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Abstract— Learning robot navigation strategies among pedes-
trian is crucial for domain based applications. Combining
perception, planning and prediction allows us to model the
interactions between robots and pedestrians, resulting in im-
pressive outcomes especially with recent approaches based on
deep reinforcement learning (RL). However, these works do
not consider multi-robot scenarios. In this paper, we present
MultiSoc, a new method for learning multi-agent socially
aware navigation strategies using RL. Inspired by recent works
on multi-agent deep RL, our method leverages graph-based
representation of agent interactions, combining the positions
and fields of view of entities (pedestrians and agents). Each
agent uses a model based on two Graph Neural Network
combined with attention mechanisms. First an edge-selector
produces a sparse graph, then a crowd coordinator applies node
attention to produce a graph representing the influence of each
entity on the others. This is incorporated into a model-free
RL framework to learn multi-agent policies. We evaluate our
approach on simulation and provide a series of experiments in
a set of various conditions (number of agents / pedestrians).
Empirical results show that our method learns faster than
social navigation deep RL mono-agent techniques, and enables
efficient multi-agent implicit coordination in challenging crowd
navigation with multiple heterogeneous humans. Furthermore,
by incorporating customizable meta-parameters, we can adjust
the neighborhood density to take into account in our navigation
strategy.

I. INTRODUCTION

Robot navigation in crowded spaces has attracted signifi-
cant attention in recent years given its numerous potential
applications, but it still faces many challenges [1]. Espe-
cially understanding pedestrian behavior is crucial to develop
effective robot navigation strategies that prioritize human
safety. But predicting crowd behavior is difficult and most of
approaches intend to learn it from experiment or simulation
[2], [3], [4]. Robot social navigation becomes even more
challenging when the crowd is dense or the environment
complex (obstacles, occlusions, reduced field of view, ...).
Another difficulty appears when multiple robots navigate in
the same crowd. Then a distinction must be made between a
robot or human from the navigation point of view, as robots
can coordinate themselves.

Recent approaches [5], [6] use deep reinforcement learn-
ing (RL) to build social navigation strategies with the help

1Erwan Escudie is with Univ Lyon, LIRIS, UMR5205, CITI Lab.,
INRIA-INSA Chroma team, Villeurbanne, France

2Laetitia Matignon is with Univ Lyon, UCBL,
CNRS, INSA Lyon, LIRIS, UMR5205, F-69622, France.
laetitia.matignon@univ-lyon1.fr

3Jacques Saraydaryan is with CPE Lyon, CITI
Lab., INRIA-INSA Chroma team, Villeurbanne, France.
jacques.saraydaryan@cpe.fr

Fig. 1. Overview of MultiSoc process: (Top) Scene with two agents (robots)
with 360° field of view (FoV). (Bottom) Each agent applies MultiSoc
on a graph of its environment (limited to its FoV) with each entities
(human/robot) as a node.

of a simulated crowd. Lately the works of [7] use deep RL
combined with attention [8] and graph-based representations
[9] of interactions between robot and humans. This achieved
very good performance in dense crowds for a single robot.
However, as specified by the authors, this model remains
difficult to train as it exhibits unstable learning. Furthermore,
its architecture explicitly separates the robot from humans
and, as such, cannot easily be extended in its current form
to accommodate multi-robot learning.

In this work, we propose a model for the learning of multi-
robot navigation strategies within crowded environments (cf.
Fig.1 (Top)). Main challenges compared to the state of the art
are learning coordinated and human-safe navigation strate-
gies for the fleet of robots and managing interactions with
both controlled entities (robots) and uncontrolled entities
(humans). In our contribution, we highlight the similarity
between two approaches that utilize Graph Neural Networks
(GNN) [9] to represent, on one hand, human interactions
in single-robot social navigation [7], and on the other hand,
interactions between agents in multi-robot navigation [10].
Thus GNNs offer a bridge between these two fields which we
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leverage in our proposed model, named MultiSoc. MultiSoc
uses two GNNs combined with attention mechanisms. First
an edge-selector produces a sparse graph of the most interest-
ing interactions between entities; then a crowd coordinator
applies node attention to produce a graph representing the
influence of each entity on the others. MultiSoc follows Cen-
tralized Training Decentralized Execution (CTDE) paradigm.
During the learning process with a multi-agent RL algorithm,
the model is shared between robots, taking benefit of each
robot experience. But at the execution, each robot processes
its input through its MultiSoc model and gets as result its
action (commands in velocity) (cf. Fig. 1 (Bottom)). The
input is a directed graph with information (current and
predicted future poses) concerning the entities (robots and
humans) in the field of view (FoV) of the robot.

We present empirical results obtained with a multi-agent
social navigation simulator that we implemented building
upon an existing single-agent one [7]. Our MultiSoc model
overcomes the main baseline in deep RL social navigation
especially when several robots are involved. Results also
demonstrate (i) a better generalization of our model even
in more balanced crowd (as many robots as humans) or with
heterogeneous human policies; (ii) scalability capacities with
different proportions of humans and robots between training
and testing; (iii) the usefulness of the density factor we
introduced to adapt to the neighborhood density.

The main contributions of this paper are as follows. (i) We
propose the first (as far as we know) graph-based interactions
model for multi-robot social navigation (ii) We introduce a
customizable meta-parameter to adjust the neighborhood
density to take into account in each robot navigation strategy
(iii) The experiments demonstrate that our model enables
efficient multi-agent implicit coordination in challenging
crowd navigation and is able to deal with heterogeneous
human policies.

II. RELATED WORKS

A. Social robot navigation

Social robot navigation has inspired a significant amount
of research [1]. Early methods [11], [12], [13] consider
humans as dynamic but non-responsive obstacles resulting
in shortsighted and unnatural robot behaviors. Others plan
robot motion conditioned on the predicted future trajectories
of humans but suffer from the ”freezing robot problem” [14].

One solution is to couple planning and prediction but these
suffer from computational intractability [1].

A set of recent approaches address these coupled models
with deep RL. Efficient robot policies can be trained with
interaction awareness encoded in the reward function. The
complexity of the coupled models is then transferred in the
training. These approaches differ in their way of modeling
crowd interactions. Previous ones ignore human-human (H-
H) interactions and consider a limited number of robot-
human (R-H) interactions [15], [16]. Thus their performance
degrades in dense and highly interactive crowds. Most of the
following works use graph-based models to extract efficient
representations of the crowd, and attention mechanisms [17]

to infer the relative importance of each interaction. In the
graph representation, the nodes represent robot or humans
and the edges relations between them. DS-RNN [6] uses a
spatio-temporal graph to capture spatial R-H interactions and
temporal interactions in the robot’s own trajectory. Spatial
and temporal interactions are represented with Recurrent
Neural Networks (RNN) and attention weights are assigned
to spatial edges to infer the most pertinent human neighbors.
However, the number of humans is fixed for each learnt
model and H-H interactions are not considered. Besides, it
suffers dramatic loss when the robot encounters too many
kind of obstacles.

Others employed GNNs to learn interactions between the
entities. RGL [18] combines Graph Convolutional Networks
(GCN) with relational graph learning but does not distinguish
between H-H and R-H interactions. G-GCNRL [5] learns
human-like attention weights with a GCN trained with hu-
man gaze data.

These weights are incorporated into the adjacency matrix
of a second GCN containing the policy network of the
RL architecture. Lately, Attention-Based Interaction Graph
(AttnGraph) [7] emphasizes crowd analysis by prioritizing
H-H interactions. Attention mechanisms based on Graph
Attention Network (GAT) are applied, first between humans
to balance each human trajectory with the others; secondly
to include the robot in the analysis. It is interesting to note
that this method uses human trajectory predictors, some of
which are also based on GNNs [19], [3].

Although the impressive results of AttnGraph compared to
other deep RL models in social robot navigation, it is worth
mentioning, according to the authors, that it remains difficult
to train. Moreover, no approaches consider multi-robot
navigation with deep multi-agent RL to our knowledge. On
its part, AttnGraph architecture explicitly separates the robot
from humans and cannot easily be extended to accommodate
multi-robot learning.

B. Multi-agent deep reinforcement learning

Significant developments have been made in the field of
multi-agent deep RL, analysed in recent surveys [20], [21].
In our context of multi-robot navigation in a crowd, we will
focus solely on cooperative approaches. Some solutions are
based on value decomposition in CTDE paradigm, as in [22]
where global Q-value is decomposed based on individual Q-
values. QMIX [23] adds a constraint of monotonicity on the
type of function used to merge the Q-values. Concerning
policy-gradient algorithms, [24] suggest that Multi-Agent
PPO (MAPPO) (cf. §III-C.1) can also be a competitive
baseline for cooperative multi-agent RL tasks. A parallel
line of work is based on coordination graphs. In [25],
a purely abstract graph represents each agent as a node,
but the relations of each pairs are handled by MultiLayers
Perceptrons (MLPs), which is restrictive. Instead, GNNs have
been used in multi-agent RL to enhance the cooperation
among agents, leveraging the graph whose nodes represent
agents’ information. In [26] a GCN allows to expand the
number of neighbors included in the calculation. DICG [27]



is very similar, except that the structure of the graph is
dynamically calculated with attention mechanisms. MAGE-
X [10] (detailed in §III-A.3) uses GCN paired with Gumbel
Softmax [28], [29] instead of attention to produce a dynamic
discrete graph, more realistic for communication than atten-
tion.

III. CONTRIBUTION

We first briefly recall relevant background on specific
neural networks used in our model and on two related works
at the foundations of our contribution. Then our MultiSoc
model is presented in detail as well as the applied RL
approach. In the following, agents refer to the robots and
entity refers to robot or humans.

A. Preliminary

1) Graph Neural Network: Graph neural network (GNN)
[9] is a neural network designed specifically to process and
analyze data structured as a graph. Different architectures
have emerged, of which the most well-known are GCN
[30] as convolutional methods and GAT [31] as spatial
methods. Both can be formalized similarly by aggregating
information between neighboring nodes. The only difference
is the calculation of the coefficients used in the aggregation
process. Coefficients are static and directly dependent of the
structure of the graph in GCN, while they are calculated
dynamically with attention mechanism between neighboring
nodes in GAT. This allows more flexibility but at the cost of
greater calculation.

2) Gumbel Softmax Transformer: Gumbel Softmax Trans-
former (GST) [3] is a neural network used for pedestrian
motion prediction. Composed of 3 consecutive parts, only the
first one, the Edge Gumbel Selector, will draw our attention.
It computes a dynamical, complete and directed graph of
the interactions between pedestrians, with their positions as
nodes. A multi-head attention (MHA) produces attention
between each possible edges and offers the possibility to
connect each nodes with at most Nhead other nodes, where
Nhead is the number of heads of MHA. The gumbel softmax
trick allows to perform discrete clustering compatible with
gradient descent. By choosing a low number of heads, we can
then produce a sparse graph and vice versa. Tests on different
types of crowds show significant differences depending on
the number of heads and the density of the crowd.

3) MAGE-X/AttnGraph: We now detail two GNN-based
models to better highlight their commonalities and differ-
ences, summarized in Fig. 2.

AttnGraph [7] focuses on mono-robot social navigation.
It first uses a trajectory predictor (e.g. constant speed tra-
jectory or more sophisticated ones as GST [3]) to dissipate
uncertainty in the process. Then a complete graph is con-
structed, focusing only on the humans and ignoring the robot:
each node is composed of the consecutive future positions of
each human and each edge represents the visibility between
humans. This graph is submitted to an attention module (first
GAT). This produces a new graph, with structure defined by
attention and features influenced by each neighbors (middle

Fig. 2. Oversimplified architectures of AttnGraph [7] and MAGE-X [10].
Agents (robots) are in red and agent of interest is surrounded by dotted
line. (left) AttnGraph : At the end of each bloc is represented the graph
actually computed and attention (edges width). (right) MAGE-X : At the
end of each bloc is represented the graph actually computed.

graph in Fig. 2 (Left)). Then, the robot is integrated in the
graph submitted to an other GAT, presented in 2 blocks
in Fig.2 (Attn + Aggreg) to highlight the parallelism with
MAGE-X.

Thus, the first GAT focuses on the analysis of the
interactions between humans. The second GAT focuses on
the robot and its links to the crowd (second graph with star
structure centered on the robot in Fig. 2 (left)). Finally, the
node of the robot is extracted and passes through a RNN,
producing the action.

MAGE-X [10] focuses on multi-agent navigation prob-
lems. First agents goals are chosen in a centralized way
before the navigation. This initial centralized assignment
reduces the difficulty of predicting other trajectories, as their
behaviors are influenced right the beginning. Moreover, it
allows to transform the multi-agent navigation problem to
multiple single-agent navigation tasks, in which each agent
is required to reach the designated goal while avoiding
collisions with others. A comparison can here be made with
AttnGraph, in which the only agent (robot) must navigate to
its goal while avoiding collisions with others (humans).

During navigation, MAGE-X is decentralized. A complete
graph with each agent positions as nodes is submitted to
a first GCN (cf. Fig. 2 (Right)). Combined with a gumbel
softmax, a discrete clustering on the edges is realized to
produce a sparser graph keeping only the most important
neighbors of the agent of interest.

We can note here that the edge selection operation is
similar (but not identical) to the one performed by the Edge
Gumbel Selector of GST. Then, a second GCN analyses
the sparser graph and the node of interest is extracted,
concatenated with the intrinsic parameters of the agent, to
obtain robot action through a RNN.

Thus, as highlighted by Fig.2, the philosophy of these
algorithms are close. Both used 2 GNNs and retract more
and more the process on the agent/node of interest (encoded
by the architecture in AttnGraph and with GCN combined
with gumbel softmax for MAGE-X).



However, the nature of the entities made the differences
unavoidable. AttnGraph analyses humans and agent sequen-
tially, while MAGE-X can analyse every entities from the
beginning because they have the same nature.

B. Our model

We present here our main contribution, MultiSoc, that is
a model for learning multi-agent navigation among humans.
MultiSoc can be seen as an homotopy between AttnGraph
and MAGE-X. From the former, we keep the attention
mechanism and the graph with predicted future positions of
the entities. From the latter, we improve edge-selection and
take up the graph merging early all the entities.

Moreover, unlike AttnGraph where entities ignore each
other except for the only robot’s consideration of humans,
in multi-agent scenarios, interactions and visibilities among
controllable agents are crucial for their coordination. That’s
why in MultiSoc, visibility among entities is critical, and
the computation graph is based on this element. Indeed the
algorithm has to merge both controllable and uncontrollable
entities, all of them interacting with each other. MultiSoc
workflow for each agent j is the following (cf. Fig. 3):

- The Edge-Selector applies attention on nodes of a graph
composed of predicted positions of each entities in the
FoV of agent j. This produces a sparse directed graph
with adjustable density given Nhead.

- The Crowd Coordinator, a GAT with one layer of
attention, is applied on the sparse graph to compute
node features influenced by neighbors. Meanwhile, the
Intrinsic Coordinator produces a broader summary of
the constraint applied on the robot (constraint of goal).

- Once the external constraints (Crowd Coordinator) have
been correctly represented on the node representing the
agent j, this node is extracted and concatenated with
the constraint of goal (Intrinsic Coordinator).

- Then a GRU, followed by two MLPs, produces both
value and action, with respect to the previous hidden
state and the information previously computed.

From a technical perspective, the GNNs included in the
architecture allows: (i) A flexible computation taking into
account as many entities as wanted. It is worth noting that
humans and agents are included in the same graph (and not
in the architecture itself as does AttnGraph) (ii) A pseudo
centralization in the decision acts on each agent in the graph
(as node). By extension of the homogeneous paradigm,
all other agents with enough information on their own
observations, can be accurately understood by the concerned
agent. (iii) An extendable receptive field increases the
observation space from which the agent takes its action. As
in [26], each GNN layer extends the information perceived
and allows nodes to be connected indirectly to more nodes.

1) Input data:
a) Trajectory prediction: As in AttnGraph, the input

information for each entity is a prediction of the trajectory.
But instead of leaving the choice of the prediction method to

the user, we systematically use the ”constant speed” predic-
tion. Because humans are highly unpredictable on the long
term, a short-term prediction is enough. More importantly,
AttnGraph results [7] do not provide great superiority of
more complex prediction method for 5 timesteps trajectory.
The constant speed method approximates the current speed
of an entity by subtracting its current and previous positions.
From that, the trajectory at constant speed and for 5 time-
steps is calculated for each entity observed by the agent of
interest.

b) Input Graph: For the rest of the section, N will be
the total number of entities in the simulation (a mask being
applied on entities to represent the partial observation).
We obtain, from the trajectory predictor, the approximated
future trajectory Ti = [pti, ..., p

t+5
i ] for each entity i with pti

the position of i at timestep t. Along trajectories, we obtain
the intrinsic information wj = [p, v, g, θ, r] of agent j with
p its current position, v its speed, g its goal, θ its angular
heading and r its radius. Each agent has a limited FoV (depth
and angle) and has access to the visibility matrix Mj ∈
RN×N between each entity in its vision, defined by:

M j
i,k =

{
1 if i sees k and i is seen by the agent of interest j
0 otherwise

(1)

For each agent j, a graph Gj = (E,Mj) is then formed
where E is the node set with features ei of each node
i ∈ [1, N ] equal to Ti and a label discriminating entities
following their nature (e.g. label ∈ {robot, human}). Mj is
the adjacency matrix for j. The state sjt = [wj , Gj ] forms
the input given to the MultiSoc model, as illustrated in Fig.
1 (Bottom) with a graph limited to each agent FoV.

2) Edge-Selector: The first component of MultiSoc is an
Edge-Selector detailed in Fig. 4. It applies attention on nodes
of G to produce a sparse directed graph keeping only the
most interesting interactions between entities. Edge-Selector
is a tractable adjustment of the Edge Gumbel Selector from
GST [3], where the attention is applied on the set of possible
edges (N × N edges with N the number of entities). For
a supervised algorithm, this computation is not a limit but
for RL, which learns online, the speed of the algorithm
is crucial. Thus, we designed Edge-Selector based on the
attention between nodes only. The remaining mechanisms
are similar to the ones found in GST.
First, a MHA with Nhead heads is applied between every
nodes i (cf. Fig. 4 (Left)). For each head k, the input
matrix E with features ei of all nodes i ∈ [1, N ] is
linearly transformed using learned weight matrices: Q =
EWQ,K = EWK ,V = EWV . Then, Q,K,V are divided
along the features axis into Nhead parts such that Q =
[Q1..QNhead ],K = [K1..KNhead ],V = [V1..VNhead ]. The
scaled dot-product attention is computed as follows for each
head:

Ak = Softmax(
Qk(Kk)T√

dn
)Vk (2)



Fig. 3. Overview of the MultiSoc architecture. For the agent of interest (surrounded by dotted line), the input is its intrinsic information and a graph limited
to its FoV. Each node of the graph is composed of the current and consecutive predicted positions of the observed entities, and by a label discriminating
entities following their nature.

Fig. 4. Overview of the Edge-Selector architecture producing a sparse
graph GS with a MHA module with 2 heads.

where dn is the dimension of the nodes. Thus MHA applied
to all node features ei of the graph G produces attention
score aki,j between agents i and j for the kth head.

As for GST, the mask MS for the edges is calculated with
Gumbel-Softmax (cf. Fig. 4 (Right)):

ski,j = Softmaxj

MLP (aki,j) + g

τ

mi,j =
1

Nhead

Nhead∑
k=0

ski,j

(3)

where Nhead is the number of heads, g is sampled from
the Gumbel distribution, MLP is a linear layer, τ is the
temperature parameter used in Gumbel-Softmax trick and
mi,j are the coefficients of the adjacency matrix MS pro-
duced as a mask on the edges. Thus, in the final sparse graph
GS = (ES ,MS):

- the feature of each node in ES is the attention scores
for agent i.

- there is an edge between the ith and jth nodes if mi,j ̸=
0. Moreover, each node i has at most Nhead edges.

The Edge-Selector realizes a discrete clustering on the edges
and allows to introduce the parameter Nhead as a constraint
of density on the dynamical graph. Greater Nhead is, denser
the graph will be.

3) Crowd Coordinator: Now that a sparse graph with en-
tities in the FoV of the agent of interest has been calculated,
we can propagate information between neighboring nodes to
compute node features influenced by their neighbors.

Various approaches are used in the literature for this.
DICG [27] , like MAGE-X [10], applied a GCN on the graph
while AttnGraph [7] used a simple attention mechanism
analogous to a GAT on a star graph. It has to be noted
that an ablation study on MAGE-X proved that GCN could
be replaced by attention mechanism without dramatic loss
in accuracy (7% less success with this replacement [10]).
We decide to use a GAT [31] as attention mechanism to
analyse the sparse graph. This choice applies naturally on
the directed sparse graph and allows us to remain consistent
with AttnGraph, which we aim to expand for multi-agent
social navigation.
Considering the sparse graph GS produced by the Edge-
Selector (cf. Fig. 4), with hi being the features of the ith

node and H the matrix concatenating all hi, the attention is
defined by:

Attention(H) = Softmax(
QKT

√
dk

) (4)

where Q = HWQ, K = HWK , WQ and WK being
learned weight matrices, dk is the dimension of the node
and

Softmaxj(di,j) =
edi,j∑

k∈Ni
edi,k

(5)

where di,j is the (i, j) coefficient of QKT

√
dk

and Ni is the
neighborhood of the node i in the sparse graph (deduced
from MS).
Each attention head k produces αk

i,j = Attentionk(H)i,j .



Finally, the nodes are weighted summed together according
to their neighborhood in the sparse graph. The crowd coor-
dinator then produces a graph GC with features ci for each
node i (cf. Fig. 3):

ci = Concatk(
∑
j∈Ni

αk
i,jhjWV ) (6)

where Concatk is the function concatenating all the vectors
over the heads (and then merges the vectors produced by
each head in an unique vector) and WV is a learned
weight matrix. It is possible to add an activation function
as σ = ReLu before concatenating over the heads and more
importantly, it is also possible to add new layers. We do not
add these supplements because the graphs are small enough
in our problem (small field of view producing relatively small
graphs).

4) Constraints Coordinator:
a) Extract and Concat: The crowd coordinator pro-

duces a graph representing the influence of each node on
the others. In line with this idea, only the node of interest
has to be kept. We can observe that, when we use a GAT
with one layer, as we do, only the neighborhood of the node
of interest has an influence on it. We can then keep only the
edges between the agent and its neighborhood in the previous
GAT, as it is done in AttnGraph. However, to be complete, we
keep the general formulation and do not truncate any edges
before the operation, keeping so possible generalisation.
Thus, we extract from GC the node representing the agent
of interest and concatenate it with the output of the intrinsic
coordinator, which is simply an MLP. By doing so, we obtain
both the constraints of the other entities on the agent of
interest and the constraint of reaching the goal in one vector
vconst.

b) RNN: We use a gated recurrent unit (GRU)
to keep consistency with the previous action: ht =
GRU(ht−1, vconst) where ht−1 is the hidden state produced
at last timestep and vconst is the vector of constraints. The
value and the action for RL are then produced by passing ht

through 2 different MLPs.

C. Reinforcement Learning

We model the scenario as a Multi-Agent Markov Decision
Process. MultiSoc follows CTDE paradigm. The centraliza-
tion part lies in the fact that all the agents are trained with
the same MultiSoc model. But execution is decentralized as
at each time-step, each agent passes through the MultiSoc
model its intrinsic information and positions of entities in
its FoV. This produces the action the agent will take. Thus,
each agent receives a reward and the simulation transits to
a next state according to an unknown state transition, taking
into account humans and other agents actions.

1) MAPPO: Concerning the RL algorithm, AttnGraph [7]
uses Proximal Policy Optimization (PPO) [32], a model-free
policy gradient algorithm widely used.

The most direct heir of PPO in multi-agent paradigm
is Multi-Agent PPO (MAPPO) [24] used by MAGE-X
[10]. Even if adaptations to the multi-agent are observed

in MAPPO (e.g. value normalization), it differs mainly
from PPO by the parameters fine-tuning. Indeed, in multi-
agent, it is observed [24] that neural network training is
really sensitive to the number of epochs. To stay aligned
with AttnGraph and MAGE-X, we also use MAPPO. The
parameters will be close to the ones used by AttnGraph, the
main difference will remain in the number of epochs, multi-
agent being empirically better trained with fewer epochs.

2) Reward: We adopt the reward function used in Attn-
Graph [7] with some modifications to consider multi-agents.
The penalty for being in the predicted path of an entity
(human or agent) is:

rj,ipred(st) = mink∈[1,5]((⊮t+k
j , i)

rc
2k

)

rjpred(st) = mini∈[1,N ](r
j,i
pred(st))

(7)

where st is the state of the agent of interest j, rc the penalty
for collision and (⊮t+k

j , i) indicates whether the agent j

collided with the kth predicted position of the entity i.
The potential based reward guides the agent j to approach
the goal: rjpot = −dj,tgoal + dj,t−1

goal with dj,tgoal the distance of
j to its goal at timestep t.
The complete reward for agent j doing action at in state st
is then:

Rj(st, at) =

{
rc if j collides any entity
rjpot + rjpred otherwise

(8)

We emphasize that there is no reward when reaching the
goal. Indeed an episode is not completed until all agents have
either collided or reached their goals. Thus each agent that
reaches its goal must wait the others to finish. If there was a
reward for reaching a goal, one agent would wait the other
with infinite reward.

IV. EXPERIMENTATIONS

A. Simulation Environment

a) Simulator: We extend the CrowdNav1 mono-agent
simulator used in AttnGraph [7] for a multi-agent version.
First, we improve the use of matrices especially concerning
the visibility, which is central in our work. Second, we
implemented our multi-agent simulator MultiCrowdNav2

based on multi particle environments (MPE) [33], in which
small particle agents must navigate and communicate. It
facilitates greatly the migration from PPO to MAPPO, as
MAPPO already supports MPE environments.

b) Crowd Simulation: The simulation of human inter-
actions is essential for agent learning in a context of social
navigation. A complete model requires a huge amount of
information to be taken into account, and becomes computa-
tionally intractable. Despite their lack of realism, methods
such as ORCA [12] or social force (SF) [11] are often
used to simulate humans (for learning and testing). It’s also

1https://github.com/Shuijing725/CrowdNav Prediction AttnGraph
2Code will be available online if the paper is accepted.

https://github.com/Shuijing725/CrowdNav_Prediction_AttnGraph


worth noting, according to [1] (§4.3.1), that ORCA is mostly
used for testing, while social force brings more adversity to
the agent. The combination of the two would seem to be
a prerequisite if we are to entertain the idea of a real-life
implementation. Thus in our simulator each human can be
controlled by ORCA or SF and some experiments will be
done with heterogeneous human policies.

c) Scenario: The scenarios are initialized with H hu-
mans arranged on a circle with some noise on their positions.
Human goals are chosen so that they must cross the circle
to reach an opposite point. Humans react only to other
humans but not to robots (adversarial crowd). A new random
goal is assigned to a human as soon as it reaches its goal.
At initialisation, R agents are also laid out randomly with
their own goals (positioned and assigned randomly3). When
an agent collides with another entity (human or agent) or
reaches its goal, it keeps moving but no longer counts in the
metric. Therefore, it is still considered as a moving obstacle
for the remaining agents (considered in their penalty reward
(cf. eq. 7)). An episode is over when all agents have either
collided (collision) or reached their goal (success). For more
details concerning the simulation (kinematics, action space,
sensor range, ...) the reader can refer to [7].

d) Metrics: Our metrics include navigation and social
metrics traditionally used in multi-robot and social robot
navigation. The success rate is the number of agents that
reached their goals to the total number of agents, evaluated
on all test episodes.

Safety is mainly summarized by the collision rate, i.e.
the number of agents colliding with other entity (humans
or not). Once an agent has reached its goal, if at least
one other agent has not yet reach its goal, collisions are
no longer counted in the score for a succeeded agent. The
proximity of the agent to humans can also be considered
to evaluate the social awareness of the agents. We used
the intrusion ratio as the percentage of time the agent
was ”too close” to a human averaged over all episodes
(”too close” is defined as in [7] with a distance defining
the space ”close” to an individual). To compare relative
performance between algorithms without comparing to a
theoretical optimal solution that is not available, several
criteria are defined. Travel time and travel length are mean
duration, resp. length, of the trajectories between the initial
position to the goal (or ending position if not reached) for
all agents. The reward is the mean reward obtained by each
agent at the end of episode.

B. Results

We now present and analyze results obtained with Multi-
Soc in a set of various scenarios (number of agents/humans)
and compare it with baseline (AttnGraph). Models are trained
during Ntrain timesteps. Training hyperparameters can be
found in the Appendix. Evaluations are conducted on Ntest

random unseen episodes, each consisting of 150 timesteps.

3Unlike MAGE-X, agents can not exchange their goals with each other
at the beginning of the episode.

TABLE I
BASELINE COMPARISON. Ntrain = 20M OF TIMESTEPS AND

Ntest = 1000 EPISODES (150 TIMESTEPS) WITH seed = 1000. DURING

TRAINING AND TEST ORCA POLICY IS USED FOR HUMANS

NAVIGATION. REWARD METRIC IS NOT GIVEN FOR ATTNGRAPH

BECAUSE IT IS NOT COMPARABLE TO MULTISOC (ATTNGRAPH USES A

REWARD FOR REACHING THE GOAL).
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Attngraph4 0.92 0.05 6.51 15.47 13.99 - 1 20 1 20
MultiSoc 0.96 0.03 4.33 14.70 14.79 19.10

Attngraph4 0.85 0.13 5.84 15.81 14.38 - 1 20 5 20
MultiSoc5 0.94 0.04 3.42 15.35 15.87 17.24 1 20

AttnGraph4 0.68 0.31 11.92 16.39 14.49 - 1 20
6 6MultiSoc 0.81 0.02 3.98 16.62 20.02 5.91 1 20

MultiSoc 0.85 0.14 13.61 12.8 12.28 -1.85 5 20

Videos and simulation screenshots showing the behavior
learned by the agents with MultiSoc in different scenarios
are available in supplementary materials.

1) Baseline comparison: We first compare our MultiSoc
model to Attngraph [7] that, as far as we know, actually
overcomes other deep RL models in mono-robot navigation
in crowd environment. First, the modifications made to
the simulator and the paradigm shift from mono-agent to
multi-agent RL brings about a preliminary improvement in
terms of learning time. Training Attngraph on 20 Millions
of timesteps with CrowdNav simulator actually takes 40h
(average) in our training condition ( 4 Xeon E5-2640v3
CPUs, with 32GB of memory and one NVIDIA GK210
GPU), whereas training Attngraph with our new simulator
MultiCrowdNav costs no more than 20h (average) in the
same conditions.

Second, as shown in Table I, our MultiSoc model over-
comes Attngraph especially when several robots are
involved.

In a first test, both are compared during a learning and
training phase with 1 robot and 20 humans. The results
confirm the similarity between MultiSoc and AttnGraph in
mono-robot conditions, as they are similar under the same
conditions. The better performance of MultiSoc does not
allow us to decide on any superiority. AttnGraph is very
hard to train, while MultiSoc suffers from the same single-
agent limitations. Nevertheless, the two models remain close
in their results.

Several robots are introduced during test phase only in a
second experiment (5 robots and 20 humans). Each robot
executes individual trained Attngraph with other robots con-

4The Attngraph used is a pre-trained version of the model provided by
authors.

5This model was trained over 30 Millions of timesteps.
6More results are given in the Appendix.



TABLE II
MULTISOC MODEL QUALIFICATION. GREY CELLS ARE VARIABLES VARIABILITY, BETTER RESULTS ARE IN BOLD, R AND H STAND FOR NUMBER OF

ROBOTS AND HUMANS, H − Policy IS THE HUMAN NAVIGATION POLICY DURING TESTS (ORCA IS STILL USED DURING TRAINING). TESTS ARE

DONE ON Ntest EPISODES OF 150 TIMESTEPS WITH seed = 1000.(60k TEST TIMESTEPS MEANS Ntest = 400 AND 150k MEANS Ntest = 1000).
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3 0
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3 0

ORCA

0.81 0.12 4.06 15.17 16.86 8.55 3 0 10 0
0.59 0.07 7.26 17.78 19.46 -4.54 3 0 20 0
0.92 0.00 0.75 11.83 12.29 20.47 10 0 3 0
0.94 0.00 1.92 13.54 13.49 18.29 10 0 10 0
0.89 0.01 4.31 15.76 16.20 13.2 10 0 20 0

2. Human Policy
Robustness

0.92 0.07 7.60 13.59 13.18 14.96
4 20M 3 17 150k 3 17

ORCA
0.94 0.06 7.59 13.45 13.12 15.35 ORCA+SF
0.66 0.33 8.27 12.32 10.66 5.47 ORCA+FoV

3. Scalability

0.96 0.03 4.33 14.70 14.79 19.07

4 20M

1 20

150k

1 20

ORCA0.95 0.03 8.94 14.33 13.82 17.67 5 20 1 20
0.89 0.08 6.79 14.22 13.68 14.0 5 20 5 20
0.89 0.08 6.95 14.85 14.40 12.68 5 20 10 20

4. Density Factor
0.88 0.05 3.39 18.10 18.93 15.78 2

20M 5 15 60k 5 15 ORCA0.91 0.02 2.39 17.36 17.30 17.95 4
0.86 0.02 2.83 18.38 17.86 17.46 8

sidered as humans. In such condition, the success rate of
Attngraph decreases to 0.85% showing the model’s difficulty
in handling a heterogeneous crowd mixed of robots and
humans. Despite the fact that our MultiSoc was trained with
only one robot, its still remains resilient (0.94% of success)
when several robots are involved. This result shows a better
generalization of our model when dealing with a crowd
composed of robots and humans.

Finally, in a third test, a crowd composed of 6 robots
and 6 humans is used during testing. In such condition, the
performance of Attngraph drops down to 0.68% of success.
This is mainly due to the difficulty of Attngraph to predict
behavior of other robots. This leads to ”panic” situations
and weird behavior when a robot encounters other robots.
Regarding MultiSoc, coordinating multiple robots remains
challenging in a more balanced crowd, but it maintains a
high success rate whether it learns with 1 or 5 robots.
More importantly, MultiSoc can properly transfer mono-
agent learning to multi-agent problem, meaning that it can
use its own behavior to predict similar entities, thanks to the
labels on the node.

2) Multi-agent without humans: In Table VI.1, Multi-Soc
has been trained on respectively 3 and 10 robots without
humans, arranging agents and their goals randomly on the
map. The multi-agent’s great adaptability is particularly note-
worthy for tests with 10 robots when model was trained with
3 robots (performance of 81% success rate for 12% collision
rate). This is even more striking for a model trained with 10
robots and tested with 20 (low performance loss). We can
hypothesise that this scalability is due to the management
of trajectories by the neural networks. As observed in [1],
deep-learning-based navigation methods suffer from short-
range. This allows the presented network to focus only

on immediate trajectories (i.e. fewer configurations than
for longer-term trajectories). As a result, transfer is more
efficient, since it’s the immediate environment that impacts
the strategies and not the overall number of agents, at the
cost of a loss of ”centrality”.

3) Social (Multi-agent with humans): The results pre-
sented in Table VI.2 illustrate heterogeneous human poli-
cies management of MultiSoc6, which is a flaw of cur-
rent works on social robot navigation according to [1]
(§4.3.1). MultiSoc is trained with several agents, several
humans and tested under various social conditions. The
architecture handles the mix of human policies very well
even though training was done with homogeneous human
policies (ORCA). Indeed tests mixing ORCA and Social
Force (ORCA+SF) do not bring any additional difficulties to
the model (94% of success rate). However, having a reduced
field of view for humans (ORCA+FoV) remains a clear
limitation. In fact this situation creates a very complex crowd,
far removed from the crowd on which the models were
trained and brings more unpredictable human behaviors.

The results presented in Table VI.3 further demonstrate the
scalability capacities of MultiSoc. Trainings with different
numbers of robots delivered stable performance, but it’s
worth noting that a given training can also adapt to situations
with more robots. The results demonstrate that training with
5 robots achieves very good results in single-robot (95%
success rate), but also good results with 10 robots (89%
success rate). The scalability observed in the pure multi-
agent case transfers well to the social case.
These results also open up new possibilities for the single
agent case. Indeed, AttnGraph suffered from the difficulty of
reproducing the model’s learning process (according to the
authors of AttnGraph and us). MultiSoc suffered from the



same issue in single-agent mode, but multi-agent training is
empirically more stable and faster. Models converge faster
at the cost of a slightly longer computation time, since the
MultiSoc model is fed N times more than in single-agent
(where N is the number of agents) and with more ”balanced”
data concerning positions, since the agents are far from each
other. This results in more stable, less biased, faster training
for robust single-agent transfers.

Finally, the results in Table VI.4 illustrate the usefulness
of the density factor (Nhead) retrieved from the Edge
Selector of GST [3]. As noted previously, AttnGraph has
not proven the benefit of its use of GST. We hypothesize
that the complete graph used throughout AttnGraph lost the
essential information carried by GST, that is the human
link management. By extracting only a short-term forecast,
we assume that AttnGraph lost the deeper analysis, leaving
only a too-compact summary. Using a simplified version of
the Edge Selector allows us to better integrate it into the
architecture. Varying the density factor Nhead allows to
obtain different results for the same crowd. The model
performs best for Nhead=4 (0.91% success rate) for the tested
scenario, which is fairly consistent with our observations of
the crowd, since agents will most often see fewer than 5
humans in their vicinity.

V. CONCLUSION

In this paper we propose MultiSoc, a new method for
learning multi-robot socially aware navigation strategies.
MultiSoc leverages graph-based representations combined
with attention mechanisms to capture heterogeneous inter-
actions in the crowd and various influences of each entity
on the others. Especially the Edge Selector we integrate in
our model allows to take into account the crowd density.
The experiments show that our MultiSoc outperforms the
main baseline and deals with heterogeneous human policies.
It also demonstrate MultiSoc scalability capacities and the
usefulness of the density factor we introduced.

Future work needs to investigate how our model deals with
a complex environments including obstacles such as sparse
environment, corridor, room, ... Moreover, interacting with a
crowd with different behaviors (e.g cooperative, adversarial,
social groups) may affect the performance of our model
and should be studied. Finally, testing our social navigation
model on real robot fleet in a real crowd situation remains
essential to validate our model.
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Y. Bengio, “Graph Attention Networks,” International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=rJXMpikCZ

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[33] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Envi-
ronments,” arXiv e-prints, 2017.

APPENDIX

Training hyperparameters

In Table III are given the common training hyperpa-
rameters we used for MAPPO [24]. Other hyperparameters
specific to MultiSoc can be found in Table V. The detailed
architecture of MultiSoc is shown in Table IV.

MultiCrowdNav simulator

In Figure 5, screenshots of our simulator (in chronological
order) are given for a scenario with 3 robots traveling among
20 humans. From left to right :

1- The initial situation with robots in green and their field
of view (FoV) in a dashed circle is shown. The dashed
blue line connects each robot to its goal (red star).
Humans in the FoV of robots are in orange; others are in
black. Predicted poses on 5 time steps are represented
with 5 circles for each entity in the FoV of a robot.
The trajectories followed by each entity are given with
a solid line that fades over time.

2-3- Given that human goals are chosen so that they must
cross the circle to reach an opposite point, we can
observe here that all humans have converged in the
center of the scene. In order to reach their goals, the
robots will also have to traverse the central space by
default, leading all entities to cross paths in the center
of the environment. The robots will then have to manage
challenging crowd navigation and implicit coordination
with other entities to avoid collisions and intrusion in
human safe space. We can observe that robots 0 and
1 decided to navigate around the high-density area.
Especially robot 0 chose to navigate around on the side
where it predicts humans won’t be. As for robot 2, it
traverses the crowd while locally managing interactions.

common hyperparameters value
nrolloutthread 16
numminibatch 2
episode length 50

data chunck length 50
num env steps 20 000 000

ppo epoch 5
gain 0

lr 4e-5
critic lr 4e-5

TABLE III
MAPPO HYPERPARAMETERS

architecture hyperparameters value
human node rnn size 128
human node output size 256
edge selector embedding size 32
agent embedding size 64
human node embedding size 64
human human edge embedding size 32
attention size 64
human node input size 3
human human edge input size 2
human human edge rnn size 256
edge selector emb size 512
edge selector num head 4
mha emb size 256
mha num head 8

TABLE IV
MULTISOC ARCHITECTURE HYPERPARAMETERS

4- All three robots have successfully reached their objec-
tives without collisions.

Additional Results

In Table VI are given additional results concerning the
heterogeneous human policies management of MultiSoc.

Other hyperparameters value
temperature at beginning 5

base temperature 0.05
min temperature 0.03

collision penalty rc -20

TABLE V
OTHER HYPERPARAMETERS

https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/2102.10775
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347


Fig. 5. Screenshots of a scenario (in chronological order from left to right) with 3 robots traveling among 20 humans in the MultiCrowdNav Simulator
(Nhead = 4).

TABLE VI
MULTISOC MODEL EXPERIMENTS FOR HUMAN POLICY ROBUSTNESS. GREY CELLS ARE VARIABLES VARIABILITY, BETTER RESULTS ARE

HIGHLIGHTED (IN BOLD), R AND H STAND RESP. FOR NUMBER OF ROBOTS AND HUMANS, H − Policy IS THE HUMAN NAVIGATION POLICY DURING

TESTS (ORCA IS STILL USED DURING TRAINING). TESTS ARE DONE ON Ntest EPISODES OF 150 TIMESTEPS EACH WITH RANDOM SEEDS. THUS 150k

TEST TIMESTEPS MEANS Ntest = 1000.
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4 20M 5 20 150k 5 20
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0.67 0.31 6.8 13.41 11.29 27.27 ORCA+FoV


	Introduction
	Related Works
	Social robot navigation
	Multi-agent deep reinforcement learning

	Contribution
	Preliminary
	Graph Neural Network
	Gumbel Softmax Transformer
	MAGE-X/AttnGraph

	Our model
	Input data
	Edge-Selector
	Crowd Coordinator
	Constraints Coordinator

	Reinforcement Learning
	MAPPO
	Reward


	Experimentations
	Simulation Environment
	Results
	Baseline comparison
	Multi-agent without humans
	Social (Multi-agent with humans)


	Conclusion
	References

