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HYPERTREES AND EMBEDDING OF THE FMan OPERAD

The operad FMan encodes the algebraic structure on vector fields of Frobenius manifolds, in the same way as the operad Lie encodes the algebraic structure on vector fields of a smooth manifold. It is well known that the operad Lie admits an embedding in the operad PreLie encoding pre-Lie algebras. We prove a conjecture of Dotsenko stating that the operad FMan admits an embedding in the operad ComPreLie. The operad ComPreLie is the operad encoding pre-Lie algebras with an additional commutative product such that right pre-Lie multiplications act as derivations. To prove this result, we first remark a link between the Greg trees and the so-called operadic twisting of PreLie. We then give a combinatorial description of the operad ComPreLie à la Chapoton-Livernet with forests of rooted hypertrees. We generalize this construction to forests of rooted Greg hypertrees, and then use operadic twisting techniques to prove the conjecture.

Introduction

Pre-Lie algebras (or left-symmetric algebras) appear in a wide range of mathematical domains. Indeed, they appear in combinatorics, deformation theory, differential geometry, renormalization, see [START_REF] Burde | Left-symmetric algebras, or pre-Lie algebras in geometry and physics[END_REF]. Moreover, the operad PreLie encoding pre-Lie algebras is deeply related to a famous combinatorial species, the rooted trees. Indeed, an operadic structure is defined on the species of rooted trees in [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], and the operad obtained this way is proven to be isomorphic to PreLie. This construction can be generalized to the species of rooted Greg trees which are rooted trees with white and black vertices such that black vertices are unlabeled and have at least two children, see [START_REF] Laubie | Combinatorics of pre-Lie products sharing a Lie bracket[END_REF], defining the operad Greg. We show that the operad Greg is closely related to the so-called operadic twisting of PreLie [START_REF] Dotsenko | Homotopical rigidity of the pre-Lie operad[END_REF][START_REF] Dotsenko | Maurer-Cartan methods in deformation theory[END_REF]. From this fact, one may wonder if there are analogous combinatorial descriptions of some related operads, or conversely if some combinatorial objects related to rooted trees admit operadic structures analogous to the one on rooted trees. The operad ComPreLie is the operad encoding pre-Lie algebras with an additional commutative product such that right pre-Lie multiplications act as derivations. This operad was first introduced in [START_REF] Mansuy | Preordered forests, packed words and contraction algebras[END_REF]. We show that it admits a combinatorial description in terms of forests of rooted hypertrees which can be further generalized to the species of forests of rooted Greg hypertrees, thus defining a new operad that we denote ComGreg. From the link between Greg and the operadic twisting of PreLie, we relate ComGreg to the operadic twisting of ComPreLie to prove a conjecture of Dotsenko [START_REF] Dotsenko | Algebraic structures of F -manifolds via pre-Lie algebras[END_REF] stating that the operad FMan encoding the algebraic structure on vector fields of Frobenius manifolds admits an embedding in the operad ComPreLie. To do so, we need to slightly modify the operad ComGreg to obtain the operad dgComGreg, and we relate dgComGreg to the operadic twisting of ComPreLie, allowing us to show the main theorem of this paper: Theorem (Th. 35). The morphism of operads FMan → ComPreLie is injective. This theorem comes with a side result: Theorem (Th. [START_REF] Laubie | Combinatorics of pre-Lie products sharing a Lie bracket[END_REF]. The operad ComPreLie is Koszul.

Organization of the paper. In the first section, we recall general fact on species and operads. We then recall the construction of the operadic structure on the species of rooted trees from [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], which give the operad PreLie, and its generalization on the rooted Greg trees from [START_REF] Laubie | Combinatorics of pre-Lie products sharing a Lie bracket[END_REF], which give the operad Greg. In Section 2, give a small introduction to the operadic twisting, see [START_REF] Dotsenko | Homotopical rigidity of the pre-Lie operad[END_REF][START_REF] Dotsenko | Maurer-Cartan methods in deformation theory[END_REF], and we relate the operad Greg to the operadic twisting of PreLie. In Section 3, we first show that the operad ComPreLie is Koszul. Then, we extend the operadic structure from the species of rooted trees to the species of forests of rooted hypertrees, and using the Koszulness of ComPreLie, we show that the underlying species of ComPreLie is the species of forests of rooted hypertrees. In the next section, we use the same idea extending the operadic structure from the species of rooted Greg trees and from the forests of rooted hypertrees to the species of forests of rooted Greg hypertrees, obtaining the operad ComGreg. We show that this operad is Koszul, and we give a quadratic presentation of this operad. However, the operad ComGreg cannot directly be used to prove the main theorem. In Section 5, we explain how to modify the operad ComGreg. In order to do so, we introduce the species of reduced rooted Greg hypertrees and put a structure of differential graded operad on this species, defining this way the differential graded operad dgComGreg. In the final section, we use the operad dgComGreg to prove the main theorem. Namely, we show that the cohomology of dgComGreg is concentrated in degree 0, and we prove that it is in fact isomorphic the operad FMan, proving the main theorem.

Rooted trees and Rooted Greg trees

Let K be a field of characteristic 0. Let n be the set {1, . . . , n}. We recall the bases of the theory of species and operads. We refer to [START_REF] Bergeron | Combinatorial species and tree-like structures[END_REF] for a more detailed introduction to the theory of species and to [START_REF] Loday | Algebraic operads[END_REF] for the theory of operads. In the following, all species will be linear species and operads will be symmetric operads. One need to be careful since the objects we are calling linear species are "species with values in Vect K " which the same convention as in [START_REF] Loday | Algebraic operads[END_REF] but different from the one in [START_REF] Bergeron | Combinatorial species and tree-like structures[END_REF] where linear species correspond to "linearly ordered species" what we will not use here.

Let BijSet be the category such that the objects are the finite sets and the morphisms are the bijections. A linear species S is a functor from BijSet to Vect K the category of vector spaces over K. Its Hilbert series is the formal power series defined by:

f S (t) = n∈N dim K (S(n)) n! t n
For S a species, the Schur functor F S : Vect K → Vect K is the functor defined by:

F S (V ) = n∈N S(n) ⊗ Sn V ⊗n
where V ⊗n is the n-th tensor power of V and S n acts on V ⊗n by permuting the factors. The species S is uniquely determined by the functor F S . For S and R two species, there exists a unique species S • R such that

F S • F R = F S•R .
The operation • is called the plethysm of species. It gives a structure of monoidal category on the category of species. Moreover,

f S•R = f S (f R ).
Another monoidal structure of the category of species that will be used latter in this article is given the Cauchy product of species. The Cauchy product of S and R is defined by:

(S ⊗ R)(A) = A=A 1 ⊔A 2 S(A 1 ) ⊗ R(A 2 ),
where A 1 ⊔ A 2 is the disjoint union of A 1 and A 2 . We recall the notation of the usual species X the singleton species such that X(1) = K endowed with the trivial action and X(n) = 0 for n ̸ = 1, and the species E the set species such that E(n) = K endowed with the trivial action for all n ∈ N. For k ∈ N, the species E ≥k is the species such that E ≥k (n) = K endowed with the trivial action if n ≥ k and E ≥k (n) = 0 otherwise. An operad P is a monoid object in the category of species with respect to the plethysm. It can equivalently be defined as a species S together with a collection of equivariant maps, the partial compositions:

• i : S(A ⊔ {i}) ⊗ S(B) → S(A ⊔ B)
for all finite sets A and B, verifying the parallel and sequential axioms, see [START_REF] Loday | Algebraic operads[END_REF]Paragraph 5.3.7]. The parallel and sequential axioms ensure that the partial compositions behave like partial compositions of multilinear maps. Indeed, let V be a vector space, and let us define End V (n) = Hom(V ⊗n , V ), then, the partial compositions give a structure of operad on End V . The operad End V is called the endomorphism operad of V . Moreover, for P an operad, a morphism of operads P → End V is a P-algebra structure on V . If P is defined by generators and relations, the data of a morphism of operad P → End V is the same as a collection of multilinear maps of V verifying the relations defining V .

Those definitions generalize in a straightforward way to the graded and the differential graded cases using Koszul sign rules in the latter case. We will be using operadic Koszul theory, see [START_REF] Ginzburg | Koszul duality for operads[END_REF][START_REF] Loday | Algebraic operads[END_REF], to compute Hilbert series of operads, using the following result: Proposition 1. Let P be a Koszul operad and P ! be its Koszul dual. Let f P and f P ! be the Hilbert series of P and P ! respectively. Then, we have the following equality:

f P (-f P ! (-t)) = t
As a general tool to show Koszulness of operads, we will use the theory of Gröbner bases for operads. We refer to [START_REF] Bremner | Algebraic operads. An algorithmic companion[END_REF] for a general introduction to the theory of shuffle operads and Gröbner bases for operads. We will in fact use the more general language of rewriting systems. A rewriting system is a set of writing rules which are pairs (a, b). Let us write x → y to denote a rewriting step from x to y, it corresponds to the application of a writing rule (a, b) to x such that a is a sub-object of x wich is replaced by b to obtain y. In the case of operads, we will rewrite linear combinations of shuffle trees. Since this is not the main point of this article, we will not give the definition of shuffle trees, we refer to [START_REF] Bremner | Algebraic operads. An algorithmic companion[END_REF] for a precise definition. Let us write x * → y for a finite sequence of rewriting steps from x to y. A rewriting system is terminating if any sequence of rewriting steps is finite. A rewriting system is locally confluent if y ← x → z imply that we have t such that y * → t * ← z. A rewriting system is convergent if it is terminating and locally confluent. Any Gröbner basis gives raise to a convergent rewriting system, moreover, we have a one-to-one correspondence between elements of the Gröbner basis and rewriting rules of the rewriting system. We will use the following result to show Koszulness of operads: Proposition 2. Let P be an operad. If P admits a quadratic Gröbner basis, then P is Koszul. More generally, if P admits quadratic convergent rewriting system, then P is Koszul.

Let T be the free operad functor. The operad Lie is defined by the following presentation:

T {l}/⟨l • 1 l -l • 2 l -(l • 1 l).(2 3)⟩
where l is a binary operation, and the action of S 2 on K⟨l⟩ is given by l.(1 2) = -l. The operad PreLie is defined by the following presentation:

T {x, y}/⟨(x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).( 2 
3)⟩
where x and y are binary operations, and the action of S 2 on K⟨x, y⟩ is given by x.(1 2) = y.

We recall that we have the following injective morphism of operads Lie → PreLie given by l → xy.

Definition 1. A rooted tree τ is a finite graph (V, E) without cycles with a distinguished vertex called the root. A labeling on τ is a bijective map l : V → L with L a set of labels. The species of rooted trees is the species RT such that RT (L) is the set of rooted trees labeled by L. In the following, rooted trees will always be labeled. Rooted trees will be represented with the root at the bottom.

Let us recall the construction of [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF] of an operad structure on the species of rooted trees.

Definition 2. Let S and T be two rooted trees and i be a label of a vertex v i of S. Let B be the tree bellow the vertex v i in S, and

C = {C 1 , . . . , C n } be the set of children of v i in S. S = • • • v i C 1 C n B = v i C B
We use circles to represent vertices, triangles to represent trees or sets of trees and double edges to represent that each tree of the set C is grafted at v i . The insertion of T in S at the vertex i denoted S • i T is the formal sum of all possible way to graft the rooted trees C 1 , . . . , C n on vertices of T and then grafting the result on the parent of v i in B.

Let us compute the following example:

1 3 • 1 1 2 = 1 2 3 + 1 2 3 Proposition 3. [6]
The insertions satisfy the parallel and sequential axioms. Hence, they give a structure of operad on the species of rooted trees.

Theorem 4. [6, Theorem 1.9] The operad (RT , {• i }) is isomorphic to PreLie. Moreover, the isomorphism is given by 1

2 → x.
Let us state a generalization of this construction. We first need to define a generalization of the rooted trees, namely the rooted Greg trees [START_REF] Laubie | Combinatorics of pre-Lie products sharing a Lie bracket[END_REF]. Definition 3. A rooted Greg tree τ is a rooted tree with black and white vertices such that the white vertices are labeled, and the black vertices are unlabeled and have at least two children. The weight of τ is the number of black vertices of τ . The species G of rooted Greg trees is the species such that G(L) is the set of rooted Greg trees labeled by L. The species G is graded by the weight, in particular G 0 is the species of rooted trees. The set G(2) is depicted in Figure 1.

Figure 1. The set G(2) 1 2 , 2 1 , 1 2 
Remark 1. The condition that the black vertices have at least two children ensure that G(n) is finite for all n ∈ N. The sequence of dimensions of G is Sequence A005264 of the OEIS [START_REF] Oeis | The On-Line Encyclopedia of Integer Sequences[END_REF], the triangle of its graded dimensions is Sequence A048160.

Definition 4. Let S and T be two rooted Greg trees and i be a label of a white vertex v i of S. Let B be the hypertree bellow the vertex v i in S, and C = {C 1 , . . . , C n } be the set of children of v i in S. The insertion of T in S at the vertex i denoted S • i T is the formal sum of all possible way to graft the rooted trees C 1 , . . . , C n on black or white vertices of T and then grafting the result on the parent of v i in B.

Proposition 5. [START_REF] Laubie | Combinatorics of pre-Lie products sharing a Lie bracket[END_REF] The insertions satisfy the parallel and sequential axioms. Hence, they give a structure of operad on the species of rooted Greg trees.

Theorem 6. [14, Corollary 3.3] The operad (G, {• i }) is Koszul. Moreover, it admits the following binary quadratic presentation:

T {x, y, g}/⟨(x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).(2 3), (x • 1 g -(g • 1 x).( 2 
3) -g • 2 x) -(x • 1 g -(g • 1 x).( 2 
3) -g • 2 x).( 2 
3)⟩,
where x, y and g are operations of arity 2, and the action of S 2 on K⟨x, y, g⟩ is given by

x.(1 2) = y and g.( 12) = g. The isomorphism is given by 1 2 → x and 1 2 → g.

2.

The operad Greg and the operadic twisting of PreLie Let us relate the operad Greg to the operadic twisting of PreLie. We will use the cohomological convention for the degree, hence a differential is a map a degree 1 that square to zero. Let us describe the operadic twisting, we refer to [START_REF] Dotsenko | Maurer-Cartan methods in deformation theory[END_REF] for a general introduction to the operadic twisting. Let g be a differential graded Lie algebra, a Maurer-Cartan element of g is a degree 1 element α ∈ g such that dα + 1 2 [α, α] = 0. This condition ensure that the map

d α = d + [α,
•] is a differential on g. Definition 5. Let P be an operad. The pre-Lie algebra (g, ⋆) associated to P is the graded vector space g = n∈N P(n) with the product ⋆ defined by:

µ ⋆ ν = n i=1 µ • i ν
In particular, this is a Lie algebra. If the operad is differential graded, (g, ⋆) is a differential graded pre-Lie algebra. The Maurer-Cartan equation can be written as:

dµ + µ ⋆ µ = 0
This impose that µ is an arity 1, degree 1 element, hence µ ⋆ µ = µ • 1 µ. Such an element is called an operadic Maurer-Cartan element. Definition 6. Let P be an operad, and φ : Lie → P a morphism of operads from the operad Lie to P and l the image of l in P. The operadic twisting of P by φ is the differential graded operad (TwP, d Tw ) defined by as follows:

• Let α be a formal Maurer-Cartan element, α is an arity 0, degree 1 operation symbol.

• Let TwP = P ∨α be the operad P extended by the operation symbol α without any relation. The symbol ∨ denotes the coproduct in the category of operads. We use the notation ∨ since we need complete to the operad P ∨ α because of the appearance of potentially infinite sums in the general theory developed in [START_REF] Dotsenko | Maurer-Cartan methods in deformation theory[END_REF]. In our case, this technicality is not relevant.

• The differential d MC is defined by: d MC (α) = -1 2 l(α, α) which is -1 2 ( l • 1 α) • 2 α
when written with the partial compositions, and for any p ∈ P, d MC (p) = 0. It extends to the whole operad TwP by compatibility with the composition. With this differential, any (TwP, d MC )-algebra is a graded differential P-algebra, with a marked Maurer-Cartan element which is the image of α.

• Let µ be an operadic Maurer-Cartan element of (TwP, d MC ). The operadic Maurer-Cartan equation ensure that the map

d MC + µ ⋆ • -• ⋆ µ is a differential on TwP. The differential d Tw is defined by d Tw = d MC + µ ⋆ • -• ⋆ µ with µ = l(α, •)
which is an operadic Maurer-Cartan element. We refer to [START_REF] Dotsenko | Maurer-Cartan methods in deformation theory[END_REF] for the general theory of the operadic twisting.

Let us now explicitly describe the operadic twisting of PreLie by the morphism φ : Lie → PreLie given by φ(l) = xy, using the combinatorial description of PreLie. Let α be a formal Maurer-Cartan element, α is an arity 0, degree 1 operation symbol, let us denote it by a black vertex. Then, the underlying species of PreLie ∨α is the species of rooted trees with black and white vertex such that white vertices are labeled, black vertices are unlabeled, and such that they have no non-trivial tree automorphism. As example, the element

((x • 1 x -x • 2 x) • 2 α) • 2 α
would be represented by the rooted tree with the white vertex as the root having two black children. However, computations show that this element is equal to its opposite, hence is zero. This species contain the species of rooted Greg trees as a subspecies, however, it is infinite dimensional in each arity. The differential d MC is defined by

d MC (α) = -1 2 l(α, α), hence, d MC (α) = -1 2 (x(α, α)-y(α, α)) = -x(α, α
) by the Koszul sign rule. The vector space 

d MC = - ; d MC 1 = - 1 - 1 ; d MC 1 = - 1 Figure 3.
Composition of the arity 1 degree 1 elements.

(x • 1 α) • 1 (x • 1 α) = 1 ; (x • 2 α) • 1 (x • 1 α) = -1 - 1 (x • 1 α) • 1 (x • 2 α) = 1 ; (x • 2 α) • 1 (x • 2 α) = - 1
of arity 1 degree 1 elements is spanned by x • 1 α and x • 2 α, let us compute their differential:

d MC (x • 1 α) = x • 1 d MC (α) = -x • 1 ((x • 1 α) • 2 α) d MC (x • 2 α) = x • 2 d MC (α) = -x • 2 ((x • 1 α) • 2 α)
Those computations can be represented using rooted trees, see Figure 2, however one need to be careful with the order in which the black vertices are "filled", indeed (x • 1 α) • 2 α and (x • 2 α) • 1 α are represented by the same rooted tree but have opposite signs, we use the convention bottom to top and left to right.

Let us find a Maurer-Cartan element. We need to compute (x 3. Since an operadic Maurer-Cartan element is a degree one arity one element, this shows that the unique operadic Maurer-Cartan element (up to multiplication by a scalar) is µ

• i α) • 1 (x • j α) with i, j ∈ {1, 2}, see Figure
= (x • 1 α) -(x • 2 α
). This allows to describe the differential d Tw on the rooted trees: Proposition 7. [9, Subsection 6.7] Let T be a rooted tree with black and white vertex, then d Tw (T ) is given by:

(1) The sum of all possible ways to split a white vertex of T into a white vertex retaining the label and a black vertex above it and to connect the incoming edges to one of the two vertices, taken with a minus sign.

(2) The sum of all possible ways to split a white vertex of T into a white vertex retaining the label and a black vertex bellow it and to connect the incoming edges to one of the two vertices, taken with a minus sign.

(3) The sum of all possible ways to split a black vertex of T into two black vertices and to connect the incoming edges to one of the two vertices, taken with a plus sign.

(4) The sum of all possible ways to graft an additional black leaf to T , taken with a plus sign.

(5) Grafting T on top of a new black root, taken with a minus sign. Moreover, many terms cancel due to the signs. In particular, if T has more than one vertex, all contributions from 4 and 5 get cancelled by contributions from 1, 2 and 3.

Remark 2. The signs given in the previous proposition depend on the order in which the black vertices are "filled". In this description, we assume that the newly created black vertex is filled first. The signs created when changing the ordering can be computed using the Koszul sign rule.

A direct computation show that: Proposition 8. Let us denote g = -d Tw (x) then we have that:

g = 2 1
Moreover, x and g satisfies the relation: 23) Definition 7. Let us define the differential graded operad Greg -1 as the operad Greg such that g is of degree 1 and with the differential

(x • 1 g -(g • 1 x).(2 3) -g • 2 x) -(x • 1 g -(g • 1 x).(2 3) -g • 2 x).(
d such that d(x) = d(y) = -g.
The above proposition proves that we have a morphism of differential graded operads Greg -1 → TwPreLie, moreover since rooted Greg trees have no non-trivial tree automorphisms, this morphism is injective. Proof. It is enough to prove that the complex TwPreLie splits in Greg -1 ⊕X with X spanned by all non-Greg trees in TwPreLie. Let T be a non-Greg tree, then it has a black vertex with one child or without children, from the explicit description of the differential, in each tree appearing in dT , this black vertex will still have one child or no children. □

Forests of rooted hypertrees and the operad ComPreLie

Let us now give a description à la Chapoton-Livernet of the operad ComPreLie. The operad ComPreLie was first introduced in [START_REF] Mansuy | Preordered forests, packed words and contraction algebras[END_REF], it is defined by the following presentation:

T {x, y, c}/⟨(x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).(2 3), x • 1 c -(c • 1 x).(1 3) -c • 2 x, c • 1 c -c • 2 c⟩
where x, y and c are binary operations, and the action of S 2 on K⟨x, y, c⟩ is given by x.(1 2) = y and c.(1 2) = c. Its Koszul dual, the operad ComPreLie ! , is defined by the following presentation: In order to compute arity-wise dimensions of ComPreLie ! , let us introduce the following ComPreLie ! -algebra admitting an explicit description: Definition 8. Let X a finite set, Lie(X) the free Lie algebra generated by X and uCom(X) the free unitary commutative associative algebra generated by X. Let LC(X) = Lie(X) ⊗ uCom(X). For a 1 ⊗ a 2 and b 1 ⊗ b 2 in LC(X), let us define two binary operations [•, •] and •.• by:

T {x * , y * , c * }/⟨x * • 1 x * -x * • 2 x * , x * • 1 x * -(x * • 2 x * ).(2 3), x * • 2 c * , x * • 1 c * -(c * • 1 x * ).(2 3), c * • 1 c * -c * • 2 c * -c * • 1 c * .( 2 
• (a 1 ⊗ a 2 ).(b 1 ⊗ b 2 ) = a 1 ⊗ (a 2 .b 1 .b 2 ) if b 1 ∈ Vect(X); • (a 1 ⊗ a 2 ).(b 1 ⊗ b 2 ) = 0 if b 1 / ∈ Vect(X); • [(a 1 ⊗ a 2 ), (b 1 ⊗ b 2 )] = [a 1 , b 1 ] ⊗ (a 2 .b 2 ). One can check that LC(X) is a (ComPreLie) ! -algebra with [•, •] the image of c * and •.• the image of x * .
Moreover, it is generated as a (ComPreLie) ! -algebra by the elements of the form a ⊗ 1 with a ∈ X and 1 the unit of uCom(X). Definition 9. Let u n be the sequence of logarithmic numbers, see Sequence A002104 in the OEIS [START_REF] Oeis | The On-Line Encyclopedia of Integer Sequences[END_REF]. This sequence is defined by:

n≥1 u n n! t n = -log(1 -t) exp(t)
Proposition 11. We have that u n = dim(Mult(LC({a 1 , . . . , a n }))) with Mult the multilinear part, in particular u 4 = 24.

Proof. Since LC({a 1 , . . . , a n }) = Lie({a 1 , . . . , a n }) ⊗ uCom({a 1 , . . . , a n }), we have that:

Mult(LC({a 1 , . . . , a n })) = I⊔J={a 1 ,...,an} Mult(Lie(I)) ⊗ Mult(uCom(J))
Hence, n → Mult(LC({a 1 , . . . , a n })) give raise to a species which is the Cauchy product of Lie and uCom. Hence, its exponential generating series islog(1t) exp(t). □

The operad ComPreLie ! admits a terminating quadratic rewriting system displayed in the appendix Supplementary Figure 1, it has 19 rules. This rewriting system is obtained using the "quantum(x * , y * c * ) permutation degree-lexicographic order" see [START_REF] Bremner | Algebraic operads. An algorithmic companion[END_REF][START_REF] Dotsenko | Word operads and admissible orderings[END_REF] for further details on shuffle operads and monomial orders. Moreover, this rewriting system has the following property:

Proposition 12. The sequence of numbers of normal form of the rewriting system displayed in Supplementary Figure 1 is the sequence of logarithmic numbers u n .

Proof. Since ComPreLie ! is graded by the number of occurrences of c * , it is clear that the suboperad generated by c * is the Lie operad. The rewriting system displayed in Supplementary Figure 1 restricted to c * is the rewriting system associated to the "permutation degree-lexicographic order", which is known to be a Gröbner basis for the Lie operad, see [START_REF] Bremner | Algebraic operads. An algorithmic companion[END_REF]Example 5.6.1.1]. In particular, normal forms of Lie(n) are in bijection with a basis of Lie({a 1 , . . . , a n }). An analogous observation shows that the rewriting system displayed in Supplementary Figure 1 restricted to x * and y * is a Gröbner basis of the operad PreLie ! , also known as Perm, see [START_REF] Chapoton | Un endofoncteur de la catégorie des opérades[END_REF]. Moreover, a normal form is given by a pair (a, b) with a a normal form of Lie and b a normal form of Perm, with a composed in the non-symmetric input of b. This allows us to build a bijection between normal forms of ComPreLie ! (n) and Mult(LC({a 1 , . . . , a n })). Hence, the number of normal forms of ComPreLie ! (n) is the number of multilinear elements of LC({a 1 , . . . , a n }). This concludes the proof. □ Theorem 13. The operad ComPreLie ! is Koszul. Moreover, its Hilbert series is given by:

f ComPreLie ! (t) = -log(1 -t) exp(t)
Proof. The inequality dim(ComPreLie ! (4)) ≥ 24 and the fact that the rewriting system admit 24 normal forms in arity 4 ensures that it is a Gröbner basis. Hence, ComPreLie ! is Koszul. □ Corollary 14. The operad ComPreLie is Koszul. Moreover, its Hilbert series is given by:

f ComPreLie (t) = rev t (log(1 + t) exp(-t))
with rev t the compositional inverse in t of a series.

With this result, we know the dimensions of the operad ComPreLie, indeed it is Sequence A052888 of the OEIS [START_REF] Oeis | The On-Line Encyclopedia of Integer Sequences[END_REF]. Let us now give a combinatorial description of the operad ComPreLie. To do so, let us introduce the hypergraphs and hypertrees from [START_REF] Berge | Combinatoire des ensembles finis[END_REF]. Definition 10. An hypergraph is a pair (V, E) where V is a finite set and E is a subset of P ≥2 (V), the subsets of V of cardinality at least 2. The elements of V are called vertices and the elements of E are called edges. The weight of an edge is its cardinality minus 2. The edges of positive weight are the hyperedges, the edges of weight zero are the simple edge. Definition 11. A path of length n is a pair ((v 0 , . . . , v n ), (e 1 , . . . , e n )) where (v 0 , . . . , v n ) is a sequence of vertices and (e 1 , . . . , e n ) is a sequence of edges such that for all i ∈ {1, . . . , n}, v i-1 ∈ e i and v i ∈ e i . A cycle is a path such that v 0 = v n , and all the edges e i are distinct. Definition 12. A rooted hypertree τ is a hypergraph (V, E) without cycles, and with a distinguished vertex called the root. The weight of a rooted hypertree is the sum of the weights of its hyperedges. A labeling on τ is a bijective map l : V → L with L a set of labels. The species of rooted hypertrees is the species H such that H(L) is the set of rooted hypertrees labeled by the finite set L. The species H is graded by the weight, in particular, H 0 = RT . In the following, rooted hypertrees will be labeled. Rooted hypertrees will be represented with the root at the bottom. Remark 3. In particular, one may remark that with this definition two vertices of a hypertree share at most one edge. Definition 13. A forest of rooted hypertrees is a non-empty finite set of rooted hypertrees labeled over disjoint sets of labels. The weight of a forest of rooted hypertrees is the number of rooted hypertrees in the forest minus 1 plus the sum of the weight of the rooted hypertrees in the forest. The species of forests of rooted hypertrees is the species FH such that FH(L) is the set of forests of rooted hypertrees labeled by the finite set L. The species FH is graded by the weight, in particular, FH 0 = RT . The set FH(2) is depicted in Figure 4. Let u be a formal variable encoding the weight grading. This means that f F H (t, u) = a i,j t i u j i! such that a i,j is the number of forests of rooted hypertrees with i vertices and of weight j.

Proposition 15. We have:

f F H (t, u) = rev t ln(1 + ut) u exp(-t)
The triangle of number dim(FH k (n)) is given by Sequence A364709.

Proof. The graded species FH is given by the following formula:

FH = 1 u E ≥1 (u.H)
with the notation that E ≥1 is the non-empty set species. Hence we have:

f FH = 1 u (exp(u.f H ) -1)
Hence:

f H = ln(1 + u.f F H )
u Moreover, the graded species H is given by the following formula:

H = X.E(FH)
with the notation that X is the singleton species and E the set species. Hence we have:

ln(1 + u.f F H ) u exp(-f F H ) = t
which concludes the proof. □ Definition 14. Let S and T be two forests of rooted hypertrees and i be a label of a vertex v i of S. Let B be the tree bellow the vertex v i in S, and C = {C 1 , . . . , C n } be the set of forests of children of v i in S such that each rooted hypertrees that are grafted at v i by the same edge are in the same forest. The insertion of T in S at the vertex i denoted S • i T is the formal sum of all possible way to graft the set of forests of rooted hypertrees C 1 , . . . , C n on vertices of T such that each rooted hypertrees of C j are grafted at T by the same edge, and then grafting the result on the parent of v i in B. If T is a forest this creates a unique hyperedge that connects all its rooted hypertrees to the parent of v i .

Let us compute the following examples:

1 3 • 1 1 2 = 1 2 3 + 1 2 3 
and:

1 2 • 2 2 3 = 1 2 3
As one can remark, a hyperedge is created in the second example.

Proposition 16. The insertions satisfy the parallel and sequential axioms. Hence, they give a structure of operad on the species of forest of rooted hypertrees.

Proof. It is clear that the parallel axiom is verified since we are inserting forests of rooted hypertrees in different vertices. The proof of the sequential axiom is the computation shown in Figure 5 with the convention that double edges means that all the rooted hypertrees of the forest are grafted at the same vertex via the same edge. Indices are omitted for readability. □ Let us denote:

x n = • • • 1 2 n ; c n = • • • 1 n
As in the operad PreLie, the elements x n are the symmetric braces, see [START_REF] Lada | Symmetric brace algebras[END_REF].

Proposition 17. The operad FH is generated by arity 2 elements. It means that FH is generated by x 2 and c 2 .

Proof. Let P be the suboperad of FH generated by FH(2). Let us prove inductively that P = FH:

• Initial case: P(2) = FH(2) by definition.

• Induction step: If T = x n , then T is a rooted tree, and thus in the suboperad generated by x 2 since PreLie is generated by arity 2 elements. If

T = c n , then T = (. . . (c 2 • 1 c 2 ) • 1 . . . ) • 1 c 2 .
Else, T can be obtained by inductively composing copies of x i and of c j at the leaves.

□

Theorem 18. The operad (FH, {• i }) is isomorphic to the operad ComPreLie. Moreover, the morphism is given by x 2 → x and c 2 → c.

Proof. The example of computation show that FH satisfies the relations of ComPreLie. Since, FH is generated by arity 2 elements, we have a surjective morphism ComPreLie → FH. The equality of the Hilbert series show that this morphism is bijective. □ 
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Forests of rooted Greg hypertrees

Now that we have a combinatorial description of the operad ComPreLie, we want an analogue of the operad Greg in this context. Let us define the ComGreg operad by the following presentation:

T {x, y, c, g}/⟨(x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).(2 3), x • 1 c -(c • 1 x).(1 3) -c • 2 x, c • 1 c -c • 2 c, x • 1 g -(g • 1 x).(2 3) -g • 2 x⟩
with x, y, c and g binary operations, and the action of S 2 on K⟨x, y, c, g⟩ is given by x.(1 2) = y, c.(1 2) = c and g.( 12) = g. Its Koszul dual, the operad ComGreg ! is defined by the following presentation:

T {x * , y * , c * , g * }/⟨x * • 1 x * -x * • 2 x * , x * • 1 x * -(x * • 1 x * ).(2 3), x * • 2 c * , c * • 2 x * -x * • 1 c * , c * • 1 c * -(c * • 1 c * ).(2 3) -c * • 2 c * , x * • 1 g * -g * • 2 x * , x * • 2 g * , c * • 1 g * , g * • 1 c * , g * • 1 g * ⟩ Remark 4.
Let us denote ∨ the coproduct of operads, and for P an operad, ∨ P the fibered coproduct of operads over P. One may remark that ComGreg = ComPreLie ∨ PreLie Greg. This is not enough to show that ComGreg is Koszul, however as we know a description of the free ComPreLie ! -algebras and Greg ! -algebras see [START_REF] Laubie | Combinatorics of pre-Lie products sharing a Lie bracket[END_REF], we can guess a description of the free ComGreg ! -algebras, and show that ComGreg ! is Koszul. Definition 15. Let X be a finite alphabet. Let Ar(X) be the span of finite words on X with the following extra decoration: there is an arrow from one letter to another. Let Ar(X) be the quotient of Ar(X) by the following relations: letters commute with each other (the arrow follows the letters), reverting the arrow change the sign and All other cases give 0.

Proposition 19. The algebra (LCA(X), •.•, [•, •], {•, •}) is a (ComGreg) ! -algebra generated by X.
Proof. Direct computations show that LCA(X) is a (ComGreg) ! -algebra. Moreover, it is generated by X since LC(X) is generated by X and We already know the dimension of Mult(LC({a, b, c, d})), and it is not difficult to check that Mult(Ar({a, b, c, d})) is of dimension 3. Hence, Mult(LCA({a, b, c, d})) is of dimension 27. □

The rewriting system of ComGreg ! is displayed in the appendix Supplementary Figures 1 and 2 with the rules not involving g * in the first one and the ones involving g * in the second one, it has 38 rules. This rewriting system is obtained using the "quantum(x * , y * c * g * ) permutation degree-lexicographic order"; see [START_REF] Bremner | Algebraic operads. An algorithmic companion[END_REF][START_REF] Dotsenko | Word operads and admissible orderings[END_REF] for further details on shuffle operads and monomial orders. Moreover, this rewriting system has the following property: Proposition 21. The exponential generating function of the number of normal forms of the rewriting system displayed in Supplementary Figures 1 and2 is given by:

f = -ln(1 -t) exp(t) + t exp(t) -exp(t) + 1
In particular it has 27 normal forms in arity 4.

Proof. One may remark that c * and g * cannot appear at the same time in a normal form. Hence, either g * appears or not. If g * does not appear, then we have a normal form of ComPreLie ! . If g * appears, then we have a left comb with only g * and x * appearing, and only one occurrence of g * at the top of the left comb. Hence, a normal form with g * appearing is entirely determined by the label of the second leave of g * , hence we have n -1 such normal form in arity n. Computation of the exponential generating series show that it is:

-ln(1 -t) exp(t) + t exp(t) -exp(t) + 1 □ Theorem 22. The operad ComGreg ! is Koszul.
Proof. The inequality dim(ComGreg ! (4)) ≥ 27 and the fact that the rewriting system admit 27 normal forms in arity 4 ensure that it is a Gröbner basis. Hence, ComGreg ! is Koszul. □ Corollary 23. The operad ComGreg is Koszul. Moreover, its Hilbert series is given by:

f ComGreg (t) = rev t (ln(1 + t) exp(-t) + t exp(-t) + exp(-t) -1)
with rev t the compositional inverse in t of a series. Now that we know that the arity-wise dimensions of the operad ComGreg, we can describe the underlying species. Let us define a species that allows us to combine the Greg tree and the hypertrees. Definition 16. A forest of rooted Greg hypertrees is a forest of rooted hypertrees with two kinds of vertices, the white and the black vertices such that the white vertices are labeled, and the black vertices are unlabeled and have at least two incoming edges. The species FG of forests of rooted Greg hypertrees is the species such that FG(L) is the set of forests of rooted Greg hypertrees labeled by the finite set L. The species FG is bi-graded by the weight of the forests of rooted hypertrees and by the number of black vertices, to avoid confusion, let us call then respectively the hypertree weight and the Greg weight. In particular, FG 0,0 = RT , FG 0,k = G k and FG k,0 = FH k .

Let u be a formal variable encoding the hypertree weight grading, and v be a formal variable encoding the Greg weight grading. This means that f F G (t, u, v) = a i,j,k

t i u j v k i!
where a i,j,k is the number of forests of rooted Greg hypertrees with i white vertices, of hypertree weight j and of Greg weight k.

Proposition 24. We have:

f F G (t, u, v) = rev t ln(1 + ut) u -v(exp(t) -t -1) exp(-t)
In particular the sequence of forests of rooted Greg hypertrees with n white vertices is given by Sequence A364816.

Proof. Let us inspect the species FG and GH of rooted Greg hypertrees. We have:

FG = 1 u E ≥1 (u.GH) and: GH = X.E(FG) + vE ≥2 (FH)
Hence, we have:

f GH = ln(1 + u.tf F G ) u and: ln(1 + u.tf F G ) u = t exp(f F G ) + v exp(f F H ) -vf F G -v
We get that:

f F G (t, u, v) = rev t ln(1 + ut) u -v(exp(t) -t -1) exp(-t)
□ Same as in Section 3, one can define insertions and show that they define an operad structure on FG. Definition 17. Let S and T be two forests of rooted Greg hypertrees and i be a label of a vertex v i of S. Let B be the tree bellow the vertex v i in S, and C = {C 1 , . . . , C n } be the set of forests of children of v i in S such that each rooted Greg hypertrees that are grafted at v i by the same edge are in the same forest. The insertion of T in S at the vertex i denoted S • i T is the formal sum of all possible way to graft the set of forests of rooted Greg hypertrees C 1 , . . . , C n on black or white vertices of T such that each rooted Greg hypertrees of C j are grafted at T by the same edge, and then grafting the result on the parent of v i in B. If T is a forest it creates a unique hyperedge that connects all its rooted Greg hypertrees to the parent of v i .

The same computations show that:

Proposition 25. The insertions satisfy the parallel and sequential axioms. Hence, they give a structure of an operad on the species of forest of rooted Greg hypertrees.

Let us denote:

x n = • • • 1 2 n ; c n = • • • 1 n ; g n = • • • 1 n
Proposition 26. The operad FG is generated by arity 2 elements.

Proof. Let P the suboperad of FG generated by FG(2), let us prove by induction on the arity that P = FG.

• Base case: by definition P(2) = FG(2).

• Induction step: let T ∈ FG(n), if T = x n or g n then T ∈ P since Greg is generated by arity 2 elements. If T = c n then T ∈ P since FH is generated by arity 2 elements. Else, T can be obtained by inductively composing copies of x i , c j and g k at the leaves.

□

Theorem 27. The operad FG is isomorphic to ComGreg.

Proof. Computations show that the relations of ComGreg are satisfied in the operad FG.

Hence, we have a morphism ComGreg → FG. Since FG is generated by arity 2 elements, the morphism is surjective. Moreover, we have f F G (t, 1, 1) = f ComGreg (t). The equality of the Hilbert series shows that this morphism is bijective. □

Reduced Rooted Greg hypertrees

As we have seen in Section 2, the link between the operad Greg -1 and the operadic twisting of PreLie allowed us to prove that H * (Greg -1 ) = Lie which is the suboperad of PreLie generated by the Lie bracket. To use the same idea for the operad ComPreLie, we would need to define a differential d on ComGreg such that d(x) = g and d(c) = 0. However, such a differential would not be compatible with the operad structure since we would have:

d(0) = d(x • 1 c -c • 2 x -(c • 1 x).(2 3)) = g • 1 c -c • 2 g -(c • 1 g).(2 3) ̸ = 0
In order to fix this issue, we will need reduced version of the operad ComGreg which will not be Koszul, but on which such a differential can be defined. 

RedComGreg = ComGreg/⟨g • 1 c -c • 2 g -(c • 1 g).(2 3)⟩
Let us describe the underlying species of RedComGreg as a subspecies of FG. Let us study the rewriting rule g 23) at the level of the forests of rooted Greg hypertrees. It may be written the following way:

• 1 c → c • 2 g + (c • 1 g).(
1 2 3 → 1 2 3 + 1 2 3
The hyperedge above the black vertex is no longer present in the right-hand side. This lead to the definition of the following species:

Definition 19. Let FRG be the species of reduced forests of rooted Greg hypertrees which is the subspecies of FG such that black vertices have no incoming hyperedges. The species FRG inherits the hypertree weight grading and the Greg grading from FG.

Definition 20. The height of a forest of rooted Greg hypertrees is the sum over all hyperedges of their hypertree weight times the number of white vertices in the path from this hyperedge to the root.

Proposition 28. The following rewriting system on FG is convergent:

• • • 1 n → • • • 1 n + • • • + • • • 1 n
For readability, other edges of the black vertex are omitted in the picture, however they are present and stay connected to the black vertex.

Proof. First, let us remark that those rewriting rules strictly decrease the height of the forest of rooted Greg hypertrees. Hence, it terminates. Let us apply consecutively two rewriting rules. A simple computation shows that the result does not depend on the order of the rewriting rules. □ Corollary 29. The species underlying the operad RedComGreg is FRG.

Proof. The rewriting system of the previous proposition gives us a projection of FG on FRG, by applying the rewriting system in any order. Moreover, all those rewriting rules are consequences of the rule g 23). Hence, FRG is the operad FG quotiented by the relation g 23), which is the definition of RedComGreg. □

• 1 c → c • 2 g + (c • 1 g).(
• 1 c → c • 2 g + (c • 1 g).(
Let u be a formal variable encoding the hypertree weight grading and v be a formal variable encoding the Greg weight grading. Let us denote f F RG (t, u, v) the exponential generating series of FRG according to these grading. It means that f F RG (t, u, v) = a i,j,k

t i u j v k i!
where a i,j,k is the number of forests of reduced rooted Greg hypertrees with i white vertices of hypertree weight j, and Greg weight k.

Proposition 30. The exponential generating series of FRG is given by:

f F RG (t, u, v) = rev t (v + 1) ln(1 + ut) u + v -v exp ln(1 + ut) u exp(-t)
In particular, f F RG (t, 1, -1) is the series n≥1 n n-1 t n n! .

Proof. Let us inspect the species FRG and RG of reduced rooted Greg hypertrees. We have:

FRG = 1 u E ≥1 (u.RG)
and:

RG = X.E(FRG) + vE ≥2 (RG)
Hence, we have:

f RG = ln(1 + u.tf F RG ) u and: ln(1 + u.tf F RG ) u = t exp(f F RG ) + v exp ln(1 + u.tf F RG ) u -v ln(1 + u.tf F RG ) u -v
We get that:

f F RG (t, u, v) = rev t (v + 1) ln(1 + ut) u + v -v exp ln(1 + ut) u exp(-t) □ Remark 5.
The computation of the composition reverse of this exponential generating series show that RedComGreg is not Koszul.

We can now define the analogue of Greg -1 for the operad ComPreLie. We will compute its cohomology in the next section to show the main theorem.

Definition 21. Let dgComGreg be the differential graded operad such that the underlying operad is RedComGreg with x, y and c in degree 0 and g in degree 1, and the differential is given by d(x) = g and d(c) = 0. The underlying species of this operad is FRG, hence d is also defined on FRG. Let F p FRG be the subspecies of FRG of forests of reduced rooted Greg hypertrees of height less or equal to p. The differential d respect the filtration by the height.

The embedding of FMan in ComPreLie

The operad FMan is the operad encoding the algebraic structure on the vector fields of a Frobenius manifold. It is conjectured in [START_REF] Dotsenko | Algebraic structures of F -manifolds via pre-Lie algebras[END_REF] that FMan is isomorphic to the suboperad of ComPreLie generated by xy and c. In this section, we will prove this conjecture. First, let us state presentation of the operad FMan by generators and relations from [START_REF] Hertling | Weak Frobenius manifolds[END_REF]. The operad FMan admit the following presentation:

T {l, c}/⟨l • 1 l -l • 2 l -(l • 1 l).(2 3), c • 1 c -c • 2 c, (l • 1 c) • 3 c -(c • 1 l) • 1 c -((c • 1 l) • 1 c).(3 4) -(c • 2 l) • 3 c -((c • 2 l) • 3 c).(1 2)+ ((c • 1 c) • 3 l).(2 3) + ((c • 1 c) • 3 l).(1 3) -((c • 1 c) • 3 l).(1 4) -((c • 1 c) • 3 l).(2 4)⟩,
where the action of S 2 on K⟨l, c⟩ is given by l.( 1 12) be the failure to satisfy the Leibniz rule. Then LR satisfy the Leibniz rule in its first input, meaning that:

LR = l • 2 c -c • 1 l -(c • 1 l).(
LR • 1 c -c • 2 LR -(c • 1 LR).( 2 3 
) = 0 Since this relation is cubical, FMan is not quadratic, hence escapes the scope of the Koszul duality theory. However, this operad is closely related to the operad PreLie, indeed from [START_REF] Dotsenko | Algebraic structures of F -manifolds via pre-Lie algebras[END_REF], we know that FMan is the graded operad associated to the filtration of PreLie by the embedding of Lie into PreLie. In particullar, the arity-wise dimensions of FMan are the same as the arity-wise dimensions of PreLie, which are given by the sequence n n-1 .

In order to prove that we have an embedding of FMan into ComPreLie, we will compute the cohomology of dgComGreg and show that it is FMan. In order to do so, we will show that the cohomology of dgComGreg is concentrated in degree 0, then since we know the arity-wise Euler characteristic of dgComGreg, we know the arity-wise dimension of the cohomology of dgComGreg. Moreover, since those are the same as the arity-wise dimension of FMan, we will have an isomorphism between FMan and the cohomology of dgComGreg, thus showing the embedding of FMan into ComPreLie.

Let us give a description of the differential d on dgComGreg similar to the description of the differential of TwPreLie given in Proposition 7. To do so, let us denote:

x n = • • • 1 2 n ; g n = • • • 1 n ; c n = • • • 1 n ; h n = • • • 1 2 n
Moreover, for P = {{λ 1,1 , . . . , λ 1,n 1 }, . . . , {λ k,1 , . . . , λ k,n k }} a partition of {2, . . . , n}, let us denote:

p P = • • • • • • • • • 1 λ 1,1 λ 1,n1 λ k,1 λ k,n k
Then any reduced rooted Greg hypertree which is a corolla is g n or p P for some n or P up to a permutation of the labels.

Proposition 31. Let T be a forest of reduced rooted Greg hypertrees, i the label of a leaf and C a corolla, then d 0 (T

• i C) = d 0 (T ) • i C + (-1) |T | T • i d 0 (C).
Proof. Let us denote lwt for "lower weight terms", meaning forests of reduced rooted Greg hypertrees of lower height. We have:

d 0 (T • i C) = d(T • i C) + lwt = d(T ) • i C + (-1) |T | T • i d(C) + lwt = d 0 (T ) • i C + (-1) |T | T • i d 0 (C) + lwt
Moreover, since we compose a single reduced rooted Greg hypertree in a leaf of T , no rewriting are involved in the composition. Hence, d 0 (T ) • i C and T • i d 0 (C) have the same height. Hence:

d 0 (T • i C) = d 0 (T ) • i C + (-1) |T | T • i d 0 (C)

□

Lemma 32. The differential d 0 on Gr p FRG admits a description similar to Proposition 7.

The image of a forest of reduced rooted Greg hypertrees T is obtained as the sum of six terms:

(1) The sum of all possible ways to split a white vertex of T into a white vertex retaining the label and a black vertex above it and to connect the incoming edges to one of the two vertices (hyperedges cannot be grafted on the black vertex), taken with a minus sign.

(2) The sum of all possible ways to split a white vertex of T into a white vertex retaining the label and a black vertex bellow it and to connect the incoming edges to one of the two vertices (hyperedges cannot be grafted on the black vertex), taken with a minus sign.

(3) The sum of all possible ways to split a black vertex of T into two black vertices and to connect the incoming edges to one of the two vertices, taken with a plus sign. (4) The sum over all the white vertex directly above a hyperedge to graft this white vertex on top of a new black vertex, and to put this new black vertex in the hyperedge in place of the white vertex, taken with a minus sign. [START_REF] Chapoton | Un endofoncteur de la catégorie des opérades[END_REF] The sum of all possible ways to graft an additional black leaf to T , taken with a plus sign. [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF] The sum of all possible ways graft a tree of T on top of a new black root, taken with a minus sign.

In this description, we forbid the grafting of rooted hyperedges on black vertices to ensure that the result is a forest of reduced rooted Greg hypertrees. Some black vertex that are created have zero or one child, however, those terms cancel out in the differential, and we are left with a sum of forests of reduced rooted Greg hypertrees. 

C = (. . . (x k • i 1 c k 1 ) • i 2 . . . ) • is c ks Let us compute d 0 (C): d 0 (C) = d(C) + lwt = d((. . . (x k • i 1 c k 1 ) • i 2 . . . ) • is c ks ) + lwt = ((. . . (d(x k ) • i 1 c k 1 ) • i 2 . . . ) • is c ks ) + lwt = ((. . . (d descr (x k ) • i 1 c k 1 ) • i 2 . . . ) • is c ks ) + lwt
Let T be a reduced rooted Greg hypertree appearing in d descr (x k ). To conclude, we need to know of when ((. . .

(T • i 1 c k 1 ) • i 2 . . . )
• is c ks ) has the same height as C. This is the case if and only no rewritings are involved in the compositions, hence if and only if each i j is the label of a leaf which is the child of a white vertex. This is exactly the condition that "hyperedges cannot be grafted on the black vertex" in the terms from ( 1) and ( 2). Moreover, since all the new vertices coming from the c k j are leaves connected by hyperedges, the terms from (1) compensate with the terms from ( 5), and the terms from (2) compensate with the terms from (4). Hence, we have that

d descr (C) = d 0 (C). Let us show that d descr (T • i C) = d descr (T ) • i C + (-1) |T | T • i d descr (C)
for i a label of a leaf of T and C a corolla. Let us assume that T is not the identity since the result is obvious if T is the identity. The vertex v labeled i is a white leaf which is not the root, hence the contributions of v in the sum come from (1) and ( 5) which compensate, and from (2) which create a new black vertex bellow it. The only thing that changes for the vertices of C, once composed in T , is that the root of C will no longer be a root, hence the contribution from (6) will no longer appear. However, the contribution of v is exactly the missing contribution of C that no longer appears once composed in T , hence:

d descr (T • i C) = d descr (T ) • i C + (-1) |T | T • i d descr (C)
The sign (-1) |T | comes from the order in which we fill the black vertices, see Remark 2. Since any forest of reduced rooted Greg hypertrees can be obtained by inductively composing corollas in leaves, we have that d descr = d 0 . □ Now that we have this description, let us compute the cohomology of dgComGreg using the Kunneth formula and the fact that the cohomology of Greg -1 is Lie. To do so, we need a way to "cut down" a forest of reduced rooted Greg hypertrees into rooted Greg trees. Definition 22. Let T be a reduced rooted Greg hypertree. A maximal subtree of T is a rooted tree M such that the vertices of M are a subset of the vertices of T , the edges of M are a subset of the edges of T , and M is a maximal tree for this property. Since T is rooted, we can see edges of T as being directed, M is rooted in its lower vertex (which is unique). This generalizes naturally for forests of reduced rooted Greg hypertrees.

Definition 23. Let us define the shape of a reduced rooted Greg hypertree T as the hypertree obtained from T by replacing each maximal subtree M i by a corolla with the white vertices of M i as leaves and a new black vertex as root. The shape of a forest of reduced rooted Greg hypertrees is the forest of the shapes of its elements. Let us denote φ(T ) = (S, M 1 , . . . , M k ) with S the shape of T and M 1 , . . . , M k the maximal subtrees of T .

Definition 24. Let Part(n) be the set of partitions of the set n, and P ∈ Part(n). Let us define S(P ) as the span of the shapes of forests of reduced rooted Greg hypertrees with maximal subtrees M i respectively labeled by E i ∈ P . Let S(n) = P ∈Part(n) S(P ). Remark 6. From this definition, we have that S is a species, the species of shapes of forests of rooted hypertrees. Its sequence of dimension can be computed, it is Sequence A367753. See Sequence A367752 for the species of shapes of rooted hypertrees.

Proposition 33. We have that:

FH(n) ≃ P ∈Part(n) E∈P RT (E) ⊗ S(P ) FRG(n) ≃ P ∈Part(n) E∈P G(E) ⊗ S(P )
The isomorphism is given by φ, let us denote it φ as well. Moreover, we have the following isomorphism of chain complexes:

(FRG(n), d 0 ) ≃ P ∈Part(n) E∈P G(E), d ⊗ S(P )
Proof. Let us build the explicit bijections. Let S be a shape of a forest of rooted hypertrees associated to the partition P , and M 1 , . . . , M k be rooted trees labeled by E ∈ P . Let us replace each corolla of S by M i such that the labels of the corolla of S agree with the labels of M i . We get a forest of rooted hypertrees. This is the inverse of the construction we used to define the shape of a forest of rooted hypertrees, hence it is a bijection. Same for the forests of rooted Greg trees.

Let T be a forest of reduced rooted Greg trees, and φ(T ) = (S, M 1 , . . . , M k ). Then from the description of the differential d 0 on FRG, we have:

d 0 (T ) = k i=1
±φ -1 (S, M 1 , . . . , d 0 (M i ), . . . , M k )

This proves the isomorphism of chain complexes. □ Remark 7. Let λ ⊢ n and let S(λ) the direct sum of S(P ) for P a partition of n in parts of size λ i . We have a right action of the group S λ = S λ i on i G(λ i ), a left action of S λ , and a right action of S n on S(λ). The isomorphism of chain complexes is compatible with those actions, meaning that we have the following isomorphism of S n -modules:

FRG(n) ≃ λ⊢n i G(λ i ) ⊗ S λ S(λ)
We can finally apply the Kunneth formula to show that the cohomology of dgComGreg is concentrated in degree 0.

Theorem 34. The cohomology of the operad dgComGreg is concentrated in degree 0. Proof. Since H * (dgComGreg) = H 0 (dgComGreg), we have that H 0 (dgComGreg) is the suboperad of ComPreLie generated by xy and c. Hence, we have a surjective morphism FMan → H 0 (dgComGreg). We know that dim(FMan(n)) = n n-1 from [START_REF] Dotsenko | Algebraic structures of F -manifolds via pre-Lie algebras[END_REF], and we have computed the Euler characteristic of FRG in Proposition 30. Since the dimensions are the same, the morphism FMan → H 0 (dgComGreg) is an isomorphism. Hence, φ is injective. □ Corollary 36. Let u be the additional grading of FMan by the number of commutative product. The Hilbert series of FMan is given by: f FMan (t, u) = f F RG (t, u, -1) = rev t exp ln(1 + ut) u -1 exp(-t) Remark 9. Moreover, from Remarks 7 and 8, and using the same notations, we have the following isomorphism of S n -modules:

FMan(n) ≃ λ⊢n i
Lie(λ i ) ⊗ S λ S(λ)

Remark 10. Theorem 3.3 from [START_REF] Markl | Lie elements in pre-Lie algebras, trees and cohomology operations[END_REF] gives a description of the subspace Lie(V ) ⊆ PreLie(V ) using constructions similar to the operadic twisting of PreLie. This description can be understood as a consequence of [9, Theorem 5.1]. It can be generalized to give description of the subspace FMan(V ) ⊆ ComPreLie(V ) using Theorem 35.
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Figure 2 .

 2 Figure 2. Example of computation of d MC on some trees.

Theorem 9 .

 9 [9, Theorem 5.1] The embedding of differential graded operads (Lie, 0) → TwPreLie induces an isomorphism in the cohomology. Corollary 10. The embedding of differential graded operads (Lie, 0) → Greg -1 induces an isomorphism Lie → H * (Greg -1 ).

  3)⟩ where x * , y * and c * are binary operations, and the action of S 2 on K⟨x * , y * , c * ⟩ is given by x * .(1 2) = y * and c * .(1 2) = -c * . We refer to [15, Subsection 7.2] for a detailed description of the Koszul dual of a quadratic operad generated by arity 2 elements.

Figure 4 .

 4 Figure 4. The set FH(2)

Figure 5 .

 5 Figure 5. The sequential axiom for FH (a) Notation for T

  a, b, c ∈ X and v a finite word. Because the letters commute, we can write the elements of Ar(X) with the arrow going from the first letter to the second one. Let LCA(X) = LC(X) ⊕ Ar(X) and let us define •.•, [•, •] and {•, •} on LCA(X) by:• {a ⊗ v, b ⊗ w} = ↷ abvw for a, b ∈ X, • ( ↷ abv).(c ⊗ w) = ↷ abvcw for c ∈ X,• and •.• and [•, •] are the same as in LC(X).

↷

  abv = {a ⊗ v, b ⊗ ε}. □ Proposition 20. We have dim(Mult(LCA({a, b, c, d}))) = 27. Proof. We have: Mult(LCA({a, b, c, d})) = Mult(LC({a, b, c, d})) ⊕ Mult(Ar({a, b, c, d}))

Definition 18 .

 18 Let us define the reduced ComGreg operad RedComGreg by

  2) = -l and c.(1 2) = c. The relations defining FMan are the Jacobi relation of the Lie bracket l, the associativity relation of the commutative product c and the so-called Hertling-Manin relation which is cubical. The Hertling-Manin relation can be understood the following way: Let

Proof.

  Let us denote d descr the map described in the proposition. Let us prove that d descr = d 0 . In order to do so, let us prove that d descr (C) = d 0 (C) for C a corolla, and then that d descr (T• i C) = d descr (T ) • i C + (-1) |T | T • i d descr (C) for i alabel of a leaf of T and C a corolla. Let us first prove that d descr (C) = d 0 (C) for C a corolla. Let C be a corolla, if C = x n or g n (up to a permutation) then d descr (C) = d(C) = d 0 (C) from Proposition 7. Else, we have C = p P for some partition P , which allows us to write C as a composition the following way:

Proof.Remark 8 .

 8 From the previous proposition, we have that:(FRG(n), d 0 ) ≃ P ∈Part(n) E∈P (G(E), d) ⊗ S(P )Hence, we have:H * (FRG(n), d 0 ) ≃ P ∈Part(n) E∈P H * (G(E), d) ⊗ S(P )From [9, Theorem 5.1], we have that H * (G(E), d) is concentrated in degree 0. Hence, H * (FRG(n), d 0 ) is concentrated in degree 0. The spectral sequence associated to the filtration by the height abuts at the first page, hence the cohomology of (FRG, d) is concentrated in degree 0.□ From this proof, we can get the following description of the cohomology of (FRG, d):H * (FRG(n), d) ≃ P ∈Part(n) E∈P Lie(E) ⊗ S(P )This description could allow us to get a recursive formula for the dimension of H * (FRG(n), d 0 ) if the dimensions of S(P ) were known.Corollary 35. The morphism FMan → ComPreLie is injective.
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