
HAL Id: hal-04427801
https://hal.science/hal-04427801v1

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coexistence of Railway and Road Services by Sharing
Telecommunication Infrastructure Using SDN-Based

Slicing: A Tutorial
Radheshyam Singh, José Soler, Tidiane Sylla, Leo Mendiboure, Marion

Berbineau

To cite this version:
Radheshyam Singh, José Soler, Tidiane Sylla, Leo Mendiboure, Marion Berbineau. Coexistence of
Railway and Road Services by Sharing Telecommunication Infrastructure Using SDN-Based Slicing:
A Tutorial. Americas Network, 2022, 2 (4), pp.670-706. �10.3390/network2040038�. �hal-04427801�

https://hal.science/hal-04427801v1
https://hal.archives-ouvertes.fr

����������
�������

Citation: Singh, R.; Soler, J.; Sylla, T.;

Mendiboure, L.; Berbineau, M.

Coexistence of Railway and Road

Services by Sharing

Telecommunication Infrastructure

Using SDN-Based Slicing: A Tutorial.

Network 2022, 2, 670–706. https://

doi.org/10.3390/network2040038

Academic Editor: Bin Han, Simon

Pietro Romano, Patrick Seeling

Received: 17 October 2022

Accepted: 24 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Tutorial

Coexistence of Railway and Road Services by Sharing
Telecommunication Infrastructure Using SDN-Based Slicing:
A Tutorial
Radheshyam Singh 1,† , José Soler 1,*,† , Tidiane Sylla 2, Leo Mendiboure 2 and Marion Berbineau 3

1 Department of Electrical and Photonics Engineering, Technical University of Denmark,
2800 Kgs Lyngby, Denmark

2 COSYS-ERENA Lab, University Gustave Eiffel, IFSTTAR, 33067 Bordeaux, France
3 COSYS Department, University Gustave Eiffel, IFSTTAR, 59650 Villeneuve d’Ascq, France
* Correspondence: joss@fotonik.dtu.dk
† These authors contributed equally to this work.

Abstract: This paper provides a detailed tutorial to develop a sandbox to emulate coexistence
scenarios for road and railway services in terms of sharing telecommunication infrastructure using
software-defined network (SDN) capabilities. This paper provides detailed instructions for the
creation of network topology using Mininet–WiFi that can mimic real-life coexistence scenarios
between railways and roads. The network elements are programmed and controlled by the ONOS
SDN controller. The developed SDN application can differentiate the data traffic from railways and
roads. Data traffic differentiation is carried out using a VLAN tagging mechanism. Further, it also
provides comprehensive information about the different tools that are used to generate the data traffic
that can emulate messaging, video streaming, and critical data transmission of railway and road
domains. It also provides the steps to use SUMO to represent the selected coexistence scenarios in a
graphical way.

Keywords: railways; SDN; ONOS controller; handover; traffic differentiation; Mininet–WiFi;
OpenFlow; VLAN

1. Introduction

The European Railway Traffic Management System (ERTMS) is considering available
modern communication technologies to redefine the communication system for railways.
The new communication system is based on multiple-access wireless technologies with
5G as main its target [1] to enhance service capabilities and safety. The Future Railway
Mobile Communication System (FRMCS) [2] has defined the desired specifications and user
requirements [3]. A number of use-cases, for instance: voice communication to/from the
controller, public emergency communication, on-train safety, critical data sharing, remote
control rail engine communication, etc., related to the FRMCS system are considered
in [4]. To validate the FRMCS’s considered requirements and use-cases, multiple tests
and functional analyses are required while developing the prototypes [5].

The empirical work presented in this paper is part of a European Union project “EU
H2020 ICT 5G for FRMCS (5GRAIL)” [6]. The goal of the 5GRAIL project is to create and test
FRMCS ecosystem prototypes in order to validate the initial set of FRMCS requirements and
standards (FRMCS V1). In this research, we emulate the telecommunication infrastructure
for different scenarios for railway and road coexistence environments that are considered
in Work Package 6 (WP6) [7] based on software-defined networks. Using SDN, networks
can be configured dynamically and programmatically, and this mechanism improves the
performance and monitoring of the network. The technology is more like cloud computing
than traditional network management due to its ability to configure networks dynamically.
The network elements are controlled by a centralized SDN controller [8].

Network 2022, 2, 670–706. https://doi.org/10.3390/network2040038 https://www.mdpi.com/journal/network

https://doi.org/10.3390/network2040038
https://doi.org/10.3390/network2040038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/network
https://www.mdpi.com
https://orcid.org/0000-0002-0353-1654
https://orcid.org/0000-0002-7729-6976
https://orcid.org/0000-0001-6643-9567
https://doi.org/10.3390/network2040038
https://www.mdpi.com/journal/network
https://www.mdpi.com/article/10.3390/network2040038?type=check_update&version=1

Network 2022, 2 671

The initial steps of this research are to find out the tools and technology that can
be used to develop and emulate the different scenarios for railway and road coexistence.
In addition, the primary objective of this paper is to provide a detailed tutorial to develop
an SDN-based application using an ONOS SDN controller that should have the potential
to manage the network handover and differentiate the data traffic from railways and roads.
To differentiate the data traffic, SDN-based slicing is used. Over a common infrastructure,
network slicing creates multiple end-to-end virtual networks. These virtual networks are
logically isolated from each other and can be customized to serve different types of services
with different requirements.

These are the considered objectives of Work Package 6 of the 5GRAIL project [7].
The second objective of this paper is to provide steps and logic to develop the network
topology. The network topology is created in such a way that hosts should have the mobility
function, i.e., hosts can move in the given direction at an assigned speed. The purpose of
this functionality is to represent the hosts as cars and trains/trams. The third objective
of this empirical work is to provide steps and procedures to represent the railway and
road coexistence scenario in a pictorial way using SUMO tools. Along with these issues,
the following questions are considered and analyzed to provide a fruitful outcome:

1. Emulation: How can emulation of trains and cars (mobility and handover scenarios)
be performed in telecommunication infrastructure with the selected SDN-based tools
for railway and road coexistence scenarios?

2. Differentiation of Data Traffic: How are the data traffic from railways and roads
differentiated, or how is the SDN application designed and developed to perform
SDN-based slicing to differentiate between data packets from railways and roads?

3. Traffic Generation Tools: Which tools are selected to generate different data traffic
that can mimic the real-life data transmission scenario, and how can these tools be
used to generate the intended data traffic?

4. Assessment of Developed SDN Application and Tools: Will the considered tools
and technology have the potential to emulate the coexistence scenario of railways and
roads?

This paper follows the following structure: Section 2 presents some previously carried
out research. Section 3 describes the selected scenarios to develop the network topology.
Information about the selected tools is given in Section 4. The setup description to carry
out the test is presented in Section 5. Section 6 demonstrates network topology creation
using Mininet–WiFi. The selected tools for data traffic generation are presented in Section 7.
Section 8 elaborates on the developed ONOS SDN slicing application to differentiate
the data traffic based on VLAN tagging. Validation of the developed SDN application
and demonstration of selected tools are given in Section 9. SUMO integration for train
and car mobility traffic generation and visualization purposes is presented in Section 10.
The conclusion of this practical work is given in Section 11.

2. Related Work

In this section, some previously executed research and findings are given. In [9],
the authors Mininet–WiFi to compare flow-based monitoring mechanisms for the Inter-
net of Vehicles (IoV) environment. Performance comparison of open-source SDN con-
trollers is presented in [10] to investigate the end-to-end delay for SDN-based vehicular
networks. The authors in [11] developed a network prototype to define a car as a node
with Mininet–WiFi to emulate the vehicular networks. The authors in [8] demonstrated
the emulation of software-defined wireless networks using Mininet–WiFi. An emulation
framework is presented using Mininet–WiFi in [12] for connected autonomous vehicles.
A detailed survey for connected vehicles is presented in [13]. In the paper [14], the authors
investigated the handover mechanism for communication at the intersection of the coverage
range of the cells for vehicular networks. They introduced multiple-access edge computing
(MEC) with a roadside unit (RSU) based on SDN to improve the handover process and
curtail the handover time. In paper [15], the authors used a simulation tool known as

Network 2022, 2 672

Mininet–IoT with a Ryu–SDN controller to create a vehicular ad hoc network (VANET).
They also introduced a new interface based on the global positioning system (GPS) for
cars to establish communication between cars when they are not in the coverage range of
access points. This proposed system has better throughput and lower delay compared to
WiFi–VANET. In [16], the authors emulated the 5G-NR for the vehicular network using
Mininet–WiFi-Containernet and SUMO tools.

From the research mentioned above, it can be observed that narrow research or
emulation work has been carried out in the field related to vehicular networks based on
software-defined networks. Based on our analysis at the time of writing this paper, we
did not find any related work that considered the emulation of the coexistence scenario
of railways and roads based on SDN slicing to differentiate the data traffic to/from trains
and cars by sharing a telecommunication infrastructure. We can say that this is one of the
first studies where the authors have considered coexistence scenarios of railways and roads
using SDN-based slicing. In addition, we present a detailed tutorial about the execution of
selected tools.

3. Selecting and Defining the Scenarios

This section provides information about the considered scenarios for railway and
road coexistence.

3.1. Essential Parameters to Define the Scenario

The selection of scenarios to demonstrate the coexistence of railways and roads is
highly complex since it depends upon multiple parameters. If we consider telecommu-
nication infrastructure sharing, radio access network sharing parameters, and elements
that are coupled with network topology components that are presented in Table 1, then the
following variables are taken into the consideration to define the scenarios:

(A) Telecommunication Network Elements: To define the railway and road coexis-
tence scenario, telecommunication network parameters such as radio access net-
work (RAN), backhaul, and core are considered as one vital parameter. Railway
and road access networks can be shared or dedicated for both domains. Similarly,
backhaul and core can be dedicated or shared [7].

Table 1. Considered combination cases for radio access and core network [7].

Dedicated RAN Shared RAN

Radio Access Network Single Technology R1 R2

Multiple Technology R3 R4

Core Network C1 C2

Nomenclature used to represent the telecommunication infrastructure is given be-
low:

• T1 R1C1: single-serving technology is used in the access network and each
domain has its own dedicated RAN and its own dedicated core network.

• T2 R1C2: single-serving technology is used in the access network, each domain
has its own dedicated RAN, and the core network is shared by both domains.

• T3 R2C1: single-serving technology is used in the access network and the RAN
is shared by both domains, but both domains have their own dedicated core
network.

• T4 R2C2: single-serving technology is used in the access network and each
domain shares the access network and the core network.

• T5 R3C1: different-serving technology is used in the access network and each
domain has its own dedicated RAN and its own dedicated core network.

Network 2022, 2 673

• T6 R3C2: different-serving technology is used in the access network, each
domain has its own dedicated RAN, and the core network is shared by both do-
mains.

• T7 R4C1: different-serving technology is used in the access network and
the RAN is shared by both domains, but both domains have their own dedi-
cated core network.

• T8 R4C2: different-serving technology is used in the access network and each
domain shares the access network and the core network.

(B) Mobility Parameters: The speed of the vehicles and the operating region of vehicles
are also considered as shaping parameters to define the scenarios, e.g., train versus
high-speed train versus urban train versus regional train versus highway versus
road [7].
Nomenclature used to represent the telecommunication infrastructure is given be-
low:

• M1: mobility of highway and tram;
• M2: mobility of highway and urban train;
• M3: mobility of highway and regional train;
• M4: mobility of highway and high-speed train;
• M5: mobility of road and tram;
• M6: mobility of road and urban train;
• M7: mobility of road and regional train;
• M8: mobility of road and high-speed train.

(C) Topological Elements in Civil Engineering Infrastructure: That deployed railway
track components are parallel or perpendicular to roads is also an essential factor
to define railway and road coexistence scenarios. This also includes transport
infrastructure such as open places versus tunnels versus bridges [7].
Nomenclature used to represent the telecommunication infrastructure is given be-
low:

• P1: railway tracks parallel to the road, open-air/bridge, the same plane;
• P2: railway tracks parallel to the road, open-air/bridge, different planes;
• P3: railway tracks parallel to the road, tunnel, same plane;
• P4: railway tracks perpendicular to the road, open-air/bridge, same plane

(level crossing);
• P5: railway tracks perpendicular to the road, open-air/bridge, different planes;
• P6: railway tracks perpendicular to the road, tunnel, different planes.

(D) Services: Services and applications defined for railways and roads play an impor-
tant role in defining the scenario. For instance, speed-limit-monitoring applications,
traffic rule violation monitoring applications for vehicles, applications to monitor
the railway tracks to locate cracks, etc.

3.2. Selected Scenario

Considering all the parameters and dependent variables mentioned above, approxi-
mately 400 scenarios can be defined related to railway and road coexistence scenarios [7].
For this practical work, five different feasible scenarios are considered that are designed,
developed, and executed using the considered tools. The selected scenarios have nomencla-
ture SX(Y)Z, where: S represents the term “Scenario”, X represents the “Telecommunication
Network Parameters”, Y represents the “Mobility Parameters”, and Z represents the “Topo-
logical Elements in Civil Engineering Infrastructure”.

1. S1(5/6)1: Different Access Network and Different Core, Single Serving Technol-
ogy, Track Parallel to Road: This scenario is considered the baseline scenario to
investigate the coexistence of railway and road scenario telecommunication services
infrastructure. In this scenario, both domains, i.e., railways and roads, have their own
dedicated radio access network (RAN) and dedicated core. Considered access points

Network 2022, 2 674

and cores work on a single technology/radio frequency. Along with this, railway
tracks are kept parallel to roads [7].

2. S1(5/6)4: Different Access Network and Different Core, Single Serving Technol-
ogy, Track Perpendicular to Road: In this considered scenario, the network param-
eters are similar to scenario S1(5/6)1, i.e., railways and roads have dedicated radio
access networks with dedicated cores, but in this scenario, railway tracks are perpen-
dicular to roads [7].

3. S2(5/6)1: Different Access Network and Shared Core, Single Serving Technology,
Track Parallel to Road: In this scenario, railway and road domains have different
radio access networks, and both domains share backhaul and core network infrastruc-
ture. In this considered scenario, railway tracks are perpendicular to roads [7].

4. S4(5/6)1: Shared Access Network and Shared Core, Single Serving Technology,
Track Parallel to Road: In this scenario, railway and road domains share the radio
access network along with backhaul and core network infrastructure. Railway tracks
are parallel to roads [7].

5. S4(5/6)4: Shared Access Network and Shared Core, Single Serving Technology,
Track Perpendicular to Road: In this considered scenario, the network deployment
infrastructures are similar to those of scenario S4(5/6)1, but in this case, railway tracks
are kept perpendicular to roads [7].

4. Selected Tools

Based on the objectives presented in Section 1 for this research, the following are the
key requirements that should be fulfilled by the selected tools:

1. The selected tools should have the capability to define the end nodes in such a way
that the user can configure the mobility of the host in a selected direction with an
assigned moving speed. The selected tool should also be able to define the quantity
and frequency of the end points.

2. Using the selected tools, users should have the possibility to define multiple wireless
network interfaces for end nodes.

3. Using the selected tools, there should be the possibility to generate different kinds of
data traffic from the end nodes, compliant with different types of services: for example,
messaging, critical data communication using messaging services or video streaming,
and voice communication for operational purposes.

4. Radio channel characteristics can be defined to mimic real characteristics of radio
links such as packet loss, network jitter, and delays.

5. The defined end nodes should have the capability to connect to an available WiFi-
based network.

6. The selected tools should have the ability to define different network topologies for
wireless access points as well as for fixed network entities and provide SDN-based
OpenFlow interfaces. In addition, from a software-defined network perspective,
a defined network component’s behavior can be controlled and managed by a net-
work controller.

7. To differentiate the data traffic from different network end nodes, selected tools should
have the ability to support virtual local area network (VLAN)-based tagging/un-
tagging, and they should support tag-based forwarding.

8. The selected tools have the ability to emulate cellular-based network connectivity,
principally 5G.

9. It would be nice to have a tool that can graphically represent the network emulation
for the different selected scenarios.

Based on the requirements considered above, the Open Network Operating System
(ONOS) SDN controller [17] is selected to programmatically control the network topology,
and Mininet–WiFi [18] is selected to define the network topology. The tool SUMO [19] is
considered for the graphical representation of the selected scenario. Figure 1 shows the

Network 2022, 2 675

selected tools with their key properties that are considered to emulate the railway and road
coexistence scenarios.

Figure 1. Selected tools.

4.1. ONOS SDN Controller

The ONOS software-defined network controller is an open-sourced SDN and network
function virtualization (NFV) controller. A simplified programmatic interface makes ONOS
an ideal platform for operators searching to build innovative and advanced network
services. ONOS has the ability to configure and control the network by programming the
functionality and reducing network protocol implementation requirements. The ONOS
cloud controller integrates intelligence, enabling end-users to easily create new network
applications without having to change the data plane [17].

4.2. Mininet–WiFi

Mininet–WiFi [18] is a software-defined network emulator. It is a branch of Mininet [20]
embedded with additional functionalities such as the ability to define and configure WiFi ac-
cess points and nodes with moving capability based on Linux wireless driver and simulation
driver 80211_hwsim [21]. Using Mininet–WiFi, users can define different network topolo-
gies, where host/nodes can be defined with multiple wireless interfaces. Along with these,
Mininet–WiFi supports defining radio parameters such as operating frequency channel,
propagation model, coverage range, and transmission power (Tx). The network topologies
developed with Mininet–WiFi have the potential to be controlled programmatically based
on OpenFlow protocol versions 1 through 5. Since it works on the Linux wireless driver
80211_hwsim, it does not have the ability to emulate 5G-based connectivity. Therefore, it
can be observed that Mininet–WiFi fulfills the requirements (1-7) that are taken into consid-
eration for this practical work. Only Requirement 8 is not covered by this selected tool. We
discuss this in the Conclusions (Section 11). Mininet–WiFi installation files and processes
are available at [18,22].

4.3. SUMO

Simulation of urban mobility, commonly known as SUMO [19,23], is an open-sourced
traffic simulator used to design and visualize the mobility of vehicular networks. SUMO
supports features such as multimodal and continuous mobility of selected nodes/stations.
Using SUMO, users can define the speed and quantity of selected nodes (cars, train, tram,
bicycle, etc.). Based on the user’s interest, the simulation area can be extracted directly from
the open street map, where users can select the intended simulation area and download
the simulation map files. Further, an additional feature can be added that shows the map
area with assigned access points and nodes in a graphical manner. The authors of [24,25]
used SUMO for visualization, modeling, and defining nodes in traffic routes. Therefore,
SUMO is considered to fulfill Requirement 9 mentioned above.

Network 2022, 2 676

5. Setup Description

Figure 2 represents the test setup overview. All the selected tools that are considered
to emulate the railway and road coexistence scenarios are installed on a virtual machine.
The considered network topology is created using Mininet–WiFi for road and railway coex-
istence scenarios. To control the functionality of the network topology, an SDN application
is developed, installed, and activated for the ONOS SDN controller. The SDN application is
developed to support the moving of end nodes and the inter-cell handover of created nodes
in a defined virtual space. It also has the ability to differentiate the data traffic based on
VLAN tagging. Detailed information about this developed SDN application is elaborated in
Section 8. SUMO is integrated with Mininet–WiFi to graphically represents the movement
of network nodes on an open street map.

ONOS SDNCSDN Controller

Network Topology
Creation

Visualization

Virtual Machine

Figure 2. Test setup overview.

6. Network Topology Creation Using Mininet–WiFi

Before starting the validation of the selected tools and ONOS applications, the network
topologies are created based on the scenarios explained in Section 3.2 for the coexistence of
railway and road environments.

In this research, we implement and investigate all five scenarios presented in Section 3.2.
For demonstration purposes to explain the tutorial to emulate the coexistence scenario of
railways and roads, S2(5/6)1 and S4(5/6)4 scenarios are selected. The objective of this section
is to provide all the necessary instructions to create the selected network topologies.

6.1. Network Topology S2(5/6)1—Different Access Network and Shared Core, Railway Track
Parallel to Road

A Python script is written to create a network topology with Mininet–WiFi where
trains and cars have different access networks, both domains shared the core network, and
railways have parallel tracks to roads. Figure 3 shows the S2(5/6)1 scenario, where an
ONOS SDN controller programmatically controls the forwarding elements of the topology.
The network switches and access points are SDN-based devices and they are operated and

Network 2022, 2 677

controlled via OpenFlow protocol. Host Car1 represents a car, and host Train1 represents
a rail. Access points ap1 and ap2 are defined for roads, and ap3 and ap4 are defined for
railways. Access points ap1 and ap3 are connected to network switch S11, and ap2 and
ap4 are connected to switch S33. The switch S22 is connected to S11 and S33. The host
“RailServer” is defined as a railways service server, and “CarServer” is defined as a road
service server; both servers are connected to switch S22. In this simple network topology,
switch S22 is the core network switch, and S11 and S33 are the edge switches.

The network topology can be complex with more core and edge network elements.
For the demonstration, a simple topology is selected.

ap3
ap4

ap1 ap2

RailServerCarServer

ap - Access Point
RailServer - Railway's Service Server

CarServer - Roadway's Service Server
Interface between
Switches and Ap

SDN Interface

ONOS SDN Controller

Switch
Switch

Switch

Car1

Train1

S11 S33

S22

Figure 3. S2(5/6)1: Different Access Network and Shared Core, Track Parallel to Road.

In Figure 3, we can see that railways and roads have different access networks but a
shared core network. To design this scenario, a topology development code is written in
Python. The source code of this complete project is available at [26].

As we mentioned, for this practical work, the ONOS SDN controller is used. To define
the ONOS as a remote controller as the element of the topology, the code given in Listing 1
is used as the Python topology code. To use the remote controller in Mininet–WiFi, port
6653 is assigned to the ONOS controller defined as “c1”. Since Mininet–WiFi and the SDN
controller are executed from the same virtual machine/laptop, IP ’127.0.0.1’ is assigned to
the controller.

Listing 1. Adding Remote Controller ONOS.

‘ ‘ Create_a_network . ’ ’
net = Mininet_wif i (topo=None ,

bui ld=False ,
ipBase=’192.168.0.0/24’)

i n f o (’ * * * Adding_Remote_controller\n ’)
c1=net . addControl ler (name=’c1’ ,

c o n t r o l l e r =RemoteController ,
ip=’127.0.0.1’,protocol=’tcp’,port=6653)

After adding the ONOS controller, network switches and access points are defined.
To define the switches, net.addSwitch() with “OpenFlow13” protocol is used, as shown in
Listing 2. Using net.addSwitch(), three Open Virtual Kernel switches (OVS), S11, S22, and
S33, are defined that work on “OpenFlow13” protocol. The command net.addStation() is
used to define the cars and trains because it has the capability of defining the moving
functionality and speed of the host. The hosts “CarServer” and “RailServer” are defined
using the net.addHost(). The args() function is used to define the initial location of the
moving nodes.

Network 2022, 2 678

Listing 2. Defining the Moving Host and Server Host.

i n f o (’ * * * Add_switches\n ’)
s11 = net.addSwitch(’s11’,cls=OVSKernelSwitch,protocols=“OpenFlow13”)

i n f o (‘ ‘ * * * Creat ing nodes\n ’ ’)
Train1_args , Car1_args = d i c t () , d i c t ()
i f ’−s ’ in args :

Train1_args [’ p o s i t i o n ’] , Car1_args [’ p o s i t i o n ’]
= ’ 30 ,10 ,0 ’ , ’ 30 ,320 ,0 ’

Train1 = net.addStation(’Train1’ , mac= ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ’ ,
ip= ’ 1 9 2 . 1 6 8 . 7 . 1 0 1 / 2 4 ’ , p o s i t i o n = ’ 30 ,10 ,0 ’ , * * Train1_args)

Car1 = net.addStation(’Car1’ , mac= ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 ’ ,
ip= ’ 1 9 2 . 1 6 8 . 0 . 2 0 1 / 2 4 ’ , p o s i t i o n = ’ 30 ,320 ,0 ’ , * * Car1_args)

i n f o (’ * * * Add_hosts_for_Service_Server\n ’)
CarServer = net.addHost(’CarServer’ , c l s =Host ,

ip= ’ 1 9 2 . 1 6 8 . 0 . 2 0 4 / 2 4 ’ , mac= ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 8 ’)
RailServer = net.addHost(’RailServer’ , c l s =Host ,

ip= ’ 1 9 2 . 1 6 8 . 7 . 1 0 4 / 2 4 ’ , mac= ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 7 ’)

To define the access points in Mininet–WiFi, net.addAccessPoint() is used as shown in
Listing 3. It provides the ability to define and assign parameters such as the position of the
access point, mode, operating channel, transmitting power in dBm, and coverage range in
meters. Using a similar mechanism, four access points, ap1, ap2, ap3, and ap4, are defined
for the selected scenario. The access points are assigned with different operating frequency
ranges. The parameters mode and channel define the operating frequency range to broadcast
and receive signals. The available modes for WiFi are b/g/n on a 2.4 GHz network and
a/ac/n on a 5 GHz network [27]. The net.setPropagationModel() function is used with path
loss exponent 5.

Listing 3. Defining the Access Point.

ap1 = net . addAccessPoint (’ ap1 ’ , s s i d = ’ ss id −ap1 ’ , mode=’a’ ,
channel=’36’ , p o s i t i o n = ’ 100 ,300 ,0 ’ ,

’ p r o t o c o l s ’ : ’ OpenFlow13 ’ ,
’txpower’:’49dBm’,’range’: 110)

net.setPropagationModel(model=“logDistance”, exp=5)

i n f o (‘ ‘ * * * Configuring_wifi_nodes\n ’ ’)
net . configureWifiNodes ()

After creating the network switches, hosts, and service server, the connectivity links
are created using net.addLink() as shown in Listing 4. The parameter bw is used to define
the bandwidth in Mbps of the connecting link. The line of codes present in Listing 4 create
links between the hosts, switches, access points, and nodes. Access points ap1 and ap3 are
connected to switch S11, and ap2 and ap4 are connected to switch S33.

Network 2022, 2 679

Listing 4. Defining the connectivity.

i n f o (‘ ‘ * * * C r e a t i n g _ l i n k s\n ’ ’)

s11s22 = { ’bw’:1000 }
net.addLink (s11 , s22 , c l s =TCLink , * * s11s22)
s22s33 = { ’bw’:1000 }
net.addLink (s22 , s33 , c l s =TCLink , * * s22s33)

CarServers22 ={ ’bw’:500 }
net.addLink (CarServer , s22 , c l s =TCLink , * * CarServers22)
R a i l S e r v e r s 2 2 = { ’bw’:500 }
net.addLink (Rai lServer , s22 , c l s =TCLink , * * R a i l S e r v e r s 2 2)

s11ap1 = { ’bw’:500 }
net.addLink (s11 , ap1 , c l s =TCLink , * * s11ap1)
s11ap3 = { ’bw’:500 }
net.addLink (s11 , ap3 , c l s =TCLink , * * s11ap3)
s33ap2 = { ’bw’:500 }
net.addLink (s33 , ap2 , c l s =TCLink , * * s33ap2)
s33ap4 = { ’bw’:500 }
net.addLink (s33 , ap4 , c l s =TCLink , * * s33ap4)

Mininet–WiFi has a method net.plotGraph() to show the position of defined hosts and
access points on a graph. Using this method, the user can define the range of x- and
y-coordinates for the plot limits, as shown in Listing 5. Figure 4 shows the graphical
representation of the selected topology; we can clearly see access points ap1, ap2, ap3,
and ap4 and defined nodes. The developed network topology with assigned switches,
access points, connected hosts, and nodes/stations can be seen on the ONOS graphical
representation platform as shown in Figure 5. The network topology is built using net.build(),
and access points are started using start(). Mininet–WiFi also provides a command line
interface (CLI) using the function CLI(net), which enables interaction with any element of
the developed topology. To stop the network, the net.stop() function is used. In the code
below, “c1” is the name assigned to the ONOS SDN controller.

Listing 5. Defining the Plot Limits of Graph and Start the Access Points and Switches.

i f ’−p ’ not in args : {
net.plotGraph (max_x=450 , min_x= −50 , min_y= −50 , max_y =450) }

i n f o (‘ ‘ * * * Star t ing_the_network\n ’ ’)
net . bui ld ()
i n f o (’ * * * S t a r t i n g _ t h e _ c o n t r o l l e r s \n ’)
for c o n t r o l l e r in net . c o n t r o l l e r s :

c o n t r o l l e r . s t a r t ()
ap1.start([c1])
ap2.start([c1])
ap3.start([c1])
ap4.start([c1])
net.get(’s11’).start([c1])
net.get(’s22’).start([c1])
net.get(’s33’).start([c1])

i n f o (‘ ‘ * * * S tar t ing_CLI\n ’ ’)
CLI(net)

Network 2022, 2 680

i n f o (‘ ‘ * * * Stopping_network\n ’ ’)
net.stop()

i f __name__ == ’ __main__ ’ :
setLogLevel (’ i n f o ’)
topology (sys . argv)

Road

Track

Figure 4. Hosts and access points: Mininet–WiFi graph.

Using the above-mentioned methods, functions, and procedures, users can emulate
any salable and complex topology. Figure 5 represents the topology created using the
Python script for the S2(5/6)1 scenario represented by the ONOS SDN controller’s graphical
user interface (GUI), where hosts Car1 and Train1 are defined with moving capability.

Figure 5. S2(5/6)1: Different Access Network and Shared Core, Track Parallel to Road Topology:
ONOS screenshot.

6.2. S4(5/6)4: Shared Access Network and Shared Core, Track Perpendicular to Road

To design the S4(5/6)4 scenario, a similar Python script is written using the methods
and functions mentioned in Section 6.1, and a network topology is developed in such a
way that access points and the core network are shared by both railway and road domains.

Network 2022, 2 681

In this selected scenario, railway tracks are perpendicular to roads. To emulate the railway
tracks being perpendicular to the road, the y-coordinate of the moving node Car1 is kept
constant (y = 70) while moving in the defined virtual space, and the x-coordinate of node
Train1 is kept constant (x = 130) while moving in the defined virtual space, as shown in
Figure 6.

(130,180)

(130, -35)

(10,70)

(450,70)
Level Crossing

Tr
ac
k

Road

Figure 6. S4(5/6)4 hosts and access points: Mininet–WiFi graph.

A pictorial representation of this scenario is shown in Figure 7, where we can see
that access points ap1 and ap2 are shared by both the domains, and the railway track
is perpendicular to the road. This particular scenario for railway and road coexistence
represents the “Level Crossing” at cross points.

ap1 ap2

RailServerCarServer

ap - Access Point
RailServer - Railway's Service Server

CarServer - Roadway's Service Server
Interface between
Switches and Ap

SDN Interface

ONOS SDN Controller

Switch
Switch

Switch

Car1

Train1

S11 S33

S22

Level Crossing

Figure 7. S4(5/6)4: Shared Access Network and Shared Core, Track Perpendicular to Road.

Network 2022, 2 682

Figure 8 shows the network topology for scenario S4(5/6)4 created with Mininet–WiFi.
Car1, Car2, Train1, and Train2 are connected to access point ap1, whereas Car3 and Train3
are connected to access point ap2. Hosts CarServer and RailServer are connected to switch
S22. Similar to topology S2(5/6)1, in this topology, Car1 and Train1 are defined with
moving functionality. Comparing Figures 5 and 8, we can see that in Figure 5 both domains
have dedicated access networks, but in Figure 8, both domains, i.e., railways and roads,
share the same access network.

Figure 8. S4(5/6)4: Shared Access Network and Shared Core, Track Perpendicular to Road Topology:
ONOS screenshot.

7. Selected Tools to Generate Data Traffic to Validate the Scenarios

To map the data traffic generation that can define the scenarios mentioned in Table 2,
different tools are analyzed and selected. These mentioned scenarios are taken from the
documentation of 5GRail project Deliverable D6.1 [7].

This section provides information about the selected tools that are used to generate
the data traffic. Along with this, it also explains the procedure to install these tools and
which parameters should be selected to generate the desired data streams.

Table 2. Selected tools to generate different kinds of data traffic for compliance with real-case
scenario [7].

Scenario Considered Tool to Demonstrate the
Scenario Tool Information

Voice Communication for Operational
Purposes iperf3 Iperf3 can send UDP and TCP packets from

one host to another.
Standard Data Communication

Critical Data Communication

Very Critical Data Communication Scapy

Using Scapy, we can define our data packets
and send them to the network. Using Scapy,
messaging and critical data communication

is demonstrated.
Messaging

Critical Video Communication for Observation
Purpose VLC Player

To demonstrate video transmission from train
or car to the assigned server, VLC player

is used.
Very Critical Video Communication

Associated with Train Safety

Measure Network Quality of Services (QoS) MTR MTR tool has the capability to measure the
latency, packet loss, and jitter of the network.

Network 2022, 2 683

The following tools are used and tested to generate different kinds of data traffic
compliant with real-case scenarios:

1. iperf3: Iperf3 is a network performance measurement tool. It is able to execute on
Linux, Unix, Android, macOS, and Windows platforms. It works in client and server
mode functionality. It has the ability to generate user datagram protocol (UDP) and
transmission control protocol (TCP) packets from one host/client and send them to
another host/server. It generates a packet data stream to measure the throughput,
bandwidth, and packet loss between two hosts [28,29].
The installation file and documentation to use ipef3 are given in the link [29]. The iperf3
tool is used to send and receive UDP and TCP data packet streams to demonstrate
voice communication and standard data communication for operational purposes
between car-to-car and assigned car service servers or train-to-train and assigned rail
service servers. Table 3 shows the commands used to generate the UDP/TCP data
traffic from the client host to the server host.

2. Scapy: Scapy is an interactive packet manipulation tool with a CLI, and its API
is implemented using Python. Therefore, this tool can be used through CLI or by
importing it to Python scripts. Using this tool, users can create, forge, or decode
packets from a wide range of protocols and send them to the network. It can also
capture data packets, match criteria, and reply to requests [30]. Along with these
functions, most classical tasks can be handled easily, including scanning, probing,
and detecting networks. Scapy has the ability to run on Linux, macOS, and Windows
systems. The principal advantage of Scapy is that it offers a technique to modify and
create network packages at a low level by leveraging available network protocols
and configuring them based on the user’s needs [31]. Therefore, Scapy is used in
this practical work to create a data packet to indicate critical data communication.
In addition, it is also used to create special messages associated with emergencies or
to convey any kind of information to the rail service server or car service server.
Scapy is installed in a Linux environment using the specific instances shown in the
Table 4. A demonstration of using Scapy to generate data packets associated with
critical data communication or messages is presented in Section 9.7 of this paper.

Table 3. Iperf3 commands to generate UDP/TCP data packets [29].

Command Explanation

1. iperf3 [-s|-c] [options]

2. iperf3 –s –p <port number>

Where -s represents host as server, -c represents host
as client, –u represents UDP packets, -b is used to set

the bitrate, -i option allows setting the reporting
interval time in seconds; e.g., iperf3 -c 10.0.0.7 -i 2

3. iperf3 –c <server IP/host IP> -u –p <port number>
-b <bitrate>

Table 4. Scapy installation commands [32].

Options Linux Command

1. Install default Scapy pip install scapy
2. Install Scapy with Python pip install - -pre scapy[basic]

3. Install Scapy with dependencies pip install - -pre scapy[complete]

3. VLC Player: VideoLAN Client, generally known as VLC, is open-source, compact
media player software developed by the VideoLAN project. VLC is capable of stream-
ing and receiving media files (video/audio). In addition to DVD video and video CD
formats, VLC supports a wide variety of audio and video compression methods and
media streaming protocols. It can be installed and used on any desktop system as
well as on smartphones [33,34].
To demonstrate video or critical video communication in railway and road coexistence
scenarios, VLC Player is used to transmit video from a train to the RailServer and

Network 2022, 2 684

from a car to the CarServer. A detailed process for streaming a video from one host to
another or to a local system is presented in Section 9.8 of this paper.

4. MTR: Matt’s Traceroute (MTR) is a network performance monitoring tool. Ping is one
of the most widely used network diagnostics tools to figure out network reachability
from one host/network entity to another. Using ping, a user sends ICMP packets
from one system/host to another, and after getting the ICMP packets, the destination
host/system sends an echo reply. This echo reply informs about the availability of the
destination host, end-to-end delay, and packet loss, whereas the traceroute provides
information about the path between the sender and receiver host. MTR utilizes both
ping and traceroute functionality [35,36].
The significant reason to use the MTR tool is that it allows measurement of the data
packet loss and jitter of the network. Therefore, we can say that MTR measures the
quality of the network path. For installing the MTR in the Ubuntu environment, use
the following command: sudo apt-get -y install mtr. Table 5 shows the commands and
options to measure the loss and jitter of the network. There are more options available
to measure packet data losses and jitter with the mentioned commands, which can be
found in [35].

Table 5. MTR data traffic generation to measure the loss and jitter of networks [35].

Command Available Options Use

1. mtr –r –n –c <number of data
packets> -T –P <port number>

<server IP/Host IP>

Where r reports print; c defines
the number of Packets; n disables

the DNS or no DNS option; T
shows TCP data; u shows UDP

data;

Calculate the loss in percentage

2. mtr –r –n –o ‘’L BAWV MI”
<server IP/Host IP>

Where L shows loss ratio; B
shows min/best RTT (ms); A

shows avg RTT (ms); W shows
Mmx/worst RTT (ms); V shows

standard deviation; M shows jitter
mean/avg; I shows interarrival

jitter

Calculate the jitter in ms

8. ONOS SDN Application for Data Traffic Slicing

The most significant task of this empirical work is to design and develop SDN applica-
tions capable of fulfilling the following objective:

• Supports handover/moving capability of nodes/hosts;
• Differentiates the data traffic based on VLAN tagging/slicing;
• Is scalable to support any kind of network topology.

Keeping the above-mentioned objectives in consideration, an SDN data-forwarding
application is developed using ONOS JAVA APIs [37] and deployed in the ONOS controller.
The developed ONOS forwarding application has the potential to enable network slicing
and to differentiate the data traffic to/from railways and roads. This implies that trains
can only communicate with trains and assigned rail service servers; similarly, cars can only
communicate with other cars and assigned car service servers. Along with this, additional
functionality is added to manage the moving and handover of nodes between the assigned
access points/cells. The application decides whether a data packet should be forwarded or
dropped between the nodes, switches, and access points. Figure 9 represents the different
steps of the developed ONOS application. After installing and activating the application,
it initializes the “packet processor”. The packet processor is an ONOS API that allows
defining of the header context of packets and activates the developed applications. Two
arrays are created in the application that contain the IP addresses of hosts and nodes.
The first array contains the IP addresses of all cars, and the second array contains the IP
addresses of all rails.

Network 2022, 2 685

Yes Install Forward Flow
Rule, Send the Packet

to Host

Edge switch

Start
Run ONOS SDN

Controller
Application

Wait for Data Packet

Packet Received

Check Data Packet Type
(IPv4?) Discard Packets

Are IPs in Same
Network Slice?

Install Drop Flow
Drop Packet

No

Are the Hosts
Connected to Same

 Access Point/Switch?

Tagged the packed
with VLAN ID

(3/4)

Install Forward Rule
and Forward the

Packet

No

Yes

Check
Packet is Tagged?

No

Yes

Hosts is Connected
to Access Point/Switch?

Install forward rule
and forward the

Packet

No

Core Switch

Install Tag Forward
Rule and Untagged
Forward Rule and

Send Packet to Host

Yes

No

Yes

Host Start Moving

Connected to other
Access Point/Switch ?

Inform ONOS SDN
Controller

Yes

Wait for the Network
Connection

No

Before Moving/Handover After Moving/Handover

*VLAN ID for Cars:4
VLAN ID for Rails:3

Core Switch

Figure 9. Flow diagram of SDN application.

The developed ONOS application is designed to support IPv4 data packets. When
an IPv4 packet arrives at any access point/switch, it looks into its forwarding table/rules,
and if there are no forwarding rules for that source and destination IP pair at the current
switch/access point, the packet is sent to the ONOS controller for processing as an Open-
Flow “PacketIn” message. The application checks whether both source and destination IPs
are in the same network slice (trains or cars), and if they are not, the packet drop rule is
installed using the OpenFlow13 protocol at the current switch/access point. This implies
that any traffic between cars to trains and to their assigned service server is disabled.

If both source and destination IP pairs are in the same network slice, the application
checks whether the data packet is tagged with a VLAN ID or not. If the data packet is not
tagged with VLAN, and source and destination hosts are connected to the same access
point/switch, the controller installs the forwarding rule using OpenFlow13 protocol at the
current access point/switch, and the data packet is sent to the destination host/node. If the
data packet is not tagged with a VLAN ID, and the source and destination host/node are
connected to the same access point/switch, the data packet is tagged with a VLAN ID based
on the network slice. For this forwarding application, the number 3 is used as the VLAN ID
to tag the data packets from/to railways/rails, and the number 4 is used as the VLAN ID to
tag the data packets from/to roads/cars. After tagging the data packet, the forwarding tag
rule and forwarding untag rule are installed using the OpenFlow13 protocol at the current
access point/switch for the IP pairs, and the data packet is forwarded to the next switch.
If the data packet is tagged with a VLAN ID and the source and destination host/node
are connected to the same access point/switch, the forward tag rule and untag rule are
installed for the given source destination IP pair at the current access point/switch. If the
data packet is tagged with a VLAN ID and the host/node is not connected to the same
access point/switch, the forward rule is installed at the current access point/switch and
the data packet is forwarded in the network.

Network 2022, 2 686

If nodes move from one location to another and connect to the nearest assigned access
points, the developed application informs the controller via a “PacketIn” message about
the position of the nodes and connected access points.

VLAN Tagging

VLAN tagging is a mechanism that allows the creation of multiple networks at Layer
2 of the core network. VLAN tagging is carried out by assigning a VLAN ID to the data
header as an additional element to the Ethernet header of a packet [38]. The assigned tag
can be used as a filtering decision factor for the forwarding operation at switches/access
points. The VLAN tag defines which side of the network part a data packet belongs to by
matching the tag of the data packet header.

Figure 10 shows data packet tagging with the VLAN mechanism used in the developed
ONOS application. Switches S1, S2, S7, and S8 are the edge switches, and S3, S4, S5, and S6
are the core switches. Access points ap1, ap2 and ap3 are the access network elements for
cars, and ap4, ap5, and ap6 are the access network elements for trains. When a data packet
is sent from the car to CarServer, access point ap1 tags the data packet with VLAN ID: 4
(cars’ slice) and forwards the packet to the next switch S3. Since the data packet is already
tagged with a VLAN ID, S3 matches the VLAN ID and forwards the data packet to S5; it
also matches the VLAN ID and sends the data packet into the network. When this data
packet arrives at the edge switch S7 where the destination host CarServer is connected,
it removes the VLAN ID and sends the data packet to the CarServer. A similar working
principle is followed for the train’s data. The access point ap4 tags the data packet with
VLAN ID: 3 (trains’ slice). Core network switches S4 and S6 match the VLAN ID of the
data packet and send the packet into the network. When this data packet arrives at switch
S8, it removes the VLAN ID and sends the data packet to the host rail server.

ap3
ap2

ap4

ap5 ap6

DATA

DATA DATA

DATA

4

3

Car

Rail

Tagged DATA Packet

Tagged DATA Packet

S1
S3

S5

S4S2

S6

S7

S8

Car Server

Rail Server

DATA

DATA

Tagged DATA Packet

Tagged DATA Packet

Untagged DATA Packet

Untagged DATA Packet

ap1

DATA4

DATA3

Figure 10. Data packet tagging.

9. Validation of Developed SDN Application and Selected Tools

This section provides the procedure and logic to validate the selected tools that are
used to generate the data traffic. Along with this, it also investigates the developed ONOS
application and analyses its functionalities such as handover and traffic differentiation
capabilities based on VLAN tagging.

Network 2022, 2 687

9.1. Handover/Mobility (Speed/Direction/Providing Coordinates)

To test the handover scenario, the first criteria is to design a network topology where
hosts should have the capability to connect to wireless networks (WiFi) and users can
define the mobility and speed of the moving host in a certain direction. These criteria can
be fulfilled by Mininet–WiFi since it supports the mobility model and Mininet–WiFi Python
API integrates a new method net.addStation() that authorizes users to define nodes that can
move around in the defined virtual space, as mentioned in Section 6.1. By developing a
predefined mobility model, Mininet–WiFi can also move the nodes automatically in the
defined virtual space as soon as the emulation scenario starts running. Mininet–WiFi sup-
ports the following mobility models: RandomDirection, RandomWalk, RandomWayPoint,
GaussMarkov, RefrencePoint, TruncatedLevyWalk, and TimeVariantCommunity [18,22].

To demonstrate the handover and moving for railway and road coexistence environ-
ments, scenario S2(5/6)1 is selected, which is described in Section 6.1 of this paper.

In the above-given Listing 6, two nodes, Car1 and Train1, are defined with moving
capability. The speed parameter can be any feasible number greater than zero. For demon-
stration purposes, we keep the speed at 3 m/s. In this scenario, to define the moving and
handover of nodes, the lines of codes given in List 8 are used. Node Car1 is connected to
ap1 and starts moving towards ap2 after 60 s. Similarly, Train1 is initially connected to ap3
and starts moving towards ap4. The mobility of nodes starts using the net.startMobility()
function and stops by using the net.stopMobility() function as shown in Listing 7. The start
parameter initializes the starting time of the node’s mobility, andstop initializes the stop
time of the node’s mobility. While moving, the ping command is executed using CLI from
Car1 to CarServer and Train1 to RailServer, as shown in Figure 11.

Listing 6. Defining the Host With Their Moving Speeds.

Train1 =net.addStation(’Train1’ ,
mac= ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 ’ , ip= ’ 1 9 2 . 1 6 8 . 7 . 1 0 1 / 2 4 ’ , speed=3)

Car1 =net.addStation(’Car1’ ,
mac= ’ 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 ’ , ip= ’ 1 9 2 . 1 6 8 . 0 . 2 0 1 / 2 4 ’ , speed=3)

Listing 7. Defining Moving Functionality of Hosts.

i f ’−s ’ not in args :
net.startMobility(time=0)
net . mobi l i ty (Train1 , ’start’, time=60 , p o s i t i o n = ’ 30 ,10 ,0 ’)
net . mobi l i ty (Car1 , ’start’, time=60 , p o s i t i o n = ’ 30 ,320 ,0 ’)
net . mobi l i ty (Train1 , ’stop’, time=70 , p o s i t i o n = ’ 380 ,60 ,0 ’)
net . mobi l i ty (Car1 , ’stop’, time=70 , p o s i t i o n = ’ 350 ,250 ,0 ’)
net.stopMobility(time=75)

Both of the selected nodes are pinging their assigned service server so that we can
verify the network connectivity and handover between the assigned access points. Figure 11
shows that when Car1 crosses the ap1 coverage range, it automatically connects to ap2.
Similarly, Train1 connects to access point ap4 automatically after crossing the coverage
range of access point ap3. In Figure 11, we can see that after crossing the previously
connected access points, Car1 and Train1 are disconnected, but there is no packet loss, and
they are automatically connected to the nearest access point again.

Network 2022, 2 688

Figure 11. Checking connectivity during moving.

To verify the handover and moving functionality of nodes, command Car1 iw dev
Car1-wlan0 link is executed for Car1, and for Train1 command Train1 iw dev Train1-wlan0
link is executed before and after the moving of nodes. Figure 12 shows that before the
handover, Car1 is connected to access point ap1, and after handover, it is connected to
access point ap2. Figure 13 shows that before moving, Train1 is connected to access point
ap3, and after moving, it is connected to access point ap4. Figure 14 shows the topology
after the movement of nodes Car1 and Train1, and it also shows that Car1 is now connected
to access point ap2 and that Train1 is connected to ap4.

Figure 12. Connected access point for Car1 before and after handover/moving.

Figure 13. Connected access point for Train1 before and after handover/moving.

Network 2022, 2 689

Figure 14. Handover scenario for S2(5/6)1 topology: ONOS screenshot.

Figure 4 shows the position of nodes and access points defined for scenario S2(5/6)1
before the moving scenario, and Figure 15 shows the positions of nodes and access points
after moving and handover. After comparing these two graphs, we can conclude that
Mininet–WiFi has the potential to emulate moving and handover scenarios for railway and
road coexistence environments. There is some delay between the handover. This delay is
because of the network joining process carried out by the nodes/stations and during this
process; no data loss is recorded.

Road

Track

Figure 15. Hosts and access points after handover and moving: Mininet–WiFi graph.

9.2. Level Crossing

To manifest the level crossing scenario for railway and road coexistence environments,
the S4(5/6)4 scenario is selected, which is presented in Section 6.2 of this paper. In this
scenario, railway tracks are perpendicular to roads, as shown in Figure 7. We know that
at a level crossing, when a Train/Tram is coming, Cars or other vehicles should have to

Network 2022, 2 690

stop for some time and move when the train/tram has passed. It is one of the challenges
for us to develop this scenario using the Mininet–WiFi and ONOS SDN controller. As we
described in Section 9.1, the Mininet–WiFi Python API has a mobility method. Using this
method, the user can start and stop the mobility of the nodes, but it does not have a pause
and restart moving node functionality. To replicate the level crossing scenario, Car1 should
stop its mobility when Train1 is moving at the level crossing point. To achieve this scenario,
the replayingMobility() function is used, and the location (x- and y-coordinates) of nodes are
saved in .dat files; these locations are provided using the function get_trace(), as shown in
Listing 8.

Listing 8. Defining Moving Functionality of Hosts.

net.isReplaying = True
path = os . path . dirname (os . path . abspath (_ _ f i l e _ _))

+ ’/replay ingMobi l i ty/ ’
g e t _ t r a c e (Car1 , ’ { } node1.dat ’ . format (path))
g e t _ t r a c e (Car2 , ’ { } node2 . dat ’ . format (path))
g e t _ t r a c e (Car3 , ’ { } node3 . dat ’ . format (path))
g e t _ t r a c e (Train1 , ’ { } node4 . dat ’ . format (path))
g e t _ t r a c e (Train2 , ’ { } node5 . dat ’ . format (path))
g e t _ t r a c e (Train3 , ’ { } node6 . dat ’ . format (path))

The file node1.dat contains the location coordinates for the route of Car1 in virtual
space. Figure 6 shows the initial location of Car1 and Train1. Car1’s initial location is
x = 10, y = 70, and after moving, the stop location x = 450, y = 70 is assigned. Train1’s
initial location is x = 130, y = 180, and the stopping location x = 130, y = −35 is assigned.
To achieve the pause functionality for Car1, the coordinate x = 90, y = 70, where Car1 has
to pause, is duplicated multiple times in the node1.dat file to reserve some time so that
Train1 can pass the level crossing, as shown in Figure 16. Therefore, the get_trace() function
makes Car1 pause at location x = 90, y = 70, and in that pause time, Train1 passes the level
crossing; after that, Car1 starts moving again along the assigned route. Figure 17 shows
that Car1 is paused at location x = 90, y = 60 and starts moving again when Train1 passed
the level crossing.

Duplicate Coordinate
where Car1 has to pause

X Y Coordinates

Figure 16. Car1: node1.dat file screenshot.

Network 2022, 2 691

Car1 Paused
Location

Road

Tr
ac

k

Car1 Stop
Location

Rail1 Stop
Location

Road

Tr
ac

k

a. Car1 Paused Location b. Stop Location for Car1 & Train1

Level Crossing
Level Crossing

Train1

Train2
Train3 Train3

Train2Train1

Figure 17. Level crossing scenario.

9.3. Reachability Test and Data Traffic Differentiation

To demonstrate the data traffic differentiation and network reachability test, scenario
S2(5/6)1 is selected. In this scenario, the network topology has eight nodes, Car1, Car2,
Car3, Car4, Train1, Train2, Train3, and Train4, representing cars and trains, respectively.
It also has two hosts, CarServer and RailServer, assigned as service servers for roads and
railways, respectively, as shown in the network topology in Figure 5.

The developed SDN application has the ability to differentiate the data traffic based on
the assigned VLAN ID, and this test is carried out to validate the data traffic differentiation
of the developed application. To carry out this test, the ping command is used to check the
connectivity. Nodes Car1, Car2, Car3, Car4, and CarServer should be able to ping, send,
and receive a data packet to/from each other but should not be able to communicate with
trains and RailServer. In the same manner, Train1, Train2, Train3, Train4, and RailServer
should be able to ping, send, and receive a data packet to/from each other but should not
be able to communicate with cars and CarServer.

Figure 18 shows the connectivity test for node Car1. We can see that Car1 is able to
ping other cars and CarServer, but it is not able to communicate with rails and RailServer.
Similarly, Figure 19 shows the connectivity test for node Train1: it is able to communicate
with other rails and RailServer but it is not able to communicate with cars and CarServer.
This test is carried out for each and every node and host associated with network topology
S2(5/6)1, and the outcome of this test is presented in Table 6, which shows that cars are
able to communicate only with other cars and with the assigned road service server, i.e.,
CarServer, and trains are able to communicate only with other trains and with the assigned
railway service server, i.e., RailServer.

Table 6. Reachability test.

Src/Dst Car1 Car2 Car3 Car4 CarServer Train1 Train2 Train3 Train4 RailServer

Car1 X X X X X X X X X X
Car2 X X X X X X X X X X
Car3 X X X X X X X X X X
Car4 X X X X X X X X X X

CarServer X X X X X X X X X X
Train1 X X X X X X X X X X
Train2 X X X X X X X X X X
Train3 X X X X X X X X X X
Train4 X X X X X X X X X X

RailServer X X X X X X X X X X

Network 2022, 2 692

Figure 18. Reachability test for cars.

Figure 19. Reachability test for trains.

Figures 20 and 21 show the entries introduced by the developed SDN application on
the switch S22. It shows that the developed SDN application is capable of differentiating the
data packets from cars and trains by assigning a VLAN ID 4 to data packets to/from cars
and CarServer and VLAN ID 3 to data packets to/from trains and RailServer. Figures 22 and
23 are the screenshots taken from the SDN application’s log and show that the application
restricts the communication between road entities and railway entities by maintaining
connectivity and data traffic differentiation.

Network 2022, 2 693

Figure 20. Flow entries for switch S22: VLAN ID assignment to car’s data packet.

Figure 21. Flow entries for switch S22: VLAN ID assignment to train’s data packet.

Figure 22. Screenshot of SDN application log: ping from Car1 to Train1, Train2, Train3, and RailServer.

Figure 23. Screenshot of SDN application log: ping from Train1 to Car1,Car2, Car3, and CarServer.

Network 2022, 2 694

9.4. TCP and UDP Data Transmission

The objective of this test is to demonstrate the standard data communication between
cars to CarServer and trains to RailServer. Figure 24 shows UDP data packet transmission
and Figure 25 shows TCP data packet transmission from Train1 to RailServer. In this case,
Train1 is acting as the client, and RailServer is configured as a listening server.

Figure 24. UDP data transmission from Train1 to RailServer.

Figure 25. TCP data transmission from Train1 to RailServer.

9.5. Link Capacity Test

This test is carried out using the iperf tool to measure the bandwidth between two
network links. To measure the bandwidth, the iperf <Host1> <Host2> command is used.
Figure 26 shows the link capacity measurement between Car1 and CarServer and Train1
and RailServer. The achieved bandwidth measurement shows that it is adequate to send and
receive messages, voice, and video data for coexistence scenarios for roads and railways.

Figure 26. Link capacity test.

9.6. Latency Test and Network Jitter Test

The MTR tool is used to measure losses, latency, and network jitter. To conduct the
latency test, 100 UDP and TCP data packets are sent from Car1 to CarServer and Train1 to
RailServer. This is carried out by opening the xterm window for nodes Car1 and Train1
using the command xterm Car1 Train1 from the Mininet–WiFi terminal. To measure the
latency from Car1, the command mtr -r -n -c 100 192.168.0.204 -u -P 3 is used, where
192.168.0.204 is the IP address of CarServer and is connected to port 3 of network switch

Network 2022, 2 695

S22. Similarly, the command mtr -r -n -c 100 192.168.7.104 -u -P 4 is executed from Train1
to measure the latency while sending 100 UDP data packets to RailServer. The IP address
of the assigned RailServer is 192.168.7.104, and it is connected to port 4 of network switch
S22. The latency for this network topology is in the range of 4.7 to 5.7 milliseconds.
Figures 27 and 28 show the latency test for the selected network topology.

Figure 27. Latency test from Car1.

Figure 28. Latency test from Train1.

To measure the jitter of the network, the command mtr -r -n -c 100 -o “LS BAWV MI”
192.168.7.104 is executed from the terminal of node Train1, and the command mtr -r -n -c 100
-o “LS BAWV MI” 192.168.0.204 is executed from the terminal of node Car1. The information
about commands and parameters used is given in Table 5. Figure 29 shows that the jitter of
the network is in the range of 5.2 to 5.5 milliseconds.

Figure 29. Network jitter test.

Network 2022, 2 696

9.7. Sending a Critical Message to the Assigned Server

To send a critical message or information, the Scapy tool is used for the considered
scenarios. Using this tool, a user-defined message is sent from any node/station to the
assigned service server.

Figure 30 shows that an ICMP data packet is sent with a message “Emergency Msg:
Engine Failure” from node Train1 to RailServer for demonstration purposes in the selected
scenario. This data packet can be sent using the Scapy Python API and by writing a Python
script. Figure 31 shows the data packet captured using the Wireshark tool.

Figure 30. Scapy: packet creation.

Figure 31. Wireshark: Scapy packet with a message.

The Python scripts given below represent sending critical data from node Train1 to
RailServer using ICMP protocol.

Listing 9. Sending a Critical Message Using Scapy with Python.

! / usr / b in / env python
The f o l l o w i n g l i n e w i l l imp or t a l l Scapy modules
from scapy . a l l import *
i = 1
while i < 5 0 :

send (IP (s r c = ‘ ‘ 1 9 2 . 1 6 8 . 7 . 1 0 1 ’ ’ , dst = ‘ ‘ 1 9 2 . 1 6 8 . 7 . 1 0 4 ’ ’)/ICMP ()
/ ‘ ‘ Emergency_Msg : Engine_Fai lure ’ ’)

i += 1
print (‘ ‘ Train1_is_sending_msg_to_Rai lServe r ’ ’)

Network 2022, 2 697

9.8. Video Transmission Test

To demonstrate the video transmission for railway and road coexistence scenarios,
VLC player is used. A detailed procedure is elaborated below with figures to transmit
a video file from node Train1 to RailServer to manifest video communication or critical
video communication. This is implemented by opening the xterm window for Train1 and
Railserver using the command xterm Train1 Railserver and running the command vlc-wrapper
& from both instances of xterm. Figure 32 shows the initial window after running the
command, where Train1 is configured to transmit the video to the node RailServer.

• VLC player configuration at Train1: Train1 is acting as the video transmitter. Click
on the option “Media”, select the option “Stream”, and add the video file as shown
in Figure 33. After selecting the option “Stream”, a new window will pop up that
provides the information about the selected video file; select the streaming method as
“RTP/MPEP Transport Stream”, as shown in Figure 34.
Add the destination host’s IP address. Here, the destination IP address is 192.168.7.104,
which belongs to RailServer. In the next window, as shown in Figure 35, select the
transcoding option “video-H.256 + MP3(MP4)”; other options can be selected based
on the user’s transmission video format.
Now, select the option “Stream”, as shown in Figure 36 and start streaming the video
from Train1 to RailServer.

• VLC player configuration at RailServer: From “Media”, select option “Open Network
Stream”, and a new window will pop up; add the network URL as “rtp://@:5004”, as
shown in Figure 37.

Figure 38 shows that Train1 is streaming the video and RailServer is receiving the
video. Therefore, it can be concluded that by using the VLC player, a user can demonstrate
video transmission from one host to another host in a railway and road coexistence scenario.

Figure 32. VLC player execution At Train1 and RailServer.

Train1: Step 1 Train1: Step2

Figure 33. Train1: adding the video file to transmit.

Network 2022, 2 698

Train1: Step 3 Train1: Step 4

Figure 34. Train1: selecting the streaming method.

Train1: Step 5 Train1: Step 6

Figure 35. Train1: adding the destination IP address of RailServer.

Train1: Step7

Figure 36. Train1: stream the video.

Network 2022, 2 699

RailServer: Step 1 RailServer: Step 2

Figure 37. Train1: stream the video.

Train1: Streaming the Video From
Train1

RailServer: Receiving the Video of
Train1

Figure 38. Video data transmission and reception [39].

10. SUMO Integration

In this section, a detailed description of SUMO integration with Mininet–WiFi is
given to showcase the graphical representation of railway and road coexistence scenarios.
Figure 39 shows the steps to generate the SUMO map from open street map and integration
with Mininet–WiFi.

• Map Generation: To show the coexistence scenario of railways and roads in a pictorial
form, user can design the desired map. A detailed tutorial is presented in [40]. For this
practical work, we download the desired Google map file. To generate the desired
emulation map on Google street map, run the command python3 /usr/share/sumo/-
tools/osmWebWizard.py from the folder where you want to download the map files.
After running the command, the “OSM Web Wizard for SUMO” page will open. Go to
the “Generate Scenario” option given on the right side of the page and select the map
location by providing the city or place name or by providing the GPS coordinates of
the region. Figure 40 shows the OSM Web Wizard home page. To demonstrate SUMO
integration, we select the place “Puente De Santiago” since it has tracks parallel to
roads. The map area is selected using the option “Select Area”. Figure 41 shows the
selected map area and selected parameters to generate the vehicle traffic. Using the
parameter “Through Traffic Factor”, the user can define the number of vehicles that
depart and arrive at the selected simulation boundary area.

Network 2022, 2 700

After selecting the required parameters, by clicking on the “Generate Scenario” option,
all the map files will be downloaded to the selected folder. After completion of map
file generation, the user will get the messages shown in Figure 42. If all the steps are
correct and the intended map files are downloaded, a new window will pop up and
start running the simulation, as shown in Figure 43.

Stage 1 Stage 3

Stage 2 Stage 4Map Generation

Use The Command

python3 /usr/share/sumo/tools/osmWebWizard.py

Edit The Vehicle ID

Look for the Following Files and Change the
Vehicle ID with a number:

1.osm.passenger.trips.xml, 2. osm.rail.trips.xml

3.osm.rail_urban.trips.xml, 4.osm.tram.trips.xml

Generate SUMO File to Integrate

with Mininet-WiFi

Use the Command

duarouter --route-files
osm.passenger.trips.xml,

osm.rail_urban.trips.xml -n
osm.net.xml -o sumomap.rou.xml

Save Changes

Move/copy all the executable file to "data"
folder of SUMO application and save the

changes using the command:

sudo make install

Figure 39. SUMO integration steps.

Figure 40. OSM Web Wizard home page.

Network 2022, 2 701

Figure 41. Selected map: Puente de Santiago.

Figure 42. Map generation.

Network 2022, 2 702

Zoomed Section of
Selected Map

Figure 43. Simulation: Puente de Santiago

• Edit the Vehicle Id, i.e., Car ID and Train/Tram ID: To show the vehicles in SUMO
and to interface with Mininet–WiFi, the selected vehicles/nodes should have different
IDs. Go to the folder where map files are generated and look for the files that have the
car and the tram. Look for the following emulation files:

1. osm.passenger.trips.xml: contains the car ID;
2. osm.rail.trips.xml: contains train ID (long route trains);
3. osm.rail_urban.trips.xml: contains urban train ID;
4. osm.tram.trips.xml: contains tram ID.

In this selected map, a car and a tram are simulated as network nodes. Open the
files osm.passenger.trips.xml and osm.tram.trips.xml and change the IDs with numerical
numbers such as 1, 2, 3, etc.; the number should not be repeated; every entity should
have a different number, as shown in Figure 44. After that, to build a single executable
file, open a terminal in the folder where all these files are saved and run the command:

duarouter - -route-files osm.passenger.trips.xml, osm.rail_urban.trips.xml -n osm.net.xml
-o sumomap.rou.xml

where sumomap.rou.xml is the executable file. Figure 45 shows that the sumomap.rou.xml
file is generated.

Car ID Tram ID

Figure 44. Change IDs of vehicles.

Network 2022, 2 703

Figure 45. Change IDs of vehicles.

• Edit the File osm.sumocfg: After generating the map file sumomap.rou.xml, open the
file osm.sumocfg and change the following information:

<route-files value=“sumomap.rou.xml”/>

• Move or Copy the Map Files: By default, Mininet–WiFi accesses the SUMO files
from the “data” folder of the SUMO application. Therefore, after completing all the
steps mentioned above, move or copy the map files in the /home/student/mininet-
wifi/mn_wifi/
sumo/data folder.

• Save all Changes: Now, go to the folder for Mininet–WiFi, open a terminal, and run
the following command sudo make install to save all the changes done with SUMO files,
as shown in Figure 46.

Figure 46. Save all the changes.

• SUMO Map Integration with Selected Network Topology: To generate the network
topology integrated with SUMO maps, a Python script is used utilizing all the methods
and functions described in Section 6.1. The user has to add the following line of
code mentioned in List 10 to the network topology Python script. The command
net.useExternalProgram is used to integrate the SUMO application with Mininet–WiFi.
The entire Python script (SUMO_Aug17.py) for network topology creation with SUMO
map integration is available at [26].

Listing 10. SUMO Integration with Mininet–WiFi.

i n f o (‘ ‘ * * * * S tar t ing_network_and_connect ing_to_trac i ’ ’)
i n f o (’ Connecting_to_traci_sumo ’)

net.useExternalProgram (program=sumo , port =8813 ,

Network 2022, 2 704

c o n f i g _ f i l e = ’osm . sumocfg ’ ,
extra_params =[‘ ‘ − − s t a r t −−delay 1500 ’ ’])

After running the script SUMO_Aug17.py, network emulation with the SUMO map as
shown in Figure 43 will be generated. Figure 47 shows the location of the assigned
access points and the movement of cars and trams, where assigned access points are
ap1 to ap17, C2 represents Car2, and T77 represents Tram77. When a car/tram moves
from the coverage range of one access point to another, we sometimes observe that
there is no automatic connection to the nearest access point. In that case, the connection
can be established using the command <node name> iw dev <node name>-wlan0 connect
<SSID name>.

Figure 47. Movement of trams and cars on SUMO map in the range of assigned access points.

11. Conclusions

In this paper, we have provided a detailed tutorial to emulate the coexistence of
railway and road services by sharing telecommunication infrastructure using the tools
Mininet–WiFi, ONOS-SDN Controller, and SUMO. Based on the validation test carried out
in Section 9, it can be concluded that by using Mininet–WiFi, a user can develop different
network topologies with nodes having moving capabilities and wireless access points
intended for railway and road coexistence scenarios. Therefore, moving hosts are able to
replicate cars, rails, and trams in considered virtual space. As we have stated, Mininet–WiFi
does not support 5G-based network emulation. In our previous work [16], we presented a
network emulator “Emu5GNet”. This emulation tool allows the emulation of 5G networks
with complex applications. The developed ONOS SDN application is able to differentiate
data traffic based on the VLAN tag. Along with this, the developed SDN application is able
to handle the handover scenarios. The visualization tool SUMO is capable of representing
the simulation of a considered scenario in a pictorial/graphical way. After executing
the Mininet–WiFi network emulation file with SUMO, there are sometimes no automatic
connections of nodes to the nearest WiFi access points when they move from one access
point to another. This may be because of a coverage range problem where vehicles are
moving. Since we have extracted the SUMO map from open street map, we do not know
exactly the design and shape of the road. This is subjected to only SUMO integration.
To mimic real data traffic for the considered coexistence scenarios for railways and roads,
iperf3, Scapy, and VLC player are considered. Using iperf3, standard data communication
is demonstrated by sending and receiving UDP and TCP packets between nodes. Using
Scapy, messaging and critical data communication are manifested. Video transmission

Network 2022, 2 705

from one network node to another node is demonstrated using VLC Player. The MTR tool
is used to measure the network parameters of latency, packet loss, and jitter. Therefore, it
can be concluded that the considered tools have the potential to emulate the considered
scenarios for railway and road coexistence environments.

Author Contributions: Conceptualization, J.S., R.S., T.S., L.M. and M.B.; methodology, J.S. and
R.S.; software, R.S. and J.S.; validation, J.S., R.S., T.S., L.M. and M.B.; formal analysis, R.S. and J.S.;
investigation, R.S. and J.S.; resources, J.S., R.S., T.S., L.M. and M.B.; data curation, J.S., R.S., T.S., L.M.
and M.B.; writing—original draft preparation, R.S. and J.S.; writing—review and editing, J.S., R.S.,
T.S., L.M. and M.B.; visualization, R.S. and J.S.; supervision, J.S.; project administration, J.S., L.M. and
M.B.; funding acquisition, J.S., L.M. and M.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This empirical work is part of the project “5G for future RAILway mobile communication
system” (5GRAIL). It is funded by the European Union’s Horizon 2020 research and innovation
program. The grant agreement number is 951725.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sylla, T.; Mendiboure, L.; Maaloul, S.; Aniss, H.; Chalouf, M.A.; Delbruel, S. Multi-Connectivity for 5G Networks and Beyond:

A Survey. Sensors 2022, 22, 7591. [CrossRef] [PubMed]
2. ETSI TR 103 333—System Reference Document (SRDoc); GSM-R Networks Evolution. February 2017. Available online: https:

//www.etsi.org/deliver/etsi_tr/103300_103399/103333/01.01.01_60/tr_103333v010101p.pdf (accessed on 5 October 2022).
3. UIC FU-7100—FRCMS User Requirements Specification. February 2020. Available online: https://uic.org/IMG/pdf/frmcs_

user_requirements_specification-fu_7100-v5.0.0.pdf (accessed on 5 October 2022).
4. UIC- MG-7900—FRCMS Use Cases. February 2020. Available online: https://uic.org/IMG/pdf/frmcs_use_cases-mg_7900-v2.0

.0.pdf (accessed on 5 October 2022).
5. Mandoc, D. FRMCS Definition, Specification and Standardization Activities ERA CCRCC 2019, Slide 3. Available online:

https://www.era.europa.eu/sites/default/files/events-news/docs/ccrcc_2019/4-3_dan_mandoc_era_uic_frmcs_definition_
16102019_en.pdf (accessed on 12 November 2021).

6. 5GRail Info on 5G PPP. Available online: https://5g-ppp.eu/5grail/ (accessed on 1 October 2022).
7. 5GRail Deliverable D6.1. Scenarios for Rail and Road Communication System Coexistence. Available online: https://5grail.eu/

wp-content/uploads/2021/07/5GRAIL_202107023_R_PU_D6.1_RV1_UNI_EIFFEL_Scenarios_Rail_and_road.pdf (accessed on
10 September 2022).

8. Fontes, R.R.; Afzal, S.; Brito, S.H.B.; Santos, M.A.S.; Rothenberg, C.E. Mininet-WiFi: Emulating software-defined wireless
networks. In Proceedings of the 2015 11th International Conference on Network and Service Management (CNSM), Barcelona,
Spain, 9–13 November 2015; pp. 384–389. [CrossRef]

9. Zang, M.; Dittmann, L.; Yan, Y. A Performance Study of Flow-Based Monitoring in Internet of Vehicles. In Proceedings of the 2021
12th International Conference on Network of the Future (NoF), Coimbra, Portugal, 6–8 October 2021; pp. 1–5. [CrossRef]

10. Smida, K.; Tounsi, H.; Frikha, M.; Song, Y.-Q. Efficient SDN Controller for Safety Applications in SDN-Based Vehicular Networks:
POX, Floodlight, ONOS or OpenDaylight? In Proceedings of the 2020 IEEE Eighth International Conference on Communications and
Networking (ComNet), Hammamet, Tunisia, 27–30 October 2020; pp. 1–6. [CrossRef]

11. Fontes, R.D.R.; Campolo, C.; Rothenberg, C.E.; Molinaro, A. From Theory to Experimental Evaluation: Resource Management in
Software-Defined Vehicular Networks. IEEE Access 2017, 5, 3069–3076. [CrossRef]

12. Acharya, S.; Devanahalli, S.S.S.; Rawat, A.; Kuruvilla, V.P.; Sharma, P.; Amrutur, B.; Joglekar, A.; Krishnapuram, R.; Simmhan, Y.;
Tyagi, H. Network Emulation For Tele-driving Application Development. In Proceedings of the 2021 International Conference on
COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 5–9 January 2021; pp. 109–110. [CrossRef]

13. Abdelkader, G.; Elgazzar, K.; Khamis, A. Connected Vehicles: Technology Review, State of the Art, Challenges and Opportunities.
Sensors 2021, 21, 7712. [CrossRef] [PubMed]

14. Monir, N.; Toraya, M.M.; Vladyko, A.; Muthanna, A.; Torad, M.A.; El-Samie, F.E.A.; Ateya, A.A. Seamless Handover Scheme for
MEC/SDN-Based Vehicular Networks. J. Sens. Actuator Netw. 2022, 11, 9. [CrossRef]

http://doi.org/10.3390/s22197591
http://www.ncbi.nlm.nih.gov/pubmed/36236690
https://www.etsi.org/deliver/etsi_tr/103300_103399/103333/01.01.01_60/tr_103333v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103300_103399/103333/01.01.01_60/tr_103333v010101p.pdf
https://uic.org/IMG/pdf/frmcs_user_requirements_specification-fu_7100-v5.0.0.pdf
https://uic.org/IMG/pdf/frmcs_user_requirements_specification-fu_7100-v5.0.0.pdf
https://uic.org/IMG/pdf/frmcs_use_cases-mg_7900-v2.0.0.pdf
https://uic.org/IMG/pdf/frmcs_use_cases-mg_7900-v2.0.0.pdf
https://www.era.europa.eu/sites/default/files/events-news/docs/ccrcc_2019/4-3_dan_mandoc_era_uic_frmcs_definition_16102019_en.pdf
https://www.era.europa.eu/sites/default/files/events-news/docs/ccrcc_2019/4-3_dan_mandoc_era_uic_frmcs_definition_16102019_en.pdf
https://5g-ppp.eu/5grail/
https://5grail.eu/wp-content/uploads/2021/07/5GRAIL_202107023_R_PU_D6.1_RV1_UNI_EIFFEL_Scenarios_Rail_and_road.pdf
https://5grail.eu/wp-content/uploads/2021/07/5GRAIL_202107023_R_PU_D6.1_RV1_UNI_EIFFEL_Scenarios_Rail_and_road.pdf
http://dx.doi.org/10.1109/CNSM.2015.7367387
http://dx.doi.org/10.1109/NoF52522.2021.9609951
http://dx.doi.org/10.1109/ComNet47917.2020.9306095
http://dx.doi.org/10.1109/ACCESS.2017.2671030
http://dx.doi.org/10.1109/COMSNETS51098.2021.9352914
http://dx.doi.org/10.3390/s21227712
http://www.ncbi.nlm.nih.gov/pubmed/34833782
http://dx.doi.org/10.3390/jsan11010009

Network 2022, 2 706

15. Ali, H.D.; Abdulqader, A.H. Using Software Defined Network (SDN) Controllers to Enhance Communication between Two
Vehicles in Vehicular AD HOC Network (VANET). In Proceedings of the 2021 7th International Conference on Contemporary
Information Technology and Mathematics (ICCITM), Mosul, Iraq, 25–26 August 2021; pp. 106–111. [CrossRef]

16. Sylla, T.; Mendiboure, L.; Berbineau, M.; Singh, R.; Soler, J.; Berger, M.S. Emu5GNet: An Open-Source Emulator for 5G Software-
Defined Networks. In Proceedings of the 18th International Conference on Wireless and Mobile Computing, Networking and
Communications WiMob 2022, Thessaloniki, Greece, 10–12 October 2022.

17. Open Network Operating System (ONOS®). Available online: https://opennetworking.org/onos/ (accessed on 10 October 2022).
18. Mininet-WiFi Emulator for Software Defined Network. Available online: https://mininet-wifi.github.io/ (accessed on

10 September 2022).
19. Behrisch, M.; Bieker, L.; Erdmann, J.; Krajzewicz, D. SUMO—Simulation of urban mobility: An overview. In Proceedings

of the SIMUL 2011, The Third International Conference on Advances in System Simulation, ThinkMind, Barcelona, Spain,
23–29 October 2011.

20. Mininet An Instant Virtual Network on Your Laptop (or other PC). Available online: http://mininet.org/ (accessed on 15 October 2022).
21. mac80211_hwsim. Available online: https://wireless.wiki.kernel.org/en/users/drivers/mac80211_hwsim (accessed on

15 October 2022).
22. The User Manual. Available online: https://usermanual.wiki/Pdf/mininetwifidraftmanual.297704656.pdf (accessed on

11 September 2022).
23. OSMWebWizard. Available online: https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html#getting_started (accessed on

25 October 2022).
24. Kendziorra, A.; Weber, M. Public transport, logistics and rail traffic extensions in sumo. In Simulating Urban Traffic Scenarios;

Springer: Cham, Switzerland, 2019; pp. 83–95.
25. Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Wießner, E. Microscopic traffic simulation

using sumo. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI,
USA, 4–7 November 2018; pp. 2575–2582.

26. DTU5GRail /5GRail_WP6. Available online: https://github.com/DTU5GRail/5GRail_WP6/tree/main/DTU_Code/Considerd_
Scenario/ (accessed on 18 September 2022).

27. Wireless B vs. G vs N vs AC | What is The Difference? Available online: https://homenetworkadmin.com/wireless-b-vs-g-vs-n-
vs-ac-difference/ (accessed on 20 October 2022).

28. Iperf. Available online: https://en.wikipedia.org/wiki/Iperf (accessed on 19 September 2022).
29. What is iPerf/iPerf3? Available online: https://iperf.fr/ (accessed on 19 September 2022).
30. Introduction to Scapy? Available online: https://santandergto.com/en/guide-using-scapy-with-python/ (accessed on

21 September 2022).
31. Scapy Packet Crafting for Python2 and Python3. Available online: https://scapy.net/ (accessed on 21 September 2022).
32. Download and Installation. Available online: https://scapy.readthedocs.io/en/latest/installation.html (accessed on

21 September 2022).
33. How to do Video Streaming Using VLC Player. Available online: https://headendinfo.com/video-streaming-using-vlc-player/

(accessed on 25 September 2022).
34. VLC Features. Available online: https://www.videolan.org/vlc/features.html (accessed on 25 September 2022).
35. What is MTR & How to Use to Troubleshoot & Test your Connections. Available online: https://www.pcwdld.com/what-is-mtr-

and-howto-troubleshoot-connections#wbounce-modal (accessed on 8 September 2022).
36. What is MTR and Why is it Useful? Available online: https://www.comparitech.com/net-admin/what-is-mtr/ (accessed on

8 September 2022).
37. ONOS Java API (2.5.0). Available online: https://api.onosproject.org/2.5.0/apidocs/ (accessed on 5 September 2022).
38. What Does VLAN Tagging Mean? Available online: https://www.techopedia.com/definition/32105/vlan-tagging (accessed on

7 September 2022).
39. NYC Subway Front Window View—The 7 Express to Manhattan! Available online: https://www.youtube.com/watch?v=

ukOHqdPbYYg&list=WL&index=1&t=180s&ab_channel=DJHammersTrains (accessed on 12 October 2022).
40. Tutorials. Available online: https://sumo.dlr.de/docs/Tutorials/index.html (accessed on 5 October 2022).

http://dx.doi.org/10.1109/ICCITM53167.2021.9677720
https://opennetworking.org/onos/
https://mininet-wifi.github.io/
http://mininet.org/
https://wireless.wiki.kernel.org/en/users/drivers/mac80211_hwsim
https://usermanual.wiki/Pdf/mininetwifidraftmanual.297704656.pdf
https://sumo.dlr.de/docs/Tutorials/OSMWebWizard.html#getting_started
https://github.com/DTU5GRail/5GRail_WP6/tree/main/DTU_Code/Considerd_Scenario/
https://github.com/DTU5GRail/5GRail_WP6/tree/main/DTU_Code/Considerd_Scenario/
https://homenetworkadmin.com/wireless-b-vs-g-vs-n-vs-ac-difference/
https://homenetworkadmin.com/wireless-b-vs-g-vs-n-vs-ac-difference/
https://en.wikipedia.org/wiki/Iperf
https://iperf.fr/
https://santandergto.com/en/guide-using-scapy-with-python/
https://scapy.net/
https://scapy.readthedocs.io/en/latest/installation.html
https://headendinfo.com/video-streaming-using-vlc-player/
https://www.videolan.org/vlc/features.html
https://www.pcwdld.com/what-is-mtr-and-howto-troubleshoot-connections#wbounce-modal
https://www.pcwdld.com/what-is-mtr-and-howto-troubleshoot-connections#wbounce-modal
https://www.comparitech.com/net-admin/what-is-mtr/
https://api.onosproject.org/2.5.0/apidocs/
https://www.techopedia.com/definition/32105/vlan-tagging
https://www.youtube.com/watch?v=ukOHqdPbYYg&list=WL&index=1&t=180s&ab_channel=DJHammersTrains
https://www.youtube.com/watch?v=ukOHqdPbYYg&list=WL&index=1&t=180s&ab_channel=DJHammersTrains
https://sumo.dlr.de/docs/Tutorials/index.html

	Introduction
	Related Work
	Selecting and Defining the Scenarios
	Essential Parameters to Define the Scenario
	Selected Scenario

	Selected Tools
	ONOS SDN Controller
	Mininet–WiFi
	SUMO

	Setup Description
	Network Topology Creation Using Mininet–WiFi
	Network Topology S2(5/6)1—Different Access Network and Shared Core, Railway Track Parallel to Road
	S4(5/6)4: Shared Access Network and Shared Core, Track Perpendicular to Road

	Selected Tools to Generate Data Traffic to Validate the Scenarios
	ONOS SDN Application for Data Traffic Slicing
	Validation of Developed SDN Application and Selected Tools
	Handover/Mobility (Speed/Direction/Providing Coordinates)
	Level Crossing
	Reachability Test and Data Traffic Differentiation
	TCP and UDP Data Transmission
	Link Capacity Test
	Latency Test and Network Jitter Test
	Sending a Critical Message to the Assigned Server
	Video Transmission Test

	SUMO Integration
	Conclusions
	References

