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Highlights

Joint Electric Vehicle Routing and Battery Health Management In-

tegrating an Explicit State of Charge Model

Pedro Dias Longhitano, Christophe Bérenguer, Benjamin Echard

• A new EVRP formulation that includes battery degradation and speed

limitations

• Realistic SoH and SoC models that can be included in optimization prob-

lems

• A method to estimate the battery degradation after performing missions

• A genetic programming algorithm to solve the EVRPs

• Numerical experiments to validate the proposed methodology
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Abstract

Although fleet management has been extensively explored in transportation

science, the rise of electromobility imposes several scientific challenges and op-

portunities. So far, few attempts were made to include battery degradation

in the Electric Vehicle Routing Problem (EVRP). To do it realistically, it is

necessary to model State of Charge (SoC), however most versions of routing

problems use oversimplified SoC models or consider only energy consumption

which leads to less robust solutions overall. In this work, a method for estimat-

ing battery degradation, which relies on a realistic SoC model is presented and

incorporated into a new version of the electric vehicle routing problem. In this

version, not only battery degradation is integrated, but also the possibility of

limiting different vehicle parameters, such as maximum vehicle speed and ac-

celeration. Due to the extra computational complexity related to the SoC and

degradation models, a genetic algorithm capable of solving the aforementioned

extended EVRP is presented. Finally, through different numerical experiments,

the advantages of the proposed methodology are shown.
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Table 1: Variables glossary

SoH State of Health

SoC(t) State of Charge

SoH0 SoH before performing a mission plan

Q(t) battery capacity

Q0 battery nominal capacity

xijz routes decision variables

yijz arrival time decision variables

wijz vehicle payload decision variables

fiz recharge time decision variables

vmaxz vehicle maximum speed decision variables

amaxz vehicle maximum acceleration decision variables

H maximum allowed vehicle payload

m vehicle mass

ρair air density

VOC open-circuit voltage

Cr rolling resistance coefficient

Cw drag coefficient

A vehicle frontal area

α road inclination

len road link length

vmaxroad road link maximum allowed speed

acentripetal vehicle maximum centripetal acceleration

vtgt vehicle target speed

eijz consumed energy

hi vehicle mass variation

SoCcrit critical SoC limit

tij displacement duration

lj mission deadline
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1. Introduction

Historically, internal combustion engine vehicles have been the norm of trans-

portation. However, to attenuate global warming, different actions to popularize

Electric Vehicles (EV’s) have been taken. In this new paradigm, the importance

of understanding and improving battery lifetime has important economic con-

sequences since this component accounts for around 35% [29] to 50% [5] of the

total vehicle cost.

Battery lifetime management has also environmental consequences and is

a main concern of several global players. For instance, in the communication

of the European Green Deal [10], the importance of ensuring ”a safe, circular

and sustainable battery value chain for all batteries [...] to supply the growing

market of electric vehicles” is emphasized.

Since vehicle usage has a direct influence on battery lifetime, incorporating

battery degradation on vehicle decision-making problems can lead to different

insights and solutions that extend lifetime [32, 46, 44, 34, 16, 26]. However,

most of the degradation models used are incapable of accounting for different

driving conditions and degradation induced while driving.

Furthermore, to achieve practical degradation-aware decision-making, opti-

mization models must realistically describe the State of Health (SoH) of the

battery, which in turn depends on realistic State of Charge (SoC) models[33].

However, most SoC models considered thus far in such decision-making prob-

lems are oversimplified.

Additionally, new technologies allow for different decisions to be considered.

For example, the impact on degradation of restricting the vehicle speed and its

acceleration, or of partially recharging the battery, remains to be explored.

In our work, we propose an optimization model that leverages SoH estima-

tion based on realistic SoC modeling and is integrated into a new version of the

Electric Vehicle Routing Problem (EVRP) that accounts for partial charging,

speed and acceleration limitations and also for battery degradation. Due to its

computational complexity, a genetic algorithm is used to solve it.
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Therefore, the main contributions of this paper can be summarized as fol-

lows:

• The formalization of the electric vehicle routing problem with degrada-

tion and vehicle parameters (EVRP-DVP). It includes battery degrada-

tion modeling, partial charging, maximum speed limitation and maximum

acceleration limitation.

• A SoH estimation method that relies on realistic SoC modeling and can

be included in optimization problems.

• A method to estimate the battery degradation after performing a set of

missions.

• Numerical experiments to validate the proposed methodology.

Accordingly, this paper is structured as follows: Section 2 promotes a bibliog-

raphy review that places our contribution according to the state-of-art. Section

3 formalizes the optimization problem while Section 4 presents all the necessary

physical models. The genetic algorithm used to solve it are presented in Sec-

tion 5. Section 6 provides numerical results and finally, Section 7 concludes the

paper.

2. Bibliography Review

This section reviews both degradation (SoH) and SoC models commonly

used in transportation applications.

2.1. Battery Degradation in vehicle applications

Battery SoH can be defined as follows [7]:

SoH(t) =
Q(t)

Q0
(1)

where Q(t) is the battery capacity at instant t and Q0 is its initial capacity.

The SoH decreases until reaching a critical threshold after which the battery

must be replaced.
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Battery degradation is a complex phenomenon that can occur due to dif-

ferent mechanisms. Among them are the expansion of the Solid Electrolyte

Interphase, current collector corrosion, binder and electrolyte decomposition,

lithium platting and particle fracture [7, 33, 31]. Some degradation models are

directly based on those phenomena and are usually referred to as physical-based

models. However, for most vehicle decision-making problems, they are imprac-

tical due to their complexity and the difficulty to include them in optimization

models related to vehicle exploitation [33].

Black-box models (or data-driven) [41, 4, 40, 45, 21, 22] use battery SoH

(or capacity) data to feed algorithms that predict capacity evolution or failure

time. The main drawback of this approach is the fact that it relies on large

amounts of data, which is rarely available for real vehicle applications where

usage conditions can widely vary.

The most suitable models for vehicle decision-making problems are the semi-

empirical models because they combine data and theoretical principles. They

require less data than a pure black-box approach and are also easier to include in

EVRPs than physical-based models since they do not directly describe chemical

reactions. Instead, they correlate degradation with stress factors that can be

connected to vehicle usage [33]. Some of the most common stress factors are:

• Mean SoC (mSoC): defined as the average value of SoC(t). Operating

in high mSoc values accelerates degradation mechanisms in the negative

electrode [7].

• Depth of Discharge (DoD): defined as the amplitude of SoC variation

in a discharge cycle. Higher DoD often lead to accelerated capacity fade

[7].

• C-rate: defined as the rate in which the battery is discharged or charged.

It can be estimated through the SoC variation rate. Operating on specific

values of C-rate is known to accelerate degradation.

For those reasons, such models are commonly employed in degradation-aware
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decision-making problems [44, 16, 34, 46, 32]. However, most of the used degra-

dation models present limitations. They are either too simplistic, or do not

account for degradation caused by driving cycles. They are also incapable of

considering the effects of opportunistic charges (i.e. SoC that is recuperated

when braking or driving downhill) and often neglect some important stress fac-

tors.

One alternative is to use models based on SoC cycle decomposition, such

as [43]. Those models consider that the SoC history can be expressed as a

combination of simpler cycles, usually obtained through the Rainflow-Counting

algorithm [12]. After the decomposition, stress factors can be computed from

the identified cycles characteristics and therefore, the capacity fade caused by

each cycle can be calculated.

The main advantage of cycle decomposition models is that usage conditions

are not assumed to be static and they can be employed for charge and dis-

charge cycles. Even for batteries types that are more sensible to degradation

while charging, cycle decomposition is still useful because it can account for

opportunistic charging (charges that occur while driving).

2.2. State of Charge models in the Electric Vehicle Routing Problem

One of the most important problems in transportation science is the Vehicle

Routing Problem (VRP) [39, 11]. Several different variations of this problem

were studied and, in recent years, the EVRP [13, 24] has become extremely

relevant. This version accounts for particularities of electrical vehicles which

come from their lower ranges, consumption models and non-neglectable recharge

times.

In the classical EVRP formulation, a fleet of EV’s, starting in a depot, has

to serve a set of customers, minimizing a criterion such as energy consumption

or operation time and respecting a set of constraints related to operational

conditions and vehicle range (i.e. limiting SoC or energy consumption to an

acceptable level). The goal of this section is not to extensively review the

literature of EVRP’s but to analyze recent contributions in terms of models
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used to define vehicle range.

Most authors define their constraints in terms of energy consumption. How-

ever, this approach is less robust than constraining SoC and can lead to un-

feasible routes in some cases [33]. It is also important to highlight that some

authors treat SoC and energy variation as synonyms. The implicit assumption

is that the terminal battery voltage is constant which may not hold for some

battery types and applications.

Some authors do not discuss explicitly how to model either SoC variations

or energy consumption but consider it to be known in advance for a given

displacement. This approach is used in works such as [23] where authors are

interested in the problem of partial charging with non-linear profiles. Similar

examples can be found in [30, 17, 15].

In [20], a model for a EVRP that also accounts for battery degradation is

proposed. It considers both SoC and energy to be directly proportional to the

traveled distance. A large number of works use similar approaches [37, 47, 35, 9].

However, considering energy or SoC to be proportional to the traveled distance

can lead to significant errors in urban networks [8].

In [28], energy is estimated assuming that vehicles move with constant speed

trough each edge and constant power-train efficiency, not accounting for accel-

eration effects. Similar energy models can be found in [1, 2, 14, 27].

[6] uses vehicle dynamics equations combined with prior speed profiles to

estimate energy consumption. This approach can lead to realistic estimates but

knowledge on speed profiles can be restrictive in most scenarios due to the lack

of data. Authors consider SoC to vary directly with consumed energy, implying

constant terminal voltage.

In [8], a two-step EVRP is solved, in which the energy model is based on road

topography, making assumptions on driving cycles and accounting for power-

train efficiency. This model is compared with real vehicle data and presents

a mean square error close to 12%. In the associated optimization model, con-

straints related to vehicle range are defined in terms of energy.

To the best of our knowledge, no realistic SoC model has been included in
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EVRP’s. The importance of considering realistic SoC models is highlighted by

[33]. Our contribution in this work is thus to propose and solve a new version

of the EVRP, integrating a realistic SoC model: EVRP-DVP, electric vehicle

routing problem with degradation and vehicle parameters.

3. Problem Formulation

The EVRP-DVP is a decision making problem that consists on assigning

different missions (deliveries) to a fleet vehicles. Each mission has a known

deadline and the mission planning is built considering range limitations and

minimizing an objective criterion that accounts for degradation and logistic

costs.

To formalize the EVRP-DVP as an optimization problem, we consider the

graph G = (N,E). Nodes N can be described as N = C∪S∪0 where C is the set

of clients, S is the set of charging stations and 0 represents the headquarters,

where vehicles start and to where they must come back at the end of their

missions. The set of vehicles is denoted by Z.

The decision variables are: xijz, a binary variable that is 1 if vehicle z drives

from node i to node j and zero otherwise; wijz, the payload of vehicle z while

going from i to j; yijz which is the arrival time of vehicle z at node j from node

i and fiz which is the time spent by vehicle z on recharge station i. Together,

those decision variables define a mission plan and a vehicle configuration.

Decision variables amaxz represent the maximum acceleration of vehicle z;

and vmaxz the maximum speed of vehicle z. They are vehicle software param-

eters that can be changed remotely. As a consequence, those parameters will

affect the how vehicle speed behaves during displacements. Figure 1 shows the

speed of two vehicles with different amaxz and vmaxz making the same displace-

ment.

In addition to decision variables, other terms are needed to establish EVRP

constraints. H is the maximum vehicle payload, tij(vmaxz , amaxz ) is the time

necessary to go from i to j with vmaxz and amaxz , SoC(t,Xz, vmaxz , amaxz )
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Figure 1: Speed comparison of two vehicles with different amaxz and vmaxz . In this case, both

amax2 and vmax2 are inferior to amax1 and vmax1 respectively. As a consequence, vehicle 1

is able to reach nominal while vehicle 2 has its speed limited to 8 m/s.

indicates SoC at instant t for vehicle z, given vmaxz , amaxz and a mission plan

defined by Xz which denotes the set of xijz that are equal to 1 for vehicle z,

SoCcrit that is critical SoC threshold and hi that is the vehicle mass variation

caused making the delivery at node i.

The cost function of the mission plan is composed of three components and

depends on the decision variables. It is defined as:

C = Cdeg + Cenergy + Cdelay (2)

• The degradation cost Cdeg can be expressed as:

Cdeg = cbatt
∑
z∈Z

∆SoH(Xz, vmaxz , amaxz ) (3)

where ∆SoH(Xz, vmax, amax) is the variation of the battery SoH of vehicle

z after performing the missions defined by Xz with maximum speed vmaxz ,

and maximum acceleration amaxz . The constant cbatt is based on the

battery cost.
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• The energy cost Cenergy is considered directly proportional to the con-

sumed energy and is described by:

Cenergy =
∑
z∈Z

ce
∑
i∈N

∑
j∈N

eijz(vmaxz , amaxz )xijz (4)

where ce is a constant related the energy cost, eijz(vmaxz , amaxz )) is the

energy spent by vehicle z going from i to j with vmaxz and amaxz .

• And finally, the delay cost Cdelay which can be expressed as follows:

Cdelay =
∑
z∈Z

cd
∑
i∈N

∑
j∈C

xijz max[yijz − lj , 0] (5)

where cd is a constant related to the cost of penalties and lj is the deadline

of client j.

The final optimization problem can then be described as:

min C (6)

Subjected to:
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∑
z∈Z

∑
j∈C

xijz = 1 ∀i ∈ N (7)

∑
j∈N

x0jz = 1 ∀z ∈ Z (8)

∑
j∈S

xijz ≤ 1 ∀i ∈ N, ∀z ∈ Z (9)

∑
j∈N

xijz −
∑
j∈N

xjiz = 0 ∀i ∈ N, ∀z ∈ Z (10)

∑
z∈Z

∑
j∈N

wijz −
∑
z∈Z

∑
j∈N

wjiz = hi ∀i ∈ N (11)

hjxijz ≤ wijz ≤ (H − hi)xijz ∀i ∈ N, ∀z ∈ Z (12)

y0jz ≥ t0j(vmaxz , amaxz )x0jz ∀i ∈ C ∪ S,∀z ∈ Z (13)∑
z∈Z

∑
j∈N

yijz −
∑
z∈Z

∑
j∈N

yjiz ≥ tij(vmaxz , amaxz )xijz ∀i ∈ C (14)

∑
z∈Z

∑
j∈N

yijz −
∑
z∈Z

∑
j∈N

yjiz ≥ tij(vmaxz , amaxz )xij + fiz ∀i ∈ S (15)

min SoC(t,Xz, vmaxz , amaxz ) ≥ SoCcrit ∀z ∈ Z,∀t (16)

xijz ∈ {0, 1} (17)

wijz ≥ 0 (18)

yijz ≥ 0 (19)

vmaxz ∈ [v−max, v
+
max] (20)

amaxz ∈ [a−max, a
+
max] (21)

Inequality (7) ensures that every client is visited once, Constraint (8) guar-

antees that the number of vehicles used does not exceed the size of the fleet

and Constraint (9) limits the number of visits to recharge stations. Constraint

(10) ensures that there is one outgoing arc to each incoming arc. Constraint

(11) guarantees that, at each delivery, the payload is reduced accordingly since

hi = 0 ∀i ∈ S ∪ 0, while (12) ensures that the maximum payload H is re-

spected and also it makes wijz = 0 when xijz = 0. Constraints (13) through

(15) describe arrival time evolution, ensuring that the displacement duration is
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respected. Constraint (16) imposes the range limitations through SoC, which

model is presented in section 4. Constraints (17) through (21) define the proper

range of the decision variables. And a−max, a
+
max, v

−
max, v

+
max are the acceptable

limits of amaxz and vmaxz , respectively.

The next section presents the models used to compute ∆SoH(Xz, vmaxz , amaxz ),

eijz(vmaxz , amaxz ) and SoCijz(t) based on the decisions variables of the prob-

lem.

4. SoH and SoC estimation method

To solve the EVRP-DVP in realistic cases, it is necessary to combine several

models with road information, such as topology, allowed speeds, etc. In this

section, all those models are presented as well as the necessary hypotheses.

4.1. Degradation Model

The term ∆SoH(Xz, vmax, amax) in Equation (3) can be computed based

on the degradation model presented in [43]. It is based on cycle decomposition

as mentioned in Section 2.1.

The cycle decomposition can be obtained by a Rainflow-Counting algorithm,

and an example of such a decomposition is illustrated in Figure 2, in which 2

cycles are identified and their amplitude (DoD) and mean (mSoC) are denoted

by σ and δ respectively.

The degradation model expresses SoH as:

SoH(t) = e−fd(t) (22)

With the damage function fd defined as:

fd(SoC(t)) =

n(SoC(t)))∑
i=1

ui Sδi Sσi STi (23)

where n(SoC(t)) is the number of SoC cycles up to time t, ui is 1 for a full

cycle or 0.5 for a partial cycle, Sδi , Sσi and STi are stress coefficients related

12
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Figure 2: Rainflow-Counting applied to a simple SoC(t). The amplitude σ, mean δ and w are

represented for the 2 cycles identified.

respectively DoD, mSoC and temperature. These stress coefficients are deter-

mined empirically, and the chosen functions, adapted from the work in [43], are

described by:

Sσi = ekσ(σi−σref )

STi = ekT (Ti−Tref)
Tref
T

Sδi = (kδ1δ
kδ2
i + kδ3)−1

(24)

The terms kσ, kT , kδ1 , kδ2 and kδ3 are constants determined empirically by

experiments, while σref and Tref are experimental reference values for mSoC

and temperature, respectively. The temperature Ti is taken as the average

temperature of cycle i, which, in this work, is assumed to be normally distributed

around the temperature that should be guaranteed by the battery management

system.

Finally, ∆SoH(Xz, vmax, amax) can be expressed as:

∆SoH(Xz, vmaxz , amaxz ) = SoH0 − SoH(t,Xz, vmaxz , amaxz ) (25)

where SoH0 is the SoH before performing a mission plan, considered to be

known in advance.
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Figure 3: Second-order ECM for a battery.

4.2. SoC estimation method

To obtain the stress factors used in the degradation model, it is necessary

to estimate the SoC(t), which is also a used as a constraint in the EVRP-DVP.

To do so, vehicle’s longitudinal dynamics are combined with the second-order

Equivalent Circuit Model (ECM) shown in Figure 3 that represents the internal

dynamics of the battery.

The resulting system of algebraic and differential equations, given decision

variables Xz, vmaxz and amaxz is:
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v̇ = a(t,Xz, vmaxz , amaxz ) (26)

Pmec(t) =
ρairCwAv(t)3

2
+mgv(t) sinα

+ mgCrv(t) cosα+ma(t)v(t) (27)

Pelec(t) =
Pmec(t)

η(v(t), a(t))
(28)

I(t) =
1

2Ro
(VOC(SoC(t))− Vl(t)− Vs(t)−√

(VOC(SoC(t))− Vl(t)− Vs(t))2 − 4RoPelec(t)) (29)

V̇s = − Vs
RsCs

+
I(t)

Cs
(30)

V̇l = − Vl
RlCl

+
I(t)

Cl
(31)

˙SoC = −I(t)

Q0
(32)

Equation (26) relates the speed v(t) and the acceleration a(t,Xz, vmaxz , amaxz )

which is the acceleration performed by a vehicle z following the mission plan

defined by Xz with maximum speed and maximum acceleration limited to vmaxz

and amaxz .

Equation (27) describes the mechanical power based on the longitudinal

dynamics of a vehicle, m is the total mass of the vehicle, which will depend on

decision variables wij , g is the gravity acceleration, α is the instantaneous road

inclination, Cr is the rolling resistance coefficient, Cw is the drag coefficient, A

is the frontal area of the vehicle and ρair is the air density.

Equations (29 -32) are derived from the second-order ECM. Vbatt(t) is the

voltage of the battery, I(t) is the instantaneous current, Vs(t) and Vl(t) are

electric potential differences with R0, Rs, Rl being the resistances, Cl and Cs

are the capacitors and VOC(SoC(t)) is the open circuit voltage which depends

on SoC.

VOC(SoC) can be determined with look-up tables usually provided by bat-

tery suppliers, and therefore, this system can be solved knowing the initial values

of v, Vs, Vl, SoC and the function a(t,Xz, vmaxz , amaxz ).
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4.3. Acceleration model

Solving the system of algebraic numerical equations that describes SoC, re-

quires modeling a(t,Xz, vmaxz , amaxz ). To avoid relying on large amounts of

data, we adopt a method similar to the one used in [8]. It based on the road

information such as maximum allowed speed, inclination and traffic lights loca-

tions, to infer how acceleration will evolve. The first step of this method is to use

all the aforementioned road information to create a road graph Gr = (Nr, Er).

The nodes of this graph represent points in the map in which the necessary

parameters to estimate the mechanical power (Equation 27) change or stops are

expected (traffic lights, steep curves and etc). The edges of this graph, er ∈ Er,

are referred to as road links and can be described by:

er =



len

vmaxroad

α

Stop

Curve


(33)

where len is the road link length, α is its inclination, vmaxroad its maximum

allowed speed , and Stop is a binary variable that is equal 1 if there is a possible

stop at the end of the link (crossroad and traffic lights, as mentioned) and 0

otherwise. Similarly, the binary variable Curve indicates if there is a curve

at the end er. Figure 4 illustrate the process of building Gr based on road

information.

Once Gr is built, acceleration can be estimated with assumptions over driver

behaviour on each er. It is assumed that a vehicle z will accelerate constantly,

with acceleration amaxz until reaching a target speed vtgt:

vtgt = min[vroadmax , vmaxz ] (34)

showing the impact of decision variables vmaxz and amaxz on how a(t,Xz, vmaxz , amaxz )

is inferred. If there is a stop at the end of a road link, vehicles are considered to

16



�

50

km/h

e1 e2 e3 e4e0

Figure 4: Example of how road links are defined. In this example, four links are shown.

Links are created to represent differences on the parameters relevant to acceleration or power

estimation. In this example, e1 and e2 are created due to a inclination difference with respect

to the previous link. e3 is defined due to a maximum speed change and e4 is defined due to

the presence of a traffic light.

break before reaching its end. Figure 5 shows the considered acceleration and

speeds for a basic case in which the vehicle starts at idle and there is a Stop at

the end of the link.

To obtain acceptable results in practical applications, it is necessary to con-

sider corner cases. In [8], two such cases were considered. The first one happens

when there is a difference of target speed between two consecutive road links. If

the target speed in the first link is higher than in the second, the vehicle needs

to decelerate before entering the second link. This is illustrated in Figure 6.The

second case happens when a road link is not long enough for the vehicle to reach

vtgt, as shown in Figure 7.

In this paper, a third case is considered. Originally, in [8], steep curves

were considered as stops. In order to be less conservative and also consider the

effect of less steep curves on the speed, we account for curves assuming that

vehicles will make turns with constant centripetal acceleration and therefore,

their speeds before the curve will be:

vcurve =
√
acentripetalr (35)
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Figure 5: Vehicle speed starting at idle and going through a road link with a stop at its end.

Figure 6: Speed with vehicle travelling through two consecutive road links.
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Figure 7: Speed in a short link with stop point at beginning and end. The vehicle cannot

reach target speed.

with acentripetal being the vehicles centripetal acceleration which is consid-

ered constant among road links. The r curve radius curve can be estimated

with the road information mentioned.

It is important to highlight that, even considering those corner cases, this

driving model is simplified. In reality, driving behaviour can be unpredictable

and more complex, for example, in eco-driving trained drivers tend to accel-

erate smoothly and keep steady speeds around optimal values (not necessarily

maximum road speed) [19, 3]. However, as seen in [8] this method is suitable

for decision-making problems and achieved good in terms of energy estimation

when compared with real data. Once a(t,Xz, vmaxz , amaxz ) is estimated, it

is possible to solve the system and obtain SoC(t,Xz, vmaxz , amaxz ) given the

decision variables of the EVRP-DVP and estimate the SoH evolution.

4.4. Charging model

To model SoC while charging, an approach similar to the one adopted in [30]

is used. SoC is considered to evolve according to a piece-wise linear function as

shown in Figure 8 and charging SoC is therefore fully determined by fiz and
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Figure 8: Non-linear charging process approximated by a piece-wise linear function.

the SoC level at which the vehicle has arrived at a charging station, which can

in turn be estimated as described in the previous section.

5. Optimization Algorithm

The main drawback of the optimization model proposed is the computational

burden of evaluating a possible solution. This comes from the need to solve

a differential equation system and from the fact that the Rainflow-Counting

decomposition has no closed form and is non-linear [36].

To solve the problem, an heuristic optimization method should then be used.

Genetic programming techniques are chosen since they can be successfully used

for computationally expensive optimization problems [38] and have already been

employed in vehicle routing problems [25, 23].

The solution representation contains 4 parts: a mission plan π, a set of max-

imum speeds vmax, a set of maximum accelerations amax and a set of recharge

times f .

Figure 9 presents an example of solution for a case with 2 EV’s. Vehicle 1

goes from node A0 to B3, then to E4 and so on. Its speed is limited to 60 km/h

and its acceleration to 1 m/s2. Similarly, Vehicle 2 goes from A0 to C5 and so
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Figure 9: Solution representation.

on, with a speed limited to 80 km/h and a maximum acceleration of 0.5 m/s2.

Both of them will recharge their batteries for 1800 seconds in recharge station

E4.

To initialize the algorithm, random solutions are created. The mission plan

is created by choosing a permutation of the client nodes C and then randomly

adding recharge stations between clients. The HQ is put at the beginning and

end of the mission plan. This ensures that constraints (7) to (10) are respected.

After that, for each recharge station in the plan, a recharge time is randomly

generated, creating the recharge times set f .

Each part of the representation undergoes crossover separately and the op-

erators used were variations of classical ones, such as order based and one-point

crossover for the mission part and uniform sampling crossover for speed, accel-

eration and recharge parts.

Mutations of the mission plans consisted of swapping missions for a given

truck; For the remaining parts small deviations were randomly added. Those

processes also accounted for the constraints of the problem, not allowing for

mission configurations or scalar values that would not respect the constraints of

the problem.

To account for constraint 18, the fitness function has a penalization factor.

Solutions that do not ensure acceptable SoC levels are penalized, being allowed

to generate offspring and explore the limits of the constraints, but are highly

unlikely to be selected as a final solution.
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6. Results and Discussions

6.1. SoC and SoH model inclusion benefits

The proposed degradation model requires a physics based SoC model capa-

ble of capturing the internal dynamics of the battery. This model introduces

computational complexities for solving EVRPs, therefore, in this section, a se-

ries of numerical experiments is performed to justify and show the differences

between our approach to SoC and the most common literature model. The

following model is used as a benchmark:

v(t) = vroadmax (36)

Pmec(t) =
ρairCwAv(t)3

2
+mgv(t) sinα+mgCrv(t) cosα (37)

Pelec(t) =
Pmec(t)

η
(38)

I(t) =
Pelec(t)

V nominalbatt

(39)

˙SoC = −I(t)

Q0
(40)

Equations 36, 37 and 38 represent the very common approach of neglecting

acceleration effects and considering that vehicles always drive at road maximum

speed [18]. η is a constant efficiency. Equations 39 and 40 represent the common

approach of considering battery terminal voltage constant and equals to its

nominal value V nominalbatt .

In the first experiment, shown in Figure 10, the effects of considering battery

dynamics on different electrical quantities are explored. In this experiment, a

constant electrical power input is applied to the battery, representing an ide-

alized case in which a vehicle constantly drives with a low steady speed. The

power value was chosen to represent a heavy vehicle in low speed (approximately

10 km/h) and for both models, batteries were considered to have a 41 Ah capac-

ity and were fully discharged. With this constant power, the benchmark model

considers that terminal voltage and current remain constant since it neglects
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Quantity MSE Final error

Current (A) 0.08 .21

Terminal Voltage (V) 0.29 -0.7

SoC 0.014 -

Depletion time (h) - 1.8

Table 2: Summary of numerical experiment dedicated to compare the performance of the pro-

posed model with classical literature approaches. Mean Squared Error (MSE) was computed

in the horizon in which both batteries haven’t reached full depletion. Final error represents the

difference between the two models when depletion is reached. As can be seen, the benchmark

model tends to be more optimistic and fails to capture changes on battery operation.

battery dynamics. In our approach, in contrast, the different electrical quan-

tities are considered to change through time. As a consequence, SoC obtained

by both models is significantly different and battery depletion is considered to

happen approximately 1.8 hours later by the benchmark model. This difference

is already relevant in long-haul applications and can be even more relevant for

different power inputs. The summary of the experiment is found in Table 2.

While the first experiment illustrates differences caused only by consider-

ing the internal dynamics of the battery, a second experiment was designed to

showcase the effects of assumptions around vehicle speeds. Figure 11 shows the

differences between position, speed and SoC as considered by both model. As

can be seen, speeds are significantly different for both models. Since in this dis-

placement vehicles drive through road links that are not long enough to reach

target speed, acceleration and brakes have non neglectable effects on speed. As

a consequence, the duration of the displacement tdisplacement is different ac-

cording to both models. This can have serious consequences when dealing with

optimization models whose constraints are based on mission deadlines. Fur-

thermore, ignoring acceleration effects when estimating power causes significant

differences on SoC estimations. Even for a relatively small displacement of 25

km, the difference in SoC is already 2%. Once again, for longer displacements,

this can lead to optimization solutions which are not feasible, since the bench-
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Figure 10: Modeling assumption effects on electrical quantities.
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mark model tends to be more optimistic.

Both experiments highlight the importance of more realistic SoC models

from the point of view of range limitation and displacement duration. In a third

numerical experiment, we also show how important precise SoC modeling is for

long-term degradation estimation. Two SoC estimation methods are used for the

displacement represented in Figure 12. The duration of 6 of those displacements

is equivalent to a working day, referred to as work cycle. SoH is estimated using

the model presented in Section 4.1 considering as input SoC estimated with the

benchmark model and with our approach. Figure 13 shows the comparison of

SoH estimates after each cycle.

The error introduced by SoC estimation gives a significant SoH difference in

the long-term. Since each cycle is equivalent to a working day, the estimation

difference was of approximately six months, which justifies the used of a more

realistic SoC models in long-term applications.

6.2. Results on a synthetic map

A series of numerical experiments were performed in order to assess the im-

pact of considering degradation in routing problems. The first set of experiments

was conducted in a synthetic network shown in Figure 15.

The vehicle and battery parameters used are shown in Table 3. They were

either taken from the literature [42] or inferred from models used in the Volvo

Group.

6.2.1. Influence of considering degradation

In the first set of experiments, different instances of the EVRP-DVP were

solved with different cost parameters to investigate how taking degradation

into account impacted the mission plan. When a instance is solved considering

cbatt = 0 we obtain a classic EVRP where energy consumption is minimized.

When ce = 0 the EVRP will minimize only degradation, ignoring energy con-

sumption. Finally having cbatt 6= 0 and ce 6= 0 we have the complete EVRP-

DVP.
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models
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HQ

A

Figure 12: Illustration of the displacement used in the SoC Estimation comparison. The map

is a SUMO grid model of Luxembourg, containing real topography information. The red line

indicates vehicle trajectory while HQ indicates the starting point and A indicating the arrival

address.

Parameter Value

m 10700 (kg)

SoC0 1

Cs 1498.26 (F)

Rs 0.01902(Ω)

Cl 120 (F)

Rl 0.02221 (Ω)

R0 0.03417(Ω)

C0 65453.28 (F)

Table 3: Simulation parameters
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Figure 13: Comparison of end of life estimation : accurate SoC model vs. SoC variation as

directly proportional to the traveled distance.

The results are reported in Table 4. It is possible to see that accounting for

degradation (cbatt 6= 0) impacts the mission plan. Plans that account for degra-

dation either have extra recharges or make charges at different moments. Most

of these charges are not strictly necessary from the point of view of respecting

constraint (16). They are included to reduce degradation by introducing less

damaging cycles, with a lower DoD. This is clearly illustrated by Figure 14 which

shows the SoC evolution obtained following the optimal mission plans obtained

for the same instance, but for different optimization cases: accounting for both

degradation and energy (cbatt 6= 0 and ce 6= 0), for energy only (cbatt = 0) or for

degradation only (ce = 0).

• When only energy is considered (i.e. cbatt = 0), no charge is planned.

This solution reduces the energy cost by minimizing displacements and

stops. However, it generates cycles that are more damaging.

• When only degradation is considered (i.e. ce = 0), two charges take place,

inducing smaller cycles and causing less degradation. Since vehicles need
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Instance cbatt cd ce Mission plan Cost C

(e) (e) (e) (e)

1 10000 1 0.18 A0, E0, E1∗, E3, D5, A4, A2, A0 8.60

1 0 1 0.18 A0, E0, E3, D5, A4, A2, A0 8.63

1 10000 1 0 A0, E0, E1∗, E3, D4∗, D5,A4, A2, A0 8.62

2 10000 1 0.18 A0, E0, E1∗, E3, E5, A4, A2, A0 9.55

2 0 1 0.18 A0, E0, E3, E5, A4, A2, A0 9.60

2 10000 1 0 A0, E0, E1∗, E3, E5, D4∗, A4, A2, A0 9.57

3 10000 1 0.18 A0, B1, C5, F5, F2, D2∗, A2, A0 9.56

3 0 1 0.18 A0, B1, C5, F5, F2, A2, A0 10.52

3 10000 1 0 A0, B1, C5, F5, F2, D2∗, A2, A1∗, A0 9.58

4 10000 1 0.18 A0, B1, B3, D3∗, F3, C0, A0 7.65

4 0 1 0.18 A0, B1, B3, F3, C0, A0 7.73

4 10000 1 0 A0, B1, B3, D3∗, F3, C1∗, C0, A0 7.68

Table 4: EVRP result when considering different costs for 4 instances. Recharge stations are

indicated with a ∗ and A0 is the headquarters in all instances. Each instance is solved three

times with different cbatt, ce. These solutions are then evaluated with cbatt = 10000, cd = 1

and ce = 0.18 to compare the advantages of considering degradation in EVRP’s
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Figure 14: Comparison of SoC for optimal mission plan for different optimization cases: Case

A accounts for both degradation and energy (cbatt 6= 0 and ce 6= 0), case B only for energy

(cbatt = 0) and case C only for degradation (ce = 0).
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Figure 15: Different routes for instance 1 of the EVRP-DVP. Power plugs represent charges.

The solutions for the case where only degradation is considered is represented in blue, in green

the solution accounting only for energy consumption and in red the complete solution. The

arrow indicates the sense the vehicles travelled.

to stop at charging stations to recharge, extra charging sessions result in

higher energy consumption, making this solution sub-optimal from the

energy point of view when compared to the case ce 6= 0.

• Finally, by jointly taking into account costs of degradation and energy (i.e.

cbatt 6= 0 and ce 6= 0), a third solution is obtained. Only one charge is

planned, finding a balance between extra energy consumption and degra-

dation reduction. Figure 15 shows these three different solutions on the

map.

In instance 3, considering degradation led to a 10% improvement in costs when

comparing with the solution that accounted only for energy consumption. Even

for instances where the improvement was more modest, because SoH evolves

slowly through time, a small reduction on the cost C could lead to a huge

improvement on the duration of battery life.
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Clients Charging stations Improvement

# # ratio

5 1 0.05

5 10 0.8

5 20 1

10 1 0.1

10 10 0.85

10 20 1

Table 5: Proportion of instances in which accounting for degradation yielded a better solution

than only considering energy for different numbers of clients and charging stations.

6.2.2. Influence of charging stations availability

Considering degradation can impact a mission plan and improve the per-

formance of the fleet in the long run, but some considerations must be made.

Adding extra charges to reduce degradation is only beneficial when the energy

consumed due to this extra stop is not significant when compared to the degra-

dation cost. Therefore, charging station availability plays an important role on

degradation minimization.

To quantify this phenomenon, random instances of the problem were gen-

erated. Each instance is solved twice, once considering only energy (cdeg = 0)

and a second time considering both degradation and energy. Several instances

were generated for different numbers of clients and charging stations. The pro-

portion of instances in which considering degradation improved the solution is

registered in Table 5. The column Improvement ratio indicates the ratio be-

tween instances in which considering degradation yielded to a better solution

and those for which minimizing energy and degradation was equivalent.

As expected, the availability of charging stations plays an important role in

the EVRP-DVP, allowing degradation reduction.

Another important consideration is that the optimal plan also depends on

the battery dynamics and the parameters of the degradation model. Therefore,
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Clients Charging stations Cost C Cost C

# # (not acting on VPs) (acting on VPs)

5 7 6.90 6.39

5 8 7.20 6.74

10 10 11.3 10.6

5 10 6.83 6.27

3 7 4.83 4.36

Table 6: Comparison of the impact of including Vehicle Parameters (VPs) on the average cost

C

different types of batteries can result in different mission plans that will be more

or less impacted by degradation.

6.2.3. Influence of vehicle driving parameters

A second set of experiments is performed to determine the importance of

limiting speeds and accelerations. In these experiments, different instances are

randomly generated and solved with and without limitation on speeds and ac-

celerations. The cost parameters are cd = 1, ce = 0.18, cbatt = 10000.

As it can be seen in Table 6, limiting speeds and accelerations reduces the

total cost of a mission plan. The decrease comes mainly from the energy cost,

which is a direct consequence of equation (28), but also from the degradation

cost, since stress cycles presented a smaller DoD (which can be seen in Figure

16).

In the case where speeds and accelerations are limited (Case A in Figure

16), the SoC decrease more slowly as a reflex of smaller energy consumption.

Charges happened with SoC at 86% and 94% . In case Case B, where VP’s

are not affected, charges happened at 82% and 93%, leading to more damaging

cycles. Affecting vehicle parameters can thus improve the overall efficiency of a

vehicle within a mission plan, reducing both degradation and energy costs.
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Case B: not acting on driving parameters. Notice that in Case B, the mission plan ends earlier

because of different driving parameters (higher speed and acceleration)

34



Clients

#

Charging

stations

#

Average cost

not considering

degradation

Average cost

considering

degradation

10 2 2.25 2.20

10 5 2.16 2.08

20 5 3.73 3.67

20 10 3.82 3.64

30 10 5.01 4.73

30 15 4.95 4.67

Table 7: Comparison between average cost of solutions found considering degradation and

solutions without accounting for degradation.

6.3. Results on a realistic Use Case

To assess the impact of incorporating degradation in more realistic scenar-

ios, different instances of the routing problems were generated in the map of

Luxembourg, shown in Figure 12.

Instances were created choosing a specific number of random points in the

map that are either charging stations or clients. As in the synthetic network

experiments, they are solved once considering cbat to be zero and once with

cbat 6= 0.

Table 7 shows the comparison between the results obtained with or without

accounting for battery degradation. Like in the synthetic network, accounting

for degradation led to better solutions. This is related to the fact that charges

are planned optimally, leading to stress cycles that are less damaging. As it

can be seen, the benefits are related to the number of charging stations, since

charging to reduce degradation may lead to bigger energy consumption and will

only occur if displacements to arrive at charging stations are relatively small.

To assess the impact of maximum speed and acceleration in realistic cases,

another set of experiments is made. Instances are generated and solved with

and without maximum speed and accelerations as decision variables.
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Clients

#

Charging

stations

#

Average cost

not affecting

driving parameters

Average cost

affecting

driving parameters

10 2 2.32 2.16

10 5 2.26 2.12

20 5 3.68 3.47

20 10 3.64 3.42

30 10 4.97 4.81

30 15 4.92 4.79

Table 8: Comparison between average cost of solutions found affecting driving parameters

and solutions without affecting driving parameters

The results are shown in Table 8. As it can be seen, limiting speed and

acceleration is beneficial in terms of cost. This is related to the fact that it

reduces energy consumption which in turn is also beneficial from a degradation

point of view.

7. Conclusion

This paper presented a variation of the EVRP that accounts for degradation

and limitation on speeds and accelerations. To make it useful for degradation

minimization in realistic scenarios, the optimization model is built upon a real-

istic SoC estimation method.

Since both the degradation and SoC models are computationally challenging

to incorporate in optimization problems, a genetic algorithm was used to solve

it.

Trough numerical experiments, the importance of realistic SoC modeling,

degradation-aware decision-making and limiting speeds and accelerations is shown.

Incorporating degradation and extending the set of possible actions of the prob-

lem yields to better solutions than the most usual optimization models. In real

life applications this can have a beneficial impact since it can extend the useful
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life of vehicles and reduce the long-term exploitation cost.

This work focused on introducing a more realistic SoH model combined with

a physics based SoC model and adding it to a new EVRP variation. There

are different promising research paths for future works. For example, from

an optimization point of view, the performance of the proposed GAs could be

studied and exact algorithms could be proposed. From a problem formulation

point of view, it is necessary to compare the proposed models with real vehicle

data, for SoC and SOH calibration. Incorporating stochastic elements is also

desirable. For example, traffic randomness can highly affect energy consumption

and delays and must, therefore, be accounted for. Long-term routing strategies

and relevant aspects related to circularity such as obsolescence issues and second

life applications are also interesting paths for future research.
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[13] Tomislav Erdelić and Tonči Carić. A survey on the electric vehicle routing

problem: variants and solution approaches. Journal of Advanced Trans-

portation, 2019, 2019.

[14] G Ferro, M Paolucci, and M Robba. An optimization model for electrical

vehicles routing with time of use energy pricing and partial recharging.

IFAC-PapersOnLine, 51(9):212–217, 2018.
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