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DEMR, ONERA,
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and Scalian DS are currently involved in the development of
a software called EMPRISE®, whose objective is to achieve
such performances [14].

EMPRISE® is already able to simulate a SAR image of the
digital twin of a scene. Our current goal is to demonstrate the
correct representativeness of the simulated data compared to
the real measurements. To do so, it is necessary to calibrate
EMPRISE®, i.e., to correctly set the software parameters
whose values are entered by the user are subject to uncertainty
[15].

II. INDUSTRIAL CONTEXT

A. Simulation with EMPRISE®, Measurements with SETHI

EMPRISE® simulates fast SAR images from a given scene
in the Common Data Base (CDB) format. The scene is defined
by a segmented height map of materials whose cross-section
is quantified by the mangia model [16], and 3D objects whose
cross-section is quantified using an external code [17].

In this paper, we focus only on surface materials. Fig. 1
shows the real scene we are interested in (A) and its digital
twin (B, C, D). For confidentiality reasons, we will not disclose
the location of this scene. Figs. 1B, 1C and 1D illustrate the
material segmentation map, the textured elevation map, and
its 3D model view, respectively. This scene is composed of
seven different materials. In this paper, we will focus on a
single arbitrarily chosen one: the dyke.

For each elementary surface element, the material cross-
section σ0 (expressed in dB m2/m2) is quantified in
EMPRISE® by the mangia model:

σ0(X,ϕ) = X1 +X2 cos(ϕ) +X3e
−X4ϕ

2

(1)

where Xi ∈ [0, 50] ∀i ∈ {1, . . . , 4} and ϕ ∈ [0◦, 90◦].
As shown in (1), this is a function of the angle ϕ between

the normal of the surface and the incoming radar wave with
a 4-component parameter vector X . These components do
not characterize specific physical information. They are real

Abstract—EMPRISE® is a software package under develop-
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I. INTRODUCTION

Simulation has become the cornerstone of every system 
design process. Its ability to evaluate performance in various 
use case scenarios is a valuable source of information and an 
excellent cost-effective demonstrator. The radar design indus-
try is no exception, especially for SAR imaging applications 
[1]. However, simulating the radar system and its environment 
is a very difficult challenge. A large part of the difficulty comes 
from the variability, complexity and large scale of the radar 
scene to be modeled (entire cities, coastal areas, etc.).

Extensive research has been carried out to simulate land and 
air vehicles [2]–[4], mountain landscapes [5], urban areas [6], 
buildings [7] and ocean swells [8] in SAR imagery. Ready-to-
use simulators are now available, such as: RaySar [9], CohRaD 
[10], SARViz [11], and DIONISOS [12]. A comparison of the 
first two can be found i n [13].

However, to the best of our knowledge, these simulation 
software are not able to simulate an IQ signal received by 
a radar illuminating a very large numerical scene (up to 56 
km2), segmented in up to 24 different materials with more than 
188 914 3D objects (trees, cars, buildings, etc.). They also do 
not produce fast SAR images, Plan Position Indicator (PPI) or 
Ground Moving Target Identification (GMTI). ONERA, DGA



Fig. 1. Example of a radar scene: (A) satellite view of the real scene, (B)
material segmentation map, (C) textured elevation map, and (D) 3D model
view.

scalars between 0 and 50, and the angle is a real scalar between
0 and 90 degrees. The maximum cross-section is obtained for
ϕ = 0◦ and its minimum is at ϕ = 90◦, regardless of the
parameter components.

For each material, and especially for the dyke material, the
surface of the scene is not flat. As shown in a zoom of the
elevation map in Fig. 2, the surface can be irregular. Even
when the radar depression angle ϕt is constant, the local
incidence angle at each elementary flat surface element can
be different. As shown in Fig. 2, the rougher the surface, the
more the local incidence angle varies. Therefore, the resulting
radar cross-section of a rough surface is spread out.

Based on the materials Xi and the scene, the EMPRISE®

Scene Model is able to simulate the electromagnetic responses
of all the surface elements present in the scene [14].

Fig. 2. Effect of surface irregularity on radar cross-section.

ONERA benefit from real measurement campaigns, regu-
larly carried out thanks to its remote sensing platform called
SETHI [18]. One of these campaigns allowed us to obtain a
SAR image of the same area of interest as the digital twin.
To replay this image in simulation, we reproduced the same
experimental acquisition conditions (frequency, trajectory, etc.)
in EMPRISE®. Although this campaign and simulation has not
been published yet, the reader can refer to the last published
SETHI measurement campaign [19], and to [14] for further
details about EMPRISE®.

The SAR intensity image acquired by SETHI is shown in
Fig. 3. For privacy reasons, a color bar cannot be displayed. In
addition, and in order to correct residual pixel shifts between
the simulation and the measurement, a registration image
processing algorithm, called GeFolki [20], has been applied

so that the measurement image is perfectly stackable with the
simulation image. Thus, for each pixel of the SETHI image,
it is possible to know the type of material that characterizes
it using the segmentation map shown in Fig. 1B.

Fig. 3. SAR image acquired by SETHI.

We have plotted a 1 000-pixel intensity histogram for the
dyke material in Fig. 4. To characterize the radar cross-
section of this material, we estimated the parameter vector
θ = [ξ, ω, α] of a skew normal distribution that best approxi-
mates the measured histogram. These three parameters of the
skew normal distribution, whose expression is:

f (σ|θ) = 2

ω
√
2π

e
−
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2ω2
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2π

e
−
t2

2 dt

(2)
are estimated using a classical Maximum Likelihood Esti-

mator (MLE).

B. Problem Statement

To check the representativeness of EMPRISE®, the per-
formance of the simulation software must be evaluated by
comparing the simulation results to real images of a scene.
In other word, it must be verified that the software correctly
simulates the radar cross-section of each material. EMPRISE®

must therefore be able to simulate, for example for the dyke
material, the same distribution as shown in Fig. 4.

When setting up the simulation, the user must choose the
values of X in (1) for each material present in the digital twin.
This choice is important because the distribution of the radar
cross-section varies greatly as X varies. Fig. 4 illustrates this
variability where 10 distinct random values of the parameter
vector X used in simulation (dashed line) is compared to the
fitted distribution in Fig. 4 (solid line).

The problem can be formulated as a calibration problem:
“Which parameter vector X for a particular material must
be given to EMPRISE® so that it simulates as faithfully as
possible the radar cross-section distribution estimated from the
real SETHI image?”.

Mathematically, let us write the simulation model for a
given parameter vector X . Thus, the radar cross-section of



Fig. 4. Effect of parameter vector X on EMPRISE® simulation results (dashed
line) compared to the fitted distribution in Fig. 4 (solid line), both for the dyke
material.

a material (e.g., the dyke) is expressed at pixels (i, j) in the
SAR image as:

σdyke(i, j|X) = σ0 (X|ϕi,j) Iis dyke(i, j) , (3)

where Iis dyke(i, j) is an indicator function that returns a
Boolean variable equal to 1 if the pixel (i, j) is located on the
segmented area of the material of interest or 0 otherwise. In
the following, we will call this function a material mask. This
mask function is defined in the CDB format of the radar scene
as it corresponds to the material segmentation map shown in
Fig. 1B.

Let us denote by σ′(i, j) the radar cross-section measured
at pixel (i, j) in the real SETHI image. Since the real SAR
image is not perfectly well aligned with the simulated image,
we use the GeoFolki registration image processing algorithm
[20] such that the measured σ′

r(i, j) correspond to the σ(i, j)
of the simulated image and that we seek to calibrate.

Thus, to correctly estimate the parameter vector X of the
mangia model (1), denoted by X̂ , we must solve the following
problem:

X̂ = argmin
X

∣∣∣H [σdyke(X)]− f
(
σ|θ̂s

)∣∣∣ , (4)

where H [σdyke(X)] is the empirical estimator of the proba-
bility distribution function (PDF) of the simulated radar cross-
section of the dyke material defined in (1) and f the skew
normal distribution defined in (2). The parameters vector θ̂ of
the distribution f is estimated from the real SETHI image,
such as:

θ̂s = argmin
θ

∣∣H [
σ′
r dyke

]
− f (σ|θ)

∣∣ , (5)

where H
[
σ′
r dyke

]
is the empirical estimator of the PDF of

the real radar cross-section of the dyke material acquired by
SETHI.

III. PROPOSED ALGORITHM

EMPRISE® is computationally expensive. It takes approx-
imately 7 minutes to simulate a SAR image of the area of
interest. The optimization would take weeks. Instead, we are
going to use a surrogate model (SM). Once trained, it can be
used instead of EMPRISE® as its execution time is negligible
(seconds) compared to EMPRISE®, while remaining accurate.
We chose the classical kriging, a.k.a. gaussian process regres-
sion [21], implemented in the python library smt [22].

The full-proposed solution is presented in Fig. 5. There are
four stages that we are going to describe.

A. Initial Stage

A Design of Experiment (DoE) is computed with classical
Monte Carlo sampling of the inputs X (independently and
uniformly distributed between 0 and 50). For each of these
input realizations, EMPRISE® is called to estimate the corre-
sponding skew normal best-fit parameters.

B. Adaptive Training Stage

The SM is a classical Gaussian regression process whose
parameters are left to default according to [22]. It is trained
once with the initial DoE input and output samples given
by the previous stage. After the initial training, new training
points will be iteratively added to this DoE, and the SM will
be trained again. As the name of the model suggests, the next
point is not chosen arbitrarily, but rather from the sample of
optimal solutions given by the optimization stage.

Thanks to this adaptive learning strategy, SM will ulti-
mately be a better predictor in the input space around the
optimum, at the expense of a less effective predictor in more
distant regions.

A stop criterion allows either to continue the training or
to interrupt it, thus ending the algorithm. The stop criterion
is satisfied when the root-mean-square difference between the
output distribution of EMPRISE® and the target distribution
of SETHI is below a given threshold.

C. Optimization Stage

This stage solves the optimization problem described in
(4), but where the trained SM from the previous step is
used to evaluate the cost function instead of EMPRISE®.
The optimization algorithm we used is the NASGA-II (a
non-dominated sorting genetic algorithm) [23], [24], from the
Platypus python library [25]. Its parameters are left to default.

NASGA-II is an iterative algorithm and thus requires several
evaluations of the cost function (several thousand). That is why
we showed in Fig. 5 a rotating arrow before giving Xopti.

D. Final Stage

When the stopping criterion is satisfied, the last solution
of the cost function is retained and used by EMPRISE® to
estimate the calibrated radar cross-section distribution.



Fig. 5. Algorithm flow chart.

E. Validity domain, robustness and limitations

The algorithm we have developed is based on a non-
intrusive surrogate model approach, making it independent
of the specifics of the underlying model (in this case,
EMPRISE®). This flexibility allows us to easily replace
EMPRISE® with any other parametric model capable of simu-
lating SAR images without requiring algorithmic adjustments.

Furthermore, our algorithm robustly estimates the optimal
parameters of an skew-normal distribution based on normal-
ized samples. It is therefore highly resistant to inconsistencies
between SETHI and EMPRISE® levels, such as noise levels
that may be ill-defined. In addition, the algorithm’s perfor-
mance is not influenced by the quality of the a priori used,
guaranteeing consistent results.

However, it is important to note that the efficiency of the
algorithm is closely related to the fidelity of the surrogate
model compared to the real model. The fidelity of the surrogate
model improves as the size of the DoE increases, but this
also increases the computational cost of obtaining training
points. In the case of a kriging-based surrogate model, the
local variance serves as an estimator of model fidelity.

IV. RESULTS

We have plotted in Fig. 6 an estimate of the empirical PDF
of the radar cross section of the dyke material (blue solid
line). This estimate, based on 1 000 pixels of the real SETHI
image, uses the skew normal distribution defined in (2) where
the parameter vector X is estimated with (4). We’ll call it the
SETHI target distribution. We have also plotted, on the graph
in Fig. 6, the distribution of the radar cross section simulated
by EMPRISE® of the ”soil and rock” material (green solid
line) whose parameter vector X is defined by Ulaby’s dataset
[16]. Without additional knowledge, this PDF is a reasonable

prior for simulating the reflectivity of a dike-type material.
Finally, we applied the calibration method described in the
previous section. The initial DoE contains 800 input realiza-
tions, uniformly distributed. Additional input points were then
iteratively and adaptively added until the stopping criterion,
which quantifies the distance from the target distribution, fell
below 10−5. In this way, 170 input realizations were added.
The last best input is finally given to EMPRISE® which gives
a dyke’s radar-cross section.

Fig. 6. SETHI target distribution (blue solid line), distribution simulated by
EMPRISE® before (green solid line) and after (red solid line) applying the
calibration algorithm described in Fig. 5.

In Fig. 7, we take a closer look at the dynamics of the
appetitive construction process up to the point where the
stopping criterion is satisfied. Specifically, we plot the ”real
cost function” as a function of the number of points added



to the DoE. It’s important to note that the true cost function
serves as a measure to quantify the deviation between the
target PDF, shown in blue solid line in Fig. 6, and the PDF
generated by EMPRISE® for a given set of parameters. The
cost function is highly volatile, with a wide dispersion and
multiple local minima. As these local minima are greater than
the stopping criterion, the algorithm continues to run. This
erratic behavior is due to imperfections in the learning of the
substitution model. The output of the model can essentially be
characterized by a random variable defined by its mean and
its standard deviation. Both parameters decrease as the sample
size increases. Consequently, inversion of the surrogate model
results in the observed stochastic nature of the cost function.
To mitigate this variability, it is possible to reduce the initial
uncertainty of the substitution model by opting for a larger
initial DoE.

Fig. 7. Mean square difference betwen the targeted PDF and the PDF after
calibration as the DoE size increases.

This raises an interesting problem that has yet to be solved:
determining the optimal initial DoE size. There’s a trade-off:
should we start with a smaller DoE and allow the algorithm
to run for an extended period, or should we opt for a larger
initial DoE in the hope that fewer points will need to be added
later?

V. CONCLUSION

This paper addresses the problem of calibrating an ex-
pensive model that produces simulated SAR images from a
digital radar scene in which the materials radar cross section
properties are uncertain. Using a real image of the same area,
we proposed to invert the expensive simulation code using an
adaptive surrogate model and a genetic optimization.

The results are very satisfying and show that the predicted
distribution from EMPRISE® is very close to the targeted dis-
tribution after the calibration according to our mean distance
criterion. The proposed algorithm will be further tested on
other materials.
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