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Abstract
We study the problem of collaborative tree exploration introduced by Fraigniaud, Gasieniec, Kowalski,
and Pelc [10] where a team of k agents is tasked to collectively go through all the edges of an unknown
tree as fast as possible and return to the root. Denoting by n the total number of nodes and by D

the tree depth, the O(n/ log(k) + D) algorithm of [10] achieves a O(k/ log(k)) competitive ratio with
respect to the cost of offline exploration which is at least max {2n/k, 2D}. Brass, Cabrera-Mora,
Gasparri, and Xiao [1] study an alternative performance criterion, the competitive overhead with
respect to the cost of offline exploration, with their 2n/k + O((D + k)k) guarantee. In this paper,
we introduce “Breadth-First Depth-Next” (BFDN), a novel and simple algorithm that performs
collaborative tree exploration in 2n/k + O(D2 log(k)) rounds, thus outperforming [1] for all values of
(n, D, k) and being order-optimal for trees of depth D = o(

√
n). Our analysis relies on a two-player

game reflecting a problem of online resource allocation that could be of independent interest. We
extend the guarantees of BFDN to: scenarios with limited memory and communication, adversarial
setups where robots can be blocked, and exploration of classes of non-tree graphs. Finally, we
provide a recursive version of BFDN with a runtime of Oℓ(n/k1/ℓ + log(k)D1+1/ℓ) for parameter
ℓ ≥ 1, thereby improving performance for trees with large depth.
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1 Introduction

Problem setting. A team of robots1, initially located at the root of an unknown tree, is
tasked to collectively go through all the edges of a tree as fast as possible and then return to
the root. At each round, the robots move synchronously along one incident edge to reach a
neighbour, thereby discovering new adjacent edges. Following [10], we consider two distinct

1 the term “robots” is often preferred over “agents” in line with the initial work of [10].
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communication models. The complete communication model, in which communications
are unrestricted and consequently the team takes decisions in a centralized fashion. The
write-read communication model, in which robots communicate through whiteboards that
are located at all nodes and must thus take decisions in a distributed fashion.

Main results. In this paper, we present a simple and novel algorithm that achieves collabo-
rative tree exploration with k agents in 2n

k + D2(min{log(k), log(∆)} + 3) rounds for any
tree with n nodes, depth D and maximum degree ∆. This algorithm can be implemented in
the complete communication model and the write-read communication model.

The algorithm is called “Breadth-First Depth-Next” (abbreviated BFDN) and the behaviour
of the robots can be described synthetically as follows: when located at the root, a robot is
sent to the highest unexplored edge (as in a breadth-first search). Upon arrival, the robot
changes behaviour until it reaches the root again, it goes through unexplored edges when
adjacent to one and goes up towards the root otherwise (as in a depth-first search).

Our analysis involves a simple zero-sum two-player game with balls in urns. An immediate
application of this analysis is in resource allocation in the face of uncertainty. Given k workers
and k (parallelizable) tasks requiring each an unknown amount of work, we show that the
strategy of reassigning idle workers to the least crowded task is competitive in terms of
number of times a worker will have to switch between tasks. More precisely, we show that
this number is at most k log(k) + 2k.

The BFDN algorithm is easy to implement and we provide it with extensions to more
complex settings, such as i) exploration of specific classes of non-tree graphs, ii) scenarios
with constrained communications and memory, and iii) setups where an adversary chooses
at each time step which robots are allowed to move. Finally, in an attempt to improve
dependence in the tree depth D, we propose BFDNℓ, a recursive version of BFDN in the complete
communication model that explores the tree in time Oℓ

(
n

k1/ℓ + min{log(k), log(∆)}D1+1/ℓ
)

where ℓ ≥ 1 is some constant provided as input.

Useful context and related works. In the case of a single robot, the “Depth First Search”
(DFS) algorithm is optimal for traversing the edges of a tree. It can be implemented both
offline (the tree is known in advance) and online (edges are revealed when reached). One way
to describe DFS in an online fashion is to have the robot go through an adjacent unexplored
edge if possible and go up towards the root otherwise. After 2(n− 1) rounds, where n is the
number of nodes, all edges have been traversed (twice) and the robot is at the root.

In the multi-robot setting, i.e. with k ≥ 2, traversing all the edges of a tree in an offline
manner requires at least max{2n/k, 2D} ≥ n/k + D synchronous rounds [7, 13]. This is
because every edge has to be traversed in both directions and some robot has to reach the
deepest node before returning to the root. A simple algorithm [7, 13] matches this bound
up to a factor 2, with a runtime of at most 2(n/k + D): consider a depth-first search path
from the root of length 2(n − 1), and divide it in k segments each of length ⌈2(n− 1)/k⌉,
then assign one robot to reach and traverse each segment. The optimal offline k-traversal is
NP-hard to compute as [10] gave a reduction from 3-PARTITION to this problem.

To analyze the online problem (i.e. collective tree exploration), the literature initially
focused on the competitive ratio which is the worst-case ratio between the cost an online
algorithm and the optimal offline algorithm. For an online algorithm Ak using k ≥ 2 robots,
this ratio is defined up to a constant factor as maxn,D∈N maxT ∈T (n,D) Runtime(Ak, T )/(n/k+
D) where T (n, D) denotes the set of all trees with n nodes and depth D. The algorithm
proposed initially by [10] CTE (Collective Tree Exploration) runs in O( n

log k + D) rounds for
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any tree T ∈ T (n, D) and therefore has a competitive ratio of O( k
log k ). Furthermore, it can

be implemented in the write-read communication model [10]. It was later shown by [11] that
the competitive analysis of CTE is tight as they provided a simple construction of a tree with
n = kD edges that CTE would take Dk

log2(k) time-steps to explore. To date, no algorithm is
known to have a better competitive ratio than CTE, while the best lower-bound known on
the competitive ratio, for deterministic exploration algorithms, is in Ω( log k

log log k ) by [9].
The limited progress on the analysis of the competitive ratio as a function of k led most

subsequent works to investigate algorithms with super-linear dependence in (n, D), usually
assuming complete communication [13, 1, 8, 6, 5, 11]. In this spirit, [13] derived a recursive
algorithm called Yo* that runs in O(2O(

√
log D log log k) log(k)(log(k) + log(n))(n/k + D))

rounds. On the other hand, [1] proposed a novel analysis of CTE yielding a guarantee of
2n
k +O((k+D)k), displaying optimal dependence in n at the cost of large additive dependence

in (k, D). The algorithm we propose with its guarantee of 2n
k +O(D2 log(k)) complements

this line of work. Our guarantee yields a strict improvement over [1] for all values of (n, k, D),
and improves upon CTE and Yo∗ for the specific range of parameters as depicted in Figure 1.

𝐷

𝑛

𝑒log 𝑘 2

BFDN

BFDN

CTE

YO*CTE

BFDNℓ

𝑒𝑘

Figure 1 Regions of (n, D) where either of CTE, Yo∗, BFDN and BFDNℓ has the best runtime
guarantee. The runtime of algorithm Yo* was simplified to improve readability. ℓ must satisfy
ℓ ≤ cst(log k/ log log k). No trees defined in shaded region n ≤ D. See Appendix A for details.

Collaborative tree exploration has also been studied under additional assumptions. For
example, for trees which can be embedded in the 2-dimensional grid, [8] obtained an algorithm
running in O(

√
D( n

k + D)) rounds. The setting where the number of robots k is very large,
specifically k ≥ Dnc for some constant c > 1, was also investigated by [5]. Assuming global
communication, their algorithm achieves exploration in c

c−1 D + o(D) rounds. Interestingly,
their guarantees also apply to the challenging and less studied collaborative graph exploration
problem; see also [1, 2].

Open directions. In line with [1], our work advocates for the study of the competitive
overhead of collaborative exploration in complement to its competitive ratio. Recently [6]
showed that (deterministic) collaborative exploration with k = n requires at least Ω(D2),
implying that no algorithm can have a 2n

k +O(Dc) guarantee for c < 2. On the other hand,
a simple algorithm explores any tree in O(D2) rounds as soon as k ≥ n

D [13]. In view of
these results, our 2n

k +O(D2 log(k)) guarantee seems close-to-optimal. We highlight the open
question of whether there exists a 2n

k +O(D2) exploration algorithm, or even a guarantee of
the form 2n

k +O (f(D)), for some real-valued function f .

DISC 2023
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Structure of the paper. Section 2 defines algorithm BFDN and provides the main result
for the complete communication setting. Section 3 analyzes a two-player zero-sum board
game, an essential ingredient in our analysis of BFDN. Section 4 contains extensions of BFDN
to settings with: limited communications; adversarial interruption of robots; and more
general graph exploration. Finally, Section 5 provides a recursive version of BFDN that yields
improved runtime guarantees when the tree depth D gets larger compared to n.

Notations. log(·) refers to the natural logarithm and log2(·) to the logarithm in base 2. For
an integer k we use the abbreviation [k] = {1, . . . , k}.

A tree T = (V, E) is defined by its set of nodes V and edges E ⊂ V × V ; it is rooted at
some specific node denoted root ∈ V from which all robots start the exploration. For a node
v ∈ V , δ(v) is the distance of v to the root and T (v) denotes the sub-tree of T rooted at v

containing all the descendants of v. The depth of T is D = maxv∈V δ(v). We will also use a
notion of partially explored tree (defined in Section 2) that enjoys the same definitions.

2 The Breadth-First Depth-Next algorithm

Our main result on BFDN, which is described below, is the following

▶ Theorem 1. BFDN achieves online exploration of any tree with k robots in at most

2n

k
+ D2(min{log(∆), log(k)}+ 3)

rounds, where ∆ is the maximum degree, n is the number of nodes, and D is the depth.

Following [10], we shall start by showing the guarantee in the complete communication model,
and we later present in Section 4 how BFDN can be adapted to the write-read model.

Partially explored tree. At a given exploration round, V denotes the set of explored nodes,
i.e. nodes that have been occupied by at least one robot in the past, and E denotes the set
of discovered edges, i.e. edges that have at least one explored endpoint. The discovered edges
that have exactly one explored endpoint are called dangling edges. Such edges can be viewed
as a pair (u, ?), with u ∈ V . The partially explored tree or discovered tree Tonline = (V, E)
contains all the information gathered by the robots at some point of exploration. If there are
no dangling edges in Tonline, it means that exploration is complete and that the partially
explored tree equals the underlying tree Toffline ∈ T (n, D).

Collaborative exploration algorithm. A collaborative exploration algorithm in the complete
communication model is formally defined as a function that maps a partially explored tree
T = (V, E) as well as the list of positions of the agents p1, . . . , pk ∈ V k and their past
movements to a list of selected edges e1, . . . , ek ∈ (E ∪ {⊥})k that the agents will use for
their next move. Each selected edge ei ∈ E must be adjacent to the position pi. Dangling
edges may be selected. By convention, ei =⊥ is used to indicate that agent i will not move
at the next round. In pseudo-code, the routine SELECT(Roboti, e) performs the assignment
ei ← e. When all agents have selected a next move, the routine MOVE is applied and all agents
move along their selected edge synchronously. The partially explored tree (V, E) is then
updated with the new information provided by the agents that have traversed a dangling edge.
Exploration always starts with all agents located at the root, V = {root} and E the set of
all dangling edges that are adjacent to the root. The collaborative exploration algorithm
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is applied iteratively. Exploration terminates when the explored tree (V, E) contains no
dangling edges and when the position of all agents is back at the root. The runtime of an
exploration algorithm is defined as a function of (n, D) by the number of rounds required
before termination on any tree with n nodes and depth D.

Breadth-First Depth-Next Algorithm. We now provide a brief description of BFDN, Al-
gorithm 1. When located at the root, a robot indexed by i ∈ [k] and denoted Roboti is
assigned an anchor vi ∈ V which is a node that is adjacent to at least one dangling edge. If
no such node exists, the anchor is the root itself. The exact anchor assignment is specified
by procedure Reanchor which gives the priority to nodes that are the closest to the root and
that have the least number of anchored robots. Roboti then attains this anchor in a series of
breadth-first moves performed with procedure BF. When the anchor is reached, the robot
only makes depth-next moves with procedure DN, until it returns to the root. In a sequence
of depth-next moves, the robot always goes through a dangling edge if one is available (i.e.
adjacent and not already selected as next move by another robot), and goes one step up
towards the root otherwise. This will result in a depth-first-like exploration inside T (vi)
followed by a direct travel from vi to the root. The algorithm stops when all robots are at
the root and are not assigned a new anchor because there are no more dangling edges.

The reason why we ask that the robots go back all the way to the root before being
reassigned a new anchor, rather than having them use a shortest path from their previous
anchor to their next anchor, will become apparent when we adapt the algorithm to the
distributed write-read communication setting. In that setting, the root will play the role
of a central planner, gathering information on the advancement of exploration thanks to
returning robots.

2.1 Analysis of BFDN and proof of Theorem 1

We first prove the correctness and termination of BFDN and then bound its runtime.

Correctness. In Algorithm 1, the do-while loop is interrupted when no robot changes
position at some round (line 14). Note that the root is the only place where robots may stay
at the same position because direction up is interpreted as ⊥ at the root only (line 23). Thus
all robots are at the root when the algorithm stops. Also note that the selection of direction
up by all robots at the root implies that there are no dangling edges in the tree. Thus the
tree has been entirely explored and all robots have returned. The algorithm is correct.

Termination. To prove termination, we show that while the algorithm runs, a node is
discovered every 3D rounds at least. Since there are n nodes in the tree, the algorithm must
terminate after at most 3D × n rounds. Assume by contradiction that no node is discovered
in a sequence of 3D rounds. After 2D rounds, all robots have attained the root because all
DF moves are directed up. Then, either one robot is assigned an anchor that is adjacent to
an unexplored edge which will be traversed in the coming D rounds, or the algorithm stops.
In both cases we have a contradiction.

We now provide the following lemma which will be proved in Section 3.

▶ Lemma 2. In an execution of BFDN, for any d ∈ {1, . . . , D − 1}, the number of calls to
procedure Reanchor which return an anchor at depth d is at most k(min{log(k), log(∆)}+ 3).

DISC 2023
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Algorithm 1 BFDN “Breadth-First Depth-Next”.

Ensure: The robots traverse all edges and return to the root.
1: V = list of explored nodes ; E = list of discovered edges
2: vi ← root ∀i ∈ {1, . . . , k} ▷ Initialize anchors.
3: Si ← [ ] ∀i ∈ {1, . . . , k} ▷ Initialize empty stacks.
4: do ▷ Round t.
5: for i = 1 to k do ▷ Sequential decisions.
6: if Roboti is at root then
7: vi ← Reanchor(i)
8: Stack in Si the list of edges that lead to vi ▷ Reverse order.
9: if Si is not empty then

10: BF(i)
11: else
12: DN(i)
13: MOVE all robots on their selected edge and update (V, E) ▷ Synchronous moves.
14: while some robot changes position
15:
16: procedure BF(i)
17: Unstack e ∈ E from Si and SELECT(Roboti, e)
18:
19: procedure DN(i)
20: if Roboti is adjacent to some dangling and unselected edge e ∈ E then
21: SELECT(Roboti, e)
22: else
23: SELECT(Roboti, up) ▷ If Roboti is at the root, up is interpreted as ⊥.
24:
25: procedure Reanchor(i)
26: U = {v ∈ V s.t. v is adjacent to some dangling edge with δ(v) minimal}
27: if U ̸= ∅ then ▷ Choose anchor of minimum load.
28: vi ← arg minv∈U nv where ∀v ∈ V : nv = #{j ∈ [k] s.t. vj = v}
29: else ▷ The tree is explored.
30: vi ← root

Time complexity. During the execution, a given Roboti anchored at vi can spend time in
two different ways (1) being idle at the root (2) moving along a selected edge. We denote
by T1

i , T2
i the time (number of rounds) spent by Roboti in each of these phases. We have

that
∑

i∈[k](T1
i + T2

i ) = kT where T is the total number of rounds of the algorithm as the k

robots operate in parallel. We now prove a series of claims.

▶ Claim 1. The total number of rounds when some robot does not move is at most D + 1.

Proof of Claim 1. Recall that if a robot does not move, it must be anchored at the root
and have selected direction up with procedure DN. This only occurs in two cases (1) there
are no more dangling edges in the discovered tree (this happens at most D times because
all robots are on their way back) (2) there are still dangling edges that are adjacent to the
root, but they are all selected (this happens at most once because at the next time-step, all
edges adjacent to the root will be explored). The number of time-steps when a robot may
not move is thus at most D + 1. ◀
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▶ Claim 2. In the round when a dangling edge is explored for the first time, it is traversed
by a single robot.

Proof of Claim 2: All breadth-first moves (with procedure BF) are through previously ex-
plored edges because they lead from the root to a previously explored node. Thus dangling
edges are only explored in depth-next moves (with procedure DN). In this procedure, two
robots cannot select the same dangling edge. ◀

▶ Claim 3. Consider a sequence of moves by some Roboti that starts at the root with the
assignment of an anchor v of depth δ(v) = d and that ends with the return of Roboti to the
root after Tx rounds. In this sequence, Roboti explored exactly (Tx − 2d)/2 dangling edges.

Proof of Claim 3. The sequence of moves, denoted x, has the following structure. First,
Roboti uses a shortest path from the root to v which takes d moves through previously
explored edges. Then the robot performs moves inside T (v) by going down through dangling
edges if some are available and going up towards the root otherwise. Note that exactly
half of the moves inside T (v) must be through dangling edges as there must be as many
moves down as moves up in T (v). Finally, the robot goes back from v to the root in again
d moves through explored edges. Exactly (Tx − 2d)/2 dangling edges are explored in this
sequence. ◀

We now assemble the claims and Lemma 2 together to bound the runtime of BFDN. Using
Claim 1, we have that

∑
i T1

i ≤ k(D+1). Then, we write
∑

i T2
i =

∑
d≤D−1

∑
x∈Xd

Tx where
Xd is the list of all sequences of moves x that start with the assignment of an anchor v at
depth δ(v) = d to some robot and that end with the return of that robot to the root. Using
Claim 2 and Claim 3, we have that

∑
d≤D−1

∑
x∈Xd

(Tx − 2d)/2 ≤ n− 1. Consequently,∑
i∈[k]

T2
i ≤ 2(n− 1) + 2

∑
d≤D−1

∑
x∈Xd

d.

By Lemma 2, the cardinality of Xd is at most k(min{log(k), log(∆)}+3), for d ∈ {1, . . . , D−1}.
Thus,

∑
d≤D−1

∑
x∈Xd

d ≤ D(D−1)
2 k(min{log(k), log(∆)} + 3). Finally, using

∑
i∈[k](T1

i +
T2

i ) = kT, we obtain kT ≤ 2(n− 1) + D(D− 1)k(min{log(∆), log(k)}+ 3) + (D + 1)k, which
proves that the algorithm stops after at most

T ≤ 2n

k
+ D2(min{log(∆), log(k)}+ 3)

steps, thus completing Theorem 1’s proof.
Though it is not required for the the analysis above, we conclude this section with a final

claim that provides useful intuition on the algorithm.

▶ Claim 4. At all rounds, all dangling and unexplored edges, are in ∪i∈[k]T (vi).

Proof of Claim 4. Consider some dangling edge e and its explored endpoint v ∈ V . At
the round when v was explored by a robot, that robot was performing a depth-next move
because its anchor was at least as high as v which is still adjacent to a dangling edge. That
robot cannot have left T (v) before the edge e was traversed. Consequently, it is still rooted
at some ancestor vi of v, thus e ∈ ∪i∈[k]T (vi). ◀

3 A two-player zero-sum game with balls in urns

In this section we introduce a two-player zero-sum board game that essential to the analysis
of BFDN. A strategy for the player of the game is given and analyzed in Theorem 3. Its
connection with BFDN is detailed in Section 3.2 where a proof of Lemma 2 is given.

DISC 2023
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3.1 Game of balls in urns
Game description. At time t ∈ N, the board of the game is a list of k integers (nt

1, . . . , nt
k)

that represent the load of k urns with a total of k balls. When the game starts at t = 0, we
have n0

i = 1 and at every instant t we have
∑

i∈[k] nt
i = k and nt

i ≥ 0. At time t, player A
(the adversary) chooses a ball in an urn at ∈ [k] that is not empty, i.e. such that nt

at
≥ 1,

and then player B (the player) chooses an urn bt ∈ [k] and moves that ball from urn at to
urn bt. At the beginning of time t + 1, the board satisfies nt+1

at
= nt

at
− 1 and nt+1

bt
= nt

bt
+ 1.

Goal of the game. At a given time t, we denote by Ut the set of urns that have never been
selected by the adversary, Ut = {1, . . . , k} \ {a0, . . . , at−1}. The game stops when all urns in
Ut contain at least ∆ balls, i.e. nt

i ≥ ∆,∀i ∈ Ut. If ∆ ≥ k, the game stops when all urns
have been chosen, i.e. Ut = ∅. The goal of player B is to end the game as soon as possible,
while the goal of the adversary is to play for as long as it can.

Strategy of the player. At time t, the player picks the urn bt that contains the least
number of balls among the urns that were never chosen by the adversary, i.e. bt ∈
arg mini∈[k]\{a0,...,at} nt

i. For this strategy, we state the main result of this section.

▶ Theorem 3. Under this strategy, the game ends after at most k min{log(∆), log(k)}+ 2k

steps.

Interpretation of the game. While the main focus of this paper is on collective tree
exploration, a more immediate application of the above result is in resource allocation in
the face of uncertainty. Given k workers and k (parallelizable) tasks of unknown length, our
analysis shows that the ‘best’ way to reassign idle workers online is to reassign them to the
unfinished task which has the least number of workers working on it. Using this simple rule,
the number of times a worker changes task is at most log(k) + 2 times the optimum (which
is of order k) irrespective of the individual task lengths.

Proof. The set Ut does not increase with time. We denote its cardinality ut = |Ut|. Denoting
Nt =

∑
i∈Ut

nt
i the total number of balls in urns of Ut, the possible number of balls for an

urn of Ut lies in {⌈Nt

ut
⌉, ⌊Nt

ut
⌋}. The game thus stops as soon as Nt

ut
≥ ∆ and the quantity

xt := ∆ut −Nt, must thus be positive as long as the game lasts. We distinguish two options
for the adversary at any step t:
(a) The adversary chooses an urn at that it previously chose (at ̸∈ Ut). In this case, ut+1 = ut

and Nt+1 = Nt + 1. Note that this option is available to the adversary only if some ball
lies outside of Ut, i.e. if Nt ≤ k − 1.

(b) The adversary chooses an urn at that it has never chosen before (at ∈ Ut). In this case,
ut+1 = ut − 1 and Nt+1 = Nt − nt

at
+ 1.

We now will establish that the adversary always prefer option (a) to option (b). For parameters
u, N ∈ {0, . . . , k}, we denote by R(N, u) the largest number of steps that the game may still
last after player B’s move led to a configuration where Nt = N and ut = u at any time t.
Note that by the discussion above, this value is the same for all such configurations of the
game. Clearly, ∆u−N ≤ 0⇒ R(N, u) = 0. Besides, in view of the options (a) and (b) just
listed, one has the following, assuming ∆u−N > 0:

N < k ⇒ R(N, u) = 1 + max


R(N + 1, u),
R(N − ⌈N/u⌉+ 1, u− 1),
R(N − ⌊N/u⌋+ 1, u− 1).

(1)
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N = k ⇒ R(N, u) = 1 + max
{

R(N − ⌈N/u⌉+ 1, u− 1),
R(N − ⌊N/u⌋+ 1, u− 1).

(2)

We now establish the following,

▶ Lemma 4. For any (u, N) ∈ {0, . . . , k}, it holds that:
i) Function M → R(M, u) is non-increasing, and
ii) The maximum in (1) for N < k is always achieved by R(N + 1, u).

Proof. For u = 0, R(M, u) ≡ 0 and there is nothing to prove. Assume that the two properties
i) and ii) hold for v = u− 1 ≥ 0. We will show that ii) holds for u. Consider N < k. By the
monotonicity assumption i),

R(N − ⌈N/u⌉+ 1, u− 1) ≥ R(N − ⌊N/u⌋+ 1, u− 1).

Assume thus that the adversary moves first to configuration (N − ⌈N/u⌉ + 1, u − 1). By
assumption ii) at rank v, its next best move is to configuration (N − ⌈N/u⌉ + 2, u − 1).
If alternatively the adversary had made a first move to (N + 1, u), it could then move to
(N + 1 − ⌈(N + 1)/u⌉ + 1, u − 1). Now by the monotonicity assumption ii) this can only
improve the adversary’s reward if N − ⌈N/u⌉ + 2 ≥ N + 1 − ⌈(N + 1)/u⌉ + 1, which is
obviously true. We have thus established ii) at rank u. Monotonicity i) at rank u readily
follows, since we now have that R(N + 1, u) = R(N, u)− 1 if ∆u−N > 0. ◀

From the lemma above, we conclude that a strategic adversary always prefer option (a) over
option (b) when it is available. Playing option (b) grants the adversary a budget to choose
option (a) for another ⌈Nt

ut
⌉ − 1 time steps. In such game, ut is thus decremented by 1 every

⌈ k
ut
⌉ steps. The game stops if ut ≤ k

∆ , thus right after ut = ⌈ k
∆⌉. Assuming ∆ ≤ k, the

game then lasts a total time of at most ⌈k
k ⌉+ ⌈ k

k−1⌉+ · · ·+ ⌈ k
⌈k/∆⌉⌉ ≤

∑k
h=⌈k/∆⌉

(
k
h + 1

)
≤

k
∑k

h≥k/∆+1
1
h + 2k ≤ k

∫ k

k/∆
dx
x + 2k ≤ k(log(k)− log(k/∆)) + 2k = k log(∆) + 2k. Instead

assuming k < ∆, the game will stop after ut = 1 and the sum is thus bounded by k
∫ k

1
dx
x +2k ≤

k log(k) + 2k. Overall, the game ends in at most k min{log(∆), log(k)}+ 2k steps. ◀

3.2 Connection to BFDN

We start by giving some intuition to connect the game above to BFDN and then provide a
proof of Lemma 2. The general picture is that balls of the game will correspond to robots
exploring the tree whereas urns of the game will correspond to the anchors at the working
depth d, i.e. the minimum depth of a dangling edge. Note that in BFDN, procedure Reanchor
applies the strategy for the player of the game described above, by reassigning the current
robot to the anchor of smallest load within set U , which is defined line 26 of Algorithm 1 by,

U = {v ∈ V s.t. v is adjacent to some dangling edge and δ(v) = d}. (3)

▶ Lemma 2 (Restated). In an execution of BFDN, for any d ∈ {1, . . . , D− 1}, the number of
calls to procedure Reanchor returning a node at depth d is at most k(min{log(k), log(∆)}+3).

Proof. We start the proof of the lemma by the following claim on BFDN.

▶ Claim 5. At some round, if all anchors are at depth at most d− 1, all nodes v explored
at depth d are in either of these (non-exclusive) situations: their sub-tree T (v) is entirely
explored, or their sub-tree T (v) hosts exactly one robot.
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Proof of Claim 5. Consider an explored node v at depth d that contains a dangling edge
in its sub-tree T (v). We show that T (v) hosts one robot. The dangling edge must have an
explored endpoint v′ ∈ T (v) that was attained by a robot performing depth-next moves.
This robot cannot have left T (v′) ⊂ T (v) because v′ is still adjacent to a dangling edge,
thus that robot is still in T (v). At most one robot is in T (v) because v can only have been
attained by a single robot, since all anchors are at depth d− 1 or above. ◀

We now provide a reduction of the analysis of BFDN to the urns and balls game. We fix
some depth d ≥ 1 and bound the number Nd of times a robot is reanchored at depth d. We
denote by U0 the set U , defined by (3), in the first round when it consists of nodes at depth
d. Since all anchors were at depth less than k − 1 before that round, using Claim 5 we have
that |U0| ≤ k (in fact, |U0| ≤ k− 1 because at least one robot must be at the root). Since all
edges at depth less than d− 1 are explored, we note that U0 contains all nodes which are
possible candidates for anchors at depth d and that U ⊂ U0 for as long as it concerns nodes
at depth d. For each candidate anchor in U0, we formally re-anchor the robot exploring
the corresponding sub-tree to this anchor. This does not change the algorithm’s evolution
because there are no more dangling edges at depth less than d so all robots head back directly
to the root when they have finished explored below the associated candidate anchor.

We then increment counter c at every call of the procedure Reanchor, with possibly
multiple increments within a single round. For counter value c, we denote by ac ∈ U0 the
vertex to which the robot was previously anchored, and by bc ∈ U the vertex to which it is
anchored next. Note that all nodes in {a1, . . . , ac} can no longer be adjacent to a dangling
edge. We stop the increment the last time a robot is anchored at depth d, which happens
when there does not remain any node at depth d that is adjacent to some dangling edge.

Consider the number of calls C when for each node in U0, either a robot returning from it
has reached the root, or at least ∆ robots are anchored at it. Then C is the duration of a run
of the previous two-player game, initialized with one urn containing k − u balls and u urns
each containing one ball, where u = |U0| ∈ {0, . . . , k − 1} and where player B implements
the balancing strategy. Indeed the re-anchoring strategy of BFDN balances the numbers of
robots assigned per anchor. A direct adaptation of our analysis also holds for this modified
initial condition of the game, yielding the upper bound on C of k(min{log ∆, log k} + 2).
Once C assignments at depth d were made, at least ∆ robots are assigned to nodes at depth
d that are still adjacent to a dangling edge. In the subsequent d rounds BFDN can anchor
each robot at most one last time before there is no more dangling edge at depth d. This
yields the announced bound of k(min(log(k), log(∆)) + 3) on Nd. ◀

4 Extensions of BFDN to alternative settings

We now consider three settings where a BFDN strategy enjoys non-trivial runtime guarantees.

4.1 Restricted memory and communications
In this section, we study a setting where robots are allowed to communicate with a central
planner only when they are located at the root and where they have access to ∆ + D log(∆)
bits of internal memory. This setting encompasses the write-read communication model of
[10] as detailed in Remark 5. Formally, we precise the setting as follows. At every node,
the ports, which are defined as the endpoints of the adjacent edges, are numbered from 0
to ∆ − 1 where ∆ is the maximum degree. A node v at depth d ≤ D is identified by the
sequence of ports that leads to it from the root with d log2(∆) bits. For every node distinct
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from the root, we assume that port number 0 leads to the root. As before, robots operate in
rounds. All robots arriving at the root at some round t have their memory read and stored
by the planner along with their identifier. The planner can then perform any computation
and update the memory of the robots. All robots arriving at some node v distinct from the
root at some round t can observe the list of all ports at v from which a robot has returned
(these will be called “finished ports”) and are given two choices: SELECT a port number as
next move, or use a local routine PARTITION(v) enjoying the following properties,

No two robots calling PARTITION(v) will ever be sent to the same port j ≥ 1.
If a robot calling PARTITION(v) at round t is sent to port j ≥ 0, it means that PARTITION(v)
has previously sent a robot to all ports j′ ≥ j at round t or before.

In this model, BFDN is implemented as follows. In a stack of d port numbers (each represented
by log2(∆) bits) the central planner assigns to Roboti an anchor vi at depth d that it will
reach by unstacking port numbers and applying routine SELECT. When the robot reaches
this node, the stack is empty and the robot will make consecutive calls to routine PARTITION
that will eventually lead it back to the root. We ask that Roboti stores the finished port
numbers of vi using its additional ∆ bits of memory. This information will be used by the
central planner to update its candidates for future anchors, i.e. the value of the set U , as
specified by Algorithm 2 below.

▶ Remark 5. The present model encompasses the classical write-read communication model
of [10] where robots with unbounded memory communicate by synchronously writing and
then synchronously reading information on whiteboards (of infinite size) located at each node
of the tree. In this model, the information gathered at the root allows each robot located
at the root to emulate the decision taken by the central planner regarding its next anchor
assignment. Furthermore, since robots can log their passages at any node (see [10]) the local
procedure PARTITION can easily be implemented, and the assumption that robots access the
list of adjacent port number from which no robot has returned is granted.

▶ Proposition 6. In this restricted communication model, the version of BFDN described
above achieves tree exploration in at most 2n

k + D2(min{log(k), log(∆)}+ 3) rounds.

Proof. We note that the algorithm described above is the same as Algorithm 1, with a minor
difference in the definition of U in procedure Reanchor line 26, which must now be computed
using only information gathered at the root (see Algorithm 2 for details). Informally, U now
denotes the set of all nodes at working depth d which could be adjacent to a dangling edge,
given information collected at the root.

The key observation is that a candidate anchor v can be withdrawn from U as soon
as a robot which had been anchored at v returns to the root. Consider again the urns-in-
balls assignment rule bc = arg minv∈U\{a1,...,ac} nc

v, where nc
v denotes the number of robots

anchored at v upon increment c, but where nodes in U remain eligible as anchors until some
robot has returned to the root from them. The proof of Theorem 3 entails that, for such
a modified assignment rule, a robot will have returned from all nodes of U after at most
k(min{log(k), log(∆)}+ 3) reassignments, after which the root knows that there can be no
more dangling edges at depth d.

Algorithm 2 below precises how the central planner uses information gathered by returning
robots to update its knowledge of eligible anchors at the working depth d. Denoting the
list of all possible anchors at depth d by A and the list of anchors at depth d from which
a robot has returned by R, the planner implements Reanchor with set U = A \ R. When
A \ R = ∅, a robot has returned from all anchors at depth d and d is incremented. The
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planner keeps track of U ′ = A′ \R′, which contains the children of A that may be adjacent
to a dangling edge, or equivalently the ports of A that are not known to be finished. This
update is performed using the memory of the returning robots. ◀

Algorithm 2 BFDN “Breadth-First Depth-Next” (central planner at the root).

Require: At most k robots arriving at the root at some round.
Ensure: Assigns a node v, represented by a sequence of port numbers, to each robot.

1: d = working depth ;
2: A = list of anchors at depth d ;
3: R = nodes of A from which a robot has returned ;
4: A′ = list of children of nodes in A ;
5: R′ = nodes of A′ from which a robot has returned ;
6: Read memory of returning robots and update R, A′, R′.
7: if A \R = ∅ then
8: if A′ \R′ = ∅ then
9: Exploration is finished and robots wait at the root.

10: else
11: d← d + 1
12: A← A′ \R′ ▷ contains at most k elements.
13: R, A′, R′ ← ∅
14: Reanchor the robots to nodes of minimum load in A \R, such that after this operation

the numbers of robots per anchor differ by at most one.

4.2 Adversarial robot break-downs
So far we assumed that all robots traverse exactly one edge per time-step. We relax this
assumption in the present section, assuming instead that some adversary decides at each
time-step and for each robot whether the robot actually moves, or instead incurs a break-
down, being stalled at its current location. Our aim remains to to explore the tree in as few
moves as possible. However we no longer require that the robots return to the root at the end
of exploration, because the adversary could decide to break-down some robot indefinitely.

Formally, at each round t ∈ N, robot i is allowed to make a move if some variable Mti = 1
whereas it is blocked at its current position if Mti = 0. For this adversarial model, we assume
that M = (Mti)t∈N,i∈[k] is an arbitrary sequence of binary values that takes only a finite
number of 1 (allowed moves). We denote the average distance travelled by the robots A(M)
which equals A(M) = 1

k

∑
t∈N

∑
i∈[k] Mti.

For this setting, we consider BFDN as specified in Algorithm 1, with the minor modification
that at each round t the only robots taking part in the assignment process are those which are
allowed to move. More precisely, we replace the for loop of Algorithm 1 (for i ∈ {1, . . . , k}
do) with an iteration over all robots that may move (for i ∈ {i : Mti = 1} do). This
modification is introduced to ensure that when multiple robots are at the same location,
blocked robots do not prevent unblocked robots from traversing dangling edges.

▶ Proposition 7. For any sequence of allowed moves M ∈ {0, 1}N×[k] satisfying A(M) ≥
2n
k + D2(log(k) + 3) all edges of the tree will be visited by the above variant of BFDN.

Proof. Again, the proof is very similar to that of Theorem 1 and all claims 1-5 all naturally
adapt to this setting. As an example, we adapt the third claim as follows.



R. Cosson, L. Massoulié, and L. Viennot 14:13

▶ Claim 3 (Restated). Consider a sequence of moves by some Roboti that starts at the root
with the assignment of an anchor v of depth δ(v) = d and that ends with the return of Roboti

to the root after Tx allowed moves of Roboti. In this sequence, Roboti has explored exactly
(Tx − 2d)/2 dangling edges.

The adversarial nature of the urns and balls game of Section 3 makes it applicable to the
present setup, and Lemma 2 straightforwardly holds except for the log(∆) guarantee. Indeed,
the adversary could choose to block all robots at a specific anchor until all k robots reach
that anchor, which happens after at most k(log(k) + 3) anchor assignments. ◀

▶ Remark 8. Other adversarial settings could be considered, for instance with an adversary
that observes the moves that the robots have selected before choosing which robots to
block. Another extension of interest would consist in relaxing the slotted time assumption to
consider instead continuous time evolution, which could capture more realistic scenarios.

4.3 Collaborative exploration of non-tree graphs
The algorithm BFDN described above can be executed on any graph if it undergoes a minor
modification: that any robot traversing on a dangling edge and arriving on a node explored
earlier by another robot should go back from where it came and “close” the corresponding
edge (this edge will never be used again). A similar technique was already proposed by [1]
to adapt the algorithm of [10] to graphs. Unfortunately, without further assumption, the
guarantees of BFDN do not generalize to graphs with n edges and radius D, where the radius
is defined as the maximum distance between a node and the origin of the robots.

We therefore make the additional assumption that at any given node, a robot knows its
distance to the origin in the underlying graph. Though restrictive, this assumption holds in
some contexts of interest. It is for instance satisfied for the exploration of grid graphs with
rectangular obstacles considered in [12] because the distance of any node with coordinates
(i, j) ∈ N2 to the origin is equal to the so-called Manhattan distance i + j.

In that context, consider the following variant of BFDN: a robot traversing a dangling edge
e will backtrack and “close” this edge if either of these two conditions is satisfied: (1) e led
to a node that is already explored (2) e led to a node that is not strictly further to the origin
than its first endpoint. In the case of (2), the node that is reached by the edge over which
the respective robot backtracks is not considered as explored.

▶ Proposition 9. Given a graph G = (V, E) with n edges, diameter D and maximum degree
∆, assuming that the k robots are aware at all times of their distance to the origin and
implement the above variant of BFDN, collaborative graph exploration is completed in at most
2n
k + D2(min{log(∆), log(k)}+ 3) rounds.

Proof. It is clear that at the end of the execution of this algorithm, the edges which have
never been closed form breadth-first tree of the graph with depth D. This tree is explored
efficiently by BFDN while other edges are traversed at most twice by a single robot (or once
by two robots, each coming from both endpoints, that will swap their identities). This leads
to a total runtime of at most 2n

k + D2(min{log(∆), log(k)}+ 3). ◀

5 Recursive Algorithms for Improved Dependence on Depth D

In this section we develop a general recursive construction of so-called anchor-based algorithms
which, applied to BFDN, yields the following result. It can be seen as a generalization of
Theorem 1 as, for ℓ = 1, it provides the same upper-bound up to a factor 4.

DISC 2023



14:14 Breadth-First Depth-Next

▶ Theorem 10. For any integer ℓ ≥ 1, BFDNℓ, an associated recursive version of BFDN,
explores a tree with n nodes, depth D, maximum degree ∆ with k robots in 4n

k1/ℓ + 2ℓ+1(ℓ +
1 + min {log(∆), log(k)/ℓ}) D1+1/ℓ rounds.

To describe our recursive construction we need the following definitions. Given a node v

in a tree T , PT [v] denotes the path from v to the root of T , and PT (v) = PT [v] \ {v}. Given
two nodes u, v in a tree T , LCAT (u, v) denotes their lowest common ancestor in T . We say
that a explored node is open as long as it has at least one dangling adjacent edge. We say
that it is closed as soon as a robot has traversed its last dangling edge. Note that open nodes
are the parents of dangling edges. We decompose the exploration of an edge into two edge
events as follows. An edge event occurs when a robot traverses an edge from parent to child
for the first time, or when a robot traverses an edge from child to parent for the first time.
There are thus at most 2(n− 1) edge events in any exploration. Edges for which only one
event has occurred are said to be half explored.

Anchor-based algorithm. Given k robots, an activity parameter k∗ ∈ [k], and a depth d,
an anchor-based algorithm A(k∗, k, d) is by definition an exploration algorithm by k robots
meeting the following requirements. Each robot is in one of the two states active or inactive.
Each active robot i is assigned to a node vi of the tree called its anchor. The algorithm must
explore the tree so as to bring anchors at depth d while maintaining a list of invariants. The
full list of so-called “Anchor-based invariants” is given in Appendix B. It mainly includes
a variant of Claim 4 called Open Node Coverage which specifies that all open nodes must
always be in ∪i∈AT (vi) where A is the set of active robots. Other invariants mainly specify
properties of the positions of the robots with respect to the partially explored tree and ensure
that we can start an execution of an anchor-based algorithm after having interrupted the
execution of another anchor-based algorithm.

Initially, the algorithm starts from any partially explored tree, with all robots active and
anchored at the root. Robots must be in so-called Parallel DFS Positions, a requirement
ensuring that all invariants are initially satisfied (see Appendix B). Active robots are allowed
to move and explore the tree while inactive robots must be at depth at most d and wait.
We distinguish two phases in the execution of the algorithm. As long as some anchor is
at depth less than d or is not closed, we say that the algorithm runs shallow. During this
first “shallow” phase, the algorithm must have at least k∗ active robots at all rounds. When
all anchors are at depth d and are all closed, we say that the algorithm runs deep. In this
second “deep” phase, it is required that all active robots trigger an edge event at each round.
However, the number of active robots may get below k∗ during that phase. At any round,
the algorithm may turn a robot into inactive or active as long as the requirements for the two
phases are met. Finally, the algorithm can terminate when all robots are inactive. The Open
Node Coverage invariant implies that the tree is then completely explored (see Appendix B).

Divide depth functor. We now define the divide depth functor D, a map that takes an
anchor-based algorithm and transforms it into another anchor-based algorithm as follows.
Given an anchor-based algorithm A(k∗, k′, d′), a number nteam of teams and a number
niter of iterations, we construct the exploration algorithm D[A(k∗, k′, d′); nteam; niter] for
terminating the exploration of a partially explored tree. It uses k = nteamk′ robots for
exploring the tree up to depth d = niterd′ in niter iterations where each iteration makes
anchors progress d′ deeper. More precisely, the i-th iteration runs parallel instances of
A(k∗, k′, d′) in at most nteam sub-trees rooted at nodes with depth (i− 1)d′. We assume that
the previous iteration has terminated with a set R of at most k∗ ≤ nteam anchors at depth
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(i− 1)d′. Relying on the Open Node Coverage invariant, we then restrict the exploration to
the sub-trees rooted in R. Robots are thus partitioned into nteam teams of k′ robots each.
Each node r ∈ R is taken in charge by a distinct team which runs an instance Ar(k∗, k′, d′)
of A(k∗, k′, d′) on T (r). When |R| < nteam, all robots in unassigned teams are inactive and
wait at their position until the end of the current iteration. All other teams explore in parallel
their sub-trees. We interrupt all running instances simultaneously when the overall number
of active robots gets below k∗ so that we can use their anchors as roots in the next iteration.
As any single instance has activity parameter k∗ this cannot happen until all anchors are at
depth d′ in each sub-tree, that is depth i · d′ in T . After niter iterations, this guarantees that
all nodes up to depth d have been closed and that exploration finally continues in at most
k∗ sub-trees rooted at depth d. See Appendix C for a formal description of the resulting
anchor-based algorithm B(k∗, k, d) = D[A(k∗, k′, d′); nteam; niter].

We say that an anchor-based algorithm A(k∗, k, d) has f -shallow efficiency for parameter
f if it triggers at least k∗(T− f) edge events when running shallow during T rounds where
parameter f may depend on k and d. We then have the following

▶ Proposition 11. Given an anchor-based algorithm A(k∗, k′, d′), integers nteam ≥ k∗

and niter ≥ 1, D[A(k∗, k′, d′); nteam; niter] is correct and it is an anchor-based exploration
algorithm B(k∗, k, d) for k = nteamk′ robots with depth d = niterd′. If moreover A(k∗, k′, d′)
has f ′-shallow efficiency, then D[A(k∗, k′, d′); nteam; niter] has f-shallow efficiency with
f = niterf ′ + n2

iterd′ = niter(f ′ + d).

Its proof is deferred to Appendix C. The reason for f -shallow efficiency is the following.
Consider the i-th iteration of DA,k′,d′(k∗, k, d). Moving robots towards their associated root
takes 2(i − 1)d′ rounds. Now, count the number T1 of rounds where at least one of the
instances has not run deep. As such an instance has run shallow during T1 rounds, it has
triggered at least k∗(T1 − f ′) edge events by f ′-shallow efficiency of A(k∗, k, d). During
the remaining T2 rounds of the iteration, all instances run deep. As this continues as long
as k∗ robots or more are active, at least k∗ edge events are triggered per round, that is
k∗T2 or more in total. Letting Ti = 2(i − 1)d′ + T1 + T2 denote the number of rounds
spent in the ith iteration, the number of edge events triggered during that iteration is thus
at least k∗(Ti − f ′ − 2(i − 1)d′). The algorithm runs shallow during the niter iterations
which last overall T =

∑niter

i=1 Ti. By summation, we get that it then triggers at least
k∗(T− niterf ′ − n2

iterd′) edge events as
∑niter

i=1 (i− 1) < n2
iter/2.

BFDN. Our first candidate for applying the divide depth functor is the following variant of
Algorithm 1, denoted, BFDN1(k, k, d), where the procedure Reanchor is modified for assigning
anchors at depth at most d. Precisely, we replace Line 26 with:

U = {v ∈ V s.t. v is adjacent to some unexplored edge and δ(v) is minimal and δ(v) ≤ d}.

Note that this modification implies that when there are no more dangling edges at depth at
most d, robots start to be anchored to the root and are then considered as inactive. Note
that according to Claim 5 for depth d + 1, there still remains exactly one robot in each
sub-tree rooted at depth d + 1 which is not entirely explored. These robots remain active
until they have completely explored their sub-tree. BFDN1(k, k, d) thus terminates only when
the tree has been fully explored. We also slightly modify the anchoring of robots: when a
robot i is anchored at vi it might happen that there are no more dangling edges at depth
δ(vi) or less thanks to the exploration of other robots. If this happens when vi ∈ P (ui) and
δ(vi) < d, we re-anchor robot i at the children of vi in P [ui]. This modification does not
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change the movements of robot i as it is then in a sequence of depth-next moves and will go
up when reaching vi anyway. However, this modification will ensure the preservation of the
Partial Exploration invariant defined in Appendix B. It also implies that when there are no
more dangling edges at depth at most d, all anchors are then at depth d.

One can then easily check that BFDN1(k, k, d) is an anchor-based algorithm. For example,
the Open Node Coverage invariant is shown as Claim 4; see Appendix B for more details. We
also note that BFDN1(k, k, d) has c1(k)d2-shallow efficiency where c1(k) = min{log ∆, log k}+2.
Indeed, BFDN1(k, k, d) runs exactly as Algorithm 1 as long as there are dangling edges at depth
at most d, that is as long as the algorithm is running shallow. If this phase lasts T rounds,
it triggers at least k(T − c1(k)d2) edge events. The proof is similar to that of Theorem 1
using Lemma 2 with the slight subtlety that we count edge events. The reason is that when
starting from a partially explored tree where robots are in Parallel DFS Positions, the moves
when robots go up still trigger edge events although no new edge may be discovered.

The BFDNℓ(k∗, k, d) anchor-based algorithm. We construct recursively a series of
algorithms BFDNℓ(k1/ℓ, k, d) for ℓ ≥ 1 as follows. Assuming that k and d are
both ℓ-th powers of integers, we define for ℓ ≥ 2 the algorithm BFDNℓ(k∗, k, d) :=
D[BFDNℓ−1(k∗, k/nteam, d/niter); nteam; niter] with k∗ = nteam = k1/ℓ and niter = d1/ℓ. We
let k′ = k/nteam = k(ℓ−1)/ℓ and d′ = d/niter = d(ℓ−1)/ℓ denote the parameters used for
BFDNℓ−1. Note that k′ and d′ are both (ℓ−1)-th powers of integers and recursive calls all have
integer-valued parameters. The activity parameter of instances BFDNℓ−1(k∗, k′, d′) indeed
satisfies (k′)1/(ℓ−1) = k1/ℓ = k∗. As we use nteam = k∗, we indeed respect the constraint
k∗ ≤ nteam. We can bound its shallow efficiency according to the following statement:

▶ Lemma 12. Given an integer ℓ ≥ 2, two integers k and d that are both ℓth powers of
integers, BFDNℓ(k1/ℓ, k, d) is cℓ(k)d1+1/ℓ-shallow efficient with cℓ(k) = c1(k1/ℓ) + ℓ− 1.

Proof. As BFDN1(k1/ℓ, k1/ℓ, d1/ℓ) is c1(k1/ℓ)d2/ℓ-shallow efficient, by induction (Proposi-
tion 11) BFDNj(k1/ℓ, kj/ℓ, dj/ℓ) is (c1(k1/ℓ)+j−1)d(j+1)/ℓ-shallow efficient for j = 2, . . . , ℓ. ◀

▶ Definition 13 (of BFDNℓ). If k is the ℓ-th power of an integer, consider the sequence of depths
dj = 2jℓ for j = 1, 2, . . . Algorithm BFDNℓ consists in running BFDNℓ(k1/ℓ, k, d1), interrupting
it right after its last iteration (without running deep further), then running BFDNℓ(k1/ℓ, k, d2)
with the current robot positions and anchor assignments until its last iteration finishes, and
so on. When running BFDNℓ(k1/ℓ, k, dj) with j = ⌈ log2 D

ℓ ⌉, all anchors reach depth D and the
algorithm terminates. If k is not an integer to the power ℓ, we use K = ⌊k1/ℓ⌋ℓ ≤ k.

Poof of Theorem 10. Assume first that k is the ℓ-th power of some integer. In a
run of BFDNℓ, denote by Tj the number of rounds that the call to BFDNℓ(k1/ℓ, k, dj)
lasts. This call triggers at least k1/ℓ(Tj − cℓ(k)d1+1/ℓ

j ) edge events by applying
Lemma 12. We can thus bound the overall running time T =

∑⌈(log2 D)/ℓ⌉
j=1 Tj

by summing over all calls: 2n ≥ k1/ℓ
(

T− cℓ(k)
∑⌈(log2 D)/ℓ⌉

j=1 d
1+1/ℓ
j

)
. As we have∑⌈(log2 D)/ℓ⌉

j=1 d
1+1/ℓ
j =

∑⌈(log2 D)/ℓ⌉
j=1 2(ℓ+1)j ≤ 2(ℓ+1)((log2 D)/ℓ+2)−1

2ℓ+1−1 ≤ 2ℓ+1D1+1/ℓ, we obtain
T ≤ 2n

k1/ℓ + 2ℓ+1cℓ(k)D1+1/ℓ. For arbitrary k, with K = ⌊k1/ℓ⌋ℓ, using K1/ℓ ≥ k1/ℓ/2, we
obtain a time bound of T ≤ 4n

k1/ℓ + 2ℓ+1(ℓ− 1 + c1(k1/ℓ))D1+1/ℓ, yielding the runtime bound
announced in Theorem 10 since c1(k1/ℓ) = 2 + min {log(∆), log(k)/ℓ}. ◀
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A Comparisons between Algorithms CTE, Yo* and BFDN

We provided in Figure 1 a picture of how BFDN compares in terms of runtime with other
state-of-the art algorithms for collaborative tree exploration. The regions are defined up to
multiplicative constants that only depend on k. We included in the figure only algorithms
requiring no assumptions on the tree structure. Four algorithms thus appear in the figure:
the original “collaborative tree exploration” CTE algorithm of [10] with runtime O( n

log(k) +D),

the recursive algorithm Yo* of [13] with runtime O(2O(
√

log D log log k) log k(log n+log k)(n/k+
D)), which we reduced to smaller quantities to simplify the picture, BFDN with runtime
2n/k + D2 log(k) as well as its recursive variant BFDNℓ.

Figure 1 highlights that BFDN is the only algorithm to outperform CTE of [10] in an
unbounded range of parameters (n, D). Indeed, the other competitor, Yo*, is outperformed
by CTE when n ≥ ek or when D ≥ elog(k)2 . Yet, CTE remains the most efficient algorithm for
trees with small depth. We detail below the calculations that led to Figure 1.

Comparison between BFDN and CTE. Since the runtime of any collaborative tree algorithm
exceeds n/k and D, it is sufficient to compare the suboptimal terms of both algorithms which
are D2 log(k) and n/ log(k) for BFDN and CTE respectively. It therefore turns out that BFDN
is faster than CTE in the range D2 log(k)2 ≤ n.

Comparison between CTE and Yo*. First, we simplified the runtime of Yo* to O(log(n)n/k+
D), which gives that it can outperform the O(n/ log(k) + D) of [10] only in the range
n ≤ ek/ log(k) which we extend to n ≤ ek in the picture. After, we simplified the runtime
of Yo* to O(e

√
log(D)n/k + D) to obtain the range D ≤ elog(k)2 . Finally, we simplified

the runtime of Yo* to D log(n) log(k) to get that CTE outperforms Yo* for trees satisfying
D ≥ n

log(n) log(k)2.

Comparison between BFDN and Yo*. We used the comparisons above for ek ≤ n or elog(k)2 ≤
D, and completed by the following simplification of the runtime of Yo* to O(log(k)n/k + D).
BFDN is thus faster than Yo* when log(k)D2 ≤ log(k)n/k, that is when kD2 ≤ n/k.

Comparison between BFDNℓ and CTE. We note that BFDNℓ may outperform CTE only if
k1/ℓ > log(k), or equivalently if ℓ < log(k)

log(log(k)) , which we assumed in the caption of the
Figure. Under this condition, BFDNℓ outperforms CTE if 2ℓ log(k)D1+1/ℓ < n

log(k) . Since we
have 2ℓ < k, this condition is met if D < 1

k log(k)2 nℓ/(ℓ+1).

Comparison between BFDNℓ and BFDN. If n/k > D2, if is clear that BFDN outperforms
BFDNℓ. On the other hand, if n/k1/ℓ < D2, BFDNℓ outperforms BFDN.

B Formal description of Anchor-based Invariants

During the execution of an anchor-based algorithm, it is required that the partially explored
tree, the set A ⊆ [k] of active robots, the anchor assignment (vi)i∈A, and the positions
(ui)i∈[k] of the robots always satisfy the following invariants:

all open nodes of the currently explored tree are in ∪i∈[k]PT [ui], (DFS Open Coverage)
for any two robots i ̸= j, all nodes in PT (LCAT (ui, uj)) are closed, (Parallel Positions)
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for all active robot i such that vi ∈ PT [ui], all edges in the path from vi to ui are half
explored, (Partial Exploration)

for all active robot i ∈ A, δ(vi) ≤ d, (Limited Anchor Depth)

all inactive robots are located at depth at most d, (Inactive Depth)

all open nodes of the currently explored tree are in ∪i∈AT (vi), (Open Node Coverage)

if ∃i ∈ A such that either δ(vi) < d or vi is open, then at least k∗ robots are active,
(Shallow Activity)

if all anchors {vi : i ∈ A} are at depth d and are close, each active robot triggers an edge
event at each round. (Deep Activity)

Initially, robots are said to be in Parallel DFS Positions when DFS Open Coverage,
Parallel Positions and Partial Exploration are all three satisfied when assuming that all
robots are active and anchored at the root. One can easily check that other invariants are
then also satisfied.

Properties of an anchor-based algorithm. The Open Node Coverage invariant implies that
all nodes at depth less than d′ are closed where d′ = mini∈A δ(vi) is the minimum depth of
an anchor. The Shallow Activity invariant implies that the number of active robots may
decrease below k∗ only when all anchors are at depth d and consequently when all nodes up
to depth d are closed. The Open Node Coverage invariant also implies that for any dangling
edge adjacent to a explored node w, there exists at least one active robot i such that w is in
T (vi). This implies that if all anchors are at depth d and if i is the last robot with anchor vi,
it cannot become inactive unless T (vi) has been completely explored. This indeed implies
that the algorithm cannot terminate unless the full tree has been completely explored: as
long as there remains an open node w, some robot i must be active with an ancestor of w

as anchor. Recall that we require that the algorithm cannot terminate unless all robots are
inactive.

BFDN. BFDN1(k, k, d) is an anchor-based algorithm. Indeed, the Open Node Coverage
invariant is shown as Claim 4; the DFS Open Coverage and Partial Exploration invariants
come from the similarity of DN moves with a DFS traversal, while the Parallel Positions
invariant comes from the selection of distinct dangling edges when several robots are located
at the same node. The Limited Anchor Depth and Inactive Depth invariants are satisfied by
the modification of anchor selection. The Shallow Activity invariant comes from the fact
that all robots are active as long as there remain some dangling edge at depth at most d.
Finally, the Deep Efficiency invariant comes from Claim 5 as when the algorithm runs deep,
each sub-tree at depth d + 1 which is not completely explored contains exactly one robot
performing a DFS-like traversal of the sub-tree.

We also note that we can start BFDN1(k, k, d) from any partially explored tree where
robots are in Parallel DFS Positions as long as each robot i, which is in a position ui with
open ancestors, gets anchored to a node vi of P [ui] such that all nodes of P (vi) are closed.
Such a situation occurs in BFDN when a robot is performing DN moves. It is thus possible to
start a robot in any such situation so that it will then behave similarly as in BFDN. The other
robots see only closed nodes and thus get to the root according to Algorithm 1 where they
get re-anchored.

DISC 2023
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C Divide-depth Algorithm

Algorithm 3 Divide depth algorithm D[A(k∗, k′, d′); nteam; niter].

Require: An anchor-based exploration algorithm A(k∗, k′, d′), integers nteam ≥ k∗ and
niter ≥ 1, a partially explored tree T with k = nteamk′ robots in Parallel DFS Positions
and such that at most k∗ robots are at depth greater than 0.

Ensure: All nodes are explored and closed.
1: R← {root(T )} ▷ Set of sub-tree roots in next iteration.
2: A← {i ∈ [k] : ui ̸= root(T )} ▷ Set of robots having already progressed in T .
3: All robots are active and have root(T ) as anchor.
4: for i = 1, . . . , d/d′ do
5: ▷ Iteration i:
6: For all r ∈ R, let kr = |{i ∈ A : vi = r}| be the number of robots having progressed

in T (r).
7: Partition robots into |R| teams (Br)r∈R of k′ robots each, one per node r ∈ R:
8: each robot i ∈ A is assigned to vi,
9: for all r ∈ R, k′ − kr robots in [k] \A are assigned to r. ▷ We rely on kr ≤ k′ and
|R| ≤ nteam.

10: All robots in team Br are assigned to anchor r: we set vi ← r for all i ∈ Br \A.
11: All robots in ∪r∈RBr \A are turned to active, and move to their anchor in 2(i− 1)d′

rounds. ▷ Moves for rebalancing robots.
12: All robots in [k] \ ∪r∈RBr are turned to inactive and wait at their current position.
13: Each team associated to r ∈ R initializes independently an instance Ar(k∗, k′, d′) for

exploring T (r).
14: At any round, we let Ar denote the set of active robots among the team exploring

T (r).
15: while |∪r∈RAr| ≥ k∗ do
16: Run in parallel one round of all instances Ar(k∗, k′, d′) for r ∈ R.
17: end while
18: A← |∪r∈RAr| ▷ Overall set of active robots.
19: R← {vi : i ∈ A} ▷ Roots of sub-trees not fully explored yet.
20: Continue running instances Ar(k∗, k′, d′) of the last iteration for all r ∈ R. ▷ Running

deep.

Proof of Proposition 11. We first check that all invariants are preserved by induction on the
iteration number i. The main argument is that all anchors are at depth i · d′ after Iteration i.
We require that the DFS Open Coverage, Parallel DFS Positions and Partial Exploration
invariants are satisfied by the initial positions of robots. All remaining invariants are also
satisfied as the only initial anchor is at depth zero. Assume that all invariants are satisfied
up to the beginning of Iteration i, and that nodes in R are at depth (i− 1)d′.

The Inactive Depth invariant ensures that inactive robots at the end of the previous
iteration are at depth (i− 1)d′ or less, and moving them according to Line 11 can indeed be
done within 2(i− 1)d′ rounds. Moreover, the Open Node Coverage invariant ensures that
all nodes at depth less than (i − 1)d′ are closed, and these movements preserve the DFS
Open Coverage and Parallel Positions invariants. The Partial Exploration invariant is also
preserved since these robots are not located in the sub-tree of their anchor. These (i− 1)d′
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rounds also preserve Anchor Depth and Open Node Coverage invariants as the anchors R

of nodes active in the last round of the previous iteration remain their anchor, while other
nodes are assigned to one of the anchors in R.

The fact that robots are initially in Parallel DFS Positions in each instance Ar(k∗, k′, d′)
for r ∈ R comes from the preservation of the DFS Open Coverage, Parallel Positions,
and Partial Exploration invariants at the end of the previous round as the root r was the
anchor of robots that are not located at r. Now, as all instances Ar(k∗, k′, d′) for r ∈ R

run in disjoint sub-trees, the DFS Open Coverage, Parallel Positions, Partial Exploration,
Anchor Depth and Open Node Coverage invariants are also preserved during the rest of the
iteration since each Ar(k∗, k′, d′) is anchor-based. Similarly, the Inactive Depth invariant
is satisfied as its variant in instances Ar(k∗, k′, d′) imply that inactive nodes are at depth
(i − 1)d′ + d′ = i · d′ ≤ d at most. The Shallow Activity invariant is preserved as long as
at least one instance Ar(k∗, k′, d′) is not running deep according to the Shallow Activity
invariant for that instance. This means that the number of overall active robots can drop
below k∗ only when all instances are running deep, implying that all anchors are then at
depth (i− 1)d′ + d′ = i · d′. Note that the Open Node Coverage invariant then implies that
all open nodes are in the sub-trees rooted at the anchors of the robots that were active in the
last round. The exploration can thus be reduced to these at most k∗ sub-trees as claimed in
the description of the divide depth functor.

Finally, the algorithm starts running deep only when all anchors are at depth d and are
all closed. This can happen only towards the end of the last iteration when all instances
are running deep. The reason is that if an instance is not running deep, it has at least k∗

active robots by the Shallow Activity invariant and the termination condition of the inner
while loop at Line 15 is not met. The Deep Activity invariant then follows from the fact
that instances are running in pairwise disjoint sub-trees and all satisfy the Deep Activity
invariant.

This completes the proof that D[A(k∗, k′, d′); nteam; niter] is correct and that it is an
anchor-based exploration algorithm.

The proof for f -shallow efficiency is given in Section 5. ◀
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