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On geodesics in spherical Rindler space

The geodesics in various spherical Rindler frames are investigated. A display of some kinematical quantities of the spacetime is given. The constant acceleration from the metric acts as the surface gravity of the horizon r = 0. The radial geodesics are computed both for the Balasubramanian et al. form of the spherical Rindler space and for the non-diagonal metric of Huang and Sun.

Introduction

As is well-known, Rindler spacetime corresponds to an uniformly accelerating observer in Minkowski space. A less studied case refers to spherical Rindler space, given by a set of radially accelerating observers who are causally disconnected from a spherical region of radius b, located at the origin of Minkowski space [1], whose boundary represents the horizon of the Rindler space. As Balasubramanian et al. [1] have observed, the thermodynamics of this horizon is subtle, because spherical Rindler space is time-dependent for global reasonsthe observers who define it accelerate in different directions. Despite of the time dependence of the metric, Balasubramanian et al. succeeded to compute the gravitational entropy of spherical Rindler space.

When viewed by a Minkowskian observer, the set of accelerating observers is expanding hyperbolically [2]. The authors of [1] concluded that their calculations measure the entanglement entropy between the quantum gravity systems inside and outside of a spherical ball in flat space. On the other hand, the four-dimensional subspace of the Witten bubble geometry [3] and the spherical Rindler geometry are identical provided the radial coordinate r is large (see also [4,2]), both of them being Minkowskian.

Huang and Sun [5] also used a spherically symmetric generalization of Rindler spacetime (see also [6]) and introduced a new kind of uniformly accelerated reference frame [7], with the interesting property that all static observer in uniformly accelerated coordinates have the same constant acceleration, irrespective of their position. In [5], the authors have also written down a generalized form of the new uniformly accelerated frame in spherical Rindler coordinates, as in [1].

Our purpose in this work is to find the equation of geodesics in spherical Rindler spacetime, both for the Balasubramanian et al. and for the Huang and Sun geometries.

Spherical Rindler spacetime

Spherical Rindler space refers to a family of observers accelerating away from a common center [1], who are causally disconnected from a spherical region of radius b. Starting with Minkowski geometry in spherical coordinates

ds 2 = -dη 2 + dρ 2 + ρ 2 dΩ 2 , (2.1) 
where dΩ 2 stands for the metric on the 2-sphere, η > 0, ρ > 0, the spherical Rindler coordinates may be defined as

r = (ρ -b) 2 -η 2 , t = arctanh η ρ -b , (2.2) 
A static observer in spherical Rindler frame at r = const. is moving hyperbolically viewed from Minkowski space. Accelerating observers cannot see the interior of a sphere of radius b having the center at the origin of Minkowski coordinates. From (2.1) and (2.2) one obtains

ds 2 = -g 2 r 2 dt 2 + dr 2 + (b + rcosh gt) 2 dΩ 2 , (2.3) 
where g > 0 is a constant acceleration, being necessary to get the correct units.

The geometry (2.3) is flat, being obtained from the Minkowski metric by a coordinate transformation. However, it does not cover the whole Minkowski space, exactly as the standard Rindler space. Let us study now the kinematical quantities for a "static" observer in the space (2.3), with the velocity vector field u a = 1 gr , 0, 0, 0 , u a u a = -1.

(2.4)

The corresponding acceleration 4-vector a b = u a ∇ a u b is given by

a b = 0, 1 r , 0, 0 , a b a b = 1 r . (2.5)
Since a r > 0, the gravitational field is attractive. For the surface gravity corresponding to the horizon r = 0 we have

κ = a b a b √ -g tt | r=0 = g. (2.6)
In other words, the constant g introduced in (2.3) means the surface gravity κ.

From the point of view of a Minkowskian observer the horizon corresponds to the light cones ρ = b ± η,which are asymptotics for the hyperbolic observer [1]. The expansion scalar of the "static" observer appears as

Θ ≡ ∇ a u a = 2sinh gt b + rcosh gt , (2.7) 
which is always positive. The non-zero components of the shear tensor

σ ab = 1 2 (h c b ∇ c u a + h c a ∇ c u b ) - 1 3 Θh ab + 1 2 (a a u b + a b u a ) (2.8)
are given by

σ r r = -2σ θ θ = -2σ ϕ ϕ = -2sinh gt 3(b + cosh gt) , (2.9) 
with σ a a = 0 and

σ ab σ ab = √ 6 3
sinh gt b + cosh gt .

(2.10)

The metric h ab = g ab + u a u b is the projection tensor onto the direction perpendicular to u a and σ ab expresses the distorsion of the worldlines in shape without change in volume.

The vorticity tensor ω a b is vanishing.

Radial geodesics

We propose to reach at the geodesic equations with the help of the Lagrangean

L = 1 2 ds dτ 2 = 1 2 g 2 r 2 ṫ2 -ṙ2 -(b + rcosh gt) 2 ( θ2 + sin 2 θ φ2 ) , (3.1) 
where τ is the proper time. One looks, for simplicity, for the radial geodesics, namely, θ = φ = 0. Therefore, from (3.1) we get

g 2 r 2 ṫ2 -ṙ2 = 1. (3.2)
The Euler-Lagrange equations read

∂L ∂x a - d dτ ∂L ∂ ẋa = 0. (3.3)
For θ, ϕ = const. the geometry (2.3) is static and, from (3.3) with a = t we get

ṫ = E g 2 r 2 , (3.4)
where E is the energy per unit mass of the particle and ṫ = dt/dτ . The case a = r yields r = -g 2 r ṫ2 . 

= - gτ E 2 -g 2 τ 2 , ṫ = E E 2 -g 2 τ 2 , τ < E g . (3.6)
Getting rid of τ one obtains ṙ and ṫ in terms of r

ṙ = - E 2 -g 2 r 2 gr , ṫ = E g 2 r 2 , (3.7)
It is an easy task to check that the 4-velocity

u b = E g 2 r 2 , - E 2 -g 2 r 2
gr , 0, 0 (3.8) yields a b = u a ∇ a u b = 0; namely, u a is tangent at the timelike geodesic. From (3.6) we have

r(τ ) = 1 g E 2 -g 2 τ 2 , t(τ ) = 1 2g ln E + gτ E -gτ . (3.9) 
We get rid of τ from (3.9) and obtain the radial equation of motion

r(t) = E g cosh gt , (3.10) 
with appropriate initial conditions: r(0) = E/g and r → 0 when t → ∞, i.e. the horizon is reached after an infinite time. For the velocity of the particle one obtains dr dt = -E tanh gt cosh gt ,

with |dr/dt| < 1, as it should be for a massive particle.

As far as the null radial geodesics are concerned, they are obtained from

L = 0 g 2 r 2 ṫ2 -ṙ2 = 0, (3.12) 
giving us r(t) = (1/g)e -gt , with r(0) = 1/g and r → 0 at infinity. The velocity v = dr/dt = -e -gt shows that the null particle starts with unit velocity and has v = 0 when t → ∞.

4 Geodesics in Huang-Sun spacetime Noting that in (4.5) the constant of integration w.r.t. τ has been chosen zero, to be in accordance with (4.4). Eq.(4.5) gives us

r(t) = 1 g (α -cosh gt), t < 1 g ln (α + α 2 -1), (4.7) 
where α is a constant of integration. From By means of (4.8), it is clear that (4.6) is satisfied. Using (4.8) one finds that a b = u a ∇ a u b = 0, where u a = (1/cosh gt, -tanh gt, 0, 0). In other words, r(t) from (4.7) indeed represents the geodesic trajectory.

Conclusions

The spherical Rindler spacetime is less studied compared to the standard Rindler geometry, written in Rindler or Moller forms. The boundary of the Rindler space is given by its horizon at r = 0. The radially accelerated observer are disconnected from a spherical region of radius b, centered at the origin of Minkowski space. The 4-dimensional subspace of the Witten bubble geometry and the spherical Rindler geometry are identical provided the radial coordinate is large. The horizon at r = 0 is the boundary of the sphere of radius b. The main goal of the paper was to calculate radial geodesics for the two versions of the Rindler space mentioned above.