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Abstract: This work examines the asymptotic characteristics of a conditional set-indexed empirical
process composed of functional ergodic random variables with missing at random (MAR). This
paper’s findings enlarge the previous advancements in functional data analysis through the use
of empirical process methodologies. These results are shown under specific structural hypotheses
regarding entropy and under appealing situations regarding the model. The regression operator’s
asymptotic (1 − α)-confidence interval is provided for 0 < α < 1 as an application. Additionally, we
offer a classification example to demonstrate the practical importance of the methodology.
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1. Introduction

There are several strategies for solving problems in statistics, among which empirical
process techniques are considered the best. Historically, many limit theorems for the empir-
ical process have been established in finite dimension frameworks (see, e.g., Refs. [1–3] for
exhaustive, self-contained texts with a variety of statistical applications) together under
mixing conditions and independent identically distributed framework, in the setting of
independents variables [4] characterized modulo measurability, the classes C of sets for
which the Glivenko–Cantelli theorem holds, we may also cite Refs. [5–15]. Under various
mixing conditions, empirical processes based on dependent data have been investigated;
for instance, the authors of Ref. [16] established the asymptotic normality of sequences
undergoing phi-mixing. Regarding these areas of investigation concerning an alternative
form of mixing, it is possible to refer to Refs. [17–20]. Nevertheless, the author of [21] identi-
fied a bracketing condition that could occur due to vigorous mixing. The function-indexed
empirical procedure for beta-mixing sequences was investigated by Ref. [22]. Uniform
convergence and asymptotic normality of a set-indexed conditional empirical process
within a strictly stationary and strong mixing framework have been established by Ref. [23].
Over the past few decades, there has been a growing interest in the statistical literature
regarding matters concerning functional random variables, which are variables with values
that exist in an infinite-dimensional space. As is the case, for example, in meteorology,
medicine, satellite imagery, and numerous other scientific disciplines, the proliferation of
data collected on an ever-increasingly precise temporal and spatial grid has inspired the
development of this research topic. Numerous complex theoretical and numerical inquiries
were thus engendered by the statistical modeling of these data, which were perceived
as stochastic functions. The monographs of Refs. [24,25] provide comprehensive surveys
of functional data analysis, encompassing both theoretical and practical aspects. These
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monographs discuss linear models for random variables that take values in a Hilbert space,
scalar-on-function and function-on-function linear models, parametric discriminant analy-
sis, and functional principle component analysis, respectively. To access the most recent
findings on FDA and related subjects, we may consult the bibliographic reviews provided
by sources such as Refs. [26–31], among others. For scalar-on-function nonlinear regression
models, the authors of [32] emphasized nonparametric techniques, particularly kernel-type
estimation. Such tools were subsequently expanded to include discrimination and clas-
sification analysis. An intriguing statistical concept that was extended to the functional
data framework was examined by Ref. [33]. These concepts included the portmanteau test,
change detection, and goodness-of-fit tests. Good overviews of this literature can be found
in Refs. [20,34–41], and, more recently, Ref. [42] gave the first results of the conditional
set-indexed empirical process in functional data. Considerable effort has been devoted
to developing a convergence theory for empirical processes involving functional random
variables, although these topics are well beyond the purview of the paper discussed in
Ref. [23]. A theoretical framework of this nature is imperative for contemporary statistical
analysis. For over six decades, functional data analysis has been acknowledged in the
statistical literature and has since become the focus of numerous works. We observe the
extreme limitedness of the outcomes produced by empirical processes utilizing functional
frameworks. We may refer for recent references to Refs, [43–47], who achieved numer-
ous valuable outcomes regarding set-indexed conditional empirical processes inside the
functional setting of the ergodic framework. One should avoid overlooking the possibility
that some pairings of observations may be incomplete in numerous practical applications,
including sampling surveys, pharmaceutical tracing tests, and reliability tests. Such in-
stances are commonly referred to as “missing data”. Others in the fields of data science
and analytics will attest to the fact that missing data is a common issue. MAR (Missing At
Random) indicates that while there may be systematic differences between the missing and
observed values, these discrepancies can be fully accounted for by other observed variables.
The situation changes significantly when predictors are present; for instance, the authors
of [48–58] provide some examples of this in finite dimensionality, as recent references to
Refs. [59,60]. In a recent study, the authors of [61] examined the linear quantile regression
model in the presence of missing response data that occur randomly. The study utilized
the inverse probability weight method. The authors developed a mathematical equation
for estimating unknown parameters using quantile regression. They also introduced a
standard estimator for quantile regression. Simultaneously, they formulated the empirical
likelihood (EL) ratio function for the unknown parameter and established a maximum
EL estimator for the unknown parameter. There is a scarcity of work that examines the
statistical characteristics of functional nonparametric models for missing data. The kernel
estimator of the conditional quantile was introduced by Ref. [62] under the assumptions
of ergodicity and random censorship. The author also demonstrated strong consistency
(with rate) and defined the asymptotic distribution of the estimator. Additionally, they
applied the estimator to forecast the peak electricity demand interval using smart meter
data, details of which have been omitted. In their study, the authors of [63] developed a
type of estimator for the regression operator in the context of functional stationary ergodic
data with missing at random (MAR) responses. They also established the asymptotic
properties of the estimator, including its convergence rate in probability and asymptotic
normality. For further references, we suggest consulting Refs. [64,65].

Our findings extend upon a prior study [44] by establishing more precise limits under
less stringent limitations. This offers a new perspective of the empirical processes theory
for random variables with general dependencies. This work addresses a problem that has
not been thoroughly examined thus far. The framework of ergodic functional data was
introduced by Ref. [66], who established consistencies with rates along with the asymptotic
normality of the regression function estimate and provided some examples. For recent
papers on the subject, we refer to Ref. [43], where the authors extended Ref. [66] to a more
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general framework. Some motivations to consider ergodic dependence structure in the
data rather than a mixing one are discussed in Refs. [67,68].

The objective of this study is to enhance the development of a practical methodology
for addressing MAR samples in functional nonparametric situations. We want to examine
the estimation of conditional set-indexed empirical processes in the presence of both
missing at random (MAR) data and ergodicity.

The structure of this paper is outlined as follows. In Section 2, we introduce the
notation and definitions, along with the conditional empirical process. Our main results are
presented in Section 3. Section 3.1 is dedicated to discussing the procedure for selecting the
bandwidth. In Section 4, we apply our main result to classification. Concluding remarks
and potential future developments are discussed in Section 5. To maintain a smooth
presentation flow, all proofs are consolidated in Appendix A.

2. The Set Indexed Conditional Empirical Process

To enhance clarity, let us delve into the definition of the ergodic property for processes.
Consider a measurable space (S, J ), and denote by SN the space of all functions s : N→ S.
If sj represents the value of the function s at j ∈ N, define Hj as the j-th coordinate map,
i.e., Hj(s) = sj. Now, consider H−1

j (J ) for j ∈ N; a random process Z = Zj : j ∈ N can be
viewed as a random variable defined on the probability space (Ω,A,P), taking values in
(SN, JN). For any B ∈ F , a set is termed invariant if there exists a set A ∈ JN such that
B = (Zn, Zn+1, . . .) ∈ A holds for every n ≥ 1. The process Z is then considered ergodic
when, for any invariant set B, we have P(B) = 0 or P(Ω | B) = 0. As per the ergodic
theorem, it is well-known that for a stationary ergodic process Z, the following convergence
holds almost surely:

lim
n→∞

1
n

n

∑
i=1

Zi = E(Z1), almost surely. (1)

Therefore, the ergodic property in our setting is formulated based on the statement (1). We
consider a sample of random elements (X1, Y1), . . . , (Xn, Yn), each drawn from the joint
distribution of (X, Y), where X takes values in a space E and Y in Rd. The functional space E
is endowed with a semi-metric dE (·, ·). Our goal is to investigate the relationships between
X and Y by estimating functional operators associated with the conditional distribution of
Y given X. One such operator is the regression operator for a measurable set C in a class of
sets C :

µ(C | x) = E
(
1{Y∈C} | X = x

)
.

To address this, we employ a Nadaraya–Watson-type conditional empirical distribu-
tion, as proposed by Refs. [42,44,69,70]. We introduce the term MAR (Missing mechanism
with MAR) for the response variable. In an available incomplete sample of size from
(X, Y, δ), denoted as (Xi, Yi, δi), 1 ≤ i ≤ n, Xi is fully observed, δi = 1 if Yi is observed, and
δi = 0 otherwise. The Bernoulli random variable δ satisfies:

P(δ = 1 | X = x; Y = y) = P(δ = 1 | X = x) = P(x),

where P(x) is a function operator, termed the conditional probability of observing the
response given the predictor, often unknown. This mechanism implies that δ and Y are
conditionally independent given X, akin to the finite-dimensionality case in Ref. [48].

The Nadaraya–Watson-type conditional empirical distribution function is given by:

µn(C, x) =

n

∑
i=1

δi1{Yi∈C}K
(

dE (x, Xi)

hn

)
n

∑
i=1

δiK
(

dE (x, Xi)

hn

) , (2)
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where K(·) is a real-valued kernel function from [0, ∞) into [0, ∞), hn is a smoothing
parameter satisfying hn → 0 as n → ∞, C is a measurable set, and x ∈ E . When choosing
C = (−∞, z], where z ∈ Rd, it reduces to the conditional empirical distribution function
Fn(z|x) = µn((−∞, z], x), as referenced in Refs. [71–73]. However, the corresponding class
C is defined as

{
(−∞, z], z ∈ Rd

}
. Regarding the semi-metric topology on E , we introduce

the notation
B(x, t) = {x1 ∈ E : dE (x1, x) ≤ t},

which denotes the ball in E with center x and radius t. This concept is commonly referred to
as the small ball probability function in the literature, especially when t tends to zero. The
significance of this notion is both theoretically and practically profound, as the concept of a
ball is intricately connected with the semi-metric d(·, ·). The selection of this semi-metric
becomes pivotal when dealing with data in infinite-dimensional spaces.

In many cases, the probability function for the small ball can be roughly represented
as the multiplication of two independent functions with respect to variables x and h. This
insight is illustrated in several examples found in Proposition 1 of [74]:

1. ϕ(hn) = Chυ
n for some υ > 0 with τ0(s) = sυ;

2. ϕ(hn) = Chυ
n exp(−Ch−p

n ) for some υ > 0 and p > 0 with τ0(s) is the Dirac’s
function;

3. ϕ(hn) = C|ln(hn)|−1 with τ0(s) =]0,1] (s) the indicator function in ]0, 1].

Define the following σ-fields: Fi and Gi Let

Fi = σ((Xi, Yi, δi) : 0 ≤ i ≤ n),

Gi = σ((Xi, Yi, δi) : 0 ≤ i ≤ n),

where Fi be the σ-filed generated by ((X1, Y1, δ1), . . . , (Xi, Yi, δi)) and Gi that generated by
((X1, Y1, δ1), . . . , (Xi, Yi, δi), Xi+1). Let B(x, u) be a ball centered at x ∈ E with radius u. Let
Di = d(x, Xi) so that Di is a nonnegative real-valued random variable. Operating within
the probability space (Ω,A,P), consider

Fx(u) = P(Di ≤ u) = P(Xi ∈ B(x, u)),

and FFi−1
x = P(Xi ∈ B(x, u) | Fi−1) to be the distribution function and the conditional

distribution function, respectively, given the σ-field Fi−1 of (Di)i≥1. Here, B(x, u) denotes
the ball in the space E centered at x with radius u. Let oa.s(u) represent a real random
function l(·) such that l(u)/u converges to zero almost surely as u → 0. In a similar vein,
define Oa.s(u) as a real random function l(·) such that l(u)/u is almost surely bounded.
In what follows, we implicitly assume the ergodicity of the sequence of random elements
(Xi, Yi), i = 1, . . . , n.

2.1. Assumptions and Notation

In this paper, the variable x is a constant element within the functional space E . We
present the metric entropy with inclusion as a means to quantify the richness or complexity
of the set class C . For any given ε > 0, the covering number is defined as:

N (ε, C , µ(· | x))
= inf{n ∈ N : ∃C1, . . . , Cn ∈ C such that ∀C ∈ C ∃ 1 ≤ i, j ≤ n

with Ci ⊂ C ⊂ Cj and µ
(
Cj \ Ci | x

)
< ε}.

The term log(N (ε, C , µ(· | x))) is referred to as the metric entropy with inclusion of C with
respect to µ(· | x). For numerous classes, estimates for these covering numbers are well-
documented; refer, for instance, to Ref. [75]. Below, we frequently make the assumption
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that either logN (ε, C , µ(· | x)) or N (ε, C , µ(· | x)) exhibit behaviors reminiscent of powers
of ε−1. We affirm that condition (Rγ) is satisfied when

logN (ε, C , µ(· | x)) ≤ Hγ(ε), for all ε > 0, (3)

where

Hγ(ε) =

{
log(Aε) if γ = 0,
Aε−γ if γ > 0,

for some constants A, r > 0. As emphasized in Ref. [23], it is notable that the condition (3),
where γ = 0, is fulfilled by intervals, rectangles, balls, ellipsoids, and by classes derived
from these through finite set operations of union, intersection, and complement. The class
of convex sets in Rd (d ≥ 2) satisfies the condition (3) with γ = (d − 1)/2. Various other
sets that satisfy (3) with γ > 0 are elaborated upon in Ref. [75]. We give now further
notation. For j ≥ 1, set

Mj = K j(1)−
∫ 1

0
(K j)′(u)τ0(u)du.

In this section, we establish the weak convergence of the process νn(C, x) : C ∈ C as de-
fined by

νn(C, x) :=
√

nϕ(hn)(µn(C, x)−Eµn(C, x)). (4)

In the course of our analysis, we will rely on the following assumptions.

(H1) For every x ∈ E , there exists a sequence of nonnegative bounded random functionals
( fi,1)i ≥ 1, a sequence of random functions (gi,x)i ≥ 1, a deterministic nonnegative
bounded functional f 1, and a nonnegative real function ϕ such that ϕ(hn) → 0 as
h → 0, as h → 0, such that

(i) Fx(u) = ϕ(u) f1(x) + o(ϕ(u)) as u → 0.

(ii) For any i ∈ N, FFi−1
x (u) = ϕ(u) fi,1(x)+ gi,x(u) with gi,x(u) = oa.s(ϕ(u)) as u → 0,

gi,x(u)/ϕ(u) almost surely bounded and n−1
n

∑
i=1

gj
i,x(u) = oa.s(ϕ

j(u)) as n →

∞, j = 1, 2.

(iii) n−1
n

∑
i=1

f j
i,1(x) → f j

1(x) almost surely as n → ∞, for j = 1, 2.

(iv) There exists a nondecreasing bounded function τ0(u) that uniformly holds for all
u ∈ (0, 1).

τ0(u) + o(1) =
ϕ(ru)
ϕ(r)

,

as r ↓ 0 and 1 ≤ j ≤ 2 + δ with δ > 0,
∫ 1

0
(K j(u))′τ0(u)du < ∞.

(H2) There exist positive constants β > 0 and η1 > 0 such that for all x1, x2 ∈ Nx, a
neighborhood of x, the following holds

|µ(C | x1)− µ(C | x2)| ≤ η1dβ
E (x1, x2).

(H3)(i) The conditional mean of 1Yi ∈ C given the σ-field Gi−1 depends solely on Xi,
meaning that for any i ≥ 1, E(1Y1 ∈ C | Gi−1) = µ(Xi) almost surely. The
conditional mean of 1Yi ∈ C given the σ-field Gi−1 also depends only on Xi, i.e.,
for any i ≥ 1,

E

((
1{Y1∈C} − µ(Xi)

)2
| Gi−1

)
= W(Xi),

almost surely.
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(ii) Furthermore, the functions W(·) and P(·) are continuous in a neighborhood of x,
namely,

sup
{u:d(x,u)≤h}

|W(u)− W(x)| = o(1) as h → 0,

sup
{u:d(x,u)≤h}

|P(u)−P(x)| = o(1) as h → 0.

(iii) ∃δ > 0 such that we let

W2+δ(u) = E
(
|(1{Y1∈C} − µ(x))|2+δ | X1 = u

)
be continuous in a neighborhood of x for u ∈ E .

(H4) For any (y1, y2) ∈ R2d and positive constants b3 > 0 and η4 > 0, the following holds
for the conditional density f (·) of Y given X = x:

| f (y1)− f (y2)| ≤ η4∥y1 − y2∥b3 .

(H5) The kernel function K(·) has support within the interval (0, 1) and possesses a con-
tinuous first derivative on (0, 1). It satisfies the condition K′(t) < 0 for all t ∈ (0, 1).
Moreover, ∣∣∣∣∫ 1

0
(K j)′(u)du

∣∣∣∣ < ∞, for j = 1, 2.

(H6) Suppose that the set class C adheres to condition (3);
(H7) The smoothing parameter (hn) fulfills the following criterion: hn → 0 and nϕ(hn) → ∞

as n → ∞.

2.2. Comments on the Assumptions

The significance of condition (H1) extends to both the ergodic and functional aspects
addressed in this paper. The condition utilized here shares similarities with that employed
in Ref. [66]. The functions fi,1(·) and f1(·) play roles analogous to the conditional and
unconditional densities in the finite-dimensional scenario. In the meantime, ϕ(u) describes
the influence of the radius u on the small ball probability as u tends to zero, as illustrated in
Ref. [66]. Conditions (H2)(i) are standard in nonparametric regression estimation. (H3)(i) is
essential for establishing consistency, reflecting the Markovian nature of the functionally
stationary ergodic data. This condition aligns with that used in Ref. [63]. (H3)(ii,iii)
serve as continuous local conditions, necessary for the main results and for conciseness
in this paper. Condition (H4) on the density f (·) conforms to a classical Lipschitz-type
nonparametric functional model. Assumption (H5) relates to the choice of the kernel K(·),
a common practice in nonparametric functional estimation. It is worth noting that the
Parzen symmetric kernel is unsuitable in this context due to the positivity of the random
process d(x, X). Hence, we consider K(·) with support [0, 1], a natural generalization of the
assumption usually made in the multivariate case, where K(·) is expected to be a spherically
symmetric density function. The conditions K(1) > 0 and K′(·) < 0 ensure that M1 > 0 for
all limit functions τ0. The condition K(1) > 0 is necessary for defining the moments M2,
which, in this case, are determined by the value K(1). (H7) provides a condition on the
bandwidths, acknowledging that consistency cannot be guaranteed without it.

3. Main Results

Below, we note Z D
= N (µ, σ2) when the random variable Z is distributed according to

a normal distribution with mean µ and variance σ2. The symbol D→ represents convergence

in distribution, while P→ indicates convergence in probability.
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Theorem 1 (Uniform Consistency). Assume that the conditions (H1)–(H7) are satisfied. Consider
a class of measurable sets C for which

N (ε, C , µ(· | x)) < ∞,

for any ε > 0. Moreover, assume that for every C ∈ C

|µ(C, y) f (y)− µ(C, x) f (x)| −→ 0, as y → x.

If nϕ(hn) → ∞ and hn → 0 as n → ∞, then

sup
C∈C

|µn(C, x)−E(µn(C, x))| P−→ 0.

Note that the proof of Theorem 1 follows directly from the decomposition

µn(C, x)−E(µn(C, x)) =
1

E( f̂n(x))
[φ̂n(C, x)−E(φ̂n(C, x))]

− µn(C, x)
E( f̂n(x))

[
f̂n(x)−E( f̂n(x))

]
,

=
Qn(x)
E( f̂n(x))

,

where
Qn(x) = [φ̂n(C, x)−E(φ̂n(C, x))]− µn(C, x)

[
f̂n(x)−E( f̂n(x))

]
.

and

φ̂n(C, x) =
1

nϕ(hn)

n

∑
i=1

δi1{Yi∈C}K
(

dE (x, Xi)

hn

)
,

f̂n(x) =
1

nϕ(hn)

n

∑
i=1

δiK
(

dE (x, Xi)

hn

)
.

Let ∆i(x) = K
(

dE (x,Xi)
hn

)
. We have

φ̂n(C, x) =
1

nϕ(hn)

n

∑
i=1
1{Yi∈C}δi∆i(x),

f̂n(x) =
1

nϕ(hn)

n

∑
i=1

δi∆i(x).

Henceforth, for x ∈ E , let us denote

E(φ̂n(C, x)) =
1

nE(∆1(x))

n

∑
i=1
E
(

δi1{Yi∈C}∆i(x) | Fi−1

)
,

and

E( f̂n(x)) =
1

nE(∆1(x))

n

∑
i=1
E(δi∆i(x) | Fi−1),

here, E(X | F) represents the conditional expectation of the random variable X given the
σ-field F.

To establish asymptotic normality, define the “bias” term as

Bn(x) =
E
(

f̂n(x)
)
− µn(C, x)E(φ̂n(C, x))

E(φ̂n(C, x))
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The subsequent result presents the weak convergence. It is important to note that
f1(x) is specified in (H1).

Theorem 2 (Asymptotic normality). Assuming (H1)–(H7), as n → ∞, for m ≥ 1 and
C1, . . . , Cm ∈ C , we have

{νn(Ci, x)i=1,...,m}
D−→ N (0, Σ),

where Σ = σij(x), i, j = 1, . . . , m and

σij(x) =
M2

P(x)M2
1 f1(x)

(
E(1{Y∈Ci∩Cj} | X = x)−E(1{Y∈Ci} | X = x)E(1{Y∈Cj} | X = x)

)
,

whenever f1(x) > 0 and

M1 = K(1)−
∫ 1

0
K′(u)τ0(u)d(u), M2 = K2(1)−

∫ 1

0
(K2)′(u)τ0(u)du.

To obtain the density of the process, it is essential to introduce the following function,
which provides insights into the asymptotic behavior of the modulus of continuity:

Λγ(σ
2, n) =


√

σ2 log
1
σ2 , if γ = 0;

max
(
(σ2)(1−γ)/2, nϕ(hn)

(3γ−1)/(2(3γ+1))
)

, if γ > 0.

Theorem 3. Assume that (H1)–(H7) are satisfied. For every σ2 > 0, consider Cσ ⊂ C as a class
of measurable sets with

n

∑
t=1

sup
C∈Cσ

µ(C, x) ≤ σ2 ≤ 1,

and suppose that C fulfils (3) with γ ≥ 0. Additionally, we assume that ϕ(hn) → 0 and
nϕ(hn) → +∞ as n → +∞, such that

nϕ(hn) ≤
(

Λγ(σ
2, n)

)2
,

and as n → +∞, we have

nϕ
(

σ2 log
(

1
σ2

))1+γ

log(n)
→ ∞.

Furthermore, we assume that σ2 ≥ h2. For γ > 0 and d = 1, 2, the latter has to be replaced
by σ2 ≥ ϕ(hn) log

(
1

ϕ(hn)

)
. Under the conditions of Theorem 2, the process converges in law to

a Gaussian process {ν(C, x) : C ∈ C }, which possesses a version with uniformly bounded and
uniformly continuous paths with respect to the ∥ · ∥2−norm. The covariance is given by σij(x) as
specified in Theorem 2.

Remark 1. The distance of two measures µ1, µ2 in the Prokhorov metric is defined as (see, e.g.,
Refs. [76–79])

ρP(µ1, µ2) := inf{ε > 0 | µ1(B) ≤ µ2(Bε) + ε, ∀ Borel sets B ⊂ Ω}

Here Bε = {x | d(x, B) < ε}, where d(x, B) is the distance of x to B, i.e., d(x, B) = infz∈B ∥x− z∥.
The distance of two random variables ξ1, ξ2 in the Ky Fan metric is defined as [80]

ρK(ξ1, ξ2) := inf{ε > 0 | µ{ω ∈ Ω | d(ξ1(ω), ξ2(ω)) > ε} < ε}.

It is worthwhile to establish an adequate link of our findings to these distances in the conditional setting.
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Remark 2. Central limit theorems are frequently utilized to establish confidence intervals for
the target being estimated. In the realm of non-parametric estimation, the asymptotic variance
Σ(x) := σi,j(x) in the central limit depends on certain unknown functions. Consequently, in
practical scenarios, only approximate confidence intervals can be derived, even when Σ(x) is
functionally specified. Notably, according to Theorem 2, the limiting variance incorporates the
unknown function f1(·) and the normalization is contingent on the function ϕ(·), which is not
explicitly identifiable in practice. Furthermore, the quantities W(·) and τ0 need to be estimated. The
corollary below, a slight modification of Theorem 2, permits a practical form of the results to be used,
as typically the conditional variance W(x) is estimated similarly to what is obtained by Ref. [63].

Let

Wn =

n

∑
i=1

(δi1{Yi∈C} − µn(x))2K
(

dE (x, Xi)

h

)
n

∑
i=1

δiK
(

dE (x, Xi)

h

)

=

n

∑
i=1

(δi1{Yi∈C} − µn(x))2K
(

dE (x, Xi)

h

)
n

∑
i=1

δiK
(

dE (x, Xi)

h

) − (µn(x))2

= ĝn(x)− (µn(x))2.

Let us introduce the following estimation

Fx,n(t) =
1
n

n

∑
i=1
1{d(x,Xi)≤t}.

By employing the decomposition of τ0(·) in (H1)(i) and (H1)(i,iv), one can estimate τ0(·) as

τn(t) =
Fx,n(th)
Fx,n(h)

.

Subsequently, for a given kernel K(·) and the quantities M1 and M2 can be estimated
as follows

M1,n = K(1)−
∫ 1

0
K

′
(s)τn(s)ds, M2,n = K2(1)−

∫ 1

0
(K2)

′
(s)τn(s)ds.

Finally, the estimator of P(x) is denoted by

Pn(x) =

n

∑
i=1

δiK
(

dE (x, Xi)

hn

)
n

∑
i=1

K
(

dE (x, Xi)

hn

) .

Corollary 1. Suppose that conditions (H1)–(H7) are satisfied, where K′ and (K2)′ are integrable
functions. Additionally, assume that nFx(h) −→ ∞ and hβ(nFx(h))1/2 −→ 0 as n → ∞. Then,
for any x ∈ E such that f1(x) > 0, we have

M1,n√
M2,n

√
nFx,n(hn)Pn(x)

Wn(x)
(µn(C, x)− µ(C, x)) D−→ N (0, 1).
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Using Corollary (1) the asymptotic 100(1 − α) confidence band given by[
µn(C, x)− cα

M1,n√
M2,n

√
Wn(x)

nFx,n(h)Pn(x)
, µn(C, x) + cα

M1,n√
M2,n

√
Wn(x)

nFx,n(h)Pn(x)

]
.

where cα is the upper α
2 quantile of the Normal distribution N (0, 1)

3.1. The Bandwidth Selection Criterion

Several approaches have been devised and refined to formulate asymptotically op-
timal bandwidth selection rules for nonparametric kernel estimators, particularly for the
Nadaraya–Watson regression estimator. Some noteworthy contributions
include [81–87]. Choosing this parameter appropriately is essential, whether in the conven-
tional finite-dimensional case or within the infinite-dimensional framework, to guarantee
favorable practical performance. Let us define the leave-out-

(
Xj, Yj, δj

)
estimator for the

regression function

µn,j(C, x) =

n

∑
i=1,i ̸=j

δi1{Yi∈C}K
(

dE (x, Xi)

hn

)
n

∑
i=1

δiK
(

dE (x, Xi)

hn

) . (5)

To minimize the quadratic loss function, we introduce the following criterion, where
we have a (known) nonnegative weight function W(·) :

CV(C, h) :=
1
n

n

∑
j=1

(
δj1{Yj∈C} − µn,j(C, Xj)

)2
W
(
Xj
)
. (6)

Building upon the concepts developed by Ref. [83], a natural approach for selecting the
bandwidth is to minimize the preceding criterion. Thus, let us choose ĥn, as the minimizer
over h:

sup
C∈C

CV(C, h).

One can replace (6) by

CV(C, hn) :=
1
n

n

∑
j=1

(
δj1{Yj∈C} − µn,j(C, Xj)

)2
Ŵ
(
Xj, x

)
. (7)

In practice, one takes, for j = 1, . . . , n, the uniform global weights W
(
Xj
)
= 1, and the

local weights

Ŵ(Xj, x) =
{

1 if d(Xj, x) ≤ hn,
0 otherwise.

For brevity, we have concentrated on the most popular method, namely, the cross-
validated selected bandwidth. This approach can be extended to any other bandwidth
selector, such as the bandwidth based on Bayesian ideas [88].

4. Applications to Classification with Partially Labeled Data

In this section, we apply the results developed in the previous sections to the problem
of statistical classification. We consider a sample of random elements (X1, Y1), . . . , (Xn, Yn)
drawn from the joint distribution of (X, Y), where X takes values in a space E and Y in
Rd. In classification, the objective is to predict the integer-valued label Y based on the
covariate vector X. More formally, we aim to find a function (classifier) θ : E −→ Rd for
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which the probability of misclassification error (incorrect prediction), i.e., P(θ(X) ̸= Y), is
minimized. Let

Pk(x) = P(Y = k | X = x), x ∈ E , 1 ≤ k ≤ n.

Demonstrating that the optimal classifier, i.e., the one with the minimum probability
of error, is given by

θB(x) = arg max
1≤k≤n

Pk(x),

i.e., the best classifier θB satisfies

max
1≤k≤n

Pk(x) = PθB(x)(x).

As θB is unknown, the data is utilized to construct estimates of θB. Specifically, let
Dn = (X1, Y1), . . . , (Xn, Yn) represent a random sample from the distribution of (X, Y),
where each (Xi, Yi) is fully observable. Let θ̂n be any sample-based classifier. In other
words, θ̂n(X) is the predicted value of Y, based on Dn and X. Let

Ln(θ̂n) = P(θ̂n(X) ̸= Y | Dn),

be the conditional probability of error of the sample-based classifier θ̂n. Then θ̂n is said to
be consistent if Ln(θ̂n) −→ Ln(θn) = P(θB(X) ̸= Y) as n → ∞, for k = 1, . . . , n. Let P̂k(x)
be any sample-based estimators of Pk(x) = P(Y = k | X = x) and define the classification
rule θ̂n by

θ̂n(x) = arg max
1≤k≤n

P̂k(x).

In other words, θ̂n satisfies

max
1≤k≤n

P̂k(x) = P̂
θ̂n(x)(x),

to show Ln(θ̂n)− Ln(θB) −→ 0 it is sufficient to show that P̂k(x)−Pk(x) −→ 0 by posing
δi = P̂k(x), we have

µn(C, x) =

n

∑
i=1

P̂k(x)1{Yi∈C}K
(

dE (x, Xi)

hn

)
n

∑
i=1

P̂k(x)K
(

dE (x, Xi)

hn

) . (8)

Theorem 4. Under the conditions of Theorem 3, we have the convergence

Ln(θ̂n)− Ln(θB) −→ 0.

5. Concluding Remarks

In this investigation, we have examined the asymptotic properties of the conditional
set-indexed empirical process involving ergodic functional data that are missing at random
(MAR). Our findings are obtained under assumptions pertaining to the richness of the
index class C of sets in terms of metric entropy with bracketing. Our contribution is two-
fold: first, we have developed a functional methodology for addressing MAR samples in
non-parametric problems, and second, we have extended our non-parametric conditional
methodology by incorporating the ergodicity concepts introduced in Ref. [44]. Several
challenging open questions remain in this context, including potential extensions to other
types of non-parametric predictors such as functional local linear predictors, functional
kNN predictors, and others. Furthermore, exploring extensions to problems beyond predic-
tion, such as the estimation of variance error, is an interesting avenue for future research.
Another direction for future exploration is the consideration of reducing the predictor’s
dimensionality by employing a Single Functional Index Model (SFIM) to estimate the
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regression, as discussed in Refs. [89,90]. SFIM has shown its effectiveness in improving the
consistency of the regression operator estimator.
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Appendix A

The proofs of our results are presented in this section. The notation introduced earlier
is also utilized in the subsequent sections.

Lemma A1. Assume that conditions (H1(i))–(H1(ii))–(H1(iv))–(H5) hold true for any real num-
bers 1 ≤ j ≤ 2 + δ and 1 ≤ k ≤ 2 + δ with δ > 0. As n → ∞, we have:

(i) 1
ϕ(h)E(∆

j
i(x) | Fi−1) = Mj fi,1(x) +Oa.s

(
gi,x(h)
ϕ(h)

)
;

(ii) 1
ϕ(h)E(∆

j
1(x)) = Mj f1(x) + o(1);

(iii) 1
ϕk(h) (E(∆1(x)))k = Mk

1 f k
1 (x) + o(1).

Proof of Lemma A1. For the proof of Lemma A1, the reader is directed to Ref. [66].

Lemma A2. Assume that the hypotheses (H1) and (H5), along with condition (H7), are satisfied.
As n → ∞, for every fixed neighborhood NE of x in the functional space E , we have:

n

∑
t=1

lim
n→∞

sup
x∈NE

f̂n(x) =
n

∑
t=1

lim
n→∞

E( f̂n(x)) = P(x).

Proof of Lemma A2. We shall prove that

f̂n(x) P−→P(x). (A1)

We employ the identical proof as presented in Ref. [63]. See that.

f̂n(x) = R1,n(x) + R2,n(x),

where

R1,n(x) =
1

nE(∆1(x))

n

∑
t=1

(δi∆i(x)−E(δi∆i(x) | Fi−1)),

R2,n(x) =
1

nE(∆1(x))
E[δi∆i(x) | Fi−1].

First, we need to establish under the assumption (H1)(i–iii) and (H3)(i) and for n → ∞ as
nϕ(h) → ∞, we have

R2,n(x) P−→P(x),
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as n → ∞. Using the properties of conditional expectation and the missing at random
(MAR) mechanism, and combining assumptions (H1)(ii,iii) and (H3)(i) with the continuity
property of P(x) along with Lemma A1, we derive:

R2,n(x) =
1

nE(∆1(x))

n

∑
t=1

(E{E[δi∆i(x) | Fi−1] | Gi−1}

=
1

nE(∆1(x))

n

∑
t=1

(E[P(x) + o(1)δi∆i(x) | Fi−1]

= (P(x) + o(1))
1

nE(∆1(x))

n

∑
t=1

(ϕ(h)M1 fi,1(x) +O(gix(h)))

= (P(x) + o(1))
ϕ(h)

E(∆1(x))

(
1
n

n

∑
t=1

M1 fi,1(x) +
1
n

n

∑
t=1

Oas

(
gi,x(h)
ϕ(h)

))

= (P(x) + o(1))
1

M1 f1(x) + o(1)
(M1( f1(x) + o(1)) + oa.s(1))

→ P(x).

Second, we will prove that as n → ∞,

R1,n(x) P−→0.

On the one hand, we define ηn,i = δi∆(x)−E(δi∆(x)) for i = 1, . . . , n. Thus, ηn,i, 1 ≤ i ≤ n
forms a triangular array of martingale differences with respect to the σ-field Fi−1 and

R1,n(x) =
1

nE(∆1(x))

n

∑
t=1

ηn,i(x).

By combining Burkholder’s inequality [91] and Jensen’s inequality, we establish that for
any ϵ > 0, there exists a constant C0 such that:

P(|R1,n(x)| > ϵ) = P
(
|

n

∑
t=1

ηn,i(x)| > ϵnE(∆1(x))

)

≤ C0
E(η2

n,i(x))
ϵ2n(E(∆1(x)))2 < C0

E(δ1∆2
1(x))

ϵ2n(E(∆2
1(x)))

→ 0,

as n → ∞, where we use the results from lemma (A1). Since nϕ(h) → ∞ as n → ∞ we then
conclude that

R1,n(x) = oP(1).

Thus, the proof is complete.

We will utilize arguments akin to those employed in the work of Ref. [63] to establish
the asymptotic normality of the process Qn(x) defined as:

Qn(x) = [φ̂n(C, x)−E(φ̂n(C, x))]− µn(C, x)
[

f̂n(x)−E( f̂n(x))
]
.

Lemma A3. Assuming that the hypotheses (H1)–(H7) are fulfilled, we can state that for any x ∈ E
such that f1(x) > 0, we have:√

nϕ(hn)Qn(x) D−→ N (0, σ2
0 (x)), as n → ∞. (A2)

where

σ2
0 (x) =

M2W(x)P(x)
M2

1 f1(x)
,
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whenever f1(x) > 0

Proof of Lemma A3. Let us introduce some notation. We put

ηni =

(
ϕ(h)

n

)1/2

δi(1{Yi∈C} − µ(x))
∆i(x)

E(∆1(x))
, (A3)

and define ξni = ηni −E(ηni | Fi−1). It is easily seen that

(nϕ(h))1/2Qn(x) =
n

∑
t=1

ξni. (A4)

Here, for any fixed x ∈ E , the terms in (A4) form a triangular array of stationary martingale
differences with respect to the σ-field Fi−1. This allows us to apply the central limit
theorem for discrete-time arrays of real-valued martingales (refer to Ref. [92], page 23) to
establish the asymptotic normality of Qn(x). This can be accomplished by verifying the
following statements:

(a)
n

∑
t=1
E
(

ξ2
ni | Fi−1

)
−→ σ2

0 (x),

(b)
nE
(

ξ2
ni1|ηni |>ϵ

)
= o(1),

holds for any ϵ > 0 (Lindeberg condition).

Proof of Part (a). Observe first that∣∣∣∣∣ n

∑
t=1
E
(

η2
ni | Fi−1

)
−

n

∑
t=1
E
(

ξ2
ni | Fi−1

)∣∣∣∣∣ ≤ n

∑
t=1

(E(ηni | Fi−1))
2.

Making use of the condition (H2) and Lemma A1, one has

E(ηni | Fi−1)

=
1

E(∆i)

(
ϕ(h)

n

)1/2

|E((µ(Xi)− µ(x))∆i(x)P(Xi) | Fi−1)|

≤ 1
E(∆i)

(
ϕ(h)

n

)1/2 n

∑
t=1

sup
u∈B(x,h)

|µ(Xi)− µ(x)|E(∆i(x) | Fi−1)hβ(o(1) + P(x))

≤ O(hβ)

(
ϕ(h)

n

)1/2( fi,1(x)
f1(x)

+Oa.s

(
gi,x(h)
ϕ(h)

))
hβ(o(1) + P(x)).

Thus, by (H1)(ii,iii), we have

n

∑
t=1

(E(ηni | Fi−1))
2 = Oa.s(h2βϕ(h))

(
1

f 2
1 (x)

1
n
+

n

∑
t=1

f 2
i,1(x) + oa.s(1)

)
×(o(1) + P(x))2

= Oa.s(ϕ(h)h2β). (A5)

The statement (a) follows then if we show that

n

∑
t=1

lim
n→∞

n

∑
t=1
E
(

η2
ni | Fi−1

)
= σ2

0 . (A6)
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To prove (A6), observe that

n

∑
t=1

lim
n→∞

n

∑
t=1
E
(

η2
ni | Fi−1

)
=

ϕ(h)
n(E(∆1(x)))2

n

∑
t=1
E
[
(1{Yi∈C} − µ(x))2δi∆2

i (x) | Fi−1

]
= J1n + J2n,

where

J1n =
ϕ(h)

n(E(∆1(x)))2

n

∑
t=1
E

[
E
(
1{Yi∈C} − µ(Xi)

)2
δi∆2

i (x) | Fi−1

]
,

and

J2n =
ϕ(h)

n(E(∆1(x)))2

n

∑
t=1
E
[
(µ(Xi)− µ(X))2δi∆2

i (x) | Fi−1

]
.

Hence, leveraging the properties of conditional expectation, we derive:

J1n =
ϕ(h)

n(E(∆1(x)))2

n

∑
t=1
E

{
E

[(
1{Yi∈C} − µ(Xi)

)2
δi∆2

i (x) | Bi−1

]
| Fi−1

}
=

ϕ(h)
n(E(∆1(x)))2

n

∑
t=1
E

{
∆2

i (x)E
[(
1{Yi∈C} − µ(Xi)

)2
δi | Xi

]
| Fi−1

}
=

ϕ(h)
n(E(∆1(x)))2

n

∑
t=1
E
[
W(Xi)P(Xi)∆2

i (x) | Fi−1

]
.

Likewise, with the assumptions (H2)(ii,iii) and (H4)(i), along with the aid of Lemma A1
once more, it follows that, as n → ∞:

J1n =
ϕ(h)

n(E(∆1(x)))2

n

∑
t=1
E
[
(o(1) + W(x))(o(1) + P(x))∆2

i (x) | Fi−1

]
=

1
(E(∆1(x)))2

ϕ2(h)

1
n

1
ϕ(h)

n

∑
t=1

(o(1) + W(x))(o(1) + P(x))

×(M2ϕ(h) fi1(x) +Oa.s(gi,x(h)))

→ M2W(x)P(x)
M2

1 f1(x)
= σ0(x)2.

Again, combining Lemma A1 with conditions (H1)(ii), and (H3)(ii,iii), it is evident that:

n

∑
t=1

lim
n→∞

J1n =
M2W(x)P(x)

M2
1 f1(x)

,

almost surely, whenever f1(x) > 0. Consider now the term J2n. Utilizing conditions
(H1)(ii,iii) and (H2)(i) alongside Lemma A1, we can express, as n → ∞:

|Jn2| = O(h2β)
ϕ(h)

n(E(∆1(x)))2

n

∑
t=1
E
(

δi∆2
i (x) | Fi−1

)
= O(h2β)

(
M2

M2
1

1
f1(x)

+ oa.s(1)

)
→ 0, almost surely, (A7)

whenever f1(x) > 0, this completes the proof of Part (a).

Proof of Part (b). The Lindeberg condition results from Corollary 9.5.2 in Ref. ([93]), which
implies that

nE(ξ2
ni1(|ξni| > ε)) ≤ 4nE

(
η2

ni1(|ηni| > ε/2)
)

.
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Let a > 1 and b > 1 such that 1
a +

1
b = 1. Applying Hölder and Markov inequalities, one

can express, for all ε > 0:

E
(

η2
ni1(|ηni| > ε/2)

)
≤ E|ηni|2a

(ε/2)2a/b ,

where C0 is a positive constant and 2a = 2 + δ. Utilizing δ from the condition (H3)(iii) of
conditional moments, we obtain:

4nE
(

η2
ni1(|ηni| > ε/2)

)
≤ C0

(
ϕ(h)

n

)(2+δ)/2 n
(E(∆1(x)))2+δ

E([|1{Yi∈C} − µ(x)|δi∆i(x)]2+δ)

≤ C0

(
ϕ(h)

n

)(2+δ)/2 n
(E(∆1(x)))2+δ

E
(
E
(
|1{Yi∈C} − µ(x)|2+δδi(∆i(x))2+δ | Xi

))
≤ C0

(
ϕ(h)

n

)(2+δ)/2 n
(E(∆1(x)))2+δ

E
(
(∆i(x))2+δP(Xi)W2+δ(Xi)

)
≤ C0

(
ϕ(h)

n

)(2+δ)/2 n

E(∆1(x))2+δ
E
[
(∆1(x))2+δ(P(x) + o(1))(W2+δ(x) + o(1))

]
≤ C0(nϕ(h))−δ/2 (M2+δ f1(x) + o(1))

(M2+δ
1 f 2+δ

1 (x) + o(1))

(
P(x)W2+δ(x) + o(1)

)
= O((nϕ(h))−δ/2),

where the last equality follows from Lemma A1. This concludes the proof of part (b) as
nϕ(h) → ∞ when n → ∞. Thus, the proof is complete.

Proof of Theorem 1. By Lemma A3 it follows that√
nϕ(hn)Qn(x) = OP(1).

Thus, by Lemma A2 the proof is valid.

Proof of Theorem 2. The proof follows from A1, A2, and Slutsky’s Theorem, so the proof
is valid.

Proof of Theorem 3. Let us recall some facts. Let f (·) = δi1{· ∈ C1} and g(·) = δi1{· ∈
C2}. Given random measures λ on (X,X ), we define

d(2)λ ( f , g) :=
[
λ( f − g)2

]1/2
.

Say that a class of functions F has uniformly integrable entropy with respect to L2-norm if

∫ ∞

0
sup

γ∈M(X,F)

[
ln N

(
ϵ
[
γ
(

F2
)]1/2

,F , d(2)γ

)]1/2
dϵ < ∞,

where

d(2)γ ( f , g) :=
[∫

X
( f − g)2dγ

]1/2
.

If the class F possesses uniformly integrable entropy,
(
F , d(2)γ

)
is totally bounded for any

measure γ. Let κ be an envelope of F , i.e., κ is a measurable function mapping F to [0, ∞)
such that:

sup
f∈F

| f (t)| ≤ κ(t), for all t ∈ R.
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Let M(R, κ) be the set of all measures γ on (R, F ) with

γ(κ) :=
∫
R

κ2dγ < ∞, (A8)

and

d(r)γ ( f , g) :=
[∫

R
( f − g)rdγ

]1/r
.

Given random measures λ on (R, F ), we define

d(2)λ ( f , g) := [λ( f − g)2]1/2.

Let us introduce the uniform entropy integral

J(δ, F , d(2)γ ) =
∫ δ

0
sup

γ∈(R,F )

[
log
(
N
(

ϵ[γ(κ2)]1/2, F , d(2)γ

))]1/2
dϵ.

We say that F has uniformly integrable entropy with respect to L2-norm if

J
(

∞, F , d(2)γ

)
< ∞. (A9)

If the class F possesses uniformly integrable entropy,
(
F , d(2)γ

)
is totally bounded for any

measure γ. Let B(φ) : φ ∈ F be a Gaussian process whose sample paths are contained in

Ub(F , d(2)γ ) :=
{

f ∈ ℓ∞(F ) : f is uniformly continuous with respect to d(2)γ

}
.

Let L(•) denote the law of •. Notice that obtaining a uniform CLT essentially means that
we show the following convergence{

L(An,φ) : φ ∈ F
}
→
{
L(B(φ)) : f ∈ F

}
,

where the processes are indexed by F and considered as random elements of the bounded
real-valued functions on F defined by

ℓ∞(F ) :=

{
f : F → R : ∥ f ∥F := sup

φ∈F
| f (φ)| < ∞

}
, (A10)

which is a Banach space equipped with the sup norm. In the following, we employ the weak
convergence in the sense of Ref. [94], which we recap in the following definition. Throughout
the paper,E∗ denotes the upper expectation with respect to the outer probability P∗; for further
details and discussion, refer to Ref. [1] (p. 6) and Ref. [95] (§6.2, p. 88).

Definition A1. A sequence of ℓ∞(F )-valued random functions {Tn : n ≥ 1} converges in law to
a ℓ∞(F )-valued Borel measurable random function T whose law concentrates on a separable subset
of ℓ∞(F ), denoted Tn ⇝ T, if,

Eg(T) = lim
n→∞

E∗g(Tn), ∀g ∈ C(ℓ∞(F ), ∥ · ∥F ),

where C(ℓ∞(F ), ∥ · ∥F ) is the set of all bounded ∥ · ∥F -continuous functions from (ℓ∞(F ), ∥ ·
∥F ) into R.

We set

ηn;i( f , x) := ηn;i(C1, x) :=
(

ϕ(h)
n

)1/2(
δi1{(Yi∈C1} − µ(C, x)

) ∆i(x)
E(∆i(x))

,
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with ∆i(x) = K(h−1d(x, Xi)), and define ηn;i(g, x) in a similar way. Let

ξn;i( f , x) := ηn;i( f , x)−E(ηn;i( f , x) | Fi−1).

Let us define

σ2
n( f , g) =

n

∑
i=1

(ξn;i( f , x)− ξn;i(g, x))2.

To establish Theorem 3, we can rely on Theorem 2 of [96] (see also Refs. [10,13,15]). It is
sufficient to demonstrate that, for all constant L > 0, as n tends to infinity:

P∗

 sup
f ,g∈F

σ2
n( f , g)

(d(2)µn ( f , g))2
> L

→ 0, (A11)

which is implied by the following,

E∗ sup
d(2)( f ,g)≤δn

n

∑
i=1

E((ξn;i( f , x)− ξn;i(g, x))2 | Fi−1)

(d(2)( f , g))2
→ 0, as δn → 0,

where we recall

d(2)( f , g) :=
[∫

R
( f − g)2dP

]1/2
.

In the rest of the proof, denote by βn(x) =
√

ϕ(h)
E[∆1(x)] , and

ζ( f , x) = ζ(C1, x) :=
(

δi1{(Yi∈C1} − µ(C, x)
)

∆i(x).

Therefore, we have the following

n

∑
i=1

E((ξn;i( f , x)− ξn;i(g, x))2 | Fi−1)

d(2)( f , g)

=
β2

n(x)
nd(2)( f , g)

n

∑
i=1
E
[(

(ζ( f , x)− ζ(g, x))

−E[ζ( f , x)− ζ(g, x) | Fi−1]
)2

| Fi−1

]2

≤ β2
n(x)

nd(2)( f , g)

n

∑
i=1

2E
[(

ζ( f , x)− ζ(g, x)
)2

| Fi−1

]
−2E

{[
E
[(

ζ( f , x)− ζ(g, x)
)
| Fi−1

]]2
}

:= T1,n + T2,n.

We first evaluate T1,n. We have

T1,n ≤ 2β2
n(x)

nd(2)( f , g)

n

∑
i=1

2E
[
∆2

i (x)(δi f (Yi)− δig(Yi))
2 | Fi−1

]
+2E

[
δi∆2

i (x)(µ(C1, x)− µ(C2, x))2 | Fi−1

]
:= T1,n,1 + T1,n,2.

Using the fact that E(∆2
1(x)) = O(ϕ(h)) (as indicated in Lemma A1), and taking into

account that the class of functions F has a constant envelope and K(·) is both bounded and
bounded away from zero, one can obtain the following upper bound for the last equation,
where C is a positive constant:
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T1,n,1 ≤ C
√

ϕ(h)
d(2)( f , g)

E[∆1(x)( f (Y1)− g(Y1))]

≤ C
√

ϕ(h)
d(2)( f , g)

E
[
∆1(x)2

]1/2
E
[
( f (Y1)− g(Y1))

2
]1/2

=
C
√

ϕ(h)

G2
(ζ)

E
[
∆1(x)2

]1/2

= O(ϕ(h)) = o(1).

Making use of similar arguments, we infer that

T1,n,2 =
Cϕ(h)3/2

d(2)( f , g)
(E[δ( f (Y)− g(Y))|X = x])2 = O(ϕ(h)3/2 = o(1).

We readily obtain that,
T1,n = o(1).

By employing arguments akin to those utilized in the proof of the previous statement, we
can establish that

T2,n = o(1).

Using the Lindeberg conditions from the preceding proof and (A11), along with Theorem 1
of [96], we deduce that for a given ε > 0 and γ > 0, there exists η > 0, such that:

lim sup
n→∞

P∗
{

sup
d(C1,C2))≤η

|νn(C1, x)− νn(C2, x)| ≥ 5γ

}
≤ 3ε. (A12)

Now, the proof of the theorem is completed by combining this last equation with Theorem 3.
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