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An optimal control problem with (possibly) unbounded terminal cost is considered in P 2 (R d ), the space of Borel probability measures with finite second moment. We consider the metric geometry associated with the Wasserstein distance, and a suitable weak topology rendering P 2 (R d ) locally compact. In this setting, we show that the value function of a control problem is the minimal viscosity supersolution of an appropriate Hamilton-Jacobi-Bellman (HJB) equation. Additionally, if the terminal cost is bounded and continuous, we show that the value function is the unique viscosity solution of the HJB equation.

1. Introduction. We consider a Hamilton-Jacobi-Bellman (HJB) equation arising from an optimal control problem whose state space is a set of measures. More precisely, the unknown of our equation belongs P 2 (R d ), the space of Borel probability measures with finite second moment. It is well-known that this setting is suitable for the modelling of optimal control of population dynamics in crowd motion [START_REF] Piccoli | Pedestrian flows in bounded domains with obstacles[END_REF][START_REF] Corbetta | Multiscale Crowd Dynamics: Physical Analysis, Modeling and Applications[END_REF] or biology [START_REF] Carrillo | The derivation of swarming models: Meanfield limit and Wasserstein distances[END_REF]. In these approaches, the configuration at time s ∈ [0, T ] of a population is represented by a measure µ s ∈ P 2 (R d ), and the evolution in time is assumed to satisfy a continuity equation of the form (1.1)

∂ s µ s + div (f #µ s ) = 0, s ∈ [0, T ], µ 0 = ν.
The equation (1.1) is understood in the sense of distributions, and is the measure counterpart of an ODE with initial term ν ∈ P 2 (R d ), and dynamic f ∈ C(R d ; T R d ).

In this work, we study a controlled version of the continuity equation. Given some compact control set U ⊂ R κ and a function u ∈ L 0 ([0, T ]; U ), we consider a controlled dynamic f : U → C(R d ; T R d ) and the associated controlled continuity equation

(1.2) ∂ s µ s + div (f [u(s)]#µ s ) = 0, s ∈ [0, T ], µ 0 = ν.
Let µ 0,ν,u s s∈[0,T ] be the solution of (1.2), whose meaning and well-posedness will be discussed in Section 3. We are concerned with a Mayer type problem associated with a terminal cost J : P 2 (R d ) → R ∪ {+∞}, which may enforce terminal state constraints when taking the value +∞. To compute the optimal control, a general approach is to study the value function

V : [0, T ] × P 2 (R d ) → R ∪ {±∞} of the problem (1.3) V (t, ν) := inf J(µ t,ν,u T ) u ∈ L 0 ([t, T ]; U ) .
From the theory in finite-dimensional and Hilbert spaces, it is expected that (1.3) is linked to an HJB equation of the form

(1.4) -∂ t V (t, µ) + H (µ, D µ V (t, µ)) = 0, V (T, µ) = J(µ).
More precisely, a classical result of the HJB theory in Euclidian spaces is that whenever J is real-valued and uniformly continuous, the value function V is the unique solution of (1.4) in the sense of viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Crandall | Hamilton-Jacobi equations in infinite dimensions I. uniqueness of viscosity solutions[END_REF]. In the case where J may take infinite values, the value function may still be characterized as the smallest supersolution in the classical (Euclidean) sense. The purpose of this work is to transpose these results

to problems where the state evolves in the space of Wasserstein measures, that is, our main results is concerned with showing that the value function V is the smallest supersolution of (1.4) in an ad-hoc sense for the space P 2 (R d ).

The HJB equation we are interested in is a particular instance of a PDE on the Wasserstein space, which has attracted a lot of interest since the seminal work of Otto [START_REF] Otto | The Geometry of Dissipative Evolution Equations: The Porous Medium Equation[END_REF] on the porous media equation. The corpus of results of the theory concerns gradient flows in the space of measures [START_REF] Ambrosio | Gradient Flows[END_REF][START_REF] Ambrosio | Lectures on Optimal Transport[END_REF][START_REF] Cavagnari | A Lagrangian approach to totally dissipative evolutions in Wasserstein spaces[END_REF], the master equation in the theory of mean-field games [START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications I[END_REF][START_REF] Carmona | Probabilistic Theory of Mean Field Games with Applications II[END_REF][START_REF] Cardaliaguet | The Master Equation and the Convergence Problem in Mean Field Games[END_REF], Hamiltonian systems and flow equations [START_REF] Ambrosio | Hamiltonian ODEs in the Wasserstein space of probability measures[END_REF][START_REF] Ambrosio | On a class of first order Hamilton-Jacobi equations in metric spaces[END_REF] and optimal control problems [START_REF] Marigonda | Mayer control problem with probabilistic uncertainty on initial positions[END_REF][START_REF] Jimenez | Optimal control of multiagent systems in the Wasserstein space[END_REF][START_REF] Daudin | Well-posedness of Hamilton-Jacobi equations in the Wasserstein space: Non-convex Hamiltonians and common noise[END_REF]. As far as classical solutions are concerned, the dominating theory is the Lions differentiability, that gives a proper definition of the gradient of an application φ : P 2 (R d ) → R [START_REF] Lions | Jeux à champ moyen[END_REF][START_REF] Cardaliaguet | Notes on Mean Field Games[END_REF]. The strength of this idea is to embed measures into an external Hilbert space L 2 P , and use the Hilbertian structure therein. This strategy proved successful to study the master equation whenever the data is sufficiently smooth to expect a C 1 solution [8, Theorem 1.5].

In the case when such regularity is not achievable, the most effective strategy so far uses semidifferentials defined in an appropriate tangent space. Indeed, viscosity solutions may be defined by imposing some sign conditions on the sub and superdifferential of the solution at any point, thus accounting for the non-existence of a gradient.

A standard choice in the literature is the regular tangent space, defined as

Tan µ P 2 (R d ) := {∇φ | φ ∈ C 1 c (R d ; R)} L 2 µ (R d ;T R d )
.

This space comes from the study of continuity equations, and may be used to define viscosity solutions [START_REF] Gangbo | On differentiability in the Wasserstein space and wellposedness for Hamilton-Jacobi equations[END_REF][START_REF] Jimenez | Equivalence between strict viscosity solution and viscosity solution in the space of Wasserstein and regular extension of the Hamiltonian in L2 IP[END_REF]. However, it appears that Tan µ is too small to contain all the directions issued from µ, since it does not allow the splitting of mass. One could instead consider a general tangent space Tan µ build from the geodesics, whose definition and properties are delayed to Subsection 2.2. However, using Tan µ does not bring any additional smoothness, but significantly complexifies the manipulation.

Hence some authors adopted the strategy to restrict by penalization to regular measures µ where Tan µ and Tan µ coincide, to obtain comparison principles; see [START_REF] Daudin | Well-posedness of Hamilton-Jacobi equations in the Wasserstein space: Non-convex Hamiltonians and common noise[END_REF].

In this work, we consider directional derivatives as our available infinitesimal information over the variations of a function. This corresponds to a step back in the theory of partial differential equations: instead of considering equations over a gradient ∇φ in some appropriate dual space, we consider an equation over the application q → ⟨∇φ, q⟩ defined over the tangent directions q. This point of view allow us to avoid altogether gradients and semidifferentials, since we only need to manipulate functions φ that are directionally differentiable. The notation D µ V (t, µ) in (1.4) refers to the application that to each ξ ∈ Tan µ P 2 (R d ), associates the directional derivative of V at (t, µ) in the direction ξ. The control Hamiltonian can be defined over the maps p :

Tan µ P 2 (R d ) → R as follows H(µ, p) := sup u∈U -p (π µ (f [u]#µ)) .
Here π µ denotes the projection over Tan µ . Note that whenever p(q) = ⟨∇φ, q⟩, the

Hamiltonian H coincides with the classical control Hamiltonian. A similar definition
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of D µ V and H is used in [START_REF] Jerhaoui | Viscosity Theory of First Order Hamilton Jacobi Equations in Some Metric Spaces[END_REF] to study viscosity solutions of general HJ equations in CAT(0) spaces, and in [START_REF] Jean | Deterministic optimal control on Riemannian manifolds under probability knowledge of the initial condition[END_REF][START_REF] Jerhaoui | Viscosity solutions of centralized control problems in measure spaces[END_REF] to treat the Wasserstein space by using its curvature.

The results of [START_REF] Jerhaoui | Viscosity solutions of centralized control problems in measure spaces[END_REF] include a strong comparison principle in the case of measuredependant dynamics and locally uniformly continuous terminal costs J :

P 2 (R d ) → R.
To do so, a restrictive notion of upper semicontinuity is introduced, that corresponds to the upper semicontinuity of the function U : B → sup µ∈B u(µ) in the space of nonempty bounded and closed subsets of P 2 (R d ) endowed with the Hausdorff distance. This semicontinuity is not equivalent to upper semicontinuity in Wasserstein nor narrow topology. Although it is clear that semicontinuity in the Wasserstein topology is not sufficient to provide a good notion, the question stays open in the case of the narrow topology. Indeed, the Wasserstein space is narrowly locally compact, and many of the technicalities of [START_REF] Jerhaoui | Viscosity solutions of centralized control problems in measure spaces[END_REF] could be avoided using this property. This question is the first aim of the present paper: we consider a particularly interesting weak topology τ , built as the inductive limits of the narrow topology on each Wasserstein ball (see Subsection 2.4). Additionally, we consider the case of state constraints at the final time, and use ideas from [START_REF] Lions | Differential Games, Optimal Control and Directional Derivatives of Viscosity Solutions of Bellman's and Isaacs' Equations[END_REF] to show, mutatis mutandis, that the (discontinuous) value function can be characterized by the HJB equation in this case.

1.1. Main contributions and standing assumptions. The main results of the paper are the following. First, assume that the dynamic f is Lipschitz, that Second, in the case where J is additionally bounded and τ -continuous, we are able to prove that V is actually the unique viscosity solution of (1.4).

the set f [U ] ⊂ C(R d ; T R d ) is convex, and that J : P 2 (R d ) → R ∪ {+∞} is
We furthermore provide a strong comparison principle by a rather direct generalization of the arguments of [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. The difficulty then lies in proving that the value function is itself τ -lower semicontinuous. In particular, we have to restrict to measureindependent dynamics: this may be understood with the analogy of the weak topology over L 2 spaces, where in general, the composition of a convex function J with the flow of an ODE stays convex only if the flow is linear.

In the sequel, we make the following standing assumptions.

Hypothesis 1.1 (on the dynamic). The set

f [U ] ⊂ C(R d ; T R d ) is nonempty,
convex as a set of functions, and closed in the topology of local uniform convergence.

Moreover, there exists

C f ⩾ 0 such that |f [u](0)| + Lip (f [u]) ⩽ C f for each u ∈ U .
Hypothesis 1.2 (on the terminal cost). The function

J : P 2 (R d ) → R ∪ {+∞}
is proper, lower bounded and τ -lower semicontinuous.

The rest of the paper is organized as follows. Section 2 gathers the definition of the Wasserstein space and the metric differential structure over it, as well as the topologies in use over the dynamic and the state space. In Section 3, we study the trajectories of (1.2) and the continuity properties of the reachable sets in the topology τ . The HJB equation (1.4) is revisited in Section 4, where we define viscosity solutions and prove a strong comparison principle. Section 5 is devoted to the link between the value function and the HJB equation, and contains our main results.

2. Preliminary material. If X and Y are two measure spaces, the symbol # is used to denote the pushforward operator, which to any probability measure µ ∈ P(X) and measurable application g : X → Y , associates another probability measure g#µ ∈ P(Y ) given by (g#µ) (A) = µ g -1 (A) for any measurable A ⊂ Y .
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d 2 W (η t , σ) ⩾ (1 -t)d 2 W (µ, σ) + td 2 W (ν, σ) -t(1 -t)d 2 W (µ, ν), ∀t ∈ [0, 1].
This curvature property implies the existence of directional derivatives of d 2 W (•, σ) along geodesics. However geodesics are parameterized over [0, 1], and may not be extended over [0, ∞). This poses a conceptual problem, since the positive multiples of directional derivatives may not always be represented as directional derivatives over "scaled" directions. To overcome this issue, the definition of directions is rather understood through the concept of a tangent cone.

2.2. Tangent and cotangent bundles. We refer the reader to [START_REF] Gigli | On the Geometry of the Space of Probability Measures Endowed with the Quadratic Optimal Transport Distance[END_REF]Chap. 4] for details in this section. We denote T R

d := x∈R d {x}×T x R d the tangent bundle of R d , endowed with the distance |(x, v) -(y, w)| 2 = |x -y| 2 + |v -w| 2 .
For the sake of notation, when it is clear from the context, we will identify applications f : R d → T R d with their second-coordinate applications f defined by f (x) = (x, f (x)).

To manipulate tangent directions instead of transport plans, we perform an equivalent of the change of variable (x, y) → (x, y -x). Namely, for any η ∈ Γ(µ, ν), let ξ = ξ(x, v) ∈ P 2 (T R d ) be given by ξ := (π x , π y -π x ) #η.

For a given µ ∈ P 2 (R d ), we write

P 2 (T R d ) µ := ξ ∈ P 2 (T R d ) π x #ξ = µ .
This set can be understood as the largest set of velocities issued from µ, that can be scaled with the operation λ•ξ := (π x , λπ v )#ξ. Then the curve t → ((1-t)π x +tπ y )#η coincides with t → exp µ (t • ξ) := (π x + tπ v )#ξ. This curve generalizes the applications t → x + tv, by sending the mass that ξ puts over (x, v) to the point x + tv. The exponential map exp µ admits a partial inverse

exp -1 µ (ν) := ξ ∈ P 2 (T R d ) exp µ (ξ) = ν, ˆ(x,v)∈T R d |v| 2 dξ = d 2 W (µ, ν) .
To measure the distance between ξ, ζ ∈ P 2 (T R d ) µ , one introduces a set of 3-plans

Γ µ (ξ, ζ) := α = α(x, v, w) ∈ P(T 2 R d ) (π x , π v )#α = ξ, (π x , π w )#α = ζ , where T 2 R d := (x, v, w) x ∈ R d , v, w ∈ T x R d ,

and the application

W µ : P 2 (T R d ) µ 2 → R + , W 2 µ (ξ, ζ) := inf α∈Γµ(ξ,ζ) ˆ(x,v,w)∈T 2 R d |v -w| 2 dα(x, v, w),
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which turns out to be a distance in P 2 (T R d ) µ . Let 0#µ ∈ P 2 (T R d ) µ be the probability over the tangent space concentrated on the null velocity. We denote

| • | µ : P 2 (T R d ) µ → R + , |ξ| µ := W µ (ξ, 0#µ) . In particular, if ξ = f #µ and ζ = g#µ for some fields f, g ∈ L 2 µ (R d ; T R d ), then W µ (f #µ, g#µ) = ∥f -g∥ L 2 µ .
The general tangent cone to a measure µ is defined by

Tan µ P 2 (T R d ) := α • ξ ∈ P 2 (T R d ) α ∈ R + and ξ ∈ exp -1 µ (P 2 (R d )) Wµ .
It is stable by scaling, and (π x , (1

-t)π v + tπ w )#α ∈ Tan µ P 2 (R d ) for t ∈ [0, 1] and α ∈ Γ µ (ξ, ζ) whenever ξ, ζ ∈ Tan µ P 2 (R d ).
The orthogonal projection is well-defined as the unique application

π µ : P 2 (T R d ) µ → Tan µ P 2 (R d ) such that W µ (ξ, π µ ξ) = min ζ∈Tanµ W µ (ξ, ζ) .
Intuitively, the set Tan µ represents the set of available directions issued from µ, and lays the path for the metric counterpart of the dual space.

Definition 2.1. For a function p :

Tan µ P 2 (R d ) → R, set ∥p∥ µ := sup |p(ξ)| | ξ ∈ Tan µ P 2 (R d ), |ξ| µ = 1 .
We define the metric cotangent bundle T as T := µ {µ} × T µ , where

T µ := p : Tan µ P 2 (R d ) → R ∥p∥ µ < ∞, p(λξ) = λp(ξ) ∀λ ⩾ 0,
and p is Lipschitz w.r.t. W µ . .

We then recover |p(ξ)| ⩽ ∥p∥ µ |ξ| µ , for any ξ ∈ Tan µ P 2 (R d ) and p ∈ T µ . Elements of T µ may be built from directional derivatives of sufficiently smooth maps.

As an important example, let µ, σ ∈ P 2 (R d ). Due to the semiconcavity (2.1), the

application [0, 1] ∋ h → 1 h d 2 W (exp µ (h • ξ), σ) -d 2 W (µ, σ) is bounded and monotone, so that d 2 W (•, σ) is directionally differentiable along all elements ξ ∈ Tan µ P 2 (R d ),
and there holds

D µ d 2 W (•, σ)(ξ) = inf η∈exp -1 µ (σ) inf α∈Γµ(ξ,η) ˆ(x,v,w)∈T 2 R d ⟨v, w⟩ dα(x, v, w).
It turns out that the squared distance is directionally differentiable along any ξ in

P 2 (T R d ) µ , and by [20, Theorem 3.8], there holds D µ d 2 W (•, σ)(ξ) = D µ d 2 W (•, σ)(π µ ξ) for all ξ ∈ P 2 (T R d ) µ . Moreover, ∥D µ d 2 W (•, σ)∥ µ = 2d W (µ, σ).
2.3. The topology over the dynamics. For convenience, denote (2.2)

|b| ucc := |b(0)| + n∈N 2 -n sup x∈R d {|b(x)| | ∥x∥ ≤ n} , ∀b ∈ C(R d ; T R d ).
The topology induced by

|•| ucc on C R d ; T R d is that of the uniform convergence over compact sets, and C R d ; T R d , |•| ucc is a Banach space. As f [U ] is a set of equiLip- schitz and equibounded maps (Hypothesis 1.1), it is compact in C(R d ; T R d ), |•| ucc . Indeed, by Arzelà-Ascoli, the set {b| K | b ∈ f [U ]} is compact in C(K; T R d ); |•| ucc
for any compact K, and then a diagonal argument proves the claim.
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Lemma 2.2 (Weak compactness). For each nontrivial compact I ⊂ R, the set 

L 1 (I; f [U ]) is weakly compact in L 1 I; C(R d ; T R d ), |•| ucc . Proof. Let X := C(R d ; T R d ), |•| ucc . As f [U ] is nonempty, convex
(R d ) that lets each ι n be continuous from (K n , τ n ) to P 2 (R d ), τ .
In other words, τ is the strict inductive limit of the topologies τ n . Let us collect the principal characteristics of τ from [18, Definition 2.16].

Lemma 2.4 (Properties of P 2 (R d ), τ ). Let τ be given by Definition 2.3.

1. A set A ⊂ P 2 (R d ) is closed in τ if and only if each A ∩ K n is closed in τ n . 2. A sequence (µ n ) n ⊂ P 2 (R d ) converges in τ towards some µ ∈ P 2 (R d ) if and only if µ n ⇀ n µ and sup n∈N d W (µ n , δ 0 ) < ∞.
We then denote µ n τ ⇀ n µ.

3.

Wasserstein closed balls are compact and sequentially compact in τ .

4. P 2 (R d ), τ is not first-countable.

5.

The squared Wasserstein distance is sequentially τ -lower semicontinuous.

Observe that from Item 4, the topology τ is not metrizable, and we do not directly have that sequential lower semicontinuity is equivalent to lower semicontinuity in this topology. However, the class of spaces where these two properties coincide (the Fréchet-Urysohn spaces) is larger than first-countable spaces, and P 2 (R d ), τ happens to be one of these. In particular, it implies that the squared Wasserstein distance is also τ -lower semicontinuous.

Lemma 2.5. Assume that each (K n , τ n ) is Fréchet-Urysohn, and let K = n K n .

Then the inductive limit (K, τ ) is also Fréchet-Urysohn.

Proof. Since each closed set is also sequentially closed, it is enough to prove the converse in K, P 2 (R d ) . Let A ⊂ K be sequentially closed. For each n ∈ N, consider (x m ) m ⊂ A n := A∩K n a sequence converging in τ n to some x ∈ K n . By the continuity of ι n , the sequence (ι n (x m )) m ⊂ A converges towards ι n (x), and as A is sequentially closed, ι n (x) ∈ A. Then A n is sequentially closed, and as

(K n , τ n ) is Fréchet-Urysohn, A n is closed in τ n . But Item 1 in Lemma 2.4 implies that A is closed.
Consequently, in the sequel, we make no distinction between lower (resp. upper) semicontinuity and sequential lower (resp. upper) semicontinuity for the topology τ .

Trajectories in the Wasserstein space.
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∂ s µ s ∈ -div (f [U ]#µ s ) , s ∈ [t, T ], µ t = ν. A curve (µ t,ν s ) s∈[t,T ] is a solution of (3.1) if it is absolutely continuous in P 2 (R d ), and if there exists a measurable map b ∈ L 1 ([t, T ]; f [U ]) such that ∂ s µ s = -div (b s #µ s )
in the sense of distributions, that is,

ˆs∈[0,T ] ˆx∈R d [∂ s φ(s, x) + ⟨∇φ(s, x), b s (x)⟩] dµ s (x) = 0 ∀φ ∈ C ∞ c (t, T ) × R d .
The following result stems from the combination of [ 

(3.2) S t,ν = S t,b s #ν s∈[t,T ] b ∈ L 1 ([t, T ]; f [U ]) , where for each b ∈ L 1 ([t, T ]; f [U ]), the semigroup S t,b : [t, T ] × R d → R d is the unique solution of the underlying Cauchy problem (3.3) d ds S t,b s (x) = b s S t,b s (x) , S t,b t (x) = x.
(3.4) S t,b s (x) -x ⩽ (1 + |x|) e C f (s-t) -1 , ∀s ∈ [t, T ].
Consequently, for each µ ∈ S t,ν , we have

d W (µ s , ν) ⩽ (1 + d W (δ 0 , ν)) (e C f (s-t) -1).
We now turn to qualitative properties of the trajectories in (3.2). First, as the set of dynamics f [U ] does not depend on the measure variable, the trajectories enjoy a linear structure. More precisely, let S t,b : [t, T ]×R d → R d be the semigroup solution of

(3.3) for some b ∈ L 1 ([0, T ]; f [U ]). Then for each ν ∈ P 2 (R d ), the curve s → S t,b s #ν
is a solution of (3.1), and for all ν 0 , ν 1 ∈ P 2 (R d ) and t ∈ [0, 1], there holds

S t,b s # ((1 -t)ν 0 + tν 1 ) = (1 -t)S t,b s #ν 0 + tS t,b s #ν 1 .
Here addition and product are understood in the Banach space of measures, that

is, [(1 -t)ν 0 + tν 1 ] (A) = (1 -t)ν 0 (A) + tν 1 (A) for each measurable A ⊂ R d . This
linearity property is the key point to prove the lower semicontinuity of the value function in the topology τ .

Continuity properties of reachable sets.

For each 0 ⩽ t ⩽ s ⩽ T and ν ∈ P 2 (R d ), define the reachable set of the continuity inclusion via the formula

(3.5) R t,ν s := µ s µ ∈ S t,ν .
We now investigate the behavior of the reachable sets under convergence in τ .
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Lemma 3.3 (Sequential τ -lower semicontinuity). Assume Hypothesis 1.1.

Let (t n , ν n ) n ⊂ [0, T ] × P 2 (R d ) such that t n → t ∈ [0, T ] and ν n τ ⇀ ν ∈ P 2 (R d ). For any µ ∈ R t,ν T , there is (µ n ) n ⊂ P 2 (R d ) such that µ n ∈ R tn,νn T and µ n τ ⇀ n µ. Proof. Let b ∈ L 1 ([t, T ]; f [U ]) such that µ = S t,b T #ν. Define a sequence (b n ) n by b n ∈ L 1 ([t n , T ]; f [U ]), b n (s) := b max(s,t) ∀s ∈ [t n , T ]. Consider µ n ∈ R tn,νn T
given by S tn,bn T #ν n . Using (3.4), one has

d W (µ n , ν n ) ⩽ ˆx∈R d S tn,bn T (x) -x 2 dν n ⩽ (T -t n )C f (1 + d W (ν n , δ 0 )) e C f (T -tn) .
As (ν n ) n is bounded in d W by the definition of τ -convergence, so is the sequence

(µ n ) n . Moreover, for any φ ∈ C b (R d ; R), we have |⟨φ, µ n ⟩ -⟨φ, µ⟩| = ˆx∈R d φ S tn,bn T (x) dν n - ˆx∈R d φ S t,b T (x) dν ⩽ A n 1 + A n 2 ,
where 

A n 1 := φ • S tn,bn T -φ • S t,b T , ν n and A n 2 := φ • S t,b T , ν n -ν . On the one hand, the composition φ • S t,b T is continuous, so that
(x) -S t,b T (x) ⩽ C f β n (x)|t -t n |e C f (T -t) . Therefore, if φ is in addition Lipschitz continuous we get |⟨φ, µ n ⟩ -⟨φ, µ⟩| ⩽ Lip (φ) |t -t n | C f e C f (|t-tn|+(T -t)) (1 + d W (ν n , δ 0 )) + A n 2 -→ n→∞ 0.
By a density argument (e.g. [4, Section 5.1]) we can conclude that ⟨φ, µ n ⟩ → ⟨φ, µ⟩ for

any φ ∈ C b (R d ; R). Furthermore, since (µ n ) n bounded in d W , there holds µ n τ ⇀ n µ. Lemma 3.4 (Sequential τ -upper semicontinuity). Assume Hypothesis 1.1. Let (t n , ν n ) n ⊂ [0, T ] × P 2 (R d ) such that t n → t ∈ [0, T ] and ν n τ ⇀ n ν ∈ P 2 (R d ). For each n, let ω n ∈ R tn,νn T . Then there is ω ∈ R t,ν
T and a subsequence so that

ω n k τ ⇀ k ω.
Proof. For each n, let µ n ∈ S tn,νn such that µ n T = ω n , and denote b 0,n ∈

L 1 ([t n , T ]; f [U ]
) a driving field for µ n . Using (3.4), there holds

d W (ω n , ν n ) ⩽ ˆx∈R d S tn,bn T (x) -x 2 dν n ⩽ (T -t n )C f 1 + d 2 W (ν n , δ 0 )e C f (T -tn) .
As the convergence of (ν n ) n in the topology τ implies that d 2 W (ν n , δ 0 ) is bounded independently of n, we deduce that (ω n ) n stays in a Wasserstein ball. From Lemma 2.4,
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Wasserstein balls are sequentially compact in τ , so that up to a non relabeled subsequence, ω n τ ⇀ n ω for some ω ∈ P 2 (R d ). Stays to prove that ω ∈ R t,ν T . We divide the rest of the proof into several parts. 

Extracting a dynamic

|S t,b n s (x) -S tn,b n s (x)| ⩽ C f β n (x)|t -t n | + C f ˆs max(t,tn) |S t,b n r (x) -S tn,b n r (x)|dr,
so that by a Grönwall Lemma, for each s ∈ [max(t, t n ), T ], there holds

(3.6) S t,b n s (x) -S tn,b n s (x) ⩽ C f β n (x)|t -t n |e C f (s-max(t,tn)) .
Recall that f [U ] is endowed with the topology of uniform convergence on compact sets. By Lemma 2.2, L 1 ([t, T ]; f [U ]) is weakly compact in L 1 (I; X), where X equals 

C(R d ; T R d ), |•| ucc and |•| ucc is defined in (2.2). Then, up to a further (non relabeled) subsequence, b n ⇀ n b for some b ∈ L 1 (I; f [U ]). Let us show that ω = S t,b T #ν, or equivalently, that (3.7) φ, S t,b T #ν = ⟨φ, ω⟩ , ∀φ ∈ C ∞ c (R d ; R). Estimates Let φ ∈ C ∞ c (R d ; R),
#ν n ⩽ φ • S t,b T , ν -ν n + A n 1 + A n 2 ,
where

A n 1 := φ, S t,b T #ν n -S t,b n T #ν n and A n 2 := φ, S t,b n T #ν n -S tn,b n T #ν n . As x → S t,b T (x) is continuous, then φ • S t,b T belongs to C b (R d ; R)
, and the convergence

ν n τ ⇀ n ν ensures that φ • S t,b
T , ν -ν n → 0. Moreover, using (3.6) we get

A n 2 ⩽ Lip (φ) |t -t n | C f e C f (|t-tn|+(T -max(t,tn))) (1 + d W (ν n , δ 0 )) -→ n→∞ 0.
We turn to A n 1 . Let Ω ⊂ R d be the fattened compact

Ω := x ∈ R d ∃y ∈ supp (φ), |x -y| ⩽ T C f 1 + sup z∈supp (φ) |z| e C f T .
By (3.4), Ω contains every trajectory s → S t,β s (x) such that S t,β T (x) ∈ supp (φ) for

some β ∈ L 1 ([t, T ]; f [U ]
). As φ vanishes outside its support,

A n 1 ⩽ Lip (φ) ˆx∈Ω S t,b T (x) -S t,b n T (x) dν n (x).
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The application ψ : s → S ε n (x) -→ n→∞ 0, and using a Grönwall Lemma on (3.9), we obtain that

A n 1 ⩽ Lip (φ) ˆx∈Ω ε n (x)e C f T dν n (x).
Using the compactness of Ω, the application ε n (x) is uniformly bounded and converges pointwise to 0, so that by Lebesgue dominated convergence theorem, A n 1 -→ n→∞ 0. From here, we conclude that the right hand-side of (3.8) vanishes with n, proving the claim.

Approximation along a subsequence. Recall that exp

µ (h • b#µ) = (π x + hb • (π x )) #µ for each b ∈ f [U ].
Since the trajectories of the controlled system may lack C 1 regularity in time, we are not allowed to linearize them. However, we can still approximate a trajectory issued from µ by a "linear" curve h → exp µ (h•b) along some given subsequence.

Lemma 3.5 (Sequential approximation). Assume Hypothesis

1.1. Let (µ s ) s∈[t,T ]
be a solution of (3.1). Then there exists b ∈ f [U ] and a sequence (h n ) n∈N such that

lim n→∞ d W µ t+hn , exp µ t (h n • b#µ t ) h n = 0. Proof. Let b ∈ L 1 ([t, T ]; f [U ]) and (µ s ) s∈[t,T ] such that ∂ s µ s + div (b s #µ s ) = 0.
For h > 0 such that t + h ⩽ T , consider such that b hn converges uniformly over compact sets towards b. From (3.4) we get

1 h n d W µ t+hn , exp µ t (h n • b#µ t ) ⩽ 1 h n ˆx∈R d S t,b t+hn (x) -(x + h n b(x)) 2 dµ t = ˆx t+hn s=t b s (S t,b s (x))ds -b(x) 2 dµ t ⩽ ˆx∈R d t+hn s=t b s (x)ds -b(x) 2 dµ t + C f ˆx∈R d t+hn s=t S t,b s (x)ds -x 2 dµ t ⩽ ˆx∈R d b hn (x) -b(x) 2 dµ t + C f (e hn -1)(1 + d W (µ t , δ 0 )).
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Let ε > 0. Since µ t ∈ P 2 (R d ), there exists R ⩾ 0 large enough so that

ˆ|x|>R b hn (x) -b(x) 2 dµ t (x) ⩽ ˆ|x|>R (2C f (1 + |x|)) 2 dµ t (x) ⩽ ε 2 .
On the compact B(0, R), the convergence b hn → b is uniform with a modulus denoted ω R . Summarizing the above, we have

d W µ t+hn , exp µ t (h n • b#µ t ) h n ⩽ ε 2 + ω 2 R (h n ) 1/2 + C f (e hn -1)(1 + d W (µ t , δ 0 )).
Taking the limsup in n → ∞, we get that

lim n→∞ d W µ t+hn , exp µ t (h n • b#µ t ) h n ⩽ ε,
and ε > 0 being arbitrary, we conclude. 

-∂ t v(t, µ) + H (µ, D µ v(t, µ)) = 0 t ∈ (0, T ), v(T, •) = J.
This section is devoted to the notion of solution adapted to (4.1). We first introduce a definition of viscosity solutions using test functions, and then prove a comparison principle that implies the uniqueness of the viscosity solution of (4.1).

Definition of viscosity solutions.

We employ two distinct sets of test functions for the sub and supersolutions. Denote

T ± := (t, µ) → ψ(t) ± N i=1 α i d 2 W (µ, ν i ) ψ ∈ C 1 ((0, T ); R), N ∈ N, and (α i , ν i ) i∈ 1,N ⊂ R + × P 2 (R d ).
In particular, test functions in T + are τ -lower semicontinuous, locally Lipschitz and directionally differentiable everywhere, and T -= -T + . As each term of the finite sum of the measure component is directionally differentiable, so is each φ(t, •) for φ ∈ T ± , and there holds

D µ φ(t, •)(ξ) = ± N i=1 α i D µ d 2 W (•, ν i )(ξ).
We consider the following definition.

Definition 4.1 (Viscosity solution). v : [0, T ] × P 2 (R d ) → R ∪ {±∞} is called
-a viscosity subsolution of (4.1) if it is τ -upper semicontinuous, does not take the value +∞, v(T, µ) ⩽ J(µ), and for each φ ∈ T + such that v -φ reaches a finite maximum in (t, µ) ∈ (0, T ) × P 2 (R d ), there holds

(4.2) -∂ t φ(t, µ) + H (µ, D µ φ(t, µ)) ⩽ 0.
-a viscosity supersolution of (4.1) if it is τ -lower semicontinuous, does not take the value -∞, v(T, µ) ⩾ J(µ), and for each φ ∈ T -such that v -φ reaches a finite minimum in (t, µ) ∈ (0, T ) × P 2 (R d ), there holds

(4.3) -∂ t φ(t, µ) + H (µ, D µ φ(t, µ)) ⩾ 0.
-a viscosity solution of (4.1) if it is both a sub and supersolution.
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Comparison principle.

The comparison principle is the key result in the viscosity theory. It essentially says that subsolutions are always smaller than supersolutions in the pointwise sense. This gives the uniqueness of the viscosity solution, and in the classical theory, also allows to obtain existence for general nonconvex Hamiltonians. Owing to the local compactness of P 2 (R d ), τ , our strategy to obtain a comparison principle is quite close to that of [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. We begin by the adaptation of [14, Proposition 3.7] in our case. 1. lim a→∞ aΨ(x a ) = 0, 2. whenever x ∈ O is a limit point of (x a ) a in (X, Θ), then Ψ(x) = 0 and

lim a→∞ Γ a = Φ(x) = sup Ψ(x)=0 Φ(x).
Proof. Let

ε a := Γ a -(Φ(x a ) -aΨ(x a )) ,
so that lim a→∞ ε a = 0. Since Ψ ⩾ 0, the map a → Γ a decreases when a increases, and lim a→∞ Γ a exists and is finite. Furthermore,

Γ a/2 ⩾ Φ(x a ) - a 2 Ψ(x a ) ⩾ Φ(x a ) -aΨ(x a ) + a 2 Ψ(x a ) = Γ a -ε a + a 2 Ψ(x a ),
which implies that aΨ(x a ) ⩽ 2 ε a + Γ a/2 -Γ a , hence lim a→∞ aΨ(x a ) = 0.

Suppose now that a n → ∞ and x an → n x ∈ O. Then lim an→∞ Ψ(x an ) = 0, and by lower semicontinuity, Ψ(x) = 0. Moreover, since Φ(x an ) -a n Ψ(x an ) = Γ an -ε an ⩾ sup

Ψ(x)=0 Φ(x) -ε an ,
and Φ is upper semicontinuous, the result holds.

The comparison principle will rely on the next assumptions on the Hamiltonian.

Hypothesis 4.3 (Structure of the Hamiltonian). Assume that there exists a constant C H ⩾ 0 such that for all µ, ν ∈ P 2 (R d ) and p, q ∈ T µ , (4.4)

|H (µ, p + q) -H (µ, p)| ⩽ C H (1 + d W (µ, δ 0 )) ∥p∥ µ
and for all a ⩾ 0,

(4.5) H µ, -aD µ d 2 W (•, ν) -H ν, aD µ d 2 W (µ, •) ⩽ aC H d 2 W (µ, ν).
The fact that the Hamiltonian issued from the control problem (1.3) satisfies Assume that there exists

σ ∈ P 2 (R d ) such that v(T, σ) -w(T, σ) ∈ R. Then Γ := sup (t,µ)∈[0,T ]×P2(R d ) (v(t, µ) -w(t, µ)) ⩽ sup µ∈P2(R d ) (v(T, µ) -w(T, µ)) =: Γ T .
This manuscript is for review purposes only.

Proof. By assumption, Γ T and Γ are finite. Denote v , -w upper bounds on v and -w. Up to replacing v by v -Γ T , we may assume that Γ T = 0. Assume by contradiction that Γ > 0. Consider

v α (t, µ) := v(t, µ) + α(t -T )
for some α > 0 small enough so that

Γ α := sup (t,µ)∈[0,T ]×P2(R d ) (v α (t, µ) -w(t, µ)) > 0.
Let now σ ∈ P 2 (R d ) be as in the statement, and ε 0 > 0 so that for all 0 < ε < ε 0 ,

Γ α ε := sup (t,µ)∈[0,T ]×P2(R d ) v α (t, µ) -w(t, µ) -2ε d 2 W (σ, µ) + 1 t > 0.
The sequence (Γ α ε ) ε is uniformly bounded, nondecreasing when ε ↘ 0 and converges towards Γ α . For each ε, a > 0, let

Φ ε,a ((t, µ), (s, ν)) := v α (t, µ) -w(s, ν) -a d 2 W (µ, ν) + |t -s| 2 2 -ε d 2 W (σ, µ) + d 2 W (σ, ν) + 1 t + 1 s .
The proof involves taking subsequences and diagonal sequences in ε and a. In order to lighten the notation, let I ε := R + for all ε > 0, and I := 0<ε<ε0 I ε a set of indexes that will be refined further on. For a fixed ε, we denote z ε,a -→ a∈Iε z ε if z ε is the limit of the family (z ε,a ) a∈Iε when a → ∞. We divide the rest of the proof into several parts.

Point of maximum Notice that if Φ ε,a ((t, µ), (s, ν)) ⩾ Φ ε,a ((T, σ), (T, σ)), then

ε d 2 W (σ, µ) + d 2 W (σ, ν) ⩽ v α + -w + 2ε T -(v α (T, σ) -w(T, σ)) < ∞.
Then there exists

R ε > 0 such that {Φ ε,a ⩾ Φ ε,a ((T, σ), (T, σ))} ⊂ B((T, σ), R ε ) 2 . As balls of [0, T ] × P 2 (R d ) × [0, T ] × P 2 (R d ) are compact in the product topology B [0,T ] × τ × B [0,T ]
× τ , and Φ ε,a is proper, upper bounded and upper semicontinuous in this topology, there exists a maximum point z ε,a := (t ε,a , µ ε,a , s ε,a , ν ε,a ) of Φ ε,a over its domain. As R ε is independant of a, we may extract a subsequence of a such that

z ε,a converges to some z ε ∈ [0, T ] × P 2 (R d ) 2 .
Redefining each I ε to only keep the indexes of the said subsequence, we may assume that

z ε,a -→ a∈Iε z ε in B [0,T ] × τ 2 , and lim a∈Iε Φ ε,a (z ε,a ) exists.
Applying Lemma 4.2, we get that possibly along a further refinement of I,

(4.6) lim a∈Iε a d 2 W (µ ε,a , ν ε,a ) + |t ε,a -s ε,a | 2 = 0 and lim a∈Iε Φ ε,a (z ε,a ) = Γ α ε .
Staying away from the boundary By construction, t ε,a > 0 and s ε,a > 0 for each (ε, a) ∈ I. On the other hand, for each ε, there exists a ε large enough so that This manuscript is for review purposes only.

t ε,a , s ε,a < T for all a ∈ I ε ∩ [a ε , ∞)
. Indeed, if it was not the case, then there would exist (a n ε ) n ⊂ I ε going to +∞ with n → ∞ such that T ∈ {t ε,a n ε , s ε,a n ε }. Since by (4.6), t ε,a n ε -s ε,a n ε vanishes when n → ∞, using the upper semicontinuity of the semisolutions, we would have

Γ α ε = lim n→∞ Φ ε,a n ε (z ε,a n ε ) ⩽ lim n→∞ v α (t ε,a n ε , µ ε,a n ε )-w(s ε,a n ε , ν ε,a n ε ) ⩽ v α (T, z ε )-w(T, z ε ).
This is absurd because Γ α ε > 0 and v α (T, z ε ) -w(T, z ε ) ≤ 0, and we get that (t ε,a , s ε,a ) ∈ (0, T ) 2 for a large enough. Up to refining the index set, we may assume that this holds for all (ε, a) ∈ I.

Applying the definition of semisolutions For each (ε, a) ∈ I, define

φ(t, µ) := a 2 d 2 W (µ, ν ε,a ) + |t -s ε,a | 2 + ε d 2 W (σ, µ) + 1 t -αt, ψ(s, ν) := - a 2 d 2 W (µ ε,a , ν) + |t ε,a -s| 2 -ε d 2 W (σ, ν) + 1 s .
Since the squared Wasserstein distance is semiconcave, φ ∈ T + and ψ ∈ T -. As u -φ reaches a maximum in (t ε,a , µ ε,a ) ∈ (0, T ) × P 2 (R d ), applying the definition of subsolution, we get

α + ε t 2 ε,a -a(t ε,a -s ε,a ) + H µ ε,a , a 2 D µε,a d 2 W (•, ν ε,a ) + εD µε,a d 2 W (σ, •) ⩽ 0.
Using that ε t 2 ε,a ⩾ 0, the assumption (4.4) on the Hamiltonian and the estimate

∥D µ d 2 W (•, ν)∥ µ ⩽ 2d W (µ, ν), we get α -a(t ε,a -s ε,a ) + H µ ε,a , a 2 D µε,a d 2 W (•, ν ε,a ) -2εd W (σ, µ ε,a )C H (1 + d W (δ 0 , µ ε,a )) ⩽ 0. (4.7)
Similarly, w -ψ reaches a minimum in (s ε,a , ν ε,a ). Using the same reasoning as above,

a(s ε,a -t ε,a ) + H ν ε,a , - a 2 D νε,a d 2 W (µ ε,a , •) +2εd W (σ, ν ε,a )C H (1 + d W (δ 0 , ν ε,a )) ⩾ 0. (4.8)
Combining (4.7) and (4.8) and using the assumption (4.5), there holds ∀ (ε, a) ∈ I (4.9)

α ⩽ aC H d 2 W (µ ε,a , ν ε,a ) + 2εC H ϖ∈{µε,a,νε,a} d W (σ, ϖ)(1 + d W (δ 0 , ϖ)).
Vanishing perturbation Recall that z ε = lim a∈Iε z ε,a , where the convergence is understood in τ for the measure coordinates. Passing to the limit in I ε ∋ a → ∞ in (4.9) will not give useful information, since the squared Wasserstein distance is only τ -lower semicontinuous, and we will not obtain an inequality on z ε . Therefore, we extract a diagonal sequence of I. Let n 0 be large enough so that 2 -n0 ⩽ ε 0 , and denote ε n := 2 -n for n ⩾ n 0 . Proceeding by induction and using (4.6), we may build a sequence (ε n , a n ) n ⊂ I such that a n < a n+1 for which

a n d 2 W (µ εn,an , ν εn,an ) ⩽ 1 n , sup (Φ εn,an ) ⩾ Γ α εn - 1 n , sup Φ εn+1,an+1 ⩾ sup (Φ εn,an ) .
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The sequence (sup (Φ εn,an )) n is nondecreasing and upper bounded by Γ α , thus converges. On the other hand,

0 ⩽ ε n 2 d 2 W (σ, µ εn,an ) + d 2 W (σ, ν εn,an ) + 0 ⩽ Φ εn+1,an+1 (z n ) -Φ εn,an (z n ) ⩽ sup Φ εn+1,an+1 -sup (Φ εn,an ) -→ n→∞ 0.
Evaluating (4.9) along the subsequence (ε n , a n ) n ⊂ I and passing to the limit in n → ∞, we obtain α ⩽ 0, which is absurd. Consequently, Γ ⩽ 0. 

V (t, µ) = exp(-4(T -t))J(µ) ∈ R ∪ {∞}.
Gathering intuition from the available theory in finite dimension and Hilbert spaces, we may expect V to be a viscosity supersolution of the HJB equation (4.1)

for the Hamiltonian (5.1)

H : T → R, H(µ, p) := sup u∈U -p (π µ (f [u]#µ)) ,
and a solution whenever J is real-valued and τ -continuous. From this point onward, unless otherwise stated, we assume that the Hamiltonian of the HJB equation (4.1) is given by (5.1).

Let us verify that it is indeed the case in our example.

If (t, µ) ∈ dom V = [0, T ] × P 4 (R d ), then the map V (t, •) is directionally differentiable along trajectories of the form s → exp µ (π µ (s • f [u]#µ)
) and its derivative satisfies

D µ V (t, •)(π µ (s • f [u]#µ)) = exp(-4(T -t))(-4u)J(µ).
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Hence in this case, we may compute the Hamiltonian and see that ∀(t, µ) ∈ dom V ,

-∂ t V (t, µ) + sup u∈U -D µ V (t, •)(π µ (f [u]#µ)) = -4 exp(-4(T -t))J(µ) + sup u∈[0,1] 4u exp(-4(T -t))J(µ) = 0.
This directly implies that V is a viscosity supersolution in the sense of Definition 4.1.

Indeed, if φ ∈ T -is such that V -φ reaches a finite minimum in (t, µ) ∈ (0, T ) × P 2 (R d ), then ∂ t φ(t, µ) ⩽ ∂ t V (t, µ) and D µ φ(t, •)(ξ) ⩽ D µ V (t, •)(ξ) along each ξ ∈ Tan µ P 2 (R d ) such that D µ V (t, •)(ξ) exists. Hence the supersolution inequality -∂ t φ(t, µ) + sup u∈U -D µ φ(t, •)(π µ (f [u]#µ)) ⩾ 0.
This section shows that this situation is generic in our setting. We begin by the general case where J may be unbounded, and then restrict to a more regular case.

5.1. General case.

Lemma 5.1 (Regularity of the value function). Assume Hypotheses 1.1 and 1.2.

Then each V (t, •) is proper, and V is lower bounded and τ -lower semicontinuous.

Moreover, if J is bounded and τ -continuous, then so is V .

Proof. Lower boundedness of V follows from that of J and by its definition. Let 3), we only have to show that V is sequentially lower semicontinuous. Let

ω ∈ dom J ⊂ P 2 (R d ),
(t n , ν n ) n ⊂ [0, T ] × P 2 (R d ) such that t n → t ∈ [0, T ] and ν n τ ⇀ n ν ∈ P 2 (R d ). For each n, let ω n ∈ R tn,νn T such that V (t n , ν n ) ⩾ J(ω n ) -1/n. Using Lemma 3.4, pos-
sibly along a subsequence, there exists ω ∈ R t,ν T such that ω n τ ⇀ n ω. Then, by lower

semicontinuity of J in τ , lim n→∞ V (t n , ν n ) ⩾ lim n→∞ J(ω n ) - 1 n ⩾ J(ω) ⩾ inf ω∈R t,ν T J(ω) = V (t, ν).
Assume now that J is bounded and τ -continuous. Then V shares the same bound by definition. To prove that V is τ -upper semicontinuous, it is enough to show that for any (t, ν)

∈ [0, T ] × P 2 (R d ), any [0, T ] ∋ t n → t and ν n τ ⇀ n ν, lim n→∞ V (t n , ν n ) ⩽ V (t, ν).
Up to extraction, we may assume that lim n→∞

V (t n , ν n ) = lim n→∞ V (t n , ν n ). For each ε > 0, let µ ε ∈ R t,ν T such that V (t, ν) ⩾ J(µ ε ) -ε. By Lemma 3.3, there exists µ ε,n ∈ R tn,νn T such that µ ε,n τ ⇀ n µ ε . Then, since J is τ -continuous, lim n→∞ V (t n , ν n ) ⩽ lim t→∞ J(µ ε,n ) = J(µ ε ) ⩽ V (t, µ) + ε. Letting ε ↘ 0, we conclude that V is τ -continuous.
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V (T, •) = J > -∞. Let φ ∈ T -such that V -φ reaches a minimum in (t, ν) ∈ (0, T ) × P 2 (R d
V (t, ν) = V t + h, µ t,ν t+h ∀h ∈ [0, T -t].
Recall that ϕ(t, µ) = ψ(t) + g(µ), where ψ ∈ C 1 ((0, T ); R) and g is locally Lipschitz, directionally differentiable and τ -lower semicontinuous. Thus, for any h ∈ [0, T -t] it follows that

ψ(t + h) -ψ(t) + g µ t,ν t+h -g(ν) ⩽ V t + h, µ t,ν t+h -V (t, ν) = 0.
Using Lemma 3.5, there exists a subsequence (h n ) n ⊂ (0, T -t] with h n ↘ n 0, and

some b ∈ f [U ] such that d W µ t,ν t+hn , exp ν (h n • b#ν) = o(h n ).
Dividing the above by h n > 0, and denoting Lip (g) a local Lipschitz constant of g in a ball centered in ν and containing all µ t,ν t+hn and exp ν (h n • b#ν), we have

ψ(t + h n ) -ψ(t) h n + g(exp ν (h n • b#ν)) -g(ν) h n ⩽ Lip (g) d W exp ν (h n • b#ν), µ t,ν t+h h n .
Taking the limit in n → ∞ and using the respective differentiabilities of ψ and g,

∂ t ψ(t) + D µ g(ν) (b#ν) ⩽ 0.
By the construction of test functions, D µ g(ν)(ξ) = D µ g(π µ ξ) for all ξ ∈ P 2 (T R d ) ν .

multiplying by -1 and taking the maximum over all b ∈ f [U ], we obtain that -∂ t φ(t, ν) + H (ν, D µ φ(t, ν)) ⩾ 0, which is the desired property.

5.2. Case of continuous and bounded terminal cost. We show that in the case where J is bounded and τ -continuous, the value function is also a subsolution of (4.1). Owing to the comparison principle, it will then be the unique solution. This manuscript is for review purposes only.

As g is locally Lipschitz, dividing by s -t and sending s → t, we get ∂ t ψ(t) -D µ g(b#µ) ⩾ 0.

Since D µ g(ν)(ξ) = D µ g(π µ ξ) if ξ ∈ P 2 (T R d ) µ by definition of T + , multiplying by -1 and taking the supremum over b ∈ f [U ], we get that V is a subsolution of (4.1).

In the general case, V may take the value +∞ and has no chance to be a viscosity subsolution of the HJB equation (4.1). However, we may still prove that it is the smallest supersolution in the pointwise sense. The argument proceeds by truncature and regularization, relying on the following result. We directly have J n (µ) ⩽ min (n, J(µ)) ⩽ J(µ) for all µ ∈ P 2 (R d ). Moreover, for each µ 0 , µ 1 ∈ P 2 (R d ),

J n (µ 0 ) -J n (µ 1 ) ⩽ max 0, sup 

J(ν) + 0 + M + ε 2 -inf(J) ⩾ M + ε 2 ,
which is absurd. Thus the claim.

Using this regularization, we obtain the following characterization. Consequently, the value function V is the smallest viscosity supersolution of (4.1).
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  proper, lower bounded and τ -lower semicontinuous. Then the value function V is the minimal supersolution of the HJB equation (1.4) in the sense of Definition 4.1; see Theorem 5.5.

3. 1 .

 1 Existence and properties of the trajectories. Let 0 ⩽ t ⩽ T < ∞, ν ∈ P 2 (R d ) and consider the continuity inclusion(3.1) 

Remark 3 . 2 .

 32 Denote again C f an upper bound over |b(0)| + Lip (b) for each b ∈ f [U ]. By a Grönwall Lemma, for any b ∈ L 1 ([t, T ]; f [U ]), the solution of (3.3) satisfies

A n 2

 2 goes to 0 when n → ∞. On the other hand, for each x ∈ R d and s ∈ [max(t, t n ), T ] we have S tn,bn s (x) -S t,b s (x) = ˆs r=tn b max(r,t) S tn,bn r (x) dr -ˆs r=t b r S t,b r (x) dr ⩽ ˆt r=min(tn,t) b t S tn,bn r (x) dr + ˆs r=t C f S tn,bn r (x) -S t,b r (x) dr ⩽C f β n (x)|t -t n | + ˆs r=t C f S tn,bn r (x) -S t,b r (x) dr, where the last inequality follows (3.4), with β n (x) := e C f (|t-tn|) (1 + |x|). Applying a Grönwall Lemma, one has S tn,bn T

  Let b n ∈ L 1 ([t, T ]; f [U ]) defined by b n s = b 0,n max(s,tn) for any s ∈ [t, T ]. Denote S t,b n s s∈[t,T ] the semigroup related to the dynamic b n . Setting β n (x) := e C f (|t-tn|) (1 + |x|), one has by (3.4) that

  and denote Lip (φ) its Lipschitz constant. As the convergence in τ implies weak convergence, we have that ⟨φ, ω⟩ = lim n→∞ ⟨φ, ω n ⟩ = lim n→∞ φ, S tn,b n T #ν n . For each fix n, decompose (3.8) φ, S t,b T #ν -φ, S tn,b n T

  x)ds, ∀x ∈ R d . Here b h ∈ f [U ] by convexity. By compactness of f [U ] in the topology of uniform convergence over compact sets, there exists a sequence (h n ) n ↘ 0 and some b ∈ f [U ]

4 .

 4 The Hamilton-Jacobi equation. Let H : T → R, and consider the HJ equation (4.1)

Lemma 4 . 2 (

 42 Penalization lemma). Let (X, Θ) be a topological space, O ⊂ X be nonempty, Φ : O → R ∪ {-∞} be Θ-upper semicontinuous and proper in O, Ψ : O → R be Θ-lower semicontinuous an nonnegative. For any a > 0, set Γ a := sup x∈O [Φ(x) -aΨ(x)] . Assume that -∞ < lim a→∞ Γ a < ∞, and let x a ∈ O be chosen such that lim a→∞ (Γ a -(Φ(x a ) -aΨ(x a ))) = 0. Then the following holds:

Hypothesis 4 .Proposition 4 . 4 ( 3 .

 4443 3 is proved in[START_REF] Jerhaoui | Viscosity solutions of centralized control problems in measure spaces[END_REF] Section 6, Lemmata 6 and 7]. We are now in a position to state our comparison principle. Comparison principle). Assume Hypotheses 1.1, 1.2, and 4.Let v : [0, T ] × P 2 (R d ) → R ∪ {-∞} be a subsolution of (4.1) bounded from above, and w : [0, T ] × P 2 (R d ) → R ∪ {+∞} be a supersolution of (4.1) bounded from below.

5 .

 5 Characterisation of the solution in the case of control problems. We now study the properties of the value functionV : [0, T ] × P 2 (R d ) → R ∪ {∞} associated to the control problem (1.3), given by V (t, ν) := inf ω∈R t,ν T J(ω).Let us illustrate our setting with an example. Let J :P 2 (R d ) → R ∪ {+∞} be given by J(µ) := d 4 W,4 (µ, δ 0 ) = ˆx∈R d |x| 4 dµ(x).The domain domJ = P 4 (R d ) is closed in τ ,since the 4-Wasserstein distance d W,4 (•, δ 0 ) is narrowly lower semicontinuous. Take the dynamic f : U → C(R d ; T R d ) parametrized by U = [0, 1] as f [u](x) := -ux. Then f [U ] is convex, compact in the topology of uniform convergence on compact sets, and each f [u] satisfies |f [u](0) + Lip (f [u])| ⩽ 1. For each u(•) ∈ L 0 ([0, T ]; U ), the flow of the underlying ODE is given by S t,f [u] s (x) = exp -´s r=t u(r)dr x. Consequently, J S t,u(•) s = ˆx∈R d exp -4 ˆs r=t u(r)dr |x| 4 dµ(x) = exp -4 ˆs r=t u(r)dr J(µ), and minimizing over u(•) ∈ L 0 ([t, T ]; U ), the value function is given by

  and let b ∈ f [U ] be fixed. As -b is Lipschitz-continuous, the reversed continuity equation ∂ s µ s + div (-b#µ s ) = 0, µ 0 = σ admits an unique solution (µ s ) s∈[0,T ] such that µ s := µ T -s is a solution of the forward equation ∂ s µ t + div(b#µ t ) = 0, and µ T = σ. Hence V (t, µ t ) ⩽ J(σ) < ∞. Thus, V (t, •) is proper. Since closedness and sequential closedness coincide in P 2 (R d ), τ (see Definition 2.

Theorem 5 . 2 (

 52 Supersolution). The value function is a supersolution of (4.1) in the sense of Definition 4.1.

Theorem 5 . 3 (

 53 Subsolution property). Assume Hypotheses 1.1 and 1.2, and that J is bounded and τ -continuous. Then the value function is a subsolution of (4.1).Proof. By Lemma 5.1, the value function is bounded and τ -upper semicontinuous.As V (T, •) = J, we only have to prove the viscosity inequality (4.2). Let φ = ψ ⊖ g ∈T + and (t, µ) ∈ (0, T ) × P 2 (R d ) such that V -φreaches a maximum in (t, µ). Let any b ∈ f [U ] be fixed. Then the flow S t,b t+• of the autonomous ODE d ds y s = b(y s ) is of class C 1 , and there holds lim h↘0 d W S t,b t+h #µ, exp µ (h • b#µ) h = 0. Denote µ s := S t,b s #µ. Using the dynamic programming principle, 0 ⩽ V (s, µ s ) -V (t, ν) ⩽ φ(s, µ s ) -φ(t, ν) = ψ(s) -ψ(t) -[g(µ s ) -g(ν)] .

Lemma 5 . 4 (

 54 Inf-convolution in τ ). Let J : P 2 (R d ) → R ∪ {∞} be lower bounded and τ -lower semicontinuous. Then for each B > 0, there is a nondecreasing sequence of bounded τ -continuous mapsJ n : P 2 (R d ) → R that converge pointwise towards J over B W (δ 0 , B). Proof. Denote 1I B : P 2 (R d ) → R ∪ {∞} the characteristic function of the closed ball B W (δ 0 , B), i.e. 1I B (ν) = 0 if d W (δ 0 , ν) ⩽ B,and 1I B (ν) = +∞ otherwise. Since closed Wasserstein balls are τ -compact, 1I B is τ -lower semicontinuous. Moreover, the function ν → J(ν) + 1I B (ν) is narrowly lower semicontinuous. Indeed, this is due to the fact that the topology τ coincides with the narrow topology on closed balls. Let d : P 2 (R d )×P 2 (R d ) → R + be a metric inducing the topology of narrow convergence over P 2 (R d ) (e.g. [4, Section 5.1]), and J n (µ) := min n, inf ν∈P2(R d ) (J + 1I B )(ν) + nd(µ, ν) .

  ν∈P2(R d )n (d(µ 0 , ν)d(µ 1 , ν)) ⩽ nd(µ 0 , µ 1 ).By symmetry, J n is n-Lipschitz with respect to d, thus τ -continuous. It is moreover bounded with values in [min (0, inf (J)) , n]. To prove pointwise convergence, let µ ∈ B W (δ 0 , B) be fixed. Assume by contradiction that there exists M < J(µ) such that J n (µ) ⩽ M for all n. Let ε := min(1, J(µ) -M ) > 0. Since J + 1I B is narrowly lower semicontinuous, there exists r > 0 such that d(µ, ν) < r implies (J+1I B )(ν) ⩾ M +ε/2.Taking n large enough so that nr ⩾ M + ε 2 -inf(J) and n ⩾ M + ε/2, we getJ n (µ) ⩾ min n, inf d(µ,ν)<r (J + 1I B )(ν) + nd(µ, ν), inf d(µ,ν)⩾r (J + 1I B )(ν) + nd(µ, ν)

Theorem 5 . 5 ( 1 and 1 . 2 .

 55112 Minimality property in the general case). Assume Hypotheses 1.Then for any supersolution v :[0, T ] × P 2 (R d ) → R ∪ {∞} of (4.1) such that v(T, •) is proper, there holds (5.2) v(t, ν) ⩾ V (t, ν), ∀(t, ν) ∈ [0, T ] × P 2 (R d ).

  2.1. The Wasserstein space. Let π x , π y : (R d ) 2 → R d denote the canonical projections, i.e. π x (a, b) = a. Given µ, ν ∈ P(R d ), let Γ(µ, ν) ⊂ P((R d ) 2 )denote the set of transport plans η = η(x, y) with first marginal π x #η equal to µ,

	and second marginal π y #η equal to ν. We say that µ has finite second moment if ´x∈R d |x| 2 dµ(x) < ∞, and denote P 2 (R d ) the set of such measures. This set is
	endowed with so-called Wasserstein distance, defined by
	d 2 W (µ, ν) := inf η∈Γ(µ,ν) ˆ(x,y)∈(R d ) 2	|x -y| 2 dη(x, y).
	The set of optimal transport plans is denoted Γ o (µ, ν). Notice that the curves t →
	η t := ((1 -t)π x + tπ y )#η parametrized by η ∈ Γ o (µ, ν) exactly describe the geodesics
	linking µ to ν. The squared Wasserstein distance happens to be semiconcave along
	geodesics, i.e. for all σ ∈ P 2 (R d ) and η ∈ Γ o (µ, ν), it follows that
	(2.1)	

  .4. The topology τ over P 2 (R d ). The set P 2 (R d ) may be endowed with several topologies, for example the narrow topology and the topology induced by d W .The main advantage of the narrow topology is that closed balls for the Wasserstein distance are compact. However, it does not hold that any narrowly converging sequence is bounded w.r.t. the Wasserstein distance. To circumvent this issue, we consider another intermediate topology on P 2 (R

	2

and closed in X, it is weakly closed by Hahn-Banach. As it is weakly closed and compact, it is weakly compact by James' Theorem [19, Theorem 5]. Consequently, L 1 (I; f [U ]) is relatively weakly compact by Diestel's Theorem [30, Proposition 7]. Finally, L 1 (I; f [U ]) is closed and convex, hence weakly closed, thus weakly compact in L 1 (I; X). d ), obtained as the inductive limit of the narrow topology induced on each closed ball of radius n ∈ N. Definition 2.3 (Topology τ ([18, Definition 2.16])). For each n ∈ N, let K n := B W (δ 0 , n) the Wasserstein closed ball centered in δ 0 of radius n, and denote τ n the topology on K n induced by the narrow topology. Let ι n : K n → P 2 (R d ) be the canonical injection. The topology τ is the finest topology on P 2

  5, Theorems 4.2 and 4.5].

	Proposition 3.1 (Existence, uniqueness and representation). Assume Hypoth-

esis 1.1. For each (t, ν) ∈ [0, T ) × P 2 (R d ), the set S t,ν ⊂ AC [t, T ]; P 2 (R d ) of solutions of (3.

1) is nonempty and compact in C [t, T ]; P 2 (R d ) . Moreover, it holds

  ). By Proposition 3.1, the set of trajectories S t,ν is compact inC [t, T ]; P 2 (R d ) endowed with the topology of uniform convergence. Therefore, R t,ν T is compact in P 2 (R d ), d W , hence in P 2 (R d ), τ . Since J is τ -lower semicontinuous,

	there exists (µ t,ν s ) s∈[t,T ] such that
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Proof. Let ( t, ν) ∈ [0, T ] × P 2 (R d ). From Remark 3.2, the reachable set R t,ν T is contained in B W (δ 0 , B) for some sufficiently large B. If v( t, ν) = ∞, the inequality (5.2) is trivially satisfied. Assume now that v( t, ν) < ∞. Let (J n ) n be given by Lemma 5.4. By Theorems 5.2 and 5.3, the HJB equation

admits a unique solution given by

In consequence, we can apply Proposition 4.4, and deduce that v(t, ν) ⩾ V n (t, ν) for any (t, ν) ∈ P 2 (R d ).

By Proposition 4.4, the solutions V n are ordered in the sense that V n+1 (t, ν) ⩾

V n (t, ν) for all n. Moreover, J n ⩽ J implies that the subsolutions V n are smaller than the supersolution V . Hence the sequence (V n ( t, ν)) n is nondecreasing and upper bounded by v( t, ν) < ∞, and converges. For each n, let

Using Lemma 3.4, some (non relabeled) subsequence converges in τ towards some µ ∈ R t,ν T . Using the monotonicity of the family (J n ) n and the continuity in τ of each J m for a fixed m,

As μ ∈ B W (δ 0 , B), the conclusion follows from taking the limit in m → ∞ to obtain v( t, ν) ⩾ lim n→∞ V n (t, ν) ⩾ J(µ) ⩾ V ( t, ν).