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Comment on “Perturbation theory of scattering for
grazing-incidence fast-atom diffraction", by W. Allison,
S. Miret-Artés and E. Pollak, PCCP 2022, 24, 15851

Gisela Anahí Bocan,∗,a Hanadi Breiss,b Samir Szilasi,b Anouchah Momeni,b,c Elena Magdalena
Staicu Casagrande,b Esteban Alejandro Sánchez,a,d María Silvia Gravielle,∗,e and Hocine
Khemlicheb

In this comment we discuss some aspects of Phys. Chem. Chem. Phys. 2022, 24, 15851, by Allison
et al., an article intensely motivated by our study of grazing incidence fast atom diffraction (GIFAD)
for He-KCl(001) [Phys. Rev. Lett. 2020, 125, 096101; Phys. Rev. B. 2021, 104, 235401]. In
particular, a) we show that, contrary to first order perturbation prediction, the surface corrugation
is not proportional to the tangent of the rainbow angle and, b) we analyze whether a Morse-like
formula, like the one Allison et al. use, is able to reproduce the atom-surface potential derived
from density functional theory (DFT) calculations. In addition, we give some clarifications regarding
specific remarks the authors made about our articles.

1 Introduction
Grazing Incidence Fast Atom Diffraction (GIFAD) has recently
emerged as a powerful surface analysis technique 1. Its graz-
ing geometry makes it suitable for in-situ monitoring of thin film
growth, and thus an appealing alternative to reflection high en-
ergy electron diffraction (RHEED), given it is less invasive, more
surface sensitive and readily interpretable quantitatively 2.

In recent publications 3,4, we analyzed the behavior of the sur-
face corrugation and the rainbow angle, two GIFAD related quan-
tities, for very low normal energy (E⊥) He atoms impinging on
a KCl(001) surface. Some aspects of our study have been com-
mented on in the article Phys. Chem. Chem. Phys. 2022, 24,
15851 by Allison et al 5. In their argumentation the authors
have assumed the applicability of classical first order perturba-
tion (FOP) theory to this problem, and obtained the rainbow an-
gle dependence on the normal energy that results from modeling
the axial interaction potential with a Morse-like function.
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In this comment we will show that very low E⊥ GIFAD for He-
KCl(001) cannot be properly described in terms of classical FOP
theory and that a realistic potential for this system and scattering
process cannot be satisfactorily fitted with the proposed Morse-
like formula. This paper is organized as follows: In Sec. 2 we an-
alyze the applicability of FPO to low-E⊥ GIFAD for He-KCl(001);
in Sec. 3, we compare our DFT potential with a Morse-like one;
in Secs. 4 and 5 we respond to some specific claims the authors
made about our articles 3,4 and, in Sec. 6, we give the summary
and conclusions.

2 Applicability of first order perturbation to
low-E⊥ GIFAD

The first point we would like to address is the applicability of the
classical FOP model to our work3,4. In this model, the apparent
(a.k.a. effective) corrugation is proportional to the tangent of the
rainbow angle. Based on this, the authors state that “any energy
dependence in the SIVR corrugation of Bocan et al. 4, or equiv-
alently ηa, will be manifested in the energy dependence of the
rainbow angle and viceversa” (Eq. (3.39) and text following it,
also repeated in the abstract and conclusions of Ref. 5). How-
ever, low normal-energy GIFAD for He/KCl(001) is not within the
range of validity of the FOP approach, as we can straightforwardly
prove.

From our experimental and theoretical results for incidence re-
spectively along the ⟨110⟩ (Figs. 2(a) and 3(a) of Ref. 3) and
⟨100⟩ (Figs. 10 and 11 of Ref. 4) channels, we show in Fig.
1 that, at low normal energies, the ratio of the tangent of the
rainbow angle and the corrugation, tan(Θrb)/∆Z, markedly de-
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parts from an E⊥-independent behavior. This deviation from the
FOP prediction is observed for both the intrinsic and apparent
values of the involved quantities, where the former are derived
solely from the equipotential curves of the theoretical potential
energy surface (PES, obtained with the Perdew-Burke-Ernzenhof
(PBE)6 exchange-correlation functional), while the latter corre-
spond to values obtained either from experiments or theoretical
simulations which combine the mentioned PES (based on den-
sity functional theory calculations) with the surface initial-value
representation (SIVR) approach.

Fig. 1 Ratio tan(Θrb)/∆Z as a function of E⊥ for He/KCl(001) GIFAD 3,4.
Note that b) includes two additional curves where the PBE exchange-
correlation functional in the PES was modified to incorporate van der
Waals (vdW) interactions 3,4.

Moreover, it is worth mentioning that our analysis of low-E⊥
GIFAD for He-KCl(001) 3,4 shows that the PES regions affecting
the corrugation are different from those relevant for the rainbow
angle. That is, these two quantities probe different regions of the
PES and hence do not provide the same information.

In addition, note that, following Eq. (3.30) in Ref.5, the au-
thors state that “For a hard wall potential, ηa is independent of
the energy.”. However, within a hard corrugated wall (HCW)
model, the quantity ηa [Eq. (3.30)] gives the intrinsic corruga-
tion, a quantity which is not E⊥-independent, as it is respectively
shown in Fig. 2 (a) of Ref. 3 and in Fig. 5 of Ref. 4 for the ⟨110⟩
and ⟨100⟩ channels.

3 Performance of a Morse-like potential for
describing GIFAD of He-KCl(001)

In Secs. 2 and 4 of Ref.5, the authors make use of a Morse-like
potential to describe the atom-surface interaction in GIFAD. This
is the second point we reckon as interesting for further looking
into.

We here aim to verify i) to what extent the Morse formula,
with a set of optimized parameters, can reproduce the DFT axial
potential and ii) how the rainbow angle obtained when SIVR is
combined with such Morse formula (instead of with the DFT po-
tential) compares with both the experiments and the results from
Fig. 2 of Ref. 5.

In the following study we disregard the FOP approximation of
the Morse potential and consider instead the full formula from
Eq. (2.3)5, which we re-write as

VM(y,z) =V0

[
e−2α(z−z0−hrh(y))− 2e−α(z−z0−hah(y))

]
, (1)

where y is the coordinate across the incidence channel, z is the
coordinate normal to the surface plane (z = 0), and the function
h(y), defined as

h(y) = cos
(

2π
y
D

)
, (2)

with D being the channel width 7, causes the position z of the
physisorption well bottom to depend on y. In Eq. (1), z0 is in-
troduced to position the physisorption region outside the surface
(z > 0), V0 is the well depth for the h(y) = 0 case (for which the
well bottom is located at z= z0), α is a scaling factor (Allison et al.
associate it with the potential softness), and the condition hr ̸= ha

results in a well depth dependence on y. Note that z0, V0, α, hr

and ha are parameters to be determined.

Fig. 2 DFT axial PES as a function of the He-surface distance z, for
positions yb (border) and ym (middle), across the (a) ⟨110⟩ and (b) ⟨100⟩
channels. Also depicted, Morse fitting of these curves (dashed lines) and
Morse potential for the average ⟨hr⟩ (dashed-dot-dot lines). For ⟨100⟩,
the fitting was restricted to potential energies V < 0.2 eV, as explained
in the text.

In Fig. 2 we show the DFT axial potential curves along y = 0
(border of the channel, henceforth yb) and y = D/2 (middle of
the channel, henceforth ym) for ⟨100⟩ and ⟨110⟩ channels. For
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each incidence direction, we want the Morse potential VM(y,z) in
Eq. (1) to best reproduce the corresponding DFT curves 3,4, with
the focus on the features relevant for our reported low-E⊥ GIFAD
study. Hence, for each channel, we require VM(yb,z) and VM(ym,z)
to match the corresponding DFT axial PESs at the bottom of the
physisorption well. The positions and potential values extracted
from the DFT axial PES, respectively labeled (zb,Vb) and (zm,Vm),
are given in Table 1.

Table 1 From the DFT potential 3,4, position z and potential value V
for the bottom of the physisorption well. For j=b,m, (z j,Vj) corresponds
to the y j curve. Also, resulting values of the parameters z0 and V0 (from
Eq. 3)

channel ⟨110⟩ channel ⟨100⟩
zb (Å) 3.637 3.516

Vb (eV) -0.00406328 -0.00434379
zm (Å) 3.093 3.322

Vm (eV) -0.00659852 -0.00487556
z0 (Å) 3.365 3.419
V0 (Å) 0.00517799 0.00460200

Introducing this information into Eq. (1) for the yb and ym

curves, we find

z0 =
zm + zb

2
, V0 =

√
Vm Vb. (3)

Also, we are able to express the parameters ha and α in terms of
hr as

ha = (zm − zb +4hr)/2,

α = [2(zb − zm −2hr)]
−1 ln

(
Vb

Vm

)
, (4)

and hence VM(yb,z) and VM(ym,z) can be written in terms of a
single parameter hr as follows:

VM(yb,z) = −Vb

[
(Ahr )

2(z−zb)−2(Ahr )
z−zb

]
,

VM(ym,z) = −Vm

[
(Ahr )

2(z−zm)−2(Ahr )
z−zm

]
,

(5)

where

Ahr =

(
Vb

Vm

) 1
2

1
zb−zm−2hr

.

The optimized value of hr for a given channel could in prin-
ciple be obtained from fitting either the yb or the ym DFT curve
with the corresponding formula in Eq. (5), as illustrated in Fig.
2. However, we do encounter several difficulties upon attempting
such fitting procedure. The first issue is that, for both channels,
the resulting hr varies within 5%, depending on which DFT curve
we choose. This difference cannot be overlooked, given the high
sensitivity of the Morse curve to the hr value. The second issue is
that the ym curve for the ⟨100⟩ channel is not satisfactorily fitted in

the region of interest (low potential energy) unless we restrict the
potential energy region to V < 200 meV, a problem likely related
to the absence of surface atoms below ⟨100⟩-midchannel. In order
to pursue the Morse-DFT comparison, we use an average value of
hr. This works reasonably well for ⟨110⟩ in the low-energy range
but not much so for ⟨100⟩, where the average hr yields a sensi-
tively lowered accord with the DFT potential, as shown in Fig. 2.
These average values, depicted in Tab. 2, contradict Allison et al.’s
claim (Ref.5, Sec. 2, last paragraph) "The subtle variations in well
depth calculated for example in4, are reasonably well reproduced
by choosing ha/hr ≈ 1". Note that, for ⟨100⟩, we get ha/hr ≃ 0.73,
while for ⟨110⟩, ha/hr ≃ 0.59.

Table 2 Averaged hr parameter, from the border and midchannel fittings.
Also, resulting values of ha and α (Eq. (4). For the ⟨100⟩ channel, fitting
restricted to V < 200 meV for improved accord with the DFT potential
in the region of interest

channel ⟨110⟩ channel ⟨100⟩
hr (Å) 0.192490 0.076570
ha (Å) 0.112980 0.056140

α (1/Å) 1.524508 1.413209

For further visualization of the Morse formula performance,
in Fig. 3 we compare, for both channels, the DFT equipoten-
tial curves with those obtained for the Morse potential, with the
average hr values given in Table 2.

The equipotential contours contain the V (yb,z) and V (ym,z)
curves depicted in Fig. 2, but explore in addition how the poten-
tial energy behaves for intermediate positions yb < y < ym across
the channel. The main features in Figure 3 are that: a) For ⟨110⟩
equpotentials, a simple trigonometric function, as given by Eq.
(2) (following Allison et al. 5), cannot account for the local max-
ima at mid-channel in the V > 60 meV DFT curves of the ⟨110⟩
channel and, b) for ⟨100⟩ equipotentials, the amplitudes (a.k.a.
intrinsic corrugations) of the Morse curves are markedly smaller
than the DFT ones. This expected difference is traced back to
the already discussed difficulty of Eq. (1) to describe V (ym,z) for
⟨100⟩, combined with the need of an averaged hr (see Fig. 2 (b)).
Note also that the amplitudes of Morse equipotential curves drive
the maximum slopes (a.k.a. HCW rainbow angles), which also
yield values much smaller than the ones obtained from DFT.

The next step is to analyze, for both channels, the extent to
which the discussed differences between Morse and DFT poten-
tials affect both the HCW and SIVR rainbow angles and how
Morse-based calculations compare with our experiments from
Refs.3,4. The rainbow angles derived for each of the cases just
mentioned are depicted in Fig. 4. For ⟨110⟩ (Fig. 4 (a)) Morse-
based calculations give a reasonable accord with DFT-based ones
(and hence, with experiments), despite the differences discussed
between their respective equipotentials. The situation is very dif-
ferent for ⟨100⟩ (Fig. 4 (b)). As we had anticipated when dis-
cussing the equipotential curves (Fig. 3 (b)), the HCW rainbow
angles obtained from the Morse potential fall well below the DFT
ones, and fail to follow their trend. These observations also ap-
ply to SIVR rainbow angles, and consequently lead Morse-SIVR
results for ⟨100⟩ to markedly underestimate the rainbow angles
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Fig. 3 Equipotentials for He-KCl(001) in 1-1 scale. DFT-PBE (solid
lines), Morse formula (Eq. (1)), with the parameters from Tabs. 1 and
2 (dashed lines, plotted across a single channel). The channel widths are
D = 4.51229 Å for ⟨110⟩ and D = 3.19067 Å for ⟨100⟩.

derived from the experiments. Particularly, note that the Morse-
SIVR approach fails to capture the magnitude of the rainbow an-
gle increase with decreasing very low E⊥. At this point, it is en-
lightening to discuss Fig. 2 of Ref.5 and how it relates to our
Fig. 4 (b), this latter plotted in terms of E⊥/V0 to facilitate this
comparison. From the caption of Allison’s Fig. 2, we understand
that the considered channel is ⟨100⟩. In Allison’s FOP model, and
considering hr ≃ ha, the rainbow angle is given by the parameter
Khw (Sec. 3.4 in Ref. 5), which is set to 35◦ in order to match
our PBE-SIVR value for the E⊥/V0 > 20 region. From their Eq.
(3.21), which reads Khw = 2πhr/D (adapted to our notation, D is
the channel width for ⟨100⟩), they obtain hr ≈ 0.3102 Å, a value
that markedly differs from our optimized hr = 0.07657 Å. Hence,
in Fig. 2 of Ref. 5, the authors show that an increasing behav-
ior of the rainbow angle for decreasing low E⊥ is obtained from
their Morse-like formula, within the FOP model and for the con-
dition ha/hr < 1, but they do not provide a realistic He-KCl(001)
potential.
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Fig. 4 Comparison of DFT and Morse rainbow angles as functions of
E⊥/V0 for the incidence channel (a) ⟨110⟩ and (b) ⟨100⟩. Solid lines:
DFT-SIVR (PBE, vdW1, vdW2) and Morse-SIVR results; dashed lines:
HCW-PBE and HCW-Morse values. The Morse potential was obtained
with the average hr value given in Tab. 2.

4 About experimental processing of GIFAD
patterns

The third point deals with the need to clarify some concepts and
procedures in our work 3,4 that were questioned by Allison et al.

We agree with Allison et al. on the need to differentiate the in-
trinsic corrugation, obtained from the interaction potential, from
the apparent one, which is influenced by dynamic effects. Allison
et al. in Ref. 5 deem our comparing both quantities in a fig-
ure “unhelpful", while we consider it provides a visualization of
the relevance of dynamic effects in the apparent corrugation. We
never refer to the latter as “dynamic corrugation" (a somewhat
misleading expression), as the authors wrongly claim [in the Ab-
stract, and also in Secs. 2, 3.5, and 5].

The procedure used to obtain the rainbow angle and the corru-
gation from the experimental patterns, judged as “not very illu-
minating" [Sec. 5 of Ref. 5], is based on the idea of an equivalent
HCW system 2,3,8; that is, on the determination of an equipoten-
tial curve which yields the experimental intensity profile within
a HCW model. This procedure by no means implies that the de-
termined equipotential curve corresponds to the potential of the
real, non HCW, system.

Regarding the rainbow angle and the authors’ statement about
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it being ill-defined in quantum mechanics [Sec. 3.2 in Ref. 5],
we agree that within an ideal mathematical treatment, a graz-
ing, monoenergetic, fully collimated, atomic beam that ellasti-
cally diffracts from a crystalline surface might yield no rainbow
peaks, given the likely null overlapping between the intrachannel
rainbow maximum and the almost Dirac-delta shape of the near-
est (interchannel) Bragg peak. However, in a realistic non-ideal
experiment, as well as in our semi-quantum model, the beam is
not mathematically collimated and hence a non-zero rainbow-
Bragg overlapping may occur.

5 Unexpectedness of our results
Finally, in Sec. 1 of Ref. 5, the authors question the unexpect-
edness of our results of Ref. 3, based on Refs. 9–11. We thank
the authors for bringing these works up to our attention. In fact,
we believe the rainbow behavior experimentally observed in Refs.
10,11 is an interesting antecedent to the low-E⊥ features in both
the corrugation and the rainbow, reported in GIFAD 3,4,12–14. In
relation to the theoretical article by Pollak and Miret-Artés 9, we
did not find any mention to the increase of the rainbow angle
with decreasing energy, but this behavior was explicitly discussed
in a previous article by the same authors15. However, we must
stress that these articles 9,11,15 address Ar-LiF(001) scattering in
non-GIFAD conditions and that, while Kondo et al. find this fea-
ture “counterintuitive" 11, Miret-Artés and Pollak argue against a
decreasing corrugation (for increasing E⊥ in the low E⊥ region)
in the following terms: “The decrease of the rainbow angles with
energy is the result of dynamics and does not imply that the cor-
rugation becomes smaller with increasing energy as suggested by
Kondo et al." [Ref. 15, p. 180]. In this context, our report of an
impressive ≳ 85% corrugation increase (for decreasing E⊥ in the
low E⊥ region, relative to the 100 meV value), markedly sharper
and larger than those previously observed (though not thoroughly
discussed) in GIFAD for similar systems 12,13 well deserves to be
described as “unexpected". Remarkably, this corrugation feature
cannot be fully explained in terms of dynamic effects. The in-
creasing intrinsic corrugation (with decreasing E⊥) is a key factor
of the observed behavior.

6 Summary and conclusions
In Summary, in this comment we have analyzed the applicability
of Allison et al.’s FOP model and Morse-like potential for describ-
ing GIFAD as reported in our articles3,4 for a realistic He-KCl(001)
system. In addition, we answer some specific remarks made by
the authors regarding those articles. We thank Allison et al. for
their interesting and motivating work which gave us the oppor-
tunity to revisit our own and clarify some concepts and expla-
nations. Interaction and exchange of ideas is always enriching.
Their qualitative discussion does not debunk or contradict any of
our conclusions.
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