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Abstract

Innovation dynamics in social and technological systems are
strongly linked to urban systems and their multi-scale prop-
erties. Understanding underlying processes is crucial for
sustainable territorial planning. We introduce a multi-scalar
model for innovation dynamics in systems of cities, cou-
pling a macroscopic innovation diffusion and urban dynam-
ics model with mesoscopic models for local innovation clus-
ters. The model parameter space is explored, and we apply
a bi-objective optimisation algorithm with objectives across
scales. Implementing indicators for downward causation, we
finally investigate with a diversity search algorithm the di-
verse regimes of emergence the model can produce. This
suggests strong emergence is captured, confirming the rele-
vance of multi-scale approaches to artificial societies and ur-
ban simulation.

Introduction
Innovation is defined for social systems as inventions that
became socially accepted, generating increasing returns and
path dependence effects in territorial development (Arthur,
1994). Although inventions are not necessarily generated
within cities, the processes of appearance and transmission
of innovations are closely linked to urban development. In-
novation and urban systems are thus two distinct dimensions
of the Sustainable Development Goals which are tightly in-
terlinked (Hegre et al., 2020). In a recent plea for better co-
ordination of international development policies, Keith et al.
(2022) emphasise that cities are drivers for the development
of climate resilient approaches. Cities are complex adap-
tive systems whose size and functional specialization de-
pend on their cumulative adaptation to the innovation they
contribute to generate (Pumain, 2020). Innovation remains
rather highly geographically concentrated in an early stage
before it becomes widely imitated and disseminated (Au-
dretsch and Feldman, 1996). Innovation clusters are indeed
important components of local urban systems (Moreno et al.,
2006). Spatial proximity favour local synergies, it supports
knowledge spillover that may increase the spatial concen-
tration and sustainability of innovation, provided that a re-
lated variety among local activities can help it (Boschma and
Iammarino, 2009; Frenken et al., 2007).

The scale of innovation processes became much more in-
ternational in recent decades. Nowadays, the acceleration
of global innovation is driven by two complementary pro-
cesses: the action of major players such as multinational
companies in their networks (Rozenblat and Pumain, 2007),
and the connection of resources (such as knowledge, mar-
ket access, financial investment and technology legitimacy)
that had previously only been brought into contact to a lim-
ited extent. Systems of cities play a crucial role in inno-
vation processes because of the multiple interactions they
have developed over time (Scott and Storper, 2015). Cities
sizes inequalities are prone to enable complementarities that
are helping the hierarchical diffusion of innovation (Hager-
strand et al., 1968). As confirmed by recent investigations in
urban scaling laws (Pumain et al., 2006), innovative activi-
ties at first concentrate in higher levels of urban hierarchies
where skills and diversity are maximised, in a second stage
they relocate in medium size cities where labour and hous-
ing market are less expensive and in a third stage relatively
concentrate in smaller places. Thus in general innovation
diffusion dynamics imply multiple scales. Besides the mul-
tiple observations of local innovative milieu, and the quest
for global innovation systems (Binz and Truffer, 2017), there
is a regionalisation process that encourage developmental
transnational partnerships between countries that belong to
different regions of the world experimenting similar prob-
lems, as in the EU (Palle and Richard, 2022) or ASEAN in
South Asia (Krapohl et al., 2017). Binz and Truffer (2017)
suggest a typology of global innovation systems based on
the type of linkages within and between scales, from the re-
gional to the global one, with different policy implications
to encourage green technologies. Bauer and Fuenfschilling
(2019) show that the interplay between local innovation and
global trends is crucial for the clean transition of chemical
industries.

Multi-scalar approaches are therefore necessary for inno-
vation policies and governance. Modelling and simulation
are in that context a privileged tool to understand system
dynamics and elaborate policies. Rozenblat and Pumain
(2018) emphasise the need for multi-scalar models for sus-

D
ow

nloaded from
 http://direct.m

it.edu/isal/proceedings-pdf/isal/35/143/2149256/isal_a_00702.pdf by guest on 31 January 2024



tainable territorial policies. The field of artificial life (AL-
ife) has an important contribution record to the simulation
of social systems, including for example the stock market
(Palmer et al., 1994), social interactions (Sawyer, 2003),
sustainable cities (Wang and Tang, 2004). One advantage
of such “artificial societies” approaches is that they pro-
vide some explanatory power through their generative aspect
(Grüne-Yanoff, 2009). The quantitative study of cities and
urban systems has always kept tight links with ALife (Raim-
bault, 2020a). Recent urban simulation examples include
the simulation of urban morphology (Raimbault and Per-
ret, 2019) or informal innovation diffusion in firm clusters
(Raimbault, 2022). Multi-scale models have also been pro-
posed in that context, such as by Raimbault (2021b) which
couple population dynamics in a system of cities with local
urban form dynamics. Raimbault (2021a) simulates building
evolution at one scale and transportation network dynamics
at one other. Rojas (2021) introduces a network model for
the diffusion of renewable energy technologies with applica-
tions at multiple scales. Torrens and Nara (2012) use agents
which can act at different scales to capture multi-scalar as-
pects of urban growth. Urban climate is also an aspect re-
quiring highly resolved local models which can be integrated
into broader meteorological models (Mauree et al., 2018).
Other aspects of social interactions, such as epidemiologi-
cal modelling, are also cases where coupling between scales
allows refining macroscopic equation models (Banos et al.,
2015). In the case of urban dynamics modelling, the diver-
sity of processes and actors acting at distinct scales makes it
complicated to build multi-scalar models (need for distinct
ontologies and specific processes to capture the feedback be-
tween scales (Raimbault, 2021b)), on the contrary to other
types of system where the links are more explicit such as
traffic (Banos et al., 2017).

This paper proposes to investigate a social simulation ap-
proach to multi-scalar innovation dynamics in systems of
cities. We study how the macroscopic scale of regional
systems can be articulated with the mesoscopic scale of ur-
ban areas, for the emergence of new innovations within re-
search clusters and the diffusion of these innovations be-
tween cities. We focus on the feedback between scales, the
autonomy of each scale, and the need to build such a “com-
plicated” model to capture strong emergence. Our contri-
bution relies more precisely on the following: (i) we build
a multi-scalar agent-based model for innovation dynamics,
by coupling an innovation cluster model with an urban dy-
namics model at the macroscopic scale - based on existing
models which have been modified and extended with some
coupling processes between scales - and that we apply on
synthetic systems of cities with a realistic geographical set-
ting; (ii) we explore the coupled model parameter space us-
ing the OpenMOLE platform for model validation, includ-
ing a bi-objective optimisation between utility at the macro
scale and diversity at the meso scale; (iii) we implement

indicators to quantify downward causation in order to un-
derstand the complexity of inter-scale interactions; (iv) we
apply a diversity search algorithm to find how flexible the
model is to generate “regimes of emergence”.

The rest of the paper is organised as follows: we first for-
mally describe the simulation model and its parametrisation;
we partly validate the model by sampling its parameter space
to study its statistical properties and indicator behaviour; we
then run a bi-objective optimisation to find compromise be-
tween objectives at different scales; we describe the regimes
of emergence obtained with the diversity search algorithm;
we finally discuss the implications of our results and per-
spectives open for future work.

Multi-scalar innovation dynamics model
Model rationale
Our main hypothesis to build this model is that two dis-
tinct scales and dynamics, strongly coupled through bottom-
up and top-down feedback, are necessary to capture the
whole complexity of innovation systems. At the macro-
scopic scale of systems of cities, important related processes
are the hierarchical diffusion of innovations between urban
areas (Hagerstrand et al., 1968) and the economic speciali-
sation of these areas. Favaro and Pumain (2011) proposed
an urban dynamics model focusing on innovation diffusion,
which was extended into an urban evolution model by Raim-
bault (2020b). At the mesoscopic scale of innovation clus-
ters, firms interact directly but also informally, and the in-
novation dynamics within a local area will be driven, be-
side numerous economic factors, by the exchange of ideas
and research dynamics within and between firms (including
academic bodies). Raimbault (2022) introduced a simple
model of firm clusters, accounting for geographical structure
and the flow of ideas between firms, similar to a biogeogra-
phy optimisation algorithm (Simon, 2008). The multi-scale
model we propose is based on a strong coupling between the
macroscopic agent-based model of Raimbault (2020b) and
the mesoscopic agent-based model of Raimbault (2022). In-
novations diffuse within an urban system with several urban
areas, in which firms search for new innovations. To sim-
plify, urban areas are isolated enough so that no innovation
cluster extends on two distinct areas (what is geographically
reasonable for most worldwide urban systems, besides poly-
centric mega-city regions- which should in our case be con-
sidered as a single urban area (Yeh and Chen, 2020)). We
assume a certain independence between the macro and meso
dynamics, as they have each their own processes: innovation
diffusion, adoption by the population, urban migration and
growth, for the macro-scale; and flows of ideas within and
between firms, mutation of ideas, multi-dimensional prob-
lem solving, for the meso scale. The link between scales
is ensured through a bottom-up feedback: fitness perfor-
mances of a local cluster, within a local innovation cycle
corresponding to a macro time step, will determine the emer-
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gence of new innovations (replacing the mutation mecha-
nism of the urban evolution model of Raimbault (2020b) we
integrate); and through a top-down feedback: after a macro
time-step, city population growth - interpreted as a global
performance proxy - will have an impact on the strategies
of firms and on the local urban environment, what is cap-
tured by a modification of parameter values of mesoscopic
models.

Model description

Model agents and setup At the macroscopic scale, agents
in the model are N urban areas indexed by i, characterised
by their population Pi(t) evolving with time t ≥ t0 and
innovation genome δic(t) which corresponds to the share
of different innovations (indexed by c) adopted in each
area. For the geographical configuration, we work on syn-
thetic systems of cities with realistic properties, what allows
exploring model behaviour independently of geographical
contingencies (Raimbault et al., 2019). Initial cities sizes
in terms of population follow a rank-size law (Zipf’s law)
Pi = P0 · i−α

P

, with P0 the size of the largest city, i the
rank in decreasing order, and αP the hierarchy (Ioannides
and Overman, 2003).

The mesoscopic geographical scale corresponds to the in-
ternal representation of each area, which consists in a clus-
ter of firms. The number of firms Ni in each area scales
with city size (Pumain et al., 2006), such that Ni = N0 ·(
Pi(t0)
P0(t0)

)αN

. We furthermore consider a global rank-size
law for the size of firms (number of employees), in accor-
dance with the empirical literature (Axtell, 2001), given by
Sk = S0 · k−αS , where k is sorted in decreasing order, and
such that 1 ≤ k ≤

∑
iNi. To distribute initial firms into the

urban areas: (i) we assume that the size of the largest firm
scales with city size maxk∈i Sk = S0 · k−αL ; (ii) sampling
the set of all firms previously generated, we select for each
area its largest by choosing the one with a size closest to the
one given by the previous law; (iii) remaining missing firms
are uniformly drawn within the sample of firms smallest than
the largest, starting with the smallest urban area such that all
firms are distributed in the end.

Each innovation cluster is initialised with random em-
ployees within each firm (an employee corresponding to
a set of ideas, i.e. a multidimensional genome), and
with a random fitness to maximise following Raimbault
(2022) given by a generalised Rastrigin function y(~x) =
−
∑
i,jmij

[
x2
i − 10 cos (2πxi)

]
for an employee ideas ~x

and mij uniformly drawn random coefficients. Such dif-
ficult optimisation landscapes have been used in the litera-
ture as a proxy of what firms seek to optimise. Firms have
uniformly distributed locations within each area. Each area
has its own meso parameters (listed below), initialised at the
same value but evolving in different ways with the macro
trajectory of the city.

Model dynamics The dynamics are simulated in an itera-
tive way, starting from the initial state described above. For
a certain number tf of macroscopic time steps, the following
sequence is followed:

1. Meso cycle: each urban area (corresponding to one inno-
vation cluster) undergoes one cycle of innovation: for tm
mesoscopic time steps, after all employee ideas and the
problem to solve have been randomly reinitialised:

• employee exchange ideas within firms, through
crossovers between genomes with a probability pC and
a share of genome exchanged sC ; ideas are mutated
with a probability pM and amplitude xM ;
• fitness of new ideas is evaluated on the problem to max-

imise, and the best idea is chosen as new candidate
product by the company (and attributed to a share sP
of employee to work on);
• ideas are informally exchanged between firms within

the urban area through daily life and the urban environ-
ment, following a spatial interaction model with prob-
ability pE and spatial range dE .

2. Bottom-up feedback: the innovations obtained in firms
are put to the market if they reach a high enough quality.
Considering for each area the relative fitness gain δfi =
maxk fk−f̄

f̄
with f̄ the average of fk (fitness of firms), a

new innovation emerges at the macroscopic scale in the
corresponding urban area if this relative gain exceeds a
parameter threshold δfi > θi; the list of innovative cities
is transmitted to the macro scale.

3. Macro step: a standard step of the macroscopic model is
achieved following Raimbault (2020b), except for the mu-
tation as new innovations are already simulated through
the meso scale:

• innovation are diffused between cities, following

δic(t) =

∑
j pcj(t− 1)

1
uc · exp (−dijdI )∑

c

∑
j pcj(t− 1)

1
uc · exp (−dijdI )

with dI innovation diffusion spatial span, uc utility of
the innovation c, pjc the share of adoption of c in city
j;
• migration and population growth are captured by the

intermediary of city attractivity (determined by its in-
novation), such that

Pi(t)− Pi(t− 1) ∝wI ·
∑
j

Pi(t− 1) · Pj(t− 1)

(
∑
k Pk(t− 1))2

· exp

(
−dij
dG

)
·
∏
c

δ
φc(t)
c,i,t
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with φc macro adoption levels, dG migration range pa-
rameter, wI weight parameter, and with a renormalisa-
tion by the average of gravity potentials (note the typo
in (Raimbault, 2020b): attractivity factors are indeed
outside the exponential);

• innovative cities obtained from the meso-scale intro-
duce new innovations, with an initial penetration rate
r0, and with a log-normal distributed random utility
with average the current average of utilities and stan-
dard deviation a parameter σU (the link between meso
performance and macro utility is not endogenous, as it
would require much more elaborated modelling of mar-
ket processes).

4. Top-down feedback: we consider two different pro-
cesses through which macro dynamics will influence the
next meso innovation cycles, in a way similar to Raim-
bault (2021b); given the relative population growth of
cities at the macro scale δp = Pi(t)−Pi(t−1)

maxj Pi(t)−Pi(t−1) , we as-
sume that this captures a dynamic urban environment with
consequences on firm strategy and local exchanges (we
do not consider in this top-down feedback the other main
process of the macro model, which are innovation share
dynamics; once again the underlying economic processes
are too broad to link these with city global integration and
performance);

• firm strategy is updated by changing crossover proba-
bility (organisation of R&D teams) and mutation prob-
ability (access to resources) following

pC(t+ 1, i) = pC(t, i) · (1 + βCδp)

and

pM (t+ 1, i) = pM (t, i) · (1 + βMδp)

- a positive value for the βC parameter (resp. βM ) will
mean that the company follows the city trend (more in-
tensive research in growing area and less in stagnat-
ing ones), while a negative value will imply an inverse
strategy (large research centres in less dynamic areas -
which can occur for many other economic, geograph-
ical and social reasons, including policy incentive to
redevelop such areas);

• the urban environment, in terms of informal exchanges,
is also influenced in a similar way following

pE(t+ 1, i) = pE(t, i) · (1 + βEδp)

The model is stopped when the final number of time steps
is reached, and indicators are computed at the meso and
macro levels on full trajectories.

Model indicators We consider as observables at the
macro scale the same indicators as used by Raimbault
(2020b): average utility U (in time and across cities and
innovations, weighted by population), average diversity D
of adoption proportions, and number of innovations. At the
meso scale, we aggregate firm trajectories within each area
with some indicators from (Raimbault, 2022): fi the value
of the best fitness across all firms for area i, and di the diver-
sity of ideas within each area. Both are also averaged across
areas to yield scalar observables f and d.

Crucial indicators to answer our research question must
be some proxy to measure “the strength of emergence”, in
some sense a quantification of downward causation. Seth
(2010) has introduced a measure based on Granger causal-
ity to estimate how the macro observables of a system are
autonomous of underlying micro causal structures. Rosas
et al. (2020) generalise this approach by using informa-
tion theory to introduce a quantitative definition of down-
ward causation. We use the three indicators for large sys-
tems introduced by Rosas et al. (2020). Given a time-
series of a macro observable V (t) and of meso observ-
ables Xj(t), I(X;Y ) an estimator of mutual information,
and τ a time delay, the system exhibits causal emergence
if Ψ = I(V (t);V (t + τ)) −

∑
j I(Xj(t);V (t + τ)) > 0.

The presence of downward causation is obtained when ∆ =
maxj (I(V (t);Xj(t+ τ))−

∑
i I(Xi(t);Xj(t+ τ))). Fi-

nally, causal decoupling is observed when Ψ > 0 and
Γ = maxjI(V (t);Xj(t + τ)) = 0. We estimate these in-
dicators on time-series for meso observables at the level of
cities (fi, di)(t) with the time-series for utility and diversity
macro observables.

Results
Model implementation
The simulation model is implemented in scala for per-
formance purposes. The JIDT java library is used to
estimate mutual information for the downward causation
indicators (Lizier, 2014). The model is integrated into
the OpenMOLE platform for model exploration and val-
idation (Reuillon et al., 2013), which provides a trans-
parent access to high performance computing environ-
ments and state-of-the-art sensitivity analysis and valida-
tion methods. Model source code and analysis of sim-
ulation results are available on an open git repository at
https://github.com/JusteRaimbault/
InnovationMultiscale-model.

Model parametrisation We fix a certain number of pa-
rameters linked to geography and the configuration of the
economic system, as our main research question is to fo-
cus on inter-scale relationships. Regularities of city sys-
tems are in our case fixed through the synthetic setup pa-
rameters, but each model repetition imply a different ran-
dom configuration and hence some conclusions relatively
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independent of geographical contingencies Raimbault et al.
(2019). We consider N = 10 cities, with maximal pop-
ulation P0 = 10000 and hierarchy αP = 1.0 - these are
classical settings for such regional systems of cities. This
corresponds to a time scale of tf = 50, roughly 50 years in
reality. Meso time steps are set to tM = 50, correspond-
ing to the scale of a week, typical of development sprints.
Firm size scaling is also standard with αS = 1.0 and the
size of the largest firm S0 = 100 (to be interpreted in terms
of R&D team size). The number of firms for the largest area
is N0 = 20 and the scaling of firm number is αN = 1.0.

Beside these geo-economic setup parameters, we fix other
parameters which are known to have limited qualitative
influence on behavior of submodels from previous explo-
rations, or which do not correspond to a process in focus. We
take for the macro level wI = 0.01 for a steady but limited
growth, an early adopters rate r0 = 0.2, a utility standard de-
viation of σU = 1.0. For meso clusters, fixed parameters are
the genome size g = 10, the crossover share sC = 0.5, the
mutation amplitude xM = 1.0, the product share sP = 0.5,
and the exchange spatial range dE = 100.0.

The parameter left free and that will be explored in the
numerical experiments are: the macro spatial interaction
range dG and innovation diffusion range dI , to study spatial
properties of the system; the meso crossover probability pC ,
mutation probability pM and interaction probability pE , to
study the role of local knowledge exchanges; and the inter-
scale parameters which are at the core of our research ques-
tion: θi = θ innovation threshold, taken as uniform over all
urban areas, and macro-to-meso feedback parameters βC ,
βM and βE . Parameter ranges are taken from previous
exploration of the models integrated; between 1.0 and 2.0
for θ (obtained with empirical tests), and 10 times smaller
than corresponding parameter boundaries for the feedback
parameters to ensure a reasonable variation across the full
model execution.

Statistical behavior
We first test the statistical behavior of the model, in partic-
ular how much repetitions are needed to have a reasonable
estimation of indicators. We explore a grid of 288 parameter
points, and run 20 repetitions of the model on each. Es-
timating Sharpe ratios as the ratio between estimated mean
and estimated standard deviation over the repetitions, we ob-
tain across all macro and meso indicators all median ratios
above or around 2, and a minimum across parameter points
of 0.858 for the macro utility. Looking at all distance be-
tween couples of indicator averages, normalised by standard
deviations (capturing the overlap between effect difference
and standard errors), we find a minimal median of 0.19 for
meso diversity, while other indicators have a median be-
tween 0.24 and 0.3. This means a rather good statistical
separability of parameter points, and that 10 repetitions are
enough for the stochastic variability to induce smaller noise

than confidence intervals for averages.

Grid exploration
We then turn to a grid exploration of a portion of the parame-
ter space, to understand some aspects of model behavior. We
fix pM = 0.01, pE = 1e− 4, βC = 0.0, βM = 0.0 and take
(dG, dI) ∈ {0.1, 0.5, 1.1}; pC ∈ {0.2, 0.5}; θ ∈ {1, 2};
βE ∈ {−1e− 4, 1e− 4}.

We draw some plots of indicator behaviour in Fig. 1. We
find that the feedback parameter on the urban environment
βE has a qualitative influence on the macro utility: while
having comparatively small variations for negative values
(left column), it becomes either strongly decreasing (θ = 1)
or increasing (θ = 2) as a function of dG. This implies that
policies can in some cases reverse the effect of geography,
what would correspond to voluntary development of stag-
nating regions. The role of dI also qualitatively changes,
meaning that the distance of exchanges will affect differ-
ently interventions. A diversity of behaviours is also ob-
served for the meso fitness. For both levels, θ also strongly
changes qualitative behaviours - meaning that thresholds to
access the market have in the end a long term impact on the
overall system. Altogether, the influence of both feedback
parameter can not be intuited from the beginning, and this
first exploration allows diving in the complexity of model
dynamics.

Multi-objective optimisation
We then apply our model to a contradictory optimisation ex-
ercise. Often in such multi-scalar systems, actors and pro-
cesses at different scales have different interests and can be
in opposition. Solving such disputes is the objective of such
integrative modeling approaches. We propose thus to simul-
taneously optimise the macroscopic utility, while still max-
imising the mesoscopic diversity. Previous exploration of
the macro model showed that a compromise existed between
macro utility and diversity; we try now to see if a similar one
exist between scales. The diversity of ideas is an important
aspect to be maintained for the resilience and innovativity of
social systems, and can in some cases be hindered by global
productivity objectives.

We run a NSGA2 bi-objective algorithm, for 10000 gen-
erations, with a population of 200 individuals, with as a
genome the free parameter boundaries given above. We
use the OpenMOLE implementation of NSGA2. The Pareto
front obtained is shown in Fig. 2.

We find first of all a reduced number of points (10), sug-
gesting that the optimisation is difficult. They however form
a Pareto front, with a concave shape - on the contrary to
convex fronts generally obtained. This means that extreme
points are rather good compromises, witnessing very differ-
ent regimes which can lead to optima. A middle point corre-
sponds to long interaction distances (large dG), while some
points around and on the right extremity of the front are lo-
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Figure 1: Behaviour of macro utility and meso fitness as a function of dG, for varying dI (colour), βE (columns) and θ (rows).
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Figure 2: Pareto front between the opposite of macro utility
and the opposite of meso diversity (both to be minimised to
maximise the original objectives). Point color gives inter-
action distance dG and point size the innovation threshold
θ.

cal regimes (small dG), what could be evidence for a detri-
mental globalisation in that case. It is also a regime where
innovation threshold is high, corresponding to a more com-
petitive environment. This optimisation exercise confirms
that both scales can be simultaneously taken into account
and optimised in policy design.

Searching for diversity in regimes of emergence
We finally use the downward causation indicators to investi-
gate which kind of emergence the model produces. We ap-
ply the PSE (Pattern Space Exploration) algorithm, imple-
mented in OpenMOLE by Chérel et al. (2015), and which
is a hitmap-based diversity search algorithm, to explore the
feasible space of these indicators. We run the algorithm for
10000 generations, with 3 objectives Ψ(U), ∆(U), Γ(U),
the downward causation indicators on macro utility.

The point cloud obtained is shown in Fig. 3. We find
a rather covering cloud, meaning that the model covers a
great variety of regimes of emergence. A part of the points
are gathered around Ψ ∼ 0 for varying ∆, corresponding
to cases with no causal emergence but downward causation.
Several points, disseminated across the cloud, have a value
of Γ close to 0, implying an autonomy between scale for the
positive Ψ. ∆ is never negative nor close to 0, meaning that
downward causation always occurs, what could have been
expected through the explicit top-down feedback process.
Altogether, this last experiments confirms that the model
captures strong emergence, but also a great variety of causal
regimes between scales.

Figure 3: Scatter plot between Ψ(U) and ∆(U), obtained
with the PSE diversity search algorithm. Point colour gives
Γ(U) and point size the innovation threshold θ.

Discussion
We have introduced a multi-scalar model for innovation
dynamics in systems of cities. Our numerical experi-
ments show, beyond basic model validation and explo-
ration, that (i) contradictory objectives can be optimised
through policies across scales, suggesting that this type of
approach could further be explored for territorial sustainabil-
ity; (ii) strong emergence and a great diversity of emergence
regimes are captured by the model - confirming the rele-
vance of strongly coupling scale and building such a “com-
plicated” model, beyond a single scale.

Several limits can at this stage be identified, and should
be considered for future extensions. The unidimensional in-
novation space is a strong limitation, keeping the model ab-
stract and difficult to link with data. The economic structure
and processes is also very simplified, as we are closer to a
phenomenological model. Coupling with economic agent-
based models is a perspective for this issue. Regarding the
time scales and evolution of urban areas, we also did not
include migration of employees - assuming constant team
sizes - what is fine with the idea of reinitialised settings
at each macro time step, but what would cause more prob-
lems if we add memories to companies and employees. In
that context, team diversity is crucial for innovation, but the
role of sizes and their evolution in time is less clear (Hoisl
et al., 2017) - so translating population migration directly
into firm sizes may not be the best solution. We did not
include changes in macro parameters as Raimbault (2021b)
does, what could be a way to incorporate more bottom-up
feedback in the model.

Finally, future developments on empirical data would
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need some model adaptation and complicated data collec-
tion and processing work. In particular, finding proxies for
innovation, and also collecting firm data which is quite rare,
are crucial issues. Such an empirical approach would how-
ever be necessary for real-world applications of the model
beyond stylised policies.

Conclusion
This work introduced a first modelling and simulation step
towards multi-scalar quantitative approaches to systems of
cities, focused on innovation dynamics in this case. The nu-
merical explorations, achieved with advanced model valida-
tion techniques with the OpenMOLE software, confirm the
relevance of the model, in particular through its ability to
capture a diversity of emergence regimes. This provides a
first step towards more elaborated integrated urban models
for sustainable policies.
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