Supplementary Material for Highlighting the interdependence between volumetric contribution of fragility and cooperativity for polymeric segmental relaxation.

Jules Trubert, Liubov Matkovska, Allisson Saiter-Fourcin, Laurent Delbreilh

Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, GPM UMR 6634, F-76000 Rouen, France

Supplementary Text

Thermodynamic scaling

Thermodynamic scaling for PETg, PVAc and PLA are presented in **Figure S1**. Nevertheless, the consistency of the scaling is much better for PVAc than for PLA and PETg. Paluch et al. have already shown for some H-bonded liquids like dipropylene glycol (DPG), such scaling cannot work ⁸⁶. They explain this by a strong influence of thermodynamic conditions over the degree of H-bonds. Here, it is possible to hypothesise that for PLA and PETg, the difficulty to have a good scaling can be attributed to a high drop of isobaric fragilities with pressure as shown in **Figure 5**.

Isochoric fragility m_V two methods

The isochoric fragility m_V deduced from the isochoric expression of the relaxation times (Equation (1) in the main manuscript) are plotted in Figure S2 (empty circle) as the function of the density at the glass transition normalized by the density at ambient temperature and atmospheric pressure. m_V values from Equation (3) in the main manuscript are also plotted in Figure S2 (filled circle). Isochoric fragility values obtained with the two methods match well, the same behaviour of m_V increase is observed.

Determination of the parameters of the Donth's equation

 T_{α} and δT of the Donth's equation were determined by approximating the isochronal curves of the dielectric loss with a gaussian fit (**Figure S3a**). The isochronal curves were deduced from the α -relaxation, without any contribution of the conductivity nor from β -relaxation. δT was also estimated at P_{atm} by using the imaginary part of the complex heat capacity (**Figure S3b**).

Evolution of activation volume $\Delta V^{\#}$ at T_g as a function of pressure

The fit of one-phase exponential decay function allowing to extrapolate the activation volume is expressed by:

$$\Delta V^{\#} = \Delta V_{\infty}^{\#} + A. \, e^{-\frac{P}{P_{\%}}} \tag{S1}$$

where $\Delta V_{\infty}^{\#}$ is the asymptotic value of activation volume at very high pressure, *A* is the amplitude from $\Delta V^{\#}(P=0)$ up to $\Delta V_{\infty}^{\#}$, thus $\Delta V_{(P=0)}^{\#} = A - \Delta V_{\infty}^{\#}$ and $P_{\%}$ is a pressure for which the activation volume $\Delta V^{\#}(P)$ has reached 63% of the amplitude ranging from $\Delta V_{(P=0)}^{\#}$ down to $\Delta V_{\infty}^{\#}$. $3 \times P_{\%}$ and $5 \times P_{\%}$ correspond to pressures for which the activation volumes $\Delta V^{\#}(P)$ have reached 95% and 99% of the amplitude respectively. The fit parameters are

given in **Table S4**. One can assume that the values of $\Delta V_{\infty}^{\#}$ for the three polymers are almost reached at P = 530 MPa.

Figure S1. Relaxation times of isothermal measurements as a function of inverse product of temperature and specific volume to the power of the scaling exponent γ for a) PETg (where $\gamma = 5.975$; $\Delta \gamma = 0.178$), b) PVAc (where $\gamma = 2.477$; $\Delta \gamma = 0.029$) and c) PLA (where $\gamma = 2.737$; $\Delta \gamma = 0.042$). Red doted lines are just guides for the eyes.

Figure S2. Isochoric fragility as a function of the density at the glass transition normalized to the density at atmospheric pressure and ambient temperature. PETg (red), PLA (blue) and PVAc (green) fragilities were calculated both according to the Angell's definition applied on isochoric relaxation times deduced by Tait's equation (empty circle), and from the difference between the isobaric fragility and the volumetric contribution (filled circles).

Figure S3. a) Isochronal spectra of the imaginary part of the complex permittivity ε'' as a function of temperature for PVAc. The black filled curve corresponds to a frequency of 134 Hz. The short dot line is its gaussian fit to calculate the mean temperature fluctuation from the standard deviation. b) The solid lines represent the real part C_P' and the imaginary part C_P'' of the complex heat capacity as the function of temperature obtained by MT-DSC, the protocol is explained by Rijal et al. ¹⁰⁴. The red dashed line is the gaussian fit to determine δT . The black dashed lines are the extrapolated baselines of the specific heat capacities of the glass and the liquid-like state for PVAc.

PETg									
<i>T</i> [K]	$\log(\tau_0[s])$	С	ΔC	P0 [MPa]	Δ <i>P</i> 0 [MPa]	P _g [MPa]	<i>R</i> ²		
361.15	-2.21	90.08	2.86	413.63	12.43	40.22	0.93770		
363.35	-2.61	90.05	1.50	463.86	7.29	48.90	0.98465		
365.35	-2.94	100.91	1.23	556.71	6.44	56.38	0.99255		
367.15	-3.21	168.59	2.09	994.48	5.82	66.11	0.99815		
369.15	-3.50	105.82	2.13	708.11	7.86	75.67	0.99500		
373.15	-4.01	177.54	5.20	1301.45	22.97	94.10	0.99013		
377.25	-4.44	72.98	1.21	671.05	5.99	113.36	0.99651		
				PLA					
<i>T</i> [K]	$\log(\tau_0[s])$	С	ΔC	<i>P</i> 0 [MPa]	Δ <i>P</i> 0 [MPa]	P_g [MPa]	R^2		
337.15	-1.06	92.19	3.95	377.13	5.82	26.74	0.99662		
339.15	-1.70	88.34	2.08	454.23	6.39	39.94	0.99154		
341.15	-2.15	82.18	0.62	484.50	2.45	50.45	0.99954		
343.15	-2.46	89.00	3.89	545.15	11.82	56.37	0.98565		
345.15	-2.83	83.35	1.99	539.92	6.50	63.60	0.99433		
347.15	-3.28	82.52	1.02	585.30	3.90	75.15	0.99850		
349.15	-3.80	84.14	1.11	638.00	5.72	87.37	0.99613		
351.15	-4.09	70.51	1.16	580.81	4.74	96.40	0.99744		
353.15	-4.37	78.38	0.75	667.82	3.03	105.25	0.99912		
				PVAc					
<i>T</i> [K]	$\log(\tau_0[s])$	С	ΔC	<i>P</i> 0 [MPa]	Δ <i>P</i> 0 [MPa]	P_g [MPa]	<i>R</i> ²		
317.15	-0.83	250.00	-	2363.78	692.46	60.03	0.99661		
319.15	-1.20	250.00	-	2403.02	585.11	68.70	0.99755		
321.15	-1.54	250.00	-	2475.62	567.45	78.07	0.99920		
323.15	-1.83	250.00	-	2654.72	450.55	90.46	0.99769		
325.15	-2.16	250.00	-	2672.78	323.50	98.58	0.99868		
327.15	-2.43	106.24	12.27	1234.39	130.58	108.12	0.99986		
329.15	-2.72	138.89	23.88	1618.79	259.47	117.49	0.99978		
331.15	-2.96	110.12	7.86	1365.98	88.94	128.37	0.99993		
333.15	-3.21	129.77	21.65	1652.48	254.27	139.79	0.99971		
335.15	-3.41	113.84	10.93	1542.99	135.31	152.23	0.99987		
337.15	-3.63	148.35	27.85	2051.50	358.64	164.83	0.99966		
339.15	-3.83	174.15	42.88	2491.52	575.89	178.37	0.99963		
341.15	-4.04	142.88	33.27	2129.73	456.75	188.88	0.99956		
343.15	-4.18	66.33	4.43	1098.22	63.32	193.90	0.99992		
345.15	-4.36	69.31	4.23	1187.77	60.35	207.05	0.99994		

Table S1. Fit parameters (log(τ_0), *C*, *P*0), the uncertainties of *C* and *P*0, glass transition pressure P_g and the R-squared of the pressure VFT law of isotherms (**Equation (6)** in the main manuscript) for PETg, PLA and PVAc.

347.15	-4.52	73.39	6.02	1288.73	88.30	218.85	0.99993
349.15	-4.65	72.85	4.41	1343.77	68.53	233.42	0.99996
351.15	-4.84	83.14	4.94	1537.34	76.61	244.70	0.99996
353.15	-4.98	67.03	1.32	1323.41	21.12	256.07	0.99999

Table S2. Fit parameters (log (τ_{∞}) , D, T0), the uncertainties of D and T0, glass transition temperature T_g , isobaric fragility m_P and the R-squared of the VFT law of isobars (**Equation (2)** in the main manuscript) for PETg, PLA and PVAc.

				PETg				
P [MPa]	$\log(\tau_{\infty}[s])$	D	ΔD	<i>T</i> 0 [K]	Δ <i>T</i> 0 [K]	Tg	m_P	<i>R</i> ²
P _{atm}	-9.76	2.13	0.46	321.97	3.73	347.25	161.53	0.99743
10	-10.47	2.54	0.38	323.08	2.98	351.63	153.64	0.99506
20	-10.73	2.70	0.57	325.19	3.98	355.18	150.79	0.99777
30	-11.12	2.98	0.69	325.99	4.25	358.18	145.92	0.99796
40	-11.60	3.35	0.76	326.02	4.20	360.88	140.73	0.99815
50	-12.18	3.80	0.84	325.48	4.13	363.41	135.87	0.99836
60	-13.04	4.52	0.07	323.52	0.62	365.79	130.16	0.99858
70	-17.08	7.87	5.37	312.38	17.44	368.34	125.63	0.99881
				PLA				
P [MPa]	$\log(\tau_{\infty}[s])$	D	ΔD	<i>T</i> 0 [K]	Δ <i>T</i> 0 [K]	Tg	m_P	<i>R</i> ²
P _{atm}	-14	4.60	0.06	291.37	0.48	327.76	144.12	0.99839
10	-14	4.49	0.09	295.84	0.80	331.89	147.30	0.99747
20	-14	4.41	0.15	299.19	0.80	334.98	149.79	0.99243
30	-14	4.82	0.09	297.85	0.73	336.79	138.39	0.99810
40	-14	4.91	0.11	299.30	0.86	339.18	136.07	0.99716
50	-14	5.22	0.13	298.83	1.01	341.18	128.90	0.99691
60	-14	5.09	0.09	301.86	0.66	343.60	131.70	0.99881
70	-14	5.21	0.10	302.81	0.70	345.62	129.17	0.99858
80	-14	5.33	0.11	303.64	0.74	347.55	126.64	0.99836
90	-14	5.45	0.12	304.38	0.77	349.42	124.14	0.99815
100	-14	5.58	0.12	305.04	0.80	351.22	121.67	0.99796
				PVAc				
P [MPa]	$\log(\tau_{\infty}[s])$	D	ΔD	<i>T</i> 0 [K]	Δ <i>T</i> 0 [K]	Tg	m_P	<i>R</i> ²
P _{atm}	-14	9.80	0.12	239.36	0.83	307.27	67.76	0.99847
10	-14	9.82	0.06	241.87	0.39	310.63	68.01	0.99900
20	-14	9.77	0.05	244.11	0.30	313.19	68.10	0.99937
30	-14	9.76	0.04	246.09	0.24	315.61	68.06	0.99961
40	-14	9.76	0.04	247.86	0.24	317.93	67.90	0.99976
50	-14	9.79	0.04	249.43	0.24	320.16	67.64	0.99983
60	-14	9.84	0.05	250.83	0.32	322.31	67.60	0.99983

70	-14	9.85	0.07	252.47	0.45	324.47	67.37	0.99983
80	-14	9.89	0.09	253.84	0.53	326.54	67.01	0.99973
90	-14	9.96	0.06	255.01	0.39	328.56	66.66	0.99950
100	-14	10.03	0.05	256.16	0.30	330.55	67.76	0.99928

Table S3. Fit parameters (T_g^0, b, Π) , their uncertainties and the R-squared of the Andersson's model (**Equation (7)** in the main manuscript) for PETg, PLA and PVAc.

Polymer	T_g^0	ΔT_g^0	b	Δb	П	ΔΠ	<i>R</i> ²
PETg	348.02	0.289	11.20	1.479	79.61	4.77	0.99943
PLA	329.48	0.281	7.00	1.349	177.06	9.92	0.99898
PVAc	303.85	0.044	5.50	0.194	212.73	1.83	0.99997

Table S4. Fit parameters $(\Delta V_{\infty}^{\#}, A, P_{\rm m})$, their uncertainties and the R-squared of one-phase exponential decay function (**Equation (S1)**) for PETg, PLA and PVAc.

Polymer	$\Delta V_{\infty}^{\#} [\mathrm{nm}^3]$	$\pm \Delta V_{\infty}^{\#}[nm^3]$	$A [nm^3]$	$\Delta A [nm^3]$	P _m [MPa]	$\Delta P_{\rm m}$ [MPa]	<i>R</i> ²
PETg	0.362	0.013	1.824	0.009	51.66	0.82	0.99997
PLA	0.354	0.069	1.090	0.025	80.94	2.80	0.98892
PVAc	0.358	0.052	0.280	0.004	106.26	3.08	0.99298