
HAL Id: hal-04428200
https://hal.science/hal-04428200

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicit approximation of stochastic optimal feedback
control for combined therapy of cancer

Mazen Alamir

To cite this version:
Mazen Alamir. Explicit approximation of stochastic optimal feedback control for combined therapy of
cancer. ACC 2024 - American Control Conference, IEEE, Jul 2024, Toronto, Canada. �hal-04428200�

https://hal.science/hal-04428200
https://hal.archives-ouvertes.fr


1

Explicit approximation of stochastic optimal
feedback control for combined therapy of cancer

Mazen Alamir

Abstract—In this paper, a tractable methodology is proposed
to approximate stochastic optimal feedback treatment in the
context of mixed immuno-chemothrapy therapy of cancer. The
method uses a fixed-point value iteration that approximately
solves a stochastic dynamic programming-like equation. It is
in particular shown that the introduction of a variance-related
penalty in the latter induces better results that cope with the
consequences of softening the health safety constraints in the
cost function. The convergence of the value function iteration
is revisited in the presence of the variance related term. The
implementation involves some Machine Learning tools in order
to represent the optimal function and to perform complexity
reduction by clustering. Quantitative illustration is given using
a commonly used model of combined therapy involving twelve
highly uncertain parameters.

Index Terms—Stochastic optimal control; Stochastic Dynamic
Programming, Cancer therapy, Machine Learning, Clustering.

I. INTRODUCTION

Rationalizing drug delivery is an active research field that
commonly involves population models with high number of
uncertain parameters. Unfortunately, these parameters which
are by nature highly variable between individuals, are inac-
cessible to identification because of the lack of excitation [9].

The great majority of applied mathematical-like works solve
deterministic optimal control problems which are formulated
using the nominal values of the parameters [15], [6], [11].
While this might be important to draw qualitative conclusions
regarding the patterns of optimal strategies (intensive treat-
ment, presence of singular arcs, etc); the resulting profiles do
not accommodate for the high dispersion of the parameters.

Using repetitive solutions of such open-loop nominal
scheduling strategies in a feedback mode through the receding-
horizon principle (apply the first part of the optimal strategy
and recompute a new optimal injection profile at the next deci-
sion instant and so on leading to the so called Model Predictive
Control design (MPC).) obviously reduces the drawback of
parameters mismatch [4], [5]. However, the performances can
only be observed a posteriori as nothing is explicitly done to
address the presence of uncertainties.

Another option is to use a parameterized state feedback law
and to optimally tune its design parameters using explicitly
the statistical description of the model’s parameters dispersion
by means of the randomized optimization framework [1].
Unfortunately, as far as available works are concerned, this is
to be done for each initial state in the proposed frameworks.
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Stochastic model predictive control (SMPC) offers an at-
tractive alternative through the use of a set of scenarios in
the on-line computation in order to minimize the approximate
version of the expectation of the cost function [13], [12], [2].
This lead to a solution for each initial state but does not give a
global overview on the performance on a whole region of the
state space. On the other hand, this solution can be scalable
in the dimension of the state which enables the use of almost
arbitrarily complex models of the underlying dynamics.

Stochastic Dynamic Programming (SDP) [7], [3], [10] is a
framework that, at least conceptually, outperforms the previous
approaches in that it gives an 1) explicit state feedback law
that 2) explicitly incorporates the statistical description of
the parameters dispersion while being 3) defined on a whole
region of interest within the state space.

Unfortunately, the price to pay to get these advantages is
to represent the Bellman function over the extended space of
state and control making this approach non scalable in the
dimension of the state and control. Moreover, when mini-
mizing the residual of the SDP equation, each call involves
the computation of statistically defined quantities and this, for
the computation to be relevant, should theoretically involve a
high number of randomly sampled instances of the uncertain
model’s parameters. Note however that this last drawback is
obviously shared by the SMPC approach.

The literature on solving the stochastic dynamic program-
ming equation is huge and a complete survey of it is out of
the scope of this paper. For a complete and recent survey, one
can consult [3]. This paper does not claim a particularly novel
algorithm to solve the SDP equation. Rather it focuses on the
issue of introducing a variance-related term in the definition
of the cost function, investigates its impact on handling the
health-related constraint in the combined therapy of cancer
and revisits the convergence proof of the underlying value
function-related fixed-point iteration when such additional
variance-related term is added.

More precisely, a simple framework is proposed for a
moderate sized models1 in which Machine Learning (ML)
tools are used. More precisely, the model’s structure uses a
Support Vector Machine (SVM) regression model to represent
the value function. On the other hand, a clustering approach
is used to approximate the statistical quantities using a lower
number of samples. This leads to a tractable approximate
solution that can be obtained in less than 20 minutes when
using a grid of 9604 points in the state/control space when no
parallelization is used. Drastic reduction of the computation

1the combined therapy model used involves four states and two controls
which are commonly encountered sizes in all the related works.
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time can be obtained since the proposed scheme is amenable
to massive parallelization.

This paper is organized as follows: The problem of com-
bined therapy is stated in Section II. Some recalls regarding
SDP are proposed in Section III and some results are proposed
for the convergence of a fixed-point iteration that is used to
solve the associated equations. Section IV details the proposed
approximate solution’s framework while Section V shows the
results on the combined therapy of cancer and discusses some
issues. Finally, the paper ends with Section VI that summarizes
the paper’s contributions and gives some hints for further
investigation.

II. PROBLEM STATEMENT

A. The dynamic model

Let us consider the population model used in [8] to de-
scribe the dynamics involved in the combined immuno-chemo
therapy:

ẋ1 = ax1(1− bx1)− c1x4x1 − k3x3x1 (1)
ẋ2 = −δx2 − k2x3x2 + s2 (2)
ẋ3 = −γ0x3 + u2 (3)

ẋ4 = g
x1

h+ x1
x4 − rx4 − p0x4x1 − k1x4x3 + s1u1 (4)

where

x1 tumor cell population
x2 circulating lymphocytes population
x3 chemotherapy drug concentration
x4 effector immune cell population
u1 rate of introduction of immune cells
u2 rate of introduction of chemotherapy

The description of the role of each groups of term is given in
Table I for the sake of clarity.

Eq. Term Description

(1) ax1(1− bx1) Logistic tumor growth
(1) −c1x4x1 Death of tumor due to effector cells
(1) −k3x3x1 Death of tumor due to chemotherapy
(2) −δx2 Death of circulating lymphocytes
(2) −k2x3x2 Death of lymphocytes due to chemo
(2) s2 Constant source of lymphocytes
(3) −γ0x3 Exponential decay of chemotherapy
(4) g

x1

h+ x1
x4 Stimulation of tumor on effector cells

(4) −rx4 Death of effector cells
(4) −p0x4x1 Inactivation of effector cells by tumor
(4) −k1x4x3 Death of effector cells due to chemo

TABLE I
SIGNIFICATION OF THE TERMS INVOLVED IN THE DYNAMIC MODEL

(1)-(4) [SOURCE [8]]

When referred to the nominal values of the parameters
involved in the model (1)-(4), the following values are used:

a = 0.25, b = 1.02× 10−14, c1 = 4.41× 10−10, g = 1.5× 10−2

h = 20.2, k2 = k3 = 0.6, k1 = 0.8, p0 = 2× 10−11, r = 0.04

s1 = 1.2× 107, s2 = 7.5× 106, δ = 1.2× 10−2, γ0 = 0.9

Note that the dynamic model (1)-(4) involves 14 parameters.
It is worth noting however that the order of magnitude of x1

is about 109 while h ≈ 20. This means that h acts only when
the tumor is almost disappearing2. That is the reason why in
the remainder of this paper, this parameter is supposed to be
known and hence it is not included in the set of uncertain
parameters. As it is shown later, this enables a separable
structure of the evolution map to be used [see (6)].

Gathering all the other parameters in a vector p ∈ R13 and
using some discretization scheme with some sufficiently small
sampling period τ , it is possible to put the dynamics above in
the following condensed form for the easiness of notation:

x+ = f(x, u, p) (x, u, p) ∈ R4 × R2 × R13 (5)
= Φ(x, u)Ψ(p) (6)

for straightforward definition of Φ and Ψ.
The trajectory of the system starting at initial state x under

a control profile u and when the parameter value p holds is
denoted by xu(k|x, p), namely:

xu(k + 1|x, p) = f
󰀃
xu(k|x, p), u(k), p

󰀄

xu(0|x, p) = x

B. The control objective and constraints

The aim of the combined therapy is to reduce the size of
the tumor population x1 while keeping the level of lymphocyte
cells x2 above a lower bound xmin

2 . This has to be done using
quantized drug delivery:

u ∈ U := {0, umax
1 }× {0, umax

2 } (7)

so that an infinite sequence of control lying inside U is denoted
hereafter by U∞.

In order to address the control objective, the following stage
cost function can be used that incorporates the constraint on
x2 as a soft constraint:

L(x, u) := x2
1 + ρc max{0, xmin

2 − x2}+ ρ1u1 + ρ2u2 (8)

so that if the model’s parameters were perfectly known, an
optimization problem can be defined for all given initial state
x as follows:

P(x|p) :

min
u∈U∞

J(u|x, p) :=
∞󰁛

k=0

γkL
󰀓
xu(k|x, p), u(k)

󰀔
(9)

for some γ ∈ (0, 1]. Now, since the parameters are supposed
to be unknown, the stochastic control approach amounts at
replacing the deterministic cost function (9) by a statistically
defined one such as:

Jα(u|x,Π) := µ(J(u|x, ·)) + ασ(J(u|x, ·)) (10)

=: S(J)
α (u, x) (11)

where µ(·) and σ(·) stand respectively for the expectation and
the variance of their argument when p is sampled according to

2On the other hand, without h, the effector immune population will keep
growing while the tumor is absent which contradicts its very definition as a
tumor stimulated immune population.
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some supposedly known Probability Density Function (pdf) Π.
Note that (11) simply introduces a short notation of the r.h.s
of (10).

This leads to the following stochastic optimization problem:

Pα(x|Π) : min
u∈U∞

Jα(u|x,Π) (12)

Note that in many stochastic control-related works, attention
is focused on the expectation of the cost function so that
α = 0 is widely used in (10). This is not totally appropriate
in the case of cancer therapy. Indeed, expectation is a relevant
indicator only when high number of realizations are expected
to take place3 in which only the global average is of interest.
In the case of cancer therapy, a scenario is a patient being
treated. This is why one should obviously be interested in the
risk that each patient afford during the treatment. In such
cases, it is precisely those bad scenarios with non negligible
likeliness that really matter. This has to do not only with the
expectation but definitively with the associated variance as
well. This explains the use of α > 0 in (12).
In the next section, some recalls are proposed on the Stochastic
Dynamic Programming equations that might be invoked to
approximately solve the stochastic optimization problem (12).

III. RECALLS AND PRELIMINARY RESULTS

A. Stochastic Dynamic Programming

SDP attempts to solve the following functional equation in
which the unknown function V (·) is the optimal solution of
(12). More precisely:

V (x) := min
u∈U

Q(x, u) where (13)

Q(x, u) := L(x, u) + γmin
v∈U

󰁫
S(Q)
α (x, u, v)

󰁬
(14)

where x+ = f(x, u, p) (15)

in which S(Q)(x, u, v) is defined in a similar way as
S(J)(u, x) [see (11)]:

S(Q)
α (x, u, v) := µ

󰀃
Q(f(x, u, ·), v)

󰀔
+ ασ

󰀃
Q(f(x, u, ·), v)

󰀔

(16)
where here again, µ(·) and σ(·) are respectively the expecta-
tion and the variance of their argument when p (involved in
the definition of f(x, u, p)) is sampled according to the pdf
Π.

The fact that V satisfying (13)-(14) is a solution to (12) is a
direct consequence of the Bellman principle and the fact that
L = µ(L) + σ(L) = L + 0 since L(x, u) is a deterministic
p-unrelated term.

From the above, it comes out that the truly unknown
function to find is Q(·, ·) since the optimal value function
V (·) as well as the optimal control are then recovered from
the static optimization problem (13).

Now it is not hard to see from (14) that Q is a solution of
a fixed-point iteration:

Q(i+1) = F
󰀓
Q(i)

󰀔
(17)

3such as saving energy in building management for instance despite of bad
knowledge of exogenous parameters such as power demands and whether
conditions.

where the operator F (commonly called the Bellman operator)
is defined by:

F (Q)(x, u) := L(x, u) + γmin
v∈U

󰁫
S(Q)(f(x, u, ·), v)

󰁬
(18)

In the next section, some convergence results regarding the
above fixed-point iterations are derived in a general conceptual
setting before a specific implementation is proposed in Section
IV for the combined therapy of cancer.

B. Fixed-Point iteration convergence analysis

For the sake of brevity, all the proofs of the forthcoming
stated results can be examined in the arXiv version of the
present paper (https://arxiv.org/abs/1905.04937). Nevertheless,
the working assumptions and the results are stated in this
section. First of all, the following continuity assumption of
the dynamics is used:

Assumption 1 (Continuous dynamics): The map f de-
scribing the discrete-time state evolution (5) is continuous in
its arguments.
Regarding the uncertain vector p, the following assumption is
needed

Assumption 2 (Finitely supported uncertainties): there
exists a compact set P to which belong all possible realizations
of the uncertain vector p.

Definition 3.1 (Bounded excursion): A map G defined on
X×U is said to have B-bounded excursions w.r.t the dynamics
f if the following inequality holds:

|G(f(x, u, p), v)− µ(G(f(x, u, ·), v))| ≤ B (19)

for all (x, u, v, p) ∈ X× U2 × P.
This definition simply states that the excursion of the realiza-
tions G(f(x, u, p), v) from the mean value µ

󰀃
G(f(x, u, ·), v)

󰀄

is bounded. It goes without saying that, under Assumption 1,
such a bound exists as soon as the map G is continuous. since
all the involved bounding sets are compact.

Lemma 3.1 (Fixed-Point convergence): Under Assump-
tions 1 and 2, if the fixed point map F invoked in (17) pro-
duces only continuous maps Q(i) with B-bounded excursions
for some B > 0, then the fixed point iteration converges on
Z := X×U provided that the penalty α on the variance term
in (16) satisfies:

α <
1− γ

2γB
(20)

and for sufficiently small sampling period τ that is used to
derive the discrete-time dynamics (5). ♦

From the above lemma, one can clearly derive the standard
convergence result that is known to hold when no penalty on
the variance is used (see for instance [7], [10], [3] and the
references therein).
It is worth underlying that the convergence results cited above
depend on the assumption according to which the successive
iterates Q(i) produced by the Bellman map F admit a B-
bounded excursions with common upper bound B. The way
this condition is enforced is discussed in the next section.
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IV. THE PROPOSED COMPUTATION FRAMEWORK

A. Parametrization of Q(x, u)

In the previous section, the SDP equation and the related
fixed-point iteration have been defined in a conceptual frame-
work. In this framework, the unknown function Q(x, u) one
is looking for has no specific finite-dimensional representation
that would be compatible with concrete computation schemes.
In this section, this parameterization aspect is addressed.

For the sake of simplicity, the notation z = (x, u) and
Z := X × U is used so that Q(z), f(z, p) stands for
Q(x, u) and f(x, u, p) respectively. The finite dimensional
parameterization of Q is obtained through the following steps:

󰃀 Consider a fixed grid of points Z := {z(i)}ng

i=1 is
defined on the compact subset Z of interest.

󰃀 Denote by q := {qi}ng

i=1 the vector of values of the
function Q at the grid points, namely qi = Q(z(i)).

󰃀 Choose some regression model (Polynomial, Gaussian,
Support Vector Machine Regressor (SVMR), etc.) and
denoted it by Q̂. As far as this work is concerned, a SVMR
with gaussian basis is used with the default parameters used
in the scikit-learn Machine Learning (ML) library [14].

󰃀 This choice enables to associate to each vector of
values q ∈ Rng a function Q̂(·|q) defined on Z which is
precisely the one identified (or learned to invoke a ML
vocabulary) using the learning data (Z, q). Based on the
above items, it is now possible to state the following definition:

Definition 4.1 (Admissible regression model): A regres-
sion model is said to be admissible if and only if for all set
Z of finite grid points in Z and any compact set of function
values Q ⊂ Rng , there exists B > 0 such that all identified
maps Q̂(·|q) with q ∈ Q shows B-bounded excursions in the
sense of Definition 3.1.

B. Main convergence result

Using the above preliminary results and definitions, the
following main result regarding the convergence of the
proposed Fixed-Point iteration scheme can be stated as
follows:

Proposition 4.1 (Main result): Under Assumptions 1 and
2, if an admissible regression model(in the sense of Definition
4.1) is used over some grid points Z := {z(i)}ng

i=1 with the
initialization qi = L(z(i)) to solve the stochastic optimal
feedback of the combined therapy of cancer as stated in
Section II, then the resulting fixed-point iteration (18) with
γ ∈ (0, 1) is convergent provided that the variance related
penalty α and the sampling period τ are taken sufficiently
small. ♦

The only remaining task is to find a regression model that is
admissible in the sense of Definition 4.1. Fortunately, there
are many options. The one that is used in the remainder of

this paper is the Support Vector Machine regressor (SVMR)
which shows the following structure:

Q̂(z|q) := β0(q) +

ng󰁛

i=1

βi(q)G(z(i), z) (21)

where the coefficients βi(q) admits uniform bound if q
belongs to some compact set Q.

C. Computation of the expectation and variance

The fixed-point iteration (18) requires the computation of
the map S(Q)(f(x, u, ·), v) which involves the computation of
the expectations and variances of quantities over the probabil-
ity space of parameter values. In this section, the way this is
done concretely is explained.

Recall that the r.h.s of the dynamics in (6) can be decom-
posed into two multiplicative terms x+ = Φ(x, u)Ψ(p) where
only the second term is parameter-dependent. Consequently,
the computation of the expectation of x+ needs the statistics
of Ψ(p) ∈ R14 to be approximated. This is done by identifying
ncl clusters based on a set Sψ of ns samples of the vector
Ψ(·) that are drawn using the pdf Π. The centers of the
computed clusters, denoted by Ψ(j), j = 1, . . . , ncl can be
used as representatives of their clusters. Moreover, the ratio
πj between the sizes of these clusters and the total population
ns can be used as a measure of their probabilities, namely

πj :=
1

ns
card

󰁱
ψ ∈ Sψ | cl(ψ) = cl(Ψ(j))

󰁲
(22)

Based on the above definitions, the following expressions
are used in the approximation of terms in (16):

µ̂
󰀃
x, u, v|q

󰀄
:=

ncl󰁛

j=1

πjQ̂
󰀓
Φ(x, u)Ψ(j), v|q

󰀔
(23)

σ̂
󰀃
x, u, v, |q

󰀄
:=

ncl󰁛

j=1

πj

󰀥
Q̂
󰀓
Φ(x, u)Ψ(j), v|q

󰀔
− µ̂

󰀃
x, u, v|q

󰀄
󰀦2

(24)

Using these expression, the weighted sum (16) can be approx-
imated by:

Ŝ(Q)
α (x, u, v|q) := µ̂

󰀃
x, u, v|q

󰀄
+ ασ̂

󰀃
x, u, v|q

󰀄
(25)

The updated values of qi at the underlying grid points z(i) can
therefore be obtained through:

q+i := L(z(i)) + γmin
v∈U

󰁫
Ŝ(Q)
α (z(i), v)|q)

󰁬
(26)

for each element z(i) of the underlying grid Z . Note that
the optimization problem in v can be solved by simple
enumeration over the four elements of the set U.

This implements a fixed-point iteration on the vector of
values q than can be shortly written as follows:

q+ = F (q) (27)

where the notation F used in (17) is overloaded using the
finite-dimensional parametrization q of Q. This is the fixed-
point iteration that is proved to be convergent under the
assumptions of Proposition 4.1.
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In Section V, the instantiation of the framework on the
combined therapy of cancer is detailed and the corresponding
results are commented.

V. NUMERICAL INVESTIGATION ON THE COMBINED
THERAPY OF CANCER

A. Parameters used in the numerical investigation

As far as stochastic controller design is concerned (nominal
controller is also investigated), the above framework has been
investigated using the following parameters. A number ns =
104 samples have been drawn to perform the clustering of set
of values of Ψ (see Section IV-C). The number of identified
clusters was taken equal to ncl = 20.

Regarding the pdf Π, the following definition has been used
pi = (1 + ν)pnomi where ν is a normal distribution with
0 mean and variance σ = 0.4. The grid Z has been taken
as the cartesian product of a uniform grid on x (having 7
uniformly distributed values over the normalized interval [0, 1]
per component) and the four values control set U. This induces
a set Z composed of 74 × 4 = 9604 elements.

Clustering has been performed using the scikit-learn li-
brary’s KNN (k-nearest neighbors) utility. The scikit learn
library’s SVM regression model has been used with radial
basis function’s kernel and the default values of the remaining
parameter. The sampling period τ = 0.25 Day is used and
the lower bound xmin

2 = 0.05 is used for the normalized4

lymphocyte population size.
Three different controllers are compared. Namely:
1) The nominal controller for which Π is a dirac

distribution centered at the nominal vector of parameters.
The is referred to as Controller #1.

2) The expectation-based controller for which the
distribution of the parameter is the one described above
V-A where no penalty on the variance term (α = 0).
The is referred to as Controller #2.

3) The mixed expectation/variance-based controller for
which the penalty α = 0.1 is used on the variance-
related term. The is referred to as Controller #3.

B. Results

Despite the fact that the convergence of the fixed-point iter-
ation has been proved only for γ ∈ (0, 1) and for sufficiently
small α and τ , the value γ = 1 has been used to show that
convergence does occur for this ideal value (no discount on
the cost function). On the other hand α = 0.1 for Controller
#3.

First of all, Figure 1 shows a typical convergence curve for
the fixed-point iteration. The difference between two succes-
sive solutions during the iterations, namely 󰀂q(i+1) − q(i)󰀂∞
is shown. Note that because of the use of γ = 1, no strict
contraction is obtained but eventually, contraction is settled
and the solution is obtained.

4The state components have been normalized using respectively the refer-
ence values (109, 109, 1, 109).

Fig. 1. Typical convergence curve for fixed-point iterations: Evolution of
the difference 󰀂q(i+1) − q(i)󰀂∞ between two successive iterations. γ = 1,
α = 0.1.

Figures 2 and 3 show the benefit from using the stochastic
formulation compared to the nominal one. In order to show
this, Nsam := 20000 different simulations are performed
by drawing random samples of pairs of initial states and
parameter vectors and the resulting closed-loop cost function
is simulated before statistics are drawn. More precisely, 100
initial states are sampled and for each of these initial state,
200 random parameter vectors samples are drawn. Namely,
for each given pair (x(i), p(i)), i = 1, . . . , Nsam

Jcl(x
(i), p(i)) :=

Nsim󰁛

k=0

L(x(k), u(k)) (28)

Fig. 2. Comparison between the closed-loop performance ratios relatively
to the nominal controller for the two stochastic formulations for the 20000
randomly sampled initial states and parameter vectors.

where Nsim = 50 is the simulation horizon length (12.5
Days) while x(k) and u(k) stand for the closed-loop trajec-
tories at instant k starting at initial instant k = 0 at x(i)

and when the parameter vector p(i) is used. Then different
statistical comparisons are done when the above procedure is
executed using the three controllers mentioned above, namely,
the nominal, the stochastic controller based on the expectation
term only (α = 0) and finally the stochastic controller using
a penalty α = 0.1 on the variance.

More precisely, Figure 2 shows the histogram of the ratios
between the closed-loop performance as defined in (28) when
the stochastic controllers are used compared to the nominal.
One can clearly observe the following features:

1) Both stochastic controllers lead to statistically better
results than the nominal.
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Fig. 4. Safety constraints satisfaction improvement relatively to the nominal
controller for the two stochastic formulations. Abscissa represents the initial
state number (100 are randomly selected) and the percentage refers to the 200
parameter vectors that are simulated for the same initial state.

2) The stochastic Controller #3 that incorporates penalty
on the variance shows better results than the one using
only the expectation-related penalty term.

3) It seems clear that even when focusing on the mean
value of the cost function, the controller # 3 shows a
better average than the controller # 2. This might seem
contradictory with the fact that the latter is supposed
to minimize this expectation. It can be conjectured that
this comes from the fact that the expectation cannot
be sufficiently well represented by the average over the
20 clusters (see Section IV-C) that are used to induce
tractable computation of the expectation and the variance
and considering the penalty on the variance correct this
bias in a favorable way.

Figure 3 shows the comparison between the average levels
of the lymphocytes population cells sizes (compared to the
nominal) when the stochastic controllers are used. Here again,
it comes out that the performances of the controller # 3 are
slightly better than that of the second expectation-only-based
controller.

Fig. 3. Comparison between the average lymphocytes population level ratios
relatively to the nominal controller for the two stochastic formulations for the
20000 randomly sampled initial states and parameter vectors.

Another way to look at the constraint satisfaction is to count
the number of scenarios where the health constraint x2 ≥ xmin

2

is satisfied. Figure 4 shows the percentage of improvement in
the constraints satisfaction compared to the nominal when the
stochastic controllers are used.

VI. CONCLUSION AND FUTURE WORKS

In this paper a tractable stochastic control design for the
combined therapy of cancer is proposed. The method is based
on an approximate solution of the SDP equations through a
value function fixed-point iteration. The convergence of the
latter in the presence of variance related penalty in the cost
function is proved under mild technical assumption. The result
suggests that the inclusion of a variance-related term in the
cost function might give better result by partially compensating
for the errors induced by the approximation of the statistical
quantities through computations involving a reduced number
of clusters. Undergoing work involves the use of GPU-based
computation framework to handle a higher order of magnitude
of the samples size in order to examine how these qualitative
results scale with the dimension of the populations over which
they are evaluated.
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