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1 Spin Glasses Spin glasses are paradigmatic complex systems, for which disorder plays a central role. Although the term was originally coined to describe certain magnetic materials that exhibit an exotic phase behavior, associated models and theory have since found applications in a wide variety of fields, thus making the study of spin glasses an intrinsically interdisciplinary endeavor.

Here, we provide an overview of spin glasses (SGs), from their experimental context to their common theoretical models. We notably present several theoretical methods developed within the context of their study, describe the differences between mean-field and three-dimensional SGs, discuss various interdisciplinary applications, and introduce some open questions in the field.

Experimental SGs As materials, SGs are disordered magnetic alloys containing strongly interacting ions immersed in a weakly interacting substrate [START_REF] Mydosh | Spin Glasses: an Experimental Introduction[END_REF][START_REF] Binder | Spin glasses: Experimental facts, theoretical concepts, and open questions[END_REF][START_REF] Nordblad | Disordered magnetic systems[END_REF][START_REF] Vincent | Spin glass experiments[END_REF]. They are prepared by rapidly cooling the liquid alloy, thus fixing the strongly interacting particles at random positions within the resulting solid. The pairwise exchange interaction between ions is then positive or negative, depending on the distance vector r between ions, such as they are for Ruderman-Kittel-Kazuya-Yosida (RKKY) interactions [START_REF] Ruderman | Indirect exchange coupling of nuclear magnetic moments by conduction electrons[END_REF][START_REF] Kasuya | A theory of metallic ferro-and antiferromagnetism on zener's model[END_REF][START_REF] Yosida | Magnetic properties of cu-mn alloys[END_REF],

J(r) ∼ 1 |r| 3 cos(k • r) , (1) 
where the modulus of the frequency k is of the order of the Fermi vector. Spin glasses also arise in systems with interactions different from RKKY. The general idea is that because ion positions depend on the specific realization of the alloy, distances between them are randomly distributed (and a priori unknown), and therefore values of J(r) are randomly positive and negative.

To make these systems more physically tractable, we can define SG models assuming that the distances between ions are fixed (for example, on a lattice), and that the coupling between two ionscommonly called spins -is a quenched random variable [START_REF] Anderson | Localisation theory and cumn problems -spin glasses[END_REF]. Quenched variables here refer to random quantities that appear in the Hamiltonian as parameters that do not change during the evolution of the system, so as to capture that ions' positions are fixed over the relevant experimental time scales. This formulation leads to the generic SG Hamiltonian

H = - N i<j s i • J ij s j , (2) 
where the N dynamical variables are spins s i coupled through pairwise interactions of quenched magnitude J ij . Spins can be formulated in different ways, but in this section we restrict our consideration to Ising spins, s i = ±1, both because of their simplicity, and because experimental systems are typically spatially anisotropic [START_REF] Dzyaloshinsky | A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics[END_REF][START_REF] Moriya | New mechanism of anisotropic superexchange interaction[END_REF][START_REF] Fert | Role of anisotropic exchange interactions in determining the properties of spin-glasses[END_REF], thus rendering effective interactions Ising-like [START_REF] Martín-Mayor | Three-dimensional heisenberg spin glass under a weak random anisotropy[END_REF][START_REF] Baity-Jesi | Phase transition in threedimensional heisenberg spin glasses with strong random anisotropies through a multi-gpu parallelization[END_REF]. The quenched random variables are extracted from a distribution P (J ij ), which has support on both positive and negative values. In fully-connected models, all couplings are extracted from P (J ij ), while in other models some of the couplings are set to zero. For example, the Edwards-Anderson model (EAM) is defined by Hamiltonian (2) on a d-dimensional square lattice, so if s i and s j are not nearest neighbors then J ij is suppressed. Although Eq. ( 2) is not the only way to model SGs (for example, interactions can be more than pairwise), two of its features are nevertheless generic: quenched disorder and frustration [START_REF] Young | Spin Glasses and Random Fields[END_REF]. Frustration here refers to the impossibility to satisfy simultaneously all local constraints, which follows from the couplings being i.i.d. variables that can be both positive and negative. As illustrated in Fig. 1, along a loop local couplings cannot all be minimized.

Self-averaging Because of the quenched disorder, every SG Hamiltonian is different from all others. In other words, every sample corresponds to a different set of couplings J ij . Interestingly, even though samples are microscopically different, experimental SG realizations display the same macroscopic behavior. SG descriptions thus work under the assumption, which holds in most relevant cases [START_REF] Guerra | The thermodynamic limit in mean field spin glass models[END_REF][START_REF] Carmona | Universality in sherrington-kirkpatrick's spin glass model[END_REF][START_REF] Chatterjee | A simple invariance theorem[END_REF][START_REF] Jagannath | Existence of the free energy for heavy-tailed spin glasses[END_REF], that large SG samples display equivalent average behavior. Therefore, although a quenched partition function, Z J , can be computed for each sample, the quantity of physical interest is the quenched free energy averaged (. . .) over the couplings distribution, for Boltzmann constant set to unity k B = 1, temperature T .

F = F J = -T log Z J , (3) 

Order parameter

The SG order parameter is also an important matter. In a ferromagnetic system, magnetization, M = 1 N i s i , distinguishes between the ferromagnetic and the paramagnetic phases. However, for the Hamiltonian in Eq. ( 2) -if P (J ij ) is symmetric around zero -the magnetization is zero for all temperatures.

If a low-temperature SG phase exists, there must nevertheless be some configurations that are preferred over others. One way of identifying these preferred configurations is through the Edwards-Anderson overlap [START_REF] Edwards | Theory of spin glasses[END_REF][START_REF] Edwards | Theory of spin glasses[END_REF],

q EA = 1 N lim t→∞ N i=1 s i (0)s i (t) t , (4) 
where (. . .) t ≡ 1 t t 0 (. . .)dt marks a time average. If spins s i have no preferred value, as in the paramagnetic phase, then the products in Eq. (4) vanish on average, and q EA = 0; but if some configurations are preferred, each spin has a preferential value, and q EA > 0.

As further discussed in Sec. 2.1, the overlap can also be expressed without resorting to time averages, through the concept of replicas. Replicas of a system have exactly the same couplings J ij , but evolve independently. For s (a) i and s (b) i denoting spins that belong to replicas a and b of the same sample, we can then write the overlap as

q ab = 1 N N i=1 s (a) i • s (b) i , (5) 
As above, the overlap will be zero if there is no preferred configuration, and positive otherwise.

Analytical Methods for Spin Glasses

Some of the most successful methods for studying SG Hamiltonians were developed to describe fullyconnected models as well as models defined on tree-like graphs. The first geometry corresponds to the mean-field (MF) approximation, which becomes exact in the limit of d → ∞ spatial dimensions, while the second goes beyond the MF description but neglects contributions from feedback loops.

The Replica Method

At variance with the partition function, which is typically non-self-averaging, the free energy is key to probing the low-temperature behavior of SGs (as shown in Eq. ( 3)). However, calculating the
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1-RSB parametrization of the Parisi overlap matrix. q 1 represents the degree of similarity between two replicas inside the innermost block of size m × m, whereas q 0 is the outermost block value. . average of the logarithm in Eq. ( 3) can be challenging. The replica method overcomes this difficulty by replacing the calculation of ln(Z) with that of Z n through the identity

ln Z = lim n→0 Z n -1 n , (6) 
and by treating Z n as the partition function for n replicas of the same sample. Treating the index n as an integer, however, hinges on the assumption that the analytical continuation n → 0 exists. Assuming it does, the replicated partition function can then be rewritten as a function of the overlap matrix Q ab describing the overlap between two replicas a and b:

Z n = (ab) dQ ab 2π e N A[Q ab ] . (7) 
Taking advantage of the thermodynamic limit N → ∞, the above expression can be evaluated by the Laplace method of saddle-point approximation, which extremizes the action A with the respect to the reference order parameter. The final result, therefore, depends on the structure of Q ab . The simplest and most intuitive ansatz for that structure is the replica symmetric (RS) one [START_REF] De Almeida | Stability of the Sherrington-Kirkpatrick solution of a spin glass model[END_REF][START_REF] Bray | Replica-symmetry breaking in spin-glass theories[END_REF]. In this case, the overlap among different replicas is the same for any pair of replicas, with the exception of the overlap between a replica and itself. In the RS scenario, the matrix Q ab therefore admits only two values: a diagonal contribution q d (for a = b) and an off-diagonal one q 0 (for a = b). As expected, the RS ansatz correctly describes the high temperature and large external magnetic field regimes. But as these control parameters are lowered, some models reach a critical de Almeida-Thouless (dAT) line [START_REF] De Almeida | Stability of the Sherrington-Kirkpatrick solution of a spin glass model[END_REF], below which the RS solution becomes unstable. Physically, a spin glass phase emerges when the RS solution is no longer stable.

More technically, below the dAT line, the correct solution requires a matrix Q ab with an iterative block structure, which breaks the symmetry between different pairs of replicas [START_REF] Parisi | Infinite number of order parameters for spin-glasses[END_REF][START_REF] Parisi | Toward a mean field theory for spin glasses[END_REF][START_REF] Parisi | The order parameter for spin glasses: a function on the interval 0-1[END_REF][START_REF] Parisi | A sequence of approximated solutions to the s-k model for spin glasses[END_REF][START_REF] Parisi | Magnetic properties of spin glasses in a new mean field theory[END_REF]. For the first iteration of replica symmetry breaking (noted 1-RSB), the n × n matrix is parametrized by a diagonal value q d and two off-diagonal values that can be either q 1 , if the two replicas belong to the same block of size m × m, or q 0 , if the replicas fall outside the innermost block (see Fig. 2). If the lowtemperature phase remains unstable after 1-RSB, this procedure can be iterated within each of these blocks, leading to a k-step RSB (or k-RSB). Depending on the specifics of the Hamiltonian, SG phases can have different levels of RSB. The limit k → ∞ corresponds to the full-RSB scenario, according to which the overlap matrix is parametrized by a continuous function q(x), with x ∈ [0, 1] [START_REF] Parisi | The order parameter for spin glasses: a function on the interval 0-1[END_REF]. The overlap density distribution, P (q), being non-zero over a continuous range of q, is a signature of the presence of an infinite number of symmetry-breaking points [START_REF] Mézard | Spin-Glass Theory and Beyond[END_REF].

In the replica formalism, all the mutual information about pairs of equilibrium configurations is encoded in the overlap, which is a measure of their mutual distance [START_REF] Ghirlanda | [END_REF][START_REF] Parisi | On the origin of ultrametricity[END_REF]. Given the hierarchical way in which the full-RSB construction is obtained, in systems with a full-RSB phase, the states have an ultrametric structure, meaning that their mutual distance can be described through a taxonomic or genealogical tree [START_REF] Mézard | Nature of the spin-glass phase[END_REF][START_REF] Mézard | On the microstructure of ultrametricity[END_REF][START_REF] Rammal | Ultrametricity for physicists[END_REF].

The replica structure of two common MF spin glass models. For the sake of concreteness, let's consider two paradigmatic MF spin glass models. Both have a low-temperature SG phase, but with different levels of RSB, and therefore present different free energy minima structures.

• The spherical p-spin model has Hamiltonian , where the factor N p-1 guarantees the extensivity of the free energy in the thermodynamic limit. For p ≥ 3, this class of mean-field systems is characterized by a 1-RSB low-temperature phase, with an emergent number of minima that grows exponentially with N , and those are separated by extensive barriers.

H = - N i1,...,ip=1 J i1,i2,...,ip s i1 ...s ip , (8) 
Small variations to this model result in significantly different physical behaviors. In particular, setting p = 2 results in only one single free-energy minimum (so there is no SG phase) [START_REF] De Dominicis | Random Fields and Spin Glasses: a field theory approach[END_REF], whereas replacing the spherical with Ising spins [START_REF] Derrida | Random-energy model: Limit of a family of disordered models[END_REF] results in the 1-RSB phase becoming unstable toward a full-RSB phase at low temperatures [START_REF] Viviane | Landscape statistics of the p-spin ising model[END_REF][START_REF] Crisanti | The complexity of the spherical p-spin spin glass model, revisited[END_REF][START_REF] Crisanti | Spin-glass complexity[END_REF].

• The Sherrington-Kirkpatrick model (SK) [START_REF] Sherrington | Solvable model of a spin-glass[END_REF][START_REF] Sherrington | Stability of the sherrington-kirkpatrick solution of a spin glass model: a reply[END_REF] has a Hamiltonian with an external uniform field h H = -

(ij) J ij s i s j -h i s i (9) 
where the sum runs over distinct pairs. The spins are Ising variables, s i = ±1, and the random couplings are extracted from a Gaussian distribution P e -N J 2 ij /(2J 2 ) with zero mean and variance J 2 /N . The low-temperature phase of this model is characterized by a hierarchical organization of energy minima, as given by the Parisi solution. The emergent number of minima is sub-exponential in system size, and those are separated by sub-extensive barriers [START_REF] Mézard | Nature of the spin-glass phase[END_REF]. The transition from single equilibrium (RS) to multiple equilibria (full-RSB) is second-order-like, with diverging correlation lengths and power-law singularities.

The solution of the SK model obtained by the replica method was rigorously proven thirty years later [START_REF] Guerra | The thermodynamic limit in mean field spin glass models[END_REF][START_REF] Guerra | Broken replica symmetry bounds in the mean field spin glass model[END_REF][START_REF] Talagrand | On the high temperature phase of the sherrington-kirkpatrick model[END_REF][START_REF] Talagrand | The Parisi formula[END_REF]. Even though there is no rigorous demonstration that the replica method is generally correct, it has since been proven to provide the correct result in several specific cases [START_REF] Brennecke | The replica symmetric formula for the sk model revisited[END_REF][START_REF] Shinzato | Validation of the replica trick for simple models[END_REF][START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF], and no counter-example is known.

The Thouless-Anderson-Palmer (TAP) Approach

The TAP approach aims to probe complex energy and free-energy landscape properties through a perturbative high-temperature expansion (also known as Plefka or Georges-Yedidia expansion [START_REF] Plefka | Convergence condition of the tap equation for the infinite-ranged ising spin glass model[END_REF][START_REF] Georges | How to expand around mean-field theory using hightemperature expansions[END_REF]) by defining a Legendre transform F[m] of the free energy as a function of the average magnetization m. Such an expansion can detect the metastable states of the system, which correspond to the local minima of an appropriately-defined non-convex functional.

The underlying idea is to enforce the system to have single-site magnetization m i by means of Lagrange multipliers λ (β) i that depend on the inverse temperature β. Then, from the Legendre transform, one obtains

F (β) [m] = log s e -βH[s]+ i λ (β)
i (si-mi) [START_REF] Moriya | New mechanism of anisotropic superexchange interaction[END_REF] given the stationarity condition λ

(β) i = -∂F (β) [m]
∂mi . In the β → 0 limit, spins are uncorrelated, making the computation of the first derivatives1 of the free-energy functional with respect to β very straightforward:

dF (β) [m] dβ β=0 = -H , (11) 
d 2 F (β) [m] dβ 2 β=0 = H[s] -H - i ∂λ (β) i ∂β (s i -m i ) 2 . ( 12 
)
The second derivative involves both the connected part of the Hamiltonian and the partial derivatives of the Lagrange multipliers. The TAP free energy can then be written as a second-order expansion around the β = 0 limit. For the SK model, it reads

F SK TAP [m] = - 1 β i s 0 (m i ) - 1 2 i =j J ij m i m j - N β 4 (1 -q) 2 , ( 13 
)
where the first term on the right-hand side accounts for entropic effects, the second term is average energy contribution, and the last piece, the Onsager reaction term, represents a first correction to the MF approximation. It is also worth noting that since the couplings in the SK model are of order 1/ √ N , O(β 2 ) terms do matter in the final TAP expression. This contrasts with the purely ferromagnetic case (the fully-connected Ising model), for which the couplings are of order 1/N .

In the case of the spherical p-spin model, the TAP free energy reads

F pspin TAP [m] = - 1 β i s 0 (m i ) - 1 p! i1,...,ip J i1,...,ip m 1 ...m p - βN 4 1 -pq p-1 + q p (p -1) , (14) 
where, again, the last term represents the Onsager reaction term. By setting m i = 0, one can immediately check that the TAP free energy is equal to -β/4, which is the free energy of the paramagnetic state.

In principle, the equilibrium probability distribution -hence the partition function -can always be decomposed into a combination of pure states α, with a free-energy density f α . These pure states are entirely determined by a set of local observables, such as local magnetizations. The partition function can therefore be expressed as a sum over such states [START_REF] Guerra | The thermodynamic limit in mean field spin glass models[END_REF] where in the last step we applied the saddle-point method [START_REF] Witham | Linear and nonlinear waves[END_REF][START_REF] Bernardini | Metodi matematici della fisica[END_REF]. The configurational entropy Σ represents the logarithm of the total number of states. Evaluated at the states with f * , which contribute maximally to Z, it leads to a simple temperature dependence of the TAP free energy with the identification ∂Σ(f, β)/∂f | f * (β) = β.

Z = e -βN F α e -βN fα = df α δ(f -f α )e -βN f = df e N [Σ(f,β)-βf ] e N [Σ(f * ,β)-βf * ] ,
In the p-spin model, this decomposition in pure states discloses a rich behavior in terms of the number of pure states that, at a given temperature, participate in the thermodynamic behavior of the system. At high temperatures, the free-energy density is ruled by a single state, the paramagnetic (Boltzmann-Gibbs) state. Upon lowering the temperature, one reaches a dynamical transition at temperature T d , at which the emergence of an exponentially large number of clusters of pure states is accompanied by a dramatic slowing down of the dynamics. Surprisingly, the transition is not associated with any thermodynamic transition, because the free energy preserves its analyticity. The thermodynamic transition occurs at a lower temperature, T s , known as static or condensation transition, where all different clusters of states collapse to the same state as a clear signature of vanishing configurational entropy [START_REF] Crisanti | The complexity of the spherical p-spin spin glass model, revisited[END_REF].

Although the TAP approach was conceived as a high-temperature expansion, it can also be developed in terms of other perturbative quantities, such as a fictitious coupling associated with an effective energy cost. In this case, the Plefka-like expansion offers a playground for the definition of suitable effective high-dimensional potentials in situations where the energy is either ill-defined or trivially zero, such as in non-convex constraint satisfiability problems [START_REF] Altieri | The jamming transition in high dimension: an analytical study of the tap equations and the effective thermodynamic potential[END_REF][START_REF] Altieri | Higher-order corrections to the effective potential close to the jamming transition in the perceptron model[END_REF].

The Cavity Method

The cavity method2 was initially devised as a way to solve the SK model without needing to resort to the replica formalism, but can also be used to go beyond the MF approximation. It can notably consider correlations between spins, thanks to the fact that it is exact in systems with a loopless interaction graph -or with divergingly wide loops -such as in trees and some random graphs. In the following, we will focus on finite-connectivity graphs, G = (V, E), defined by V nodes and E edges. The Hamiltonian in Eq. ( 2) can be then rewritten as E(s) = -(i,j)∈E J ij s i s j , where i, j belong to the same edge E. The graph G together with the set of random couplings J ij then define a sample.

The main goal of the cavity method is to calculate the probability distribution of each spin, P (s j ). The idea behind the approach is that P (s j ) is determined by the local fields induced by all the neighbors of s j , which are in turn determined by their own neighbors, and so on (Fig. 3). Because of the tree-like structure of the graph, the neighbors of s j are mutually independent, and hence P (s j ) can be factorized and determined through the incoming local fields, νa→j (s j ) (where a indicates a neighboring interaction): P (s j ) a∈∂j νa→j (s j ). At the same time, the interaction a influencing s j is defined by the marginal distribution of all the spins k in the neighborhood of a, once s j is removed, ν k→a (s j ). Therefore, the cavity formalism results in a set of coupled equations for the marginal probability laws

     ν j→a (s i ) ∝ b∈∂j\a νb→j (s j ) , νa→j (s j ) ∝ s∈∂a\j ψ a (s ∂a ) k∈∂a\j ν k→a (s k ) , (16) 
where ψ a is called compatibility function, which is analogous to the Boltzmann weight, and ∂a\j indicates the spins near a excluding j.

The resulting free energy as a function of fixed-point messages turns out to be a combination of three contributions coming from: all function nodes, all variable nodes, and the edges connecting i to any possible function node (see Fig. 3). When the size of the loops is larger than the correlation length, the signals entering j are independent. In this case, if there is a unique solution for the state in j, the cavity method can recover it exactly. For instance, at the RS level, where there is only one pure state, the cavity approach is formally equivalent to the replica method [START_REF] Mézard | Spin-Glass Theory and Beyond[END_REF]. It the system is not RS, or if the loops are short, the approach needs to be refined. For example, 1-RSB cavity protocols have been developed to extract properties of the pure state decomposition and satisfiability conditions in generic optimization problems [START_REF] Braunstein | Survey propagation as local equilibrium equations[END_REF][START_REF] Mertens | Threshold values of random k-sat from the cavity method[END_REF]. Such 1-RSB message passing equations go by the name of survey propagation and have been generalized as population dynamics algorithms.

Beyond Mean-Field: multi-layer construction and loop corrections The cavity method stops being exact in a non-tree-like topology and is indeed hindered by the presence of loops. Furthermore, because of its non-perturbative nature, any small parameter expansion used to compute corrections to mean-field theory [START_REF] Kb Efetov | Effective medium approximation in the localization theory: Saddle point in a lagrangian formulation[END_REF][START_REF] Parisi | Loop expansion around the bethe-peierls approximation for lattice models[END_REF] appears to be unfeasible. One can nevertheless build a M -layer model, where M copies of the original lattice are stacked on top of each other assuming the same distribution of random couplings. The idea -originally proposed in computer science by Vontobel [START_REF] Pascal | Counting in graph covers: A combinatorial characterization of the bethe entropy function[END_REF] -has been reworked recently in disordered systems based on a rewiring procedure. By inducing random permutations of the links, inter-layer connections, and hence spatial loops, are automatically generated by a generalized transfer matrix formalism on uncorrelated one-dimensional chains. The perturbative computation of finite-size corrections in powers of 1/M notably offers a reliable formal method to study critical phenomena in finite-dimensional systems [START_REF] Altieri | Loop expansion around the bethe approximation through the m-layer construction[END_REF]. The advantage of this tree-based approach is that it can recover phase transitions that deviate from the behavior of fully-connected models and are instead more similar to the finite-dimension phenomenology. This situation arises, for instance, in the Random Field Ising Model [START_REF] Biroli | Random field ising-like effective theory of the glass transition. ii. finite-dimensional models[END_REF][START_REF] Chiara Angelini | Loop expansion around the bethe solution for the random magnetic field ising ferromagnets at zero temperature[END_REF], which is strongly affected by non-perturbative effects in low dimensions, and in Anderson localization [START_REF] Abou-Chacra | A selfconsistent theory of localization[END_REF] in the quantum realm.

Dynamical Mean-Field Theory (DMFT)

Understanding the dynamics of SGs is one of the oldest and most challenging problems in the theory of matter. One characteristic feature of the SG dynamics is that its relaxation depends on the history of the system itself, i.e., it ages. In other words, the autocorrelation between a time t and t > t does not only depend on (t -t), but also on the age of the system, t. An aging system relaxes extremely slowly without ever reaching an equilibrium state. During its exploration, the system wanders across states that are not the relevant ones from a thermodynamic viewpoint and whose static properties cannot be defined rigorously.

A MF solution for the dynamics in glassy systems was first suggested by Sompolinsky and Zippelius for equilibrium properties [START_REF] Sompolinsky | Relaxational dynamics of the edwards-anderson model and the mean-field teheory of spin-glasses[END_REF]. Intriguing off-equilibrium features came emerged from a deeper investigation of specific models, for which a closed set of integro-differential equations could be solved [START_REF] Cugliandolo | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF][START_REF] Lf Cugliandolo | Evidence of aging in spin-glass mean-field models[END_REF][START_REF] Franz | The response of glassy systems to random perturbations: A bridge between equilibrium and off-equilibrium[END_REF].

For the sake of simplicity, in the following, we shall consider the over-damped Langevin dynamics of a system in contact with a thermal bath,

ds i dt = - ∂H ∂s i + η i (t) ( 17 
)
whose behavior is captured by Gaussian white noise with zero mean and variance η i (t)η j (t ) = 2T δ ij δ(t-t ). The index i = 1, ..., N runs over the total number of spins in the system. The Hamiltonian H typically incorporates a single-spin potential V (s) plus a disordered part, which explicitly depends on the quenched disordered couplings (see e.g. Eq. ( 9)), which need to be averaged out. The dynamical MF procedure allows to average over the couplings and coarsen the time-dependence of the system as that of a single average spin s(t). For the p-spin model, the resulting DMFT equation reads [START_REF] Sompolinsky | Relaxational dynamics of the edwards-anderson model and the mean-field teheory of spin-glasses[END_REF][START_REF] Castellani | Spin-glass theory for pedestrians[END_REF]:

ṡ(t) = - ∂V (s(t)) ∂s + p(p -1) 2 t 0 dt R(t, t )C p-2 (t, t )s(t ) + ξ(t) (18) 
where the noise ξ(t) accounts for the interaction with the rest of the system and has an extra colored term, i.e. ξ(t)ξ(t ) = 2T δ(t -t ) + C(t, t ). The dynamical equation above is expressed in terms of the two-time correlation function

C(t, t ) = 1 N i s i (t)s i (t ) , (19) 
and of the response function to an external pulse perturbation

R(t, t ) = 1 N i δs i (t) δh i (t ) hi=0 . ( 20 
)
In the thermodynamic limit, the above equations converge to a unique non-fluctuating solution, which is the only one allowed by causality. At equilibrium, C(t-t ) and R(t-t ) are related by the fluctuationdissipation theorem, R(t-t ) = -1 T Θ(t-t ) d dt C(t-t ). While, for finite N , the correlation and response functions are expected to decay exponentially in time, this property is no longer generically true in the thermodynamic limit, as the relaxation time might diverge, thus signaling a dynamical transition (Sec. 2.2).

Based on the long-time limit analysis first performed in the spherical p-spin model [START_REF] Cugliandolo | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF], one can separately analyze the fast regime, in which relevant degrees of freedom rapidly equilibrate preserving time translation invariant (TTI) properties, and the slow regime, in which violations of fluctuationdissipation relations and non-equilibrium phenomena emerge. In the large-time limit, for t, t → ∞, the correlation function can be split as C(t, t ) = C TTI (t -t ) + C Aging (t, t ). Depending on the appearance either of a single diverging timescale or a multiplicity of progressively slower timescales, the slow part of the correlator, C Aging (t, t ), can be captured by a combination of involved functions each associated with a slow timescale [START_REF] Bouchaud | Out of equilibrium dynamics in spin-glasses and other glassy systems[END_REF].

Notably, by assuming the MF picture of aging as a starting point (such as Eq. ( 18)), it is possible to investigate the properties of asymptotic regimes without explicitly solving the integro-differential equations for the correlation and response functions (e.g. Eq. ( 19), [START_REF] Edwards | Theory of spin glasses[END_REF]). The outcome is different depending on whether the low-T phase is 1-RSB or full-RSB [START_REF] Altieri | Dynamical mean-field theory and aging dynamics[END_REF]. For the latter, a dynamical effective stochastic process for the slow-evolving effective part of Eq. ( 18) has been worked out [START_REF] Altieri | Dynamical mean-field theory and aging dynamics[END_REF], which exactly maps into the ultrametricity condition associated with the Parisi solution in the replica formalism [START_REF] Mézard | Spin-Glass Theory and Beyond[END_REF]. Hence, DMFT both in the presence of a single slow timescale and in the ultrametric scenario explicitly links the aging dynamics with the replica-based description.

3 Spin Glasses in Three Dimensions

Numerical Methods

Although MF treatments provide elegant exact solutions for SGs defined on a fully-connected or treelike graph, extending those findings to three dimensions is quite challenging. For instance, even the existence of a SG phase in the 3d EAM has yet to be proven analytically. Most progress, therefore, arise from numerical simulations. In particular, there is convincing numerical evidence that, as their experimental counterparts, SG models in three dimensions exhibit a continuous phase transition at a temperature T c [START_REF] Ogielski | Critical behavior of three-dimensional ising spin-glass model[END_REF][START_REF] Palassini | Universal finite-size scaling functions in the 3D Ising spin glass[END_REF][START_REF] Ballesteros | Critical behavior of the three-dimensional Ising spin glass[END_REF][75][76][77][START_REF] Pleimling | Dynamic critical behavior in ising spin glasses[END_REF][79][80][81][82][START_REF] Katzgraber | Universality in three-dimensional ising spin glasses: A monte carlo study[END_REF][START_REF] Machta | The percolation signature of the spin glass transition[END_REF][85][START_REF] Hasenbusch | Critical behavior of three-dimensional ising spin glass models[END_REF][START_REF] Fernandez | Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis[END_REF][START_REF] Baity-Jesi | Critical parameters of the three-dimensional ising spin glass[END_REF].

The low-temperature dynamics of SGs is, however, very slow, due to the competition between short and long-range interactions, and the presence of temperature chaos. In the SG phase, the free energy profile indeed changes drastically even for infinitesimal changes in temperature [START_REF] Seoane | Spin glasses, the quantum annealing, colloidal glasses and crystals: exploring complex free-energy landscapes[END_REF]. The numerical study of SGs at low T is therefore highly challenging [START_REF] Yllanes | Rugged Free-Energy Landscapes in Disordered Spin Systems[END_REF]. Numerical strategies advanced for studying SGs notably include: the construction and use of special-purpose computers [START_REF] Robert B Pearson | A special purpose machine for montecarlo simulation[END_REF][START_REF] Condon | Fast special purpose computer for monte carlo simulations in statistical physics[END_REF][START_REF] Van Der Sijs | RTNN: The New Parallel Machine in Zaragoza[END_REF][START_REF] Cruz | SUE: A special purpose computer for spin glass models[END_REF][START_REF] Belletti | Ianus: And adaptive fpga computer[END_REF][START_REF] Belletti | Simulating spin systems on IANUS, an FPGA-based computer[END_REF][START_REF] Baity-Jesi | Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project[END_REF][START_REF] Baity-Jesi | The janus project: boosting spin-glass simulations using fpgas[END_REF][START_REF] Baity-Jesi | Janus II: a new generation application-driven computer for spin-system simulations[END_REF], GPUs [START_REF] Baity-Jesi | Phase transition in threedimensional heisenberg spin glasses with strong random anisotropies through a multi-gpu parallelization[END_REF][START_REF] Weigel | Simulating spin models on gpu[END_REF][START_REF] Weigel | Performance potential for simulating spin models on gpu[END_REF][START_REF] Fang | Parallel tempering simulation of the three-dimensional edwards-anderson model with compact asynchronous multispin coding on gpu[END_REF][START_REF] Lulli | Out-of-equilibrium finite-size method for critical behavior analyses[END_REF], the formulation parallelization techniques, such as multi-spin coding [START_REF] Fang | Parallel tempering simulation of the three-dimensional edwards-anderson model with compact asynchronous multispin coding on gpu[END_REF][START_REF] Lulli | Out-of-equilibrium finite-size method for critical behavior analyses[END_REF][START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF][START_REF] Kawashima | Phase transition in the three-dimensional ±j ising spin glass[END_REF][START_REF] Isakov | Optimised simulated annealing for ising spin glasses[END_REF][START_REF] Jörg | Behavior of Ising spin glasses in a magnetic field[END_REF][START_REF] Fernandez | Universal critical behavior of the two-dimensional ising spin glass[END_REF], which, by encoding every spin on a single bit and restricting to bit-to-bit operations, allows one to simulate 64 replicas (the number of bits in a long integer) in the time of one; and the development of algorithms, such as parallel tempering, which consists of simultaneously simulating several replicas at different temperatures, and proposing Monte-Carlo updates, which exchange the temperatures among replicas [START_REF] Robert | Replica monte carlo simulation of spin-glasses[END_REF][START_REF] Hukushima | Exchange monte carlo method and application to spin glass simulations[END_REF][START_REF] Wang | Comparing monte carlo methods for finding ground states of ising spin glasses: Population annealing, simulated annealing, and parallel tempering[END_REF].

Spatial Correlations

A key feature of low-dimensional systems is the characteristic extent of spatial correlations, ξ. Its typical experimental determination is through the magnetic response to an external magnetic field h [START_REF] Joh | Extraction of the spin glass correlation length[END_REF][START_REF] Nakamae | Dynamic correlation length growth in superspin glass: Bridging experiments and simulations[END_REF][START_REF] Guchhait | Direct dynamical evidence for the spin glass lower critical dimension 2 < d l < 3[END_REF][START_REF] Guchhait | Magnetic field dependence of spin glass free energy barriers[END_REF], which provides the coherence length ξ Zeeman . In numerical simulations, the size of the correlated domains is instead calculated through correlation functions of the form [START_REF] Alvarez Baños | Nature of the spin-glass phase at experimental length scales[END_REF][START_REF] Belletti | An in-depth view of the microscopic dynamics of ising spin glasses at fixed temperature[END_REF] 

C(r) = 1 N N x q x q x+r , (21) 
where x indicates a position in the lattice, r is a displacement vector, and q x is usually the overlap at site x, q x = q
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x+ê (ê is a unit vector) [START_REF] Caracciolo | 3d ising spin-glasses in a magnetic field and mean-field theory[END_REF][START_REF] Altieri | Composite operators in cubic field theories and link-overlap fluctuations in spin-glass models[END_REF], since these quantities are equivalent in the limit d → ∞. There are several ways to extract a correlation length ξ micro from C(r) [START_REF] Belletti | An in-depth view of the microscopic dynamics of ising spin glasses at fixed temperature[END_REF][START_REF] Cooper | Solving φ 4 1,2 field theory with Monte Carlo[END_REF][START_REF] Belletti | Nonequilibrium spin-glass dynamics from picoseconds to one tenth of a second[END_REF][START_REF] Baity-Jesi | Spin Glasses: Criticality and Energy Landscapes[END_REF]. For example, ξ micro = r 2 C(r)dr C(r) . While, out of equilibrium, ξ Zeeman and ξ micro have different behaviors [START_REF] Baity-Jesi | Memory and rejuvenation in spin glasses: aging systems are ruled by more than one length scale[END_REF], at equilibrium they match [START_REF] Baity-Jesi | Matching microscopic and macroscopic responses in glasses[END_REF]. These length scales can be used to identify phase transitions through finite-size scaling [START_REF] Fisher | Critical phenomena, proc. 51st enrico fermi summer school[END_REF][START_REF] Nightingale | Scaling theory and finite systems[END_REF][START_REF] Binder | Finite size scaling analysis of ising model block distribution functions[END_REF], by comparing simulations performed in systems of different linear sizes L. Because quantities such as ξ(T ) L are scale-invariant at T c , one can identify critical points by investigating where the curves ξ(T ) L cross for different L. For the study of SGs, it has also proven useful to consider other quantities, such as ratios of susceptibilities [START_REF] Baños | Thermodynamic glass transition in a spin glass without time-reversal symmetry[END_REF], possibly conditioned to given values of the overlap [START_REF] Baity-Jesi | The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority[END_REF].

The Spin-Glass Phase in Low Dimensions

Pictures for the nature of the low-temperature phase in three dimensions. Just like there is no rigorous proof of the existence of T c in three dimensions, there is no first-principles theory on the nature of the spin-glass phase in this case either 3 . Two main phenomenological scenarios have been proposed: the Droplet and the RSB pictures. The former [START_REF] Fisher | Absence of many states in realistic spin glasses[END_REF][START_REF] Huse | Dynamics of droplet fluctuations in pure and random ising systems[END_REF][START_REF] Fisher | Nonequilibrium dynamics of spin glasses[END_REF][START_REF] Fisher | Equilibrium behavior of the spin-glass ordered phase[END_REF] is based on a renormalization group approach on the EAM [START_REF]Phase transitions in gauge and spin-lattice systems[END_REF][START_REF] Kadanoff | Notes on migdal's recursion formulas[END_REF], which is exact in one dimension, and depicts the SG phase as having only two pure states, with q = ±q EA , reminiscently of the behavior of the ferromagnetic Ising model [START_REF] Huang | Statistical Mechanics[END_REF]. One consequence of this proposal is that the size of the surface separating different magnetic domains scales as L ds , with d s < d (for the Ising ferromagnet d s = d -1), and the energy of the smallest excitation grows with L. Another consequence is that the low-temperature phase disappears as soon as an external magnetic field is applied to the system. The RSB picture [START_REF] Parisi | Recent rigorous results support the predictions of spontaneously broken replica symmetry for realistic spin glasses[END_REF][START_REF] Marinari | Replica symmetry breaking in short-range spin glasses: Theoretical foundations and numerical evidences[END_REF][START_REF] Parisi | Replica symmetry breaking in and around six dimensions[END_REF] is based on the opposite limit, d = ∞. It assumes that the SG phase of the EAM is qualitatively similar to that of the SK model, with an overlap distribution P (q) which is non-zero over a wide interval of q. This picture prescribes that the domain surfaces are space-filling (d s = d) and the smallest excitation remains O(1) when L → ∞. In addition, the SG phase survives when a finite magnetic field is applied, with a dAT line h c (T ) separating the paramagnetic from the SG phase (as described in Sec. 2.1). Whether either of the two theories holds remains, however, a matter of debate [START_REF] Parisi | Replica symmetry breaking in and around six dimensions[END_REF][START_REF] Moore | Disappearance of the de Almeida-Thouless line in six dimensions[END_REF][START_REF] Yeo | Origin of the growing length scale in mp-spin glass models[END_REF][START_REF] Yucesoy | Evidence of non-mean-field-like lowtemperature behavior in the edwards-anderson spin-glass model[END_REF][START_REF] Yucesoy | Reply to comment[END_REF][START_REF] Billoire | Comment on "evidence of non-mean-field-like lowtemperature behavior in the edwards-anderson spin-glass model[END_REF][START_REF]Nature of the spin glass phase in finite dimensional (ising) spin glasses[END_REF][START_REF] Höller | One-step replica-symmetry-breaking phase below the de almeida-thouless line in low-dimensional spin glasses[END_REF][START_REF] Moore | Droplet-scaling versus replica symmetry breaking debate in spin glasses revisited[END_REF][START_REF] Newman | Ground-state stability and the nature of the spin glass phase[END_REF][START_REF] V Martin-Mayor | Numerical simulations and replica symmetry breaking[END_REF].

Evidence on the nature of the spin glass phase in 3d. Evidence to falsify or support the Droplet and RSB scenarios has principally been sought through numerical simulations. For example, equilibrium runs of the 3d EAM with linear size L ≤ 32 deep in the SG phase show that P (q) has wide support, and P (0) is stable as L increases [START_REF] Alvarez Baños | Nature of the spin-glass phase at experimental length scales[END_REF][START_REF] Baños | Sample-to-sample fluctuations of the overlap distributions in the three-dimensional edwards-anderson spin glass[END_REF]. This observation is in contradiction with the Droplet prediction, P (q) ∝ [δ(q -q EA ) + δ(q + q EA )], which assumes P (0) = 0. When an external magnetic field is applied to the system, equilibrium simulations appear perturbed by finite-size effects [START_REF] Baity-Jesi | The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority[END_REF], and there is disagreement on the existence of a dAT line. Arguments stemming from numerical simulations on the 3d EAM state that a phase transition could be present at temperatures that are 40% lower than those accessible [START_REF] Baity-Jesi | The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority[END_REF][START_REF] Baity-Jesi | Dynamical Transition in the D=3 Edwards-Anderson spin glass in an external magnetic field[END_REF]. Those are opposed by arguments from simulations on SG chains with long-ranged interactions, which mimic 3d systems, claiming that no transition exists [START_REF] Vedula | Study of the de almeida-thouless (at) line in the one-dimensional diluted power-law xy spin glass[END_REF]. We note, however, that the upper critical dimension is d up ≥ 6 [START_REF] Mézard | Spin-Glass Theory and Beyond[END_REF][START_REF] Chiara Angelini | Unexpected upper critical dimension for spin glass models in a field predicted by the loop expansion around the bethe solution at zero temperature[END_REF], and that there is strong evidence for a dAT transition in d = 4 [START_REF] Baños | Thermodynamic glass transition in a spin glass without time-reversal symmetry[END_REF]. Perturbative renormalization group analysis in d = 6 -is consistent with the presence of a dAT line [START_REF] Parisi | Replica symmetry breaking in and around six dimensions[END_REF][START_REF] Höller | One-step replica-symmetry-breaking phase below the de almeida-thouless line in low-dimensional spin glasses[END_REF][START_REF] Temesvári | Field theory for the almeida-thouless transition[END_REF][START_REF] Temesvári | [END_REF], with a non-trivial fixed point appearing at second order in [START_REF] Charbonneau | Nontrivial critical fixed point for replica-symmetrybreaking transitions[END_REF][START_REF] Charbonneau | Morphology of renormalization-group flow for the de almeida-thouless-gardner universality class[END_REF].

Outlook on the nature of the spin glass phase The current numerical evidence does not confirm the Droplet picture, but it has been argued that the observations might change if larger system sizes were simulated [START_REF] Moore | Droplet-scaling versus replica symmetry breaking debate in spin glasses revisited[END_REF][START_REF] Vedula | Study of the de almeida-thouless (at) line in the one-dimensional diluted power-law xy spin glass[END_REF]. It is to be noted, however, that times and system sizes of numerical simulations nowadays closely approach those of experiments [START_REF] Alvarez Baños | Nature of the spin-glass phase at experimental length scales[END_REF][START_REF] Baity-Jesi | Aging rate of spin glasses from simulations matches experiments[END_REF][START_REF] Zhai | Slowing down of spin glass correlation length growth: Simulations meet experiments[END_REF][START_REF] Paga | From glassy bulk systems to spin-glass films: simulations meet experiments[END_REF]. Therefore, if even there is a limit of very large L in which the Droplet theory applies, this might not be experimentally relevant [START_REF] V Martin-Mayor | Numerical simulations and replica symmetry breaking[END_REF]. Evidence in favor of the RSB picture is, however, not decisive, and relevant beyond-MF mechanisms might arise in low dimensions. Alternative or intermediate scenarios could also be valid [START_REF] Höller | One-step replica-symmetry-breaking phase below the de almeida-thouless line in low-dimensional spin glasses[END_REF], such as the trivial-non-trivial picture [161,162], according to which the domain surfaces are not space-filling, as in the Droplet picture, but there are large-scale excitations whose energy does not increase with size [163,[START_REF] Chatterjee | Spin glass phase at zero temperature in the edwards-anderson model[END_REF], as prescribed by the RSB scenario.

Conclusions

Universality classes While our discussion thus far focused on few specific SG models, changing details of the Hamiltonian can change general features of the energy landscape, such that new physics emerges. As discussed above, dimensionality plays a crucial role, with the d = 1, ∞ limits having dissimilar behaviors that might both differ from d = 3. Altering the distribution of the couplings [START_REF] Cizeau | Mean field theory of dilute spin-glasses with powerlaw interactions[END_REF][START_REF] Janzen | Thermodynamics of the lévy spin glass[END_REF], P (J ij ), does not seem to influence the universality class of the models as long as they are not fat-tailed [85,[START_REF] Janzen | Thermodynamics of the lévy spin glass[END_REF][START_REF] Carlos Andresen | Critical behavior and universality in lévy spin glasses[END_REF]. Changing the interaction range is also a relevant perturbation, in that a system with longer-ranged interactions is more MF like [168]. This effect has notably led to the search for a correspondence between short-ranged high-dimensional models and long-ranged SGs in d = 1 [START_REF] Vedula | Study of the de almeida-thouless (at) line in the one-dimensional diluted power-law xy spin glass[END_REF][START_REF] Helmut | Probing the almeida-thouless line away from the meanfield model[END_REF][START_REF] Baños | Correspondence between long-range and short-range spin glasses[END_REF][START_REF] Leuzzi | Long-range random-field ising model: Phase transition threshold and equivalence of short and long ranges[END_REF][START_REF] Wittmann | The connection between statics and dynamics of spin glasses[END_REF].

Another important is the nature of the spins. As described in Sec. 2.1, one can soften spins, passing from Ising to spherical spins. For pairwise interactions in d = ∞, this completely changes the landscape, which passes from complex to simple. (The dynamics nevertheless remains slow due to a large number of flat directions [START_REF] Cugliandolo | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF]173,[START_REF] Barrat | Basins of attraction of metastable states of the spherical p-spin model[END_REF].) Alternatively, one can use spins that are normalized vectors with m components [START_REF] De Almeida | The infinite-ranged spin glass with m-component spins[END_REF]. For high m, the landscape becomes trivial, both in high- [176] and low-dimensional systems [START_REF] Baity-Jesi | Inherent structures in m-component spin glasses[END_REF], which points toward using the limit m → ∞ for studies of the 1/m expansions [START_REF] Aspelmeier | Generalized bose-einstein phase transition in large-m component spin glasses[END_REF]179]. Because the m → ∞ behavior seems radically different from any finite m [180], however, this approach has not been extensively pursued.

One can also consider Hamiltonians that mix interactions with different numbers of bodies, such as mixed p-spin models [START_REF] Barrat | Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses[END_REF][START_REF] Crisanti | Spherical 2 + p spin-glass model: An exactly solvable model for glass to spin-glass transition[END_REF]. These models display several crossover temperatures at which the dynamical behavior changes qualitatively, apparently without any thermodynamic transitions [START_REF] Folena | Rethinking mean-field glassy dynamics and its relation with the energy landscape: The surprising case of the spherical mixed p-spin model[END_REF][START_REF] Folena | Gradient descent dynamics in the mixed p-spin spherical model: finite-size simulations and comparison with mean-field integration[END_REF][START_REF] Folena | The mixed p-spin model: selecting, following and losing states[END_REF]. This behavior is reminiscent of that of supercooled liquids [START_REF] Debenedetti | Metastable liquids. In Metastable Liquids[END_REF].

An important aspect, which goes beyond the description of the specific model, is that over the years SGs have become a theoretical paradigm for modeling many different complex systems across disciplines, with an extremely broad spectrum of equilibrium and out-of-equilibrium properties. In fact, theories based on disordered systems often reveal to be beneficial for the treatment of problems outside the domain of SGs. Heterogeneous systems, either with quenched or self-generated disorder, are much more general than it might be believed at first glance, ranging from neural networks and optimization problems [START_REF] Altieri | The jamming transition in high dimension: an analytical study of the tap equations and the effective thermodynamic potential[END_REF][START_REF] Altieri | Higher-order corrections to the effective potential close to the jamming transition in the perceptron model[END_REF][START_REF] Mertens | Threshold values of random k-sat from the cavity method[END_REF][START_REF] Gardner | Three unfinished works on the optimal storage capacity of networks[END_REF][START_REF] Mézard | Analytic and algorithmic solution of random satisfiability problems[END_REF][START_REF] Baldassi | Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes[END_REF][START_REF] Sarao Mannelli | Marvels and pitfalls of the langevin algorithm in noisy highdimensional inference[END_REF][START_REF] Chaudhari | On the energy landscape of deep networks[END_REF][START_REF] Franz | Universal spectrum of normal modes in low-temperature glasses[END_REF][START_REF] Antenucci | Glassy nature of the hard phase in inference problems[END_REF], signal reconstruction [START_REF] Ros | Complex energy landscapes in spiked-tensor and simple glassy models: Ruggedness, arrangements of local minima, and phase transitions[END_REF][START_REF] Ros | Complexity of energy barriers in mean-field glassy systems[END_REF], random lasers [START_REF] Angelani | Glassy behavior of light in random lasers[END_REF][START_REF] Antenucci | The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra[END_REF], financial markets [START_REF] Galluccio | Rational decisions, random matrices and spin glasses[END_REF][START_REF] Garnier-Brun | A new spin on optimal portfolios and ecological equilibria[END_REF][START_REF] Dessertaine | Out-ofequilibrium dynamics and excess volatility in firm networks[END_REF], supercooled liquids and jammed packings [START_REF] Charbonneau | Fractal free energy landscapes in structural glasses[END_REF][START_REF] Rainone | Following the evolution of hard sphere glasses in infinite dimensions under external perturbations: Compression and shear strain[END_REF][START_REF] Altieri | Microscopic theory of two-step yielding in attractive colloids[END_REF][START_REF] Altieri | The jamming transition[END_REF][START_REF] Parisi | Theory of simple glasses: exact solutions in infinite dimensions[END_REF] and theoretical ecology [START_REF] Bunin | Ecological communities with lotka-volterra dynamics[END_REF][START_REF] Biroli | Marginally stable equilibria in critical ecosystems[END_REF][START_REF] Altieri | Constraint satisfaction mechanisms for marginal stability and criticality in large ecosystems[END_REF][START_REF] Altieri | Properties of equilibria and glassy phases of the random lotka-volterra model with demographic noise[END_REF][START_REF] Altieri | Effects of intraspecific cooperative interactions in large ecosystems[END_REF][START_REF] Roy | Complex interactions can create persistent fluctuations in high-diversity ecosystems[END_REF][START_REF] Garcia | Well-mixed lotka-volterra model with random strongly competitive interactions[END_REF][START_REF] Altieri | Glassy features and complex dynamics in ecological systems[END_REF][START_REF] Ros | Generalized lotka-volterra equations with random, non-reciprocal interactions: the typical number of equilibria[END_REF], and thermodynamic and dynamic formalisms rooted in spin-glass theory can still be used to solve them.

Open problems SGs can be defined simply, but many questions remain open. We note: the nature of the SG phase [does replica symmetry breaking occur in finite-dimensional systems [START_REF] Moore | Droplet-scaling versus replica symmetry breaking debate in spin glasses revisited[END_REF][START_REF] V Martin-Mayor | Numerical simulations and replica symmetry breaking[END_REF]?] ; their out-of-equilibrium behavior [how and which length scales describe their evolution [START_REF] Baity-Jesi | Memory and rejuvenation in spin glasses: aging systems are ruled by more than one length scale[END_REF][START_REF] V Martin-Mayor | Numerical simulations and replica symmetry breaking[END_REF][START_REF] Zhai | Slowing down of spin glass correlation length growth: Simulations meet experiments[END_REF][START_REF] Baity-Jesi | The mpemba effect in spin glasses is a persistent memory effect[END_REF]? how are equilibrium states related to the closest local minima [START_REF] Folena | The mixed p-spin model: selecting, following and losing states[END_REF]?] ; or activated dynamics [how does the dynamics take place at times t N [START_REF] Ben Arous | Aging in the random energy model[END_REF][START_REF] Cammarota | Spontaneous energy-barrier formation in entropy-driven glassy dynamics[END_REF][START_REF] Gayrard | Convergence of clock processes and aging in metropolis dynamics of a truncated REM[END_REF][START_REF] Baity-Jesi | Activated aging dynamics and effective trap model description in the random energy model[END_REF][START_REF] Hartarsky | Maximum-energy records in glassy energy landscapes[END_REF][START_REF] Gayrard | Dynamic phase diagram of the rem[END_REF][START_REF] Stariolo | Activated dynamics of the ising p-spin disordered model with finite number of variables[END_REF][START_REF] Stariolo | Barriers, trapping times, and overlaps between local minima in the dynamics of the disordered ising p-spin model[END_REF][START_REF] Valentina | Distribution of rare saddles in the p-spin energy landscape[END_REF][START_REF] Matthew | Effective traplike activated dynamics in a continuous landscape[END_REF][START_REF] Ros | Dynamical instantons and activated processes in mean-field glass models[END_REF][START_REF] Rizzo | Path integral approach unveils role of complex energy landscape for activated dynamics of glassy systems[END_REF][START_REF] Matthew | Competition between energy-and entropy-driven activation in glasses[END_REF]?] ; temperature chaos [how and why does the landscape change drastically even with small temperature changes and how can we harness it to obtain low-temperature configurations [START_REF] Fernandez | Temperature chaos in 3d ising spin glasses is driven by rare events[END_REF][START_REF] Billoire | Rare events analysis of temperature chaos in the sherrington-kirkpatrick model[END_REF][START_REF] Guchhait | Temperature chaos in a ge:mn thin-film spin glass[END_REF][START_REF] Antonio Fernandez | Temperature chaos is a non-local effect[END_REF][START_REF] Baity-Jesi | Temperature chaos is present in off-equilibrium spin-glass dynamics[END_REF]?] ; the identification of metastates [can we explicitly measure the pure states of the SG phase [START_REF] Aizenman | Rounding effects of quenched randomness on first-order phase transitions[END_REF][START_REF] Newman | Multiple states and thermodynamic limits in short-ranged ising spin-glass models[END_REF][START_REF] Billoire | Numerical construction of the aizenman-wehr metastate[END_REF][START_REF] Cm Newman | Metastates and replica symmetry breaking[END_REF]?] ; connection to other kinds of systems [can we map the SG behavior onto other systems such as supercooled liquids or deep neural networks? [START_REF] Folena | Gradient descent dynamics in the mixed p-spin spherical model: finite-size simulations and comparison with mean-field integration[END_REF][START_REF] Charbonneau | Fractal free energy landscapes in structural glasses[END_REF][START_REF] Kirkpatrick | Infinite-ranged models of spin-glasses[END_REF][START_REF] Tarzia | Glass phenomenology from the connection to spin glasses[END_REF][START_REF] Baity-Jesi | Soft modes, localization, and two-level systems in spin glasses[END_REF][START_REF] Choromanska | The loss surfaces of multilayer networks[END_REF][START_REF] Kawaguchi | Deep learning without poor local minima[END_REF][START_REF] Rizzo | The glass crossover from mean-field spin-glasses to supercooled liquids[END_REF][START_REF] Baity-Jesi | Comparing dynamics: deep neural networks versus glassy systems[END_REF][START_REF] Baity-Jesi | Precursors of the spin glass transition in three dimensions[END_REF][START_REF] Franz | Jamming in multilayer supervised learning models[END_REF][START_REF] Bahri | Statistical mechanics of deep learning[END_REF]?].

These questions are not mere academic curiosities about a disordered magnetic alloy, because -as it has happened several times in the past already -spin-glass theory can significantly impact other fields. We take theoretical ecology as a final example. It is well known that the kind of sparsity of the interaction matrix of couplings between species has a crucial influence on the behavior of the ecosystem [START_REF] Marcus | Local and collective transitions in sparselyinteracting ecological communities[END_REF] and that these couplings are typically sparse in nature. Therefore, if we could harness low-dimensional SGs, which e.g. have spatial fluctuations, our understanding of ecological and biological communities would significantly advance.
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 1 Figure 1: Disordered interactions result in frustration. The signs along the edges indicate whether two neighboring spins prefer to point in the same (+) or opposite (-) directions. It is therefore impossible to satisfy all the couplings simultaneously on the square plaquette.

  where p indicates p-wise interactions to which each spin participates. Spins are continuous variables subject to the global constraint N i=1 s 2 i = N , and the random couplings are extracted from a Gaussian distribution P (J) = exp -J 2 N p-1p!
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 23 Figure 3: Left: Graph representation for the message νb→j (s j ), from the function node (square) to the variable node (circle). Right: corresponding part of the graph for the computation of the message νa→j (s j ), function of ν k→a (σ k ) from the variable node to the function node.

In the thermodynamic limit all higher-order terms but the first two can be neglected in a fully-connected system.

In computer science and artificial intelligence, the cavity method is also known as Belief Propagation, whereas in statistical physics is referred to as Bethe-Peierls[START_REF] Mezard | Information, physics, and computation[END_REF].

The results in this section refer to the 3d EAM, which is the most studied model.
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