 10. The structure of the alarm packet.

A vehicle builds this message each time it meets an RSU. At that moment, it collects
beacons and CAMs sent by the RSU and keeps the first message and the latest message.
When a new message is received, the former one is dropped. When no message is received
from the RSU after a time delay, the previous one is considered as the last one.

If an RSU overlaps another RSU, the vehicle filters CAMS and beacons sent from both
RSUs in order to be able to alert each RSU accordingly. The algorithm in Algorithm 1 gives
the instructions that a vehicle should follow to report an RSU’s status.

Algorithm 1: Create Alarm message

Input: RSUs[RSU_ID,in_location, out_location, in_RSSI, out_RSSI,RSU_Time]
list of all RSUs with their attributes, timeThreshold timestamp, currentTime
timestamp, m last received C-ITS message

if m.origin == RSU then
if m.RSU_ID NOT IN RSUs[RSU_ID] then

/* First message from this RSU */
RSU ← createRSU()
RSU.in_location← getVehicleLocation();
RSU.in_RSSI ← m.RSSI
RSU.RSU_ID ← m.RSU_ID
RSUs.add(RSU)

else
/* Second message from this RSU */
RSU ← RSUs.get(RSU_ID == m.RSU_ID)
RSU.out_location← getVehicleLocation();
RSU.out_RSSI ← m.RSSI;
RSU.RSU_Time← m.time

end if
end if
for RSU in RSUs do

if RSU.RSU_Time IS NOT NULL then
T = currentTime− RSU.RSU_Time
if T ≥ timeThreshold then

sendAlarmMessage(RSU);
RSUs.remove(RSU_ID == m.RSU_ID)

end if
end if

end for

The road operator has the list of all RSUs in any area, including their geographical con-
text, which could be interurban or urban. Each RSU is associated with a score determining
its status. If the score for an RSU is high, this means that the RSU is properly functioning,
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otherwise, this means that the RSU is experiencing failure. If the score is around zero, the
RSU is either urban or there were not enough alarm messages reported by end users. The
algorithm in Algorithm 2 gives the instructions that the road operator should follow in
order to treat the upcoming alarm messages. Upon the reception of an alarm message,
the geographical context of the concerned RSU is verified; if it is interurban, then the ID
and OD are compared, and when the ID is significantly smaller than the OD, then we
are in the case of an RSU failure such as in Figure 8 and the score of the concerned RSU
is decremented by one; otherwise, it is incremented by one. Lastly, whether the RSU is
interurban or urban, its overall range is verified. If it does not exceed a minimal threshold,
then the score is also decremented. Once an RSU’s score reaches the minimal threshold,
then the road operator considers that enough vehicles reported that the RSU is in failure
and reports it. A time window is added so that the scores do not become saturated, and at
the beginning of each time window the scores are set to zero. The window is shifted over
the time and its width can be fixed depending on the whole environment.

Algorithm 2: Alarm message treatment
Input: RSUs :< RSUID, Score > list of RSUs with their scores, FailureThreshold,

rangeThreshold, maxScore, time timeWindow, dt, distanceThreshold
Output: time

m← receiveAlarmMessage;
in_distance← calculateRange(m.RSUID, m.in_location)
out_distance← calculateRange(m.RSUID, m.out_location)
if m.RSUID is Rural then

/* no obstacles, not urban */
if in− distance < (out− distance + rangeThreshold) then

/* reduce the score by one */
if RSUs[RSUID].Score > −maxScore then

RSUs[RSUID].Score− = 1
end if

else
if RSUs[RSUID].Score < maxScore then

/* increment the score by one */
RSUs[RSUID].Score+ = 1

end if
end if

end if
if in− distance < distanceThreshold or out− distance < distanceThreshold then

/* failure */
if RSUs[RSUID].Score > −maxScore then

RSUs[RSUID].Score− = 1
end if

end if
for R in RSUs do

if R.Score < FailureThreshold then
Report(R.RSUID);

end if
end for
time← time + dt
if time ≥ timeWindow then

for R in RSUs do
R.Score← 0

end for
time← 0

end if
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5. Conclusions

In this paper, the detection of failures in operational RSUs by end users is investigated.
This issue is critical and crucial for the C-ITS. We have shown that maintenance of road-
side units could be achieved in a simple way without any additional investment or any
equipment. Vehicles collect RSU observations during their journeys and analyze them
using our failure detection mechanism. This mechanism compares the observed behavior
to the known proper one, and when an anomaly is detected, any vehicle raises alerts to the
road operators in order to inform them about the suspicious RSU. RSU behavior profiles
are studied as well and a difference between urban and interurban is drawn and carefully
considered in this study.

We have observed that, in the case of a functioning RSU, there is an acceptable inverse
correlation between the range and signal intensity of its transmissions. We have also
observed that, in the interurban context with line-of-sight communications, the ID tends
to be larger than the OD for a functioning RSU. Both these properties were used for our
assessment of RSUs.

We have so far addressed one particular RSU failure, which is when the RSU radiates
only over one direction rather than two directions. But there are other kinds of failures,
for instance, the RSU could be completely dysfunctional in both directions. One way for
the vehicles to detect that is for them to receive an alarm message about an RSU from a
single vehicle, and when the informed vehicles find no RSU on the road (because it recently
became faulty), they can conclude that there is an RSU in the designated area that went
dysfunctional; thus, they can also report it. Software failures are also a possibility, such a
malformed packet from an RSU, in which case we could extend our failure mechanism by
calculating the ratio of malformed packets from an RSU; if it exceeds a certain threshold,
this would mean that the RSU is experiencing failure.

In future works, we will assess other variables from the datasets, such as the vehicle’s
velocity, in order to enhance our failure detection mechanism. We will also build larger
RSU behavioral profiles in order to be much more precise during the data analysis step.
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