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Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution
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Main Text

Tumour protein 53 (TP53) is the most frequently mutated gene in human cancer, typically occurring as a multi-hit process with a point mutation in of one allele and loss of the other wild-type allele [START_REF] Sill | Acute Myeloid Leukemia and Myelodysplastic Syndromes with TP53 Aberrations -A Distinct Stem Cell Disorder[END_REF][START_REF] Bernard | Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes[END_REF] . TP53 mutations are also strongly associated with copy number alterations (CNA) and structural variants, reflecting the role of p53 in the maintenance of genomic integrity [START_REF] Bernard | Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes[END_REF][START_REF] Kastenhuber | Putting p53 in Context[END_REF] . In myeloid malignancies, presence of a TP53 mutation defines a distinct clinical entity [START_REF] Sill | Acute Myeloid Leukemia and Myelodysplastic Syndromes with TP53 Aberrations -A Distinct Stem Cell Disorder[END_REF] , associated with complex CNA, lack of response to conventional therapy and dismal outcomes [START_REF] Bernard | Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes[END_REF][START_REF] Lindsley | Acute myeloid leukemia ontogeny is defined by distinct somatic mutations[END_REF][START_REF] Granfeldt Østgård | Epidemiology and Clinical Significance of Secondary and Therapy-Related Acute Myeloid Leukemia: A National Population-Based Cohort Study[END_REF] . Understanding the mechanisms by which TP53 mutations drive clonal evolution and disease progression is a crucial step towards the development of rational strategies to diagnose, stratify, treat and potentially prevent this condition.

Myeloproliferative neoplasms (MPN) arise in haematopoietic stem cells (HSC) through the acquisition of mutations in JAK/STAT signalling pathway genes (JAK2, CALR or MPL), leading to aberrant proliferation of myeloid lineages [START_REF] Mead | Myeloproliferative neoplasm stem cells[END_REF] . Progression to secondary acute myeloid leukaemia (sAML) occurs in 10-20% of MPN and is characterized by cytopenias, increased myeloid blasts, acquisition of aberrant leukaemia stem cell (LSC) properties by haematopoietic stem/progenitor cells (HSPC) and median survival of less than one year [START_REF] Celik | A Humanized Animal Model Predicts Clonal Evolution and Therapeutic Vulnerabilities in Myeloproliferative Neoplasms[END_REF][START_REF] Dunbar | Leukemia secondary to myeloproliferative neoplasms[END_REF] . TP53 mutations are detected in approximately 20-35% of post-MPN sAML [START_REF] Lasho | Targeted next-generation sequencing in blast phase myeloproliferative neoplasms[END_REF][START_REF] Paz | Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation[END_REF][START_REF] Rampal | Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms[END_REF] (collectively termed TP53-sAML), often in association with loss of the remaining wild-type allele [START_REF] Marcellino | Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53[END_REF] and multiple CNAs [START_REF] Courtier | Genomic analysis of myeloproliferative neoplasms in chronic and acute phases[END_REF] . Furthermore, deletion of Trp53 combined with JAK2V617F mutation leads to a highly penetrant myeloid leukaemia in mice [START_REF] Rampal | Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms[END_REF][START_REF] Tsuruta-Kishino | Loss of p53 induces leukemic transformation in a murine model of Jak2 V617F-driven polycythemia vera[END_REF] .

Notwithstanding the established role of TP53 mutation in MPN transformation, TP53mutant subclones are also present in 16% of chronic phase MPN (CP-MPN) and in most cases this does not herald the development of TP53-sAML [START_REF] Kubesova | Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status[END_REF] . However, little is known about the additional genetic and non-genetic determinants of clonal evolution following the acquisition of a TP53 mutation. Resolving this question requires unravelling multiple layers of intratumoural heterogeneity, including reliable identification of the TP53 mutation, loss of the wild-type allele and presence of CNA.

Integrating this mutational landscape with cellular phenotype and transcriptional signatures will resolve aberrant haematopoietic differentiation and molecular properties of LSC in TP53-sAML. This collectively requires single-cell approaches which combine molecular and phenotypic analysis of HSPCs with allelic-resolution mutation detection, an approach recently enabled by the TARGET-seq technology [START_REF] Rodriguez-Meira | Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] .

Convergent clonal evolution during TP53-driven leukaemic transformation

To characterize the genetic landscape of TP53-sAML, we analysed 33 TP53-sAML patients (Table S1) through bulk-level targeted next generation sequencing and SNP array (Extended Data Fig. 1). We detected MPN-driver mutations (JAK2, CALR) in 28 patients (85%), and co-occurring myeloid driver mutations in 24 patients (73%).

Multiple TP53 mutations were present in one third (n=11) of patients, including 2 patients with 3 TP53 mutations. 82% (18/22) of patients with a single TP53 mutation showed a high variant allelic frequency (VAF) of >50%. CNAs were present in all patients analysed, and 87% (20/23) had a complex karyotype (≥ 3 CNA; Extended Data Fig. 1a-g). Deletion or copy neutral loss of heterozygosity affecting the TP53 locus (chr17p13.1) was detectable at the bulk level in 43% of patients (10/23) (Extended Data Fig. 1b-d). Taken together, these findings support that TP53-sAML is associated with complex genetic intratumoural heterogeneity.

To characterize tumour phylogenies and subclonal structures, we performed TARGETseq analysis [START_REF] Rodriguez-Meira | Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] , a technology that allows allelic-resolution genotyping, whole transcriptome and immunophenotypic analysis from the same single-cell, on 17517 Lin -CD34 + HSPCs from 14 TP53-sAML patients (Extended Data Fig. 1a), 9 agematched healthy donors (HD) and 8 previously published myelofibrosis (MF) patients (Fig. 1a, gating strategy shown in Extended Data Fig. 2a). HSPCs wild-type for all mutations analyzed were present in 10 of 14 patients (Extended Data Fig. 2b-o), providing a valuable population of cells for intra-patient comparison with mutationpositive cells [START_REF] Giustacchini | Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia[END_REF] . In all cases, the dominant clone showed loss of wild-type TP53 through 4 patterns of clonal evolution: (1) biallelic TP53 mutations by acquisition of a second mutation on the other TP53 allele, (2) hemizygous TP53 mutations (deleted TP53 wildtype allele), (3) parallel evolution with 2 clones harbouring different TP53 alterations, (4) a JAK2 negative dominant clone with biallelic TP53 mutations in patients with previous JAK2-mutant MPN [START_REF] Campbell | Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation[END_REF] (Fig. 1b-e, Extended Data Fig. 2b-o). Biallelic mutations were confirmed by single molecule cloning and computational analysis (Extended Data Fig. 1h-j). Integration of index-sorting data revealed that dominant TP53 multi-hit clones were enriched in progenitor populations as previously described in de novo AML [START_REF] Goardon | Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia[END_REF] , whereas TP53-mutant cells were less frequent in the HSC compartment (Extended Data Fig. 3a). CNA analysis using single-cell transcriptomes showed that all TP53 multi-hit clones harboured at least one highly clonally-dominant CNA, with very few TP53-mutant cells without evidence of a CNA (3.4±1.2%) and an additional 5/14 (36%) patients also showing cytogenetically-distinct subclones (Fig. 1f,g, Extended Data Fig. 2p,q). To confirm that dominant HSPC clones were functional LSCs, we established patientderived xenografts (PDX) for 2 TP53-sAML patients (Fig. 1h). Mice developed leukaemia in 27-31 weeks with high numbers of human CD34 + myeloid blast cells in the bone marrow (BM) (Extended Data Fig. 3b-d), with a progenitor phenotype, TP53 mutations and CNAs similar to the dominant clone from patients' primary cells (Fig. 1i, Extended Data Fig. 3e-l). In Patient IF0131, a monosomy 7 subclone (Fig. 1f) preferentially expanded in PDX models (Fig. 1i). Monosomy 7 cells showed a distinct transcriptional profile with increased WNT, RAS, MAPK signalling and cell cycle associated transcription (Extended Data Fig. 3m,n). Together, these data are compatible with a fitness advantage of monosomy 7 cells, a recurrent event in TP53-sAML (Extended Data Fig. 1b,c), driven by activation of signalling pathways which may relate to deletion of chromosome 7 genes such as EZH2 [START_REF] Booth | Ezh2 and Runx1 Mutations Collaborate to Initiate Lympho-Myeloid Leukemia in Early Thymic Progenitors[END_REF] . In summary, the dominant leukaemic clones in TP53-sAML were invariably characterized by multiple hits affecting TP53 (multi-hit state), indicating strong selective pressure for complete loss of wildtype TP53, together with gain of CNAs and complex cytogenetic evolution, with very few TP53 multi-hit cells with a normal karyotype (Fig. 1j).

Molecular signatures of TP53-mutant mediated transformation

To understand the cellular and molecular framework through which TP53 mutation drives clonal evolution, we next analysed single-cell RNA-seq data from 10459 TP53-sAML HSPCs alongside 2056 MF and 5002 HD HSPCs passing quality control. Forcedirected graph analysis revealed separate clustering of TP53-mutant HSPC in comparison with HD and MF cells, with a high degree of inter-patient heterogeneity (Extended Data Fig. 4a) as observed in other haematopoietic malignancies [START_REF] Ledergor | Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma[END_REF] . This could potentially be explained by patient-specific cooperating mutations and cytogenetic alterations (Extended Data Fig. 1). TARGET-seq analysis uniquely enabled comparison of TP53 multi-hit HSPC to TP53 wild-type preleukaemic stem cells ("preLSCs") from the same TP53-sAML patients as well as HD and MF, to derive a specific TP53 multi-hit signature including known p53-pathway genes (Extended Data Fig. 4b,c).

Integration of single cell transcriptomes and diffusion map analysis of HSPCs from TP53-sAML patients showed that TP53 multi-hit HSPCs clustered separately from TP53 wild-type preLSCs in two distinct populations with enrichment of LSC and erythroid-associated transcription respectively (Fig. 2a, Table S3), and a differentiation trajectory towards the erythroid-biased population (Fig. 2b), an unexpected finding given that erythroleukaemia is uncommon in TP53-sAML [START_REF] Mesa | Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases[END_REF][START_REF] Passamonti | Leukemic transformation of polycythemia vera: a single center study of 23 patients[END_REF] . Sorted CD34 + TP53multi-hit cells exhibited potential for erythroid differentiation in vivo and in vitro, supporting that this occurs downstream of the LSC population (Extended Data Fig. 5ac). TP53 multi-hit LSCs showed enrichment of cell cycle, inflammatory, signalling pathways and LSC associated transcription, whereas TP53 multi-hit erythroid cells were depleted of the latter (Extended Data Fig. 4d).

To further explore this erythroid-biased population, we projected TP53 multi-hit cells onto a previously published healthy donor haematopoietic hierarchy [START_REF] Granja | Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia[END_REF] . TP53-sAML differed from de novo AML with an enrichment into HSC and early erythroid populations, whereas de novo AML were enriched in myeloid progenitors (Fig. 2c,d) [START_REF] Van Galen | Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity[END_REF] .

A similar enrichment was observed for TP53 multi-hit cells when mapped on a Lin - CD34 + MF cellular hierarchy (Extended Data Fig. 5d,e), with erythroid-biased populations being highly enriched in immunophenotypically defined MEPs (Extended Data Fig. 5f). Taken together, these findings support an aberrant erythroid-biased differentiation trajectory in TP53-sAML.

To determine whether upregulation of erythroid-associated transcription was a more widespread phenomenon in TP53-mutant AML, we investigated erythroid-myeloid associated transcription in the BeatAML and TCGA cohorts [START_REF] Tyner | Functional genomic landscape of acute myeloid leukaemia[END_REF][START_REF] Ley | Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[END_REF] . Erythroid scores were increased in TP53 mutant compared to TP53 wild-type AML, whereas there was no significant difference in myeloid scores (Fig. 2e-f, Extended Data Fig. 5g-j, scores described in Table S3). Concomitantly, patients with high erythroid scores also showed decreased TP53-target gene expression (Extended Data Fig. 5k). We next investigated the expression of key transcription factors for erythroid/granulomonocytic commitment and found increased GATA1 expression in Lin -CD34 + TP53 multi-hit HSPCs, whereas CEBPA was only expressed at low levels (Fig. 2g). Analysis of the BeatAML cohort revealed increased GATA1 and reduced CEBPA expression in association with TP53 mutation (Extended Data Fig. 5l), with consequent reduction in the CEBPA/GATA1 expression ratio (Fig. 2h). Similar findings were observed in TP53 knock-out or mutant isogenic MOLM13 cell lines (Extended Data Fig. 5m) [START_REF] Boettcher | A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies[END_REF] . These observations suggest that the CEBPA/GATA1 expression ratio, an important transcription factor balance which affects erythroid versus myeloid differentiation in leukaemia [START_REF] Wagner | Absence of the transcription factor CCAAT enhancer binding protein alpha results in loss of myeloid identity in bcr/abl-induced malignancy[END_REF][START_REF] Bereshchenko | Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML[END_REF] is disrupted by TP53 mutation.

To determine whether p53 directly influences myeloid-erythroid differentiation, we knocked-down TP53 in JAK2V617F CD34 + cells from MPN patients (Extended Data Fig. 5n). TP53 knock-down led to increased erythroid (CD71 + CD235a + ) and decreased myeloid (CD14 + /CD15 + /CD11b + ) differentiation in vitro (Fig. 2i) and consequently decreased CEBPA/GATA1 expression ratio (Fig. 2j), suggesting that p53 may directly contribute to the aberrant myelo-erythroid differentiation observed.

As 'stemness scores' have previously been applied to determine prognosis in AML [START_REF] Ng | A 17-gene stemness score for rapid determination of risk in acute leukaemia[END_REF] , we next asked whether a single-cell defined TP53 multi-hit LSC signature might identify AML patients with adverse outcomes. Single cell multi-omics allowed us to derive a 44-gene "p53LSC-signature" (Table S4) by comparing gene expression of HD, JAK2mutant MF HSPC and TP53 wild-type preLSC to transcriptionally-defined TP53-mutant LSCs (Fig. 2a,k). High p53LSC-signature score (Extended Data Fig. 6a,b) was strongly associated with TP53 mutation status, although some TP53 wild-type patients also showed a high p53LSC score. A high p53LSC score predicted for poor survival in the independent BeatAML and TCGA cohorts, irrespective of TP53 mutational status (Fig. 2l, Extended Data Fig. 6c-e). The p53LSC signature performed well as a predictor of survival, including in sAML patients, as compared to the previously published LSC17 score [START_REF] Ng | A 17-gene stemness score for rapid determination of risk in acute leukaemia[END_REF] and p53-mutant score generated using all TP53-mutant HSPC rather than LSCs (Extended Data Fig. 6f-g, TableS4), providing a powerful new tool to aid risk stratification in AML.

Preleukaemic TP53-wild-type cells display self-renewal and differentiation defects

TARGET-seq uniquely enabled phenotypic and molecular characterization of rare TP53 wild-type cells, referred to as preLSCs, which include both residual HSPCs that were wild-type for all mutations analyzed, as well as HSPCs which form part of the antecedent MPN clone. These preLSCs were obtained in sufficient numbers (>20 cells) from 9 of 14 TP53-sAML patients, including all patterns of clonal evolution (Fig. 3a and Extended Data Fig. 7a). PreLSCs representing the antecedent MPN clone (positive for MPN-associated driver mutations) were more frequent (60.5%) than preLSCs that were wild-type for all mutations (39.5%). PreLSCs were enriched in HSC-associated genes, and mapped onto HSC clusters in HD and MF haematopoietic hierarchies (Fig. 3a,b). Index sorting revealed that preLSCs were strikingly enriched in the phenotypic HSC compartment, unlike TP53 multi-hit HSPCs (Fig. 3c, Extended Data Fig. 3a). Pre-LSCs were rare, as reflected by a reduction in the numbers of phenotypic HSCs present within the Lin -CD34 + HSPC compartment in TP53-sAML compared to HD (Extended Data Fig. 7b).

We reasoned that the HSC phenotype of preLSCs, with reduced frequency in progenitor compartments, might reflect impaired differentiation. To explore this hypothesis, we carried out scVelo analysis, which showed absence of a transcriptional differentiation trajectory in preLSCs, unlike HD HSCs (Fig. 3d). PreLSCs showed increased expression of haematopoietic stem cell and Wnt b-catenin genes and decreased cell cycle genes as compared to HD and MF cells (Fig. 3e-g, TableS3). To functionally confirm these findings, we sorted phenotypic HSCs (to purify preLSCs), as well as other progenitor cells, from HD, MF and TP53-sAML patients for long term culture initiating cell (LTC-IC) and short-term cultures (Fig. 3h; Extended Data Fig. 7c).

PreLSC LTC-IC activity was similar to HD and increased compared to MF, with preserved terminal differentiation capacity and confirmed TP53 wild-type genotype (Fig. 3i, Extended Data Fig. 7d-g). In short-term liquid culture, preLSCs showed reduced clonogenicity, with retained CD34 expression and decreased proliferation (Fig. 3j, Extended Data Fig. 7h-i). In summary, we identified rare and phenotypically distinct preLSCs from TP53-sAML samples which were characterized by differentiation defects and distinct stemness, self-renewal and quiescence signatures. As these cells were TP53-wild-type, and showed normal differentiation after prolonged ex vivo culture, we reasoned that these functional and molecular abnormalities are likely to be cellextrinsically mediated. Indeed, preLSCs showed enrichment of gene-signatures associated with certain cell-extrinsic inflammatory mediators (TNFα, IFNg, TGFb, IL2) (Fig. 3k).

Inflammation promotes TP53-associated clonal dominance

To understand the transcriptional signatures associated with leukaemic progression we analysed samples from 5 CP-MPN patients who subsequently developed TP53-sAML ("pre-TP53-sAML") alongside 6 CP-MPN patients harbouring TP53 mutated clones who remained in chronic phase ("CP TP53-MPN", median 4.43 years [2. 62-5.94] of follow-up, Fig. 4a, Extended Data Fig. 8). Compared to TP53-sAML samples, CP TP53-MPN had a lower VAF and number of TP53 mutations (Extended Data Fig. 8a-d). The type, distribution and pathogenicity score of TP53 mutations were similar between chronic and acute stages (Extended Data Fig. 8e,f). All 5 pre-TP53-sAML samples and 4 of the 6 CP TP53-MPN were then analysed by TARGET-seq (Fig. 4a). HSPC immunophenotype was similar for pre-TP53-sAML and CP TP53-MPN patients (Extended Data Fig. 9a-c), and clearly distinct from the TP53-sAML stage (Extended Data Fig. 9d). Heterozygous TP53 clones were identified in 3 pre-TP53-sAML patients and all 4 CP TP53-MPN (Fig. 4b, Extended Data Fig. 9e-m). A minor homozygous TP53 mutated clone initially present in one CP TP53-MPN patient was undetectable after 4 years (Extended Data Fig. 9h). As TP53-heterozygous mutant HSPCs represent the direct genetic ancestors of TP53 "multi-hit" LSCs, we compared gene expression of heterozygous TP53 mutant HSPC from pre-TP53-sAML (n=296) to CP TP53-MPN (n=273) (Fig. 4b, blue boxes) to identify putative mediators of transformation. TP53-heterozygous HSPC from pre-TP53-sAML patients showed downregulation of TNFα and TGFb associated gene signatures, both of which are known to be associated with HSC attrition [START_REF] Bryder | Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation[END_REF][START_REF] Jacobsen | Transforming growth factor-beta potently inhibits the viability-promoting activity of stem cell factor and other cytokines and induces apoptosis of primitive murine hematopoietic progenitor cells[END_REF] , with upregulated expression of oxidative phosphorylation, DNA repair and interferon response genes (Table S5, Fig. 4c-e), without changes in IFN receptor expression levels or concurrent interferon treatment (Extended Data Fig. 9n, Table S1). Upregulation of inflammatory signatures was detected in TP53-homozygous cells from the same pre-TP53-sAML patients at a higher level than in TP53-heterozygous cells (Extended Data Fig. 9o). Collectively, these findings raise the possibility that inflammation might contribute to preleukaemic clonal evolution towards TP53-sAML.

To evaluate the role of inflammation in TP53-driven leukaemia progression, we performed competitive mouse transplantation experiments between CD45.1+ Vav-Cre Trp53 R172H/+ and CD45.2+ Trp53 +/+ BM cells followed by repeated poly(I:C) or LPS intraperitoneal injections, recapitulating chronic inflammation through induction of multiple pro-inflammatory cytokines [START_REF] Demerdash | The dual effects of interferons on hematopoiesis[END_REF][START_REF] Trapp | Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G[END_REF] known to be increased in the serum of patients with MPN [START_REF] Cacemiro | Philadelphia-negative myeloproliferative neoplasms as disorders marked by cytokine modulation[END_REF] , including IFNg (Fig. 5a, Extended Data Fig. 10a). Trp53 mutant peripheral blood (PB) myeloid cells, BM HSCs (Lin -Sca1 + c-Kit + CD150 + CD48 -) and LSKs (Lin - Sca1 + c-Kit + ) were selectively enriched upon poly(I:C) treatment (Fig. 5b,c, Extended Data Fig. 10b-e). Crucially, the fitness advantage of Trp53 mutant HSCs and LSKs was exerted both through an increase in numbers of Trp53 R172H/+ HSPCs and reduction in numbers of wild-type competitors (Fig. 5d,e, Extended Data Fig. 10f,g). Treatment of chimeric mice with LPS (Fig. 5a), which induces an inflammatory response mediated through release of IL1β and IL6 [START_REF] Ngkelo | LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling[END_REF] , amongst others, lead to a similar increase in the number of Trp53 mutant PB myeloid cells and LSKs (Fig. 5f,g). These results indicate that a variety of inflammatory stimuli can promote expansion of the Trp53 mutant clone.

To determine how inflammation might alter haematopoietic differentiation and exert a selective pressure to drive the expansion of the Trp53 mutant clone, we established an inducible SCL-CreER T Trp53 R172H/+ mouse model (Fig. 5h). Poly(I:C) treatment led to inflammation-associated changes in blood cell parameters, including anaemia, leucopenia and thrombocytopenia (Extended Data Fig. 10h-j). Similarly to the Vav-Cre model, poly(I:C) treatment promoted the selection of myeloid Trp53 mutant cells in the PB (Extended Data Fig. 10k), with a myeloid bias induced by the inflammatory stimulus in PB leucocytes specifically associated with Trp53-mutation (Fig. 5i,j, Extended Data Fig. 10l). Analysis of HSPCs showed the expected selection for Trp53 mutant HSCs and LSKs following Poly(I:C) treatment (Extended Data Fig. 10m). Numbers of wildtype competitor erythroid progenitors were reduced upon poly(I:C) treatment as expected [START_REF] Libregts | Chronic IFN-gamma production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis[END_REF] , whereas Trp53-mutation was associated with an increase in erythroid progenitors that was not impacted by inflammation (Fig. 5k, Extended Data Fig. 10n) in line with the erythroid bias detected in patient samples. Finally, to determine the mechanisms by which inflammation might promote a fitness advantage for Trp53 mutated cells, we performed cell cycle and apoptosis analysis following chronic poly(I:C) treatment. Cell cycle was similarly increased in poly(I:C)-treated WT and Trp53-mutated LSKs 39 ; however, Trp53-mutated LSKs were resistant to inflammationinduced apoptosis [START_REF] Pietras | Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons[END_REF] in comparison with their WT counterparts (Fig. 5l,m).

Inflammation promotes genetic evolution of Trp53 mutant HSPC

As exit from dormancy promotes DNA-damage-induced HSPCs attrition [START_REF] Walter | Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells[END_REF] , we reasoned that Trp53 mutation might rescue HSPCs that acquire DNA damage (and would otherwise undergo apoptosis) driven by chronic inflammation-associated proliferative stress. To explore this possibility, we carried out M-FISH karyotype analysis of Trp53 +/+ LSKs expanded in vitro from mice following poly(I:C) treatment and Trp53 R172H/+ LSKs from mice with or without poly(I:C) treatment. Wild-type competitor LSK-derived cells from poly(I:C) treated mice were karyotypically normal. In contrast, we observed a striking increase in the frequency and number of karyotypic abnormalities in Trp53 mutated LSK-derived cells upon poly(I:C) treatment (Fig. 6a-d).

Collectively, these results support a model whereby chronic inflammation promotes the survival and genetic evolution of TP53 mutated cells whilst suppressing wild-type haematopoiesis, ultimately promoting clonal expansion of TP53 mutant HSPCs (Fig. 6e).

Discussion

Here, we unravel multi-layered genetic, cellular and molecular intratumoural heterogeneity in TP53 mutation driven disease transformation through single-cell multiomic analysis. Allelic resolution genotyping of leukaemic HSPCs revealed a strong selective pressure for gain of TP53 missense mutation, loss of the TP53 wild-type allele and acquisition of complex CNAs, including cases with parallel genetic evolution during TP53-sAML LSC expansion. Despite the known dominant negative and/or gain of function effect of certain TP53 mutations [START_REF] Boettcher | A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies[END_REF][START_REF] Loizou | A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1[END_REF] , loss of the TP53 wild-type allele, a genetic event associated with a particularly dismal prognosis 2 , confers additional fitness advantage to TP53-sAML LSCs. As CNA were universally present in TP53-sAML with a very high clonal burden, it is not possible, even with high-resolution singlecell analyses, to disentangle the impact of TP53-multi hit mutation versus the effects of patient-specific CNA which were inextricably linked in all patients analysed. Three distinct clusters of HSPCs were identified in TP53-sAML, including one characterized by overexpression of erythroid genes, of particular note as erythroleukaemia is a rare entity, associated with adverse outcome and TP53 mutation [START_REF] Boddu | Erythroleukemia-historical perspectives and recent advances in diagnosis and management[END_REF][START_REF] Iacobucci | Genomic subtyping and therapeutic targeting of acute erythroleukemia[END_REF] . Analysis of a large AML cohort also revealed overexpression of erythroid genes as a more widespread phenomenon in TP53 mutant AML, with disrupted balance of GATA1 and CEBPA expression. Notably, CEBPA knockout or mutation is reported to cause a myeloid to erythroid lineage switch with increased expression of GATA1 [START_REF] Wagner | Absence of the transcription factor CCAAT enhancer binding protein alpha results in loss of myeloid identity in bcr/abl-induced malignancy[END_REF][START_REF] Bereshchenko | Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML[END_REF] and, in addition, GATA1 associates with and inhibits p53 [START_REF] Trainor | GATA-1 associates with and inhibits p53[END_REF] . Importantly, our data do not distinguish whether this lineage-switch is primarily an instructive versus permissive effect of TP53-mutation [START_REF] Enver | Developmental biology: Instructions writ in blood[END_REF] . A second 'TP53-sAML LSC' cluster allowed us to establish a novel p53LSC-signature, which we demonstrated to be highly relevant to predict outcome in AML, independently of TP53 status. This powerful approach could be more broadly applied in cancer, whereby single multi-omic cell derived gene scores can be used to stratify larger patient cohorts using bulk gene expression data.

A third TP53 wild-type 'preLSC' HSPC cluster was characterized by quiescence signatures and defective differentiation, reflecting the impaired haematopoiesis observed in patients with TP53-sAML. Through integration of single cell multi-omic analysis with in vitro and in vivo functional assays we show that TP53-wild-type preLSCs are cell-extrinsically suppressed whilst chronic inflammation promotes the fitness advantage of TP53 mutant cells, ultimately leading to clonal selection (Fig. 6e).

Inflammation is a cardinal regulator of HSC function with many effects on HSC fate and function [START_REF] Caiado | Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection[END_REF] , including proliferation-induced DNA-damage and depletion of HSCs 41 .

There is emerging evidence that clonal HSCs can become inflammation-adapted [START_REF] Caiado | Inflammation as a regulator of hematopoietic stem cell function in disease, aging, and clonal selection[END_REF][START_REF] Hormaechea-Agulla | Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling[END_REF][START_REF] Avagyan | Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis[END_REF] and by altering the response to inflammatory challenges, mutations can thus confer a fitness advantage to HSCs. Here, we demonstrate a hitherto unrecognized effect of TP53 mutations, which conferred a marked fitness advantage to HSPC in the presence of chronic inflammation induced with both poly(I:C) as well as LPS. We provide evidence that TP53 mutant HSCs showing dysregulated inflammation-associated gene expression are enriched in patients who will develop TP53-sAML. We propose that HSCs that would otherwise undergo inflammation-associated and DNA-damageinduced attrition, are rescued by TP53 mutation, ultimately leading to the accumulation of HSCs which have acquired DNA damage, thus promoting genetic evolution that underlies disease progression. This hypothesis was strongly supported through in vivo experiments in which inflammation promoted genetic evolution of Trp53 mutant mouse HSPCs. Further studies are required to characterize the key inflammatory mediators and molecular mechanisms involved, which we believe are unlikely to be restricted to a single axis, with a myriad of inflammatory mediators overexpressed in MPN [START_REF] Lussana | Inflammation and myeloproliferative neoplasms[END_REF] . Furthermore, loss of the wild-type Trp53 allele confers an additional fitness advantage to Trp53 mutant HSPC following DNA-damage as previously described [START_REF] Boettcher | A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies[END_REF] , providing an explanation for the selection for multi-hit TP53 mutant clones observed in patients.

Consequently, we believe that approaches which target the inflammatory state, rather than a specific cytokine, are likely to be required to restrain disease progression, as reported for bromodomain inhibitors [START_REF] Kleppe | Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms[END_REF] . Collectively, our findings provide a crucial conceptual advance relating to the interplay between genetic and non-genetic determinants of TP53-mutation associated disease transformation. This will facilitate the development of early detection and treatment strategies for TP53-mutant leukaemia. Since TP53 is the most commonly mutated gene in human cancer [START_REF] Kastenhuber | Putting p53 in Context[END_REF][START_REF]Pan-cancer analysis of whole genomes[END_REF] , we anticipate that these findings will be of broader relevance to other cancer types.

Methods

Banking and processing of human samples

Primary human samples (peripheral blood or bone marrow, described in Table S1) were analysed with approvals from the Inserm Institutional Review Board Ethical Cells were subjected to Ficoll gradient centrifugation and for some samples, CD34 enrichment was performed using immunomagnetic beads (Miltenyi). Total mononuclear cells (MNCs) or CD34 + cells were frozen in FBS supplemented with 10% DMSO for further analysis.

Targeted bulk sequencing

Bulk genomic DNA from patient samples' mononuclear or CD34 + cells was isolated using DNeasy Blood & Tissue Kit (Qiagen) or QIAamp DNA Mini Kit (Qiagen) as per manufacturer's instructions. Targeted sequencing was performed using a TruSeq Custom Amplicon panel (Illumina) or a Haloplex Target Enrichment System (Agilent technologies) with amplicons designed around 32, 44 or 77 genes [START_REF] Hamblin | Development and Evaluation of the Clinical Utility of a Next Generation Sequencing (NGS) Tool for Myeloid Disorders[END_REF] . Targets were chosen based on the genes/exons most frequently mutated and/or likely to alter clinical practice (diagnostic, prognostic, predictive or monitoring capacity) across a range of myeloid malignancies (e.g. MDS/AML/MPN). Targets covered in all panels include ASXL1, CALR, CBL, CEBPA, CSF3R DNMT3A, EZH2, FLT3, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PHF6, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, ZRSR2. Sequencing was performed with a MiSeq sequencer (Illumina), according to the manufacturer's protocols. Results were analysed after alignment of the reads using two dedicated pipelines, SOPHiA DDM ® (Sophia Genetics) and an in-house software GRIO-Dx ® . For all samples, an average depth exceeding 200X for > 90% of the target regions was required, or as previously described [START_REF] Rodriguez-Meira | Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] . All pathogenic variants were manually checked using Integrative Genomics Viewer software. Analysis is presented in Extended Data Fig. 1a and Extended Data Fig. 8a. Pathogenic scores for each TP53 variant (Extended Data Fig. 8e) were derived from COSMIC (Catalogue Of Somatic Mutations In Cancer) using the FATHMM-MKL algorithm. The FATHMM-MKL algorithm integrates functional annotations from ENCODE with nucleotide-based hidden Markov models to predict whether a somatic mutation is likely to have functional, molecular and phenotypic consequences. Scores greater than 0.7 indicate that a somatic mutation is likely pathogenic, whilst scores less than 0.5 indicate a neutral classification.

The type and location of TP53 mutations from this study, de novo AML patients and CHIP individuals represented in Extended Data Fig. 8f were generated using Pecan Portal [START_REF] Zhou | Exploring genomic alteration in pediatric cancer using ProteinPaint[END_REF] . De novo AML TP53 mutations were downloaded from Papaemmanuil, et al. [START_REF] Papaemmanuil | Genomic Classification and Prognosis in Acute Myeloid Leukemia[END_REF] and Ley, et al. [START_REF] Ley | Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[END_REF] ; CHIP associated TP53 mutations were obtained from Coombs, et al., Desai, et al., Young, et al. [START_REF] Coombs | Therapy-Related Clonal Hematopoiesis in Patients with Nonhematologic Cancers Is Common and Associated with Adverse Clinical Outcomes[END_REF][START_REF] Desai | Somatic mutations precede acute myeloid leukemia years before diagnosis[END_REF][START_REF] Young | Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults[END_REF] 

Sanger sequencing of patient-associated mutations in PDX models

Genomic DNA from PDX sorted populations (LMPP: hCD45 + Lin -CD34 + CD38 - CD45RA + CD90 -and GMP: hCD45 + Lin -CD34 + CD38 + CD45RA + CD123 + ) was extracted using QIAamp DNA Mini Kit (Qiagen). Sanger sequencing was performed with forward or reverse primers (TableS6a) targeting mutations identified by targeted bulk sequencing in the corresponding primary samples using Mix2seq kit (Eurofins Genomics) and sequences were analysed with the ApE editor.

Single Nucleotide Polymorphism Array sample preparation, Copy Number

Variant and Loss of Heterozygosity Analysis

Bulk genomic DNA from patients' mononuclear cells was isolated using DNeasy Blood & Tissue Kit (Qiagen) as per manufacturer's instructions. 250 ng of gDNA were used for hybridization on an Illumina Infinium OmniExpress v1.3 BeadChips platform.

To call mosaic copy number events in primary patient samples, genotyping intensity data generated was analysed using the Illumina Infinium OmniExpress v1.3 BeadChips platform. Haplotype phasing, calculation of log R ratio (LRR) and B-allele frequency (BAF) and calling of mosaic events was performed using Mocha (Mocha: A BCFtools extension to call mosaic chromosomal alterations starting from phased VCF files with either B Allele Frequency (BAF) and Log R Ratio (LRR) or allelic depth (AD)), as previously described [START_REF] Loh | Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations[END_REF][START_REF] Loh | Monogenic and polygenic inheritance become instruments for clonal selection[END_REF] . In brief, Mocha comprises the following steps: (1) filtering of constitutional duplications; (2) use of a parameterized hidden Markov model to evaluate the phased BAF for variants on a per-chromosome basis; (3) deploying a likelihood ratio test to call events; (4) defining event boundaries; (5) calling copy number; (6) estimating the cell fraction of mosaic events. A series of stringent filtering steps was applied to reduce the rate of false positive calls. To eliminate possible constitutional and germline duplications, excluding calls with lod_baf_phase <10, those with length <500kbp and rel_cov>2.5, and any gains with estimated cell fraction >80%, logR>0.5 or length <24Mb. Given that interstitial LOH are rare and likely artefactual, all LOH events <8Mb were filtered [START_REF] Loh | Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations[END_REF] . Events on genomic regions reported to be prone to recurrent artefact 59 (chr6<58Mb, chr7>61Mb, and chr2 >50Mb) were also filtered, and those where manual inspection demonstrated noise or sparsity in the array.

To find common genomic lesions on a focal and arm level, Infinium OmniExpress arrays were initially processed with Illumina Genome Studio v2.0.4. Following this, Log R Ratio (LRR) data was extracted for all probes and array annotation obtained from Illumina (InfiniumOmniExpress-24v1-3_A1). LRR data was then smoothed and segmentation called using the CBS algorithm from the DNACopy 61,62 v1.60.0 package in R. A minimum number of 5 probes was required to call a segment, and segments where analysed using GenomicRanges 63 v1.38.0. Definitions of amplification, gain, loss and deletion events where as outlined in Bashton, et al. [START_REF] Bashton | Concordance of copy number abnormality detection using SNP arrays and Multiplex Ligation-dependent Probe Amplification (MLPA) in acute lymphoblastic leukaemia[END_REF] . Segmentation data was then analysed in GISTIC 65 v2.023.

For PDX models, genomic DNA from sorted populations (LMPP: hCD45 + Lin - CD34 + CD38 -CD45RA + CD90 -and GMP: hCD45 + Lin -CD34 + CD38 + CD45RA + CD123 + ) was extracted using QIAamp DNA Mini Kit (Qiagen). SNP-CGH array hybridization was performed using the Affymetrix Cytoscan® HD (Thermo Fisher Scientific) according to the manufacturer's recommendations. DNA amplification was checked using BioSpec-nano TM spectrophotometer (Shimadzu) with expected concentrations between 2,500 and 3,400ng/μL. DNA length distribution post-fragmentation was checked using D1000 ScreenTapes on Tapestation 4200 instrument (Agilent Technologies). Cytoscan HD array includes 2.6 million markers combining SNP and non-polymorphic probes for copy number evaluation. Raw data CEL files were analysed using the Chromosome Analysis Suite software package (v4. 1, Affymetrix) with genome version GRCh37 (hg19) only if achieving the manufacturer's quality cut-offs. Only CNAs > 10kb were reported in the analysis presented in Extended Data Fig. 3k,l.

Single-molecule cloning and sequencing of patient-derived cDNA

To experimentally verify the biallelic nature of TP53 mutations in TP53-sAML patients, cDNA from a selected patient with putative TP53 biallelic status (Patient ID GR004) was PCR-amplified using cDNA-specific primers spanning both TP53 mutations (Fwd: 5'-GACCCTTTTTGGACTTCAGGTG-3', Rev: 5'-CCATGAGCGCTGCTCAGATAG-3').

PCR amplification was performed with KAPA 2X Ready Mix (Roche), a Taq-derived enzyme with A-tailing activity, for direct cloning into a TA vector (pCR2.1 TOPO vector, TOPO® TA Cloning® Kit, Invitrogen) as per manufacturer's instructions. Sanger sequencing for 10 different colonies was performed using M13 forward and reverse primers; a representative example is shown in Extended Data Fig. 1h.

Fluorescent activated cell sorting (FACS) and single-cell isolation

Single cell FACS-sorting was performed as previously described [START_REF] Rodriguez-Meira | Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] 

Single-cell TARGET-seq cDNA synthesis.

RT and PCR steps were performed as previously described 66 , using 24 cycles of PCR amplification. Target-specific primers spanning patient-specific mutations were added to RT and PCR steps (TableS6a). After cDNA synthesis, cDNA from up to 384 single-cell libraries was pooled, purified using Ampure XP Beads (0.6:1 beads to cDNA ratio; Beckman Coulter) and resuspended in a final volume of 50 μL of EB buffer (Qiagen).

The quality of cDNA traces was checked using a High Sensitivity DNA Kit in a Bioanalyzer instrument (Agilent Technologies).

Whole transcriptome library preparation and sequencing

Pooled and bead-purified cDNA libraries were diluted to 0.2 ng/μL and used for tagmentation-based library preparation using a custom P5 primer and 14 cycles of PCR amplification [START_REF] Rodriguez-Meira | TARGET-Seq: A Protocol for High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] . Each indexed library was purified twice with Ampure XP beads (0.7:1 beads to cDNA ratio), quantified using Qubit dsDNA HS Assay Kit (Invitrogen, Cat# Q32854) and diluted to 4 nM. Libraries were sequenced on a HiSeq4000, HiSeqX or NextSeq instrument using a custom sequencing primer for read1 (P5_seq:

GCCTGTCCGCGGAAGCAGT GGTATCAACGCAGAGTTGC*T, PAGE purified) with the following sequencing configuration: 15 bp R1; 8 bp index read; 69 bp R2 (NextSeq) or 150 bp R1; 8 bp index read; 150 bp R2 (HiSeq).

TARGET-seq single-cell genotyping

After RT-PCR, cDNA+amplicon mix was diluted 1:2 by adding 6.25 μL of DNAse/RNAse free water to each well of each 384-well plate. Subsequently, a 1.5 μL aliquot from each single cell derived library was used as input to generate a targeted and Illumina-compatible library for single cell genotyping [START_REF] Rodriguez-Meira | TARGET-Seq: A Protocol for High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] . In the first PCR step, targetspecific primers containing a plate-specific barcode (TableS6b) were used to amplify the target regions of interest. In a subsequent PCR step, Illumina compatible adaptors (PE1/PE2) containing single-direction indexes (Access Array™ Barcode Library for Illumina® Sequencers-384, Single Direction, Fluidigm) were attached to pre-amplified amplicons, generating single-cell barcoded libraries. Amplicons from up to 3,072 libraries were pooled and purified with Ampure XP beads (0.8:1 ratio beads to product; Beckman Coulter). These steps were performed using Biomek FxP (Beckman Coulter), Mosquito (TTP Labtech) and VIAFLO 96/384 (INTEGRA Biosciences) liquid handling platforms. Purified pools were quantified using Qubit dsDNA HS Assay Kit (Invitrogen, Cat# Q32854) and diluted to a final concentration of 4 nM. Libraries were sequenced on a MiSeq or NextSeq instrument using custom sequencing primers as previously described [START_REF] Rodriguez-Meira | TARGET-Seq: A Protocol for High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] with the following sequencing configuration: 150 bp R1; 10 bp index read;

Targeted single-cell genotyping analysis

Data pre-processing

For each cell, the FASTQ file containing both targeted gDNA and cDNA-derived sequencing reads was aligned to the human reference genome (GRCh37/hg19) using Burrow-Wheeler Aligner (BWA v0.7.17) [START_REF] Ng | A 17-gene stemness score for rapid determination of risk in acute leukaemia[END_REF] and STAR (v2.6.1d) [START_REF] Dobin | STAR: ultrafast universal RNA-seq aligner[END_REF] . Custom perl scripts were used to demultiplex the gDNA and mRNA reads in the BAM file into separate SAM files based on targeted-sequencing primer coordinates (https://github.com/albarmeira/TARGET-seq). Next, Samtools (v1.9) [START_REF] Li | The Sequence Alignment/Map format and SAMtools[END_REF] was used to concatenate the BAM header to the resulting SAM files before re-converting the SAM file to BAM format, which was subsequently sorted by genomic coordinates and indexed. Both gDNA and mRNA reads were tagged with the cell's unique identifier using Picard (v2.3.0) "AddOrReplaceReadGroups" and duplicate reads were subsequently marked using Picard "MarkDuplicates". The sequencing reads overhanging into intronic regions in the mRNA reads were additionally hard-clipped using GATK (v4.1.2.0) SplitNCigarReads [START_REF] Mckenna | The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[END_REF][START_REF] Schischlik | Mutational landscape of the transcriptome offers putative targets for immunotherapy of myeloproliferative neoplasms[END_REF] .

Variant calling

Variants were called from the processed BAM files using GATK Mutect2 with the options [--tumor-lod-to-emit 2.0 --disable-read-filter NotDuplicateReadFilter --maxreads-per-alignment-start] to increase the sensitivity of detecting low-frequency variants. The frequency of each nucleotide (A, C, G, T) and indels at each pre-defined variant site were also called using a Samtools mpileup as previously described [START_REF] Rodriguez-Meira | Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] .

Lastly, the coverage at each pre-defined variant site were computed using Bedtools (v2.27.1) 71 .

To determine the coverage threshold of detection for each variant site, the coverage for "blank" controls (empty wells) were first tabulated. A cut-off coverage outlier value was computed as having a coverage exceeding 1.5 times the length of the interquartile range from the 75th percentile. Next, a value of 30 was added to this outlier value to yield the final coverage threshold to be used for genotype assignment.

Genotype assignment

For each pre-defined variant site, the number of reads representing the reference and alternative (variant) alleles for indels (insertion and deletions) and SNVs (single nucleotide variants) were tabulated from the outputs of GATK Mutect2 and Samtools mpileup, respectively.

Here, a genotype scoring system was introduced to assign each variant site into one of three possible genotypes: wildtype, heterozygous, or homozygous mutant. Chisquare (χ ! ) test was first used to compare the observed frequency of reference and alternative alleles against the expected fraction of reference and alternative alleles corresponding to the three genotypes. The expected fraction of the reference alleles was 0.999, 0.5, and 0.001, and the expected fraction of the alternative alleles was 0.001, 0.5, and 0.999 for wildtype, heterozygous, and homozygous mutant genotype, respectively. The χ ! statistics were then tabulated for each fitted model and converted to genotype scores using the following formula:

𝑆𝑐𝑜𝑟𝑒 "#$%&'(# = 1 𝑙𝑜𝑔10(χ ! + 1)
The genotype assigned to the variant site was based on the genotype model with the highest score.

Next, the variant (alternative) allele frequency (VAF) was computed and variant sites with 2 < VAF < 4 and 96 < VAF < 98 were reassigned as "ambiguous". For cells with no variants detected at the specific variant sites by the mutation callers (either due to the absence of the variants, i.e. wild-type genotype, or that such variants were present below the detection limit), a "wild-type" genotype was assigned to those cells with a coverage above the specific threshold and "low coverage" to those cells with coverage below such threshold.

Taken together, each variant site was assigned one of the five following genotypes: wildtype, heterozygous, homozygous mutant, ambiguous, or low coverage. Variants with ambiguous or low coverage assignments for a particular cell were excluded from the analysis.

Computational reconstruction of clonal hierarchies

Genotypes for each single cell were recoded for input to SCITE in a manner inspired by Morita et al [START_REF] Morita | Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics[END_REF] : each mutation in each gene was coded as two loci, representing two different alleles. In the first recorded loci, all homozygous calls from each mutation where coded as heterozygous genotype calls. In the second recorded loci, all heterozygous and homozygous genotype calls in the original mutation matrix were coded as homozygous reference (i.e. WT) and heterozygous, respectively. For example, if for a certain mutation 0 represents WT status, 1 encodes heterozygous and 2 refers to homozygous status, these would be encoded as (0,0), (1,0) and (1,1) respectively, where the first term in the parenthesis corresponds to the first loci and the subsequent, to the second loci.

Then, SCITE was used (git revision 2016b31, downloaded from https://github.com/cbgethz/SCITE.git [START_REF] Jahn | Tree inference for single-cell data[END_REF] ) to sample 1000 mutation trees from the posterior for every single-cell genotype matrix corresponding to a particular patient, where all possible mutation trees are equally likely a priori. For patients in which several disease timepoints were available, all timepoints were merged for SCITE analysis. As parameters for every SCITE run "-fd 0.01" (corresponding to the allelic dropout rate of reference allele in our adapted SCITE model), "-ad 0.01" (corresponding to the allelic dropout of the alternate allele), a chain length (-l) of 1e6, and a thinning interval of 1 while marginalizing out cell attachments (-p 1 -s) were used.

To summarize the posterior tree sample distribution, the number of times a particular sample matched each tree was computed. For each patient, the most common tree topology in the posterior tree samples is reported (Extended Data Fig. 2b-o, Fig. 9e-m),

where "pp" is the proportion of samples that match this tree. For each clade in the most common posterior tree, clade probabilities were estimated as the proportion of trees in the posterior that contained the clade. These are indicated in each square for each mutation in (Extended Data Fig. 2b-o, Fig. 9e-m).

Clone assignment

For every patient's most common posterior tree, we assigned every cell to the tree node that matches the genotype of that particular cell. If an exact match was not found, then for every tree node the loss of assigning a cell to that node was calculated using the following loss function:

where 𝑚 is a confusion matrix generated across all loci of a cell in which the first index represents the genotype that was measured for that particular cell (1 = homozygous reference, 2 = heterozygous, 3 = homozygous alternate), and the second index represents the genotype implied by the tree node. ADO = 0.01 and FD = 0.001 were used. Every cell was assigned to the node with the lowest loss 𝑙. For the trees presented in Extended Data Fig. 2b-o and Extended Data Fig. 9e-m only the numbers of cells with exact genotype matches were reported.

Testing for evidence of homozygous genotypes

Due to the nature of our loci-specific mutation encoding (each gene is encoded as two loci), homozygous mutations are placed in the clonal hierarchy independently of their accuracy. Therefore, for every patient and at every locus with observed homozygous alternate genotype calls, the tested null hypothesis was that all homozygous alternate genotype calls are due to allelic dropout at a level not exceeding 0.05 using a onetailed binomial test. The total number of draws for the test is the number of heterozygous and homozygous alternate genotype calls at the locus, the number of successful draws is the number of homozygous alternate calls, and the success rate is 0.05. Only homozygous alternate genotype calls below this 0.05 cut-off were reported in Extended Data Fig. 2b-o and Extended Data Fig. 9e-m; the results of the binomial test are reported for each patient and mutation in TableS8.

Computational validation of TP53 biallelic status from single-cell targeted genotyping datasets

To further validate the biallelic status of TP53 mutations in our dataset, the patterns of allelic dropout in TARGET-seq single-cell genotyping data from patient carrying at least 2 different TP53 mutations were investigated (n=6; Extended Data Fig. 1j).

To test the hypothesis that the observed TP53-WT/TP53-homozygous (TP53-WT/HOM; or (0,2)) cells are the result of a chromosomal loss (and therefore, in different alleles), the following null hypothesis (H0) was formulated: observed TP53-WT/HOM cells are double allelic dropout events. Under H0, every TP53-WT/HOM cell (0,2), TP53-HOM/WT cell (2,0), TP53-HOM/HOM (2,2) as well as an unknown number of TP53-WT/WT (0,0) are the result of a TP53-HET/HET (1,1) cell undergoing allelic dropout (ADO) at both sites. The following assumptions were made: (a) ADO is unbiased towards HOM or WT and (b) ADO events at each TP53 site are independent.

The null hypothesis was then tested with a binomial test, where the number of (2,2) events should be half the sum of (0,2) + (2,0) events (Extended Data Fig. 1j). (0,0) events were disregarded.

If TP53 mutations are biallelic, the expected number of WT/HOM and HOM/WT would be higher than HOM/HOM cells considering TARGET-seq expected allelic dropout rates (1-5%).

Single cell 3'-biased RNA-sequencing data pre-processing

FASTQ files for each single cell were generated using bcl2fastq (version 2.20) with default parameters and the following read configuration: Y8N*, I8, Y63N*. Read 1 corresponds to a cell-specific barcode, index read correspond to an i7 index sequence from each cDNA pool, and read 2 corresponds to the cDNA molecule. PolyA tails were trimmed from demultiplexed FASTQ files with TrimGalore (version 0.4.1). Reads were then aligned to the human genome (hg19) using STAR (version 2.4.2a) and counts for each gene were obtained with FeatureCounts (version 1.4.5-p1; options --primary).

Counts were then normalized by dividing each gene count by the total library size of each cell and multiplying this value by the median library size of all cells processed, as implemented in the "normalize_UMIs" function from the SingCellaR package [START_REF] Roy | Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development[END_REF] (https://github.com/supatt-lab/SingCellaR). A summary of the pre-processing pipeline can be found in https://github.com/albarmeira/TARGET-seq-WTA.

Quality control was performed using the following parameters: number of genes detected>500, percentage of ERCC derived reads<35%, percentage of mitochondrial reads<0.25%, percentage of unmapped reads<75%. Cells with less than 2000 reads in batch1, 5000 reads in batch2 and 20000 reads in batch3 were further excluded. This QC step was performed independently for each sequencing batch owing to differences in sequencing depth (mean library size: 42949 batch 1, 93580 batch 2 and 171393 batch3). After these QC steps, 7123 cells passed QC for batch1, 5779 for batch2 and 6319 for batch 3 (79.3%, 68.9% and 80.3% of cells processed, respectively). Then, 2734 cells from a previously published study [START_REF] Rodriguez-Meira | Unravelling Intratumoral Heterogeneity through High-Sensitivity Single-Cell Mutational Analysis and Parallel RNA Sequencing[END_REF] corresponding to 8 myelofibrosis patients and 2 normal donor controls were further integrated, encompassing a final dataset of 21955 cells in total.

Identification of highly variable genes

Highly variable genes above technical noise were identified by fitting a gamma generalized linear model (GLM) model of the log2(mean expression level) and coefficient of variation for each gene, using the "get_variable_genes_by_fitting_GLM_model" from SingCellaR package and the following options: mean_expr_cutoff = 1, disp_zscore_cutoff = 0.1, quantile_genes_expr_for_fitting = 0.6, quantile_genes_cv2_for_fitting = 0.2. Those genes with a coefficient of variation above the fitted model and expression cut-off were selected for further analysis, excluding those annotated as ribosomal or mitochondrial genes.

CNA inference from single cell transcriptomes

InferCNV was used to identify CNAs in single-cell transcriptomes [START_REF] Patel | Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[END_REF] (https://github.com/broadinstitute/inferCNV/wiki). Briefly, inferCNV creates genomic bins from gene expression matrices and computes the average level of expression for each of these bins. The expression across each bin is then compared to a set of normal control cells, and CNAs are predicted using a hidden markov model. For each patient, inferCNV was performed with the following parameters: "cutoff=0.1, denoise=T, HMM=T", compared to the same set of normal donor control cells (n=992). To identify CNA subclones, inferCNV in analysis_mode='subclusters' was used. CNAs identified by inferCNV were manually curated by removing those with size<10kb, merging adjacent CNA calls with identical CNA status into larger CNA intervals and comparing them to SNP-Array bulk CNA calls. Finally, to generate combined TARGET-seq singlecell genotyping and CNA-based clonal hierarchies, the CNA status from each inferCNV cluster was assigned to its predominant genotype.

Dimensionality reduction, data integration and clustering

PCA was performed using "runPCA" function from the SingCellaR R package, and Force-directed graph analysis was subsequently performed using the "runFA2_ForceDirectedGraph" with the top 30 PCA dimensions to generate the plots in Extended Data Fig. 4a.

For the analysis of patient IF0131 presented in Extended Data Fig. 3m, PCA was performed using "runPCA" function from the SingCellaR R package and then UMAP was performed using the "runUMAP" function with the top 10 PCA dimensions and the following options: n.neighbors=20, uwot.metric = "correlation", uwot.min.dist=0.30, n.seed = 1.

Integration of TARGET-seq single-cell transcriptomes from 10459 cells corresponding to 14 TP53-sAML samples was performed using "runHarmony" function implemented in the SingCellaR package, using the patient ID as covariate and the following options:

n.dims.use=20, harmony.theta = 1, n.seed = 1. Diffusion map analysis was performed using "runDiffusionMap" with the integrative Harmony embeddings and the following parameters: n.dims.use=20, n.neighbors=5, distance="euclidean". Signature scores were calculated using "plot_diffusionmap_label_by_gene_set" to generate the plots in Fig. 2a and Fig. 3a.

Pseudotime trajectory analysis

Monocle3 76 (https://cole-trapnell-lab.github.io/monocle3/) was used to infer differentiation trajectories from single cell transcriptomes. Raw UMI count matrix and clustering annotations were extracted from the SingCellaR object to build a Monocle3 'cds' object. Next, we retrieved the first two components of the diffusion map (DC1 and DC2), and the 'learn_graph' function was then used calculate the trajectory on the twodimensional (2D) diffusion map, using TP53-WT preleukemic cell cluster as the root node. Pseudotime was calculated using 'order_cells' function and overlayed on the diffusion map embeddings to generate the plot in Fig. 2b.

Differential expression analysis

Differentially expressed genes from TARGET-seq datasets were identified using a combination of non-parametric Wilcoxon test, to compare the expression values for each group, and Fisher's exact test, to compare the frequency of expression for each group, as previously described [START_REF] Giustacchini | Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia[END_REF] . Logged normalized counts were used as input for this comparison, including genes expressed in at least 2 cells. Combined p-values were calculated using Fisher's method and adjusted p-values were derived using

Benjamini & Hochberg procedure. Significance level was set at p-adjusted<0.05. For the analysis presented in Extended Data Fig. 4b and TableS2, the top 100 differentially expressed genes with log2(fold-change)>0.3 and at least 20% expressing cells are shown. Differentially expressed genes identified between TP53-multi-hit versus TP53-WT cells were further assessed for the enrichment of known p53 target genes (337 curated p53 target genes from Fisher et al [START_REF] Fischer | Census and evaluation of p53 target genes[END_REF] ) for the analysis presented in Extended Data Fig. 4c. We assessed the extent of overlap of these gene lists using the R package GeneOverlap. The overlapping genes were further assessed for enrichment of p53-related pathways using the R package clusterProfiler.

For the analysis presented in Fig. 2k,l, only genes overexpressed in TP53 multi-hit cells and log2(fold-change)>0.75 were included; for Fig. 4d, only those with log2(foldchange)>1 were considered. Violin plots (Fig. 4e and Extended Data Fig. 9n) from selected differentially expressed genes were generated using "ggplot2" package in R.

Gene-Set Enrichment analysis

For analysis involving <600 cells (Fig. 4c,TableS5) GSEA was performed using GSEA software (https:/www.gsea-msigdb.org/gsea/index.jsp) with default parameters and 1000 permutations on the phenotype, using log2(normalized counts).

For analysis involving >600 cells per group (Fig. 3k, Extended Data Fig. 4d and Fig. 9o), GSEA was performed with "identifyGSEAPrerankedGene" function from SingCellaR R package with default options. Briefly, differential expression analysis was performed between two cell populations using Wilcoxon rank sum test and the resulting p-values were adjusted for multiple testing using the Benjamini-Hochberg approach. Prior to the differential expression analysis, down-sampling was performed so that both cell populations had the same number of cells. Next, -log10(p-value) transformation was performed and the resulting p-values were multiplied by +1 or -1 if the corresponding log2FC was>0.1 or <-0.1, respectively. The genelist was ranked using this statistic in ascending order and used as input for GSEA analysis using "fgsea" function from the fgsea R package with default options.

MSigDB HALLMARK v7.4 50-gene sets or previously published signatures (https://www.gseamsigdb.org/gsea/msigdb/cards/GENTLES_LEUKEMIC_STEM_CELL_UP) were used for all analysis. Normalised enrichment scores (NES) were displayed in a heatmap using pheatmap R package. Gene sets with False Discovery Rate (FDR) q-value lower than 0.25 were considered significant.

Projection of single cell transcriptomes

A previously published human haematopoietic atlas was downloaded from https://github.com/GreenleafLab/MPAL-Single-Cell-2019 and used as a normal haematopoietic reference to project TP53-sAML and de novo AML transcriptions using Latent Semantic Index Projection (LSI) [START_REF] Granja | Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia[END_REF] . Common genes to all datasets were selected and then, TP53-sAML or previously published de novo AML cells [START_REF] Van Galen | Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity[END_REF] were projected using "projectLSI' function for the analysis presented in Fig. 2c,d. A previously published human myelofibrosis atlas [START_REF] Psaila | Single-Cell Analyses Reveal Megakaryocyte-Biased Hematopoiesis in Myelofibrosis and Identify Mutant Clone-Specific Targets[END_REF] was used as a reference to project TP53-sAML multi-hit cells in the analysis presented in Extended Data Fig. 5d,e, using previously defined force-directed graph embeddings.

Velocyto analysis

Loom files were generated for each single cell using velocyto (v0.17.13) with optionsc and -U, to indicate that each BAM represents an independent cell and reads are counted instead of molecules (UMIs), respectively [START_REF] Manno | RNA velocity of single cells[END_REF] . The individual loom files were subsequently merged using the combine function from the loompy python module.

Healthy donors with at least 300 cells with RNA-sequencing data and patients with at least 300 cells consisting of >50 preleukemic (TP53 wildtype) cells and > 50 TP53

multi-hit cells were included for analysis. For each individual, Seurat object was created from the merged loom file and processed for downstream RNA-velocity analysis [START_REF] Satija | Spatial reconstruction of single-cell gene expression data[END_REF] .

Specifically, for each patient, the spliced RNA counts were normalised using regularised negative binomial regression with the SCTransform function [START_REF] Hafemeister | Normalization and variance stabilization of single-cell RNAseq data using regularized negative binomial regression[END_REF] . Next, linear dimension reduction was performed using RunPCA function and the first 30 principal components were further used to perform non-linear dimension reduction using the RunUMAP function. Ninety-six multiple rate kinetics (MURK) genes previously shown to possess coordinated step-change in transcription and hence violate the assumptions behind scVelo were removed [START_REF] Barile | Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation[END_REF] . The processed and MURK gene-filtered Seurat object was then saved as h5Seurat format using the SaveH5Seurat function and finally converted to h5ad format using the Convert function.

AnnData object was created from the h5ad file using the scvelo python module for RNA velocity analysis [START_REF] Bergen | Generalizing RNA velocity to transient cell states through dynamical modeling[END_REF] . Highly variable genes were identified and the corresponding spliced and unspliced RNA counts were normalized and log2-transformed using the scvelo.pp.filter_and_normalize function. Next, the 1 st and 2 nd order moments were computed for velocity estimation using the scvelo.pp.moments function. The velocities (directionalities) were computed based on the stochastic model as defined in the scvelo.t1.velocity function, and the velocities was subsequently projected on the UMAP embeddings generated from Seurat above. Finally, the UMAP embeddings were annotated using the HSPC and erythroid lineage signature scores [START_REF] Roy | Transitions in lineage specification and gene regulatory networks in hematopoietic stem/progenitor cells over human development[END_REF] , and TP53 mutation status. For each cell, the cell lineage signature score was computed using the average SCTransform expression values of the individual cell lineage genes.

Analysis of bulk BeatAML and TCGA gene expression datasets

Data retrieval and pre-processing

Two publicly available AML cohorts with genetic mutation and RNA-sequencing data available were used to validate findings from our single-cell analysis, namely

BeatAML [START_REF] Tyner | Functional genomic landscape of acute myeloid leukaemia[END_REF] and The Cancer Genome Atlas (TCGA) [START_REF] Ley | Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[END_REF] . Gene expression values in FPKM (fragments per kilobase of transcript per million mapped reads) were retrieved from the National Cancer Institute (NIH) Genomic Data Commons (GDC) [START_REF] Heath | The NCI Genomic Data Commons[END_REF] . Gene expression values were then offset by 1 and log2-transformed. TP53 point mutation status was retrieved from the cBio Cancer Genomics Portal (cBioPortal) [START_REF] Cerami | The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[END_REF] . Clinical data including survival data for BeatAML and TCGA was retrieved from the BeatAML data viewer (Vizome) and NIH GDC, respectively.

We selected samples from the BeatAML cohort with an AML diagnosis (540 de novo AML and 96 secondary AML) collected within 1 month of the patient's enrolment in the study, and with both TP53 mutation status and RNA-sequencing data available. For patients in which multiple samples were available, samples were collapsed to obtain patient-level data. Specifically, the mean gene expression value for each gene from multiple samples was used to represent patient-level gene expression value.

Furthermore, patients with at least one sample with a TP53 mutation were considered TP53-mutant. Analysis of TP53 variant allele frequency and reported karyotypic abnormalities indicated that the vast majority of patients could be classified as "multihit", and therefore patients were classified as TP53-mutant or WT without taking into account TP53 allelic status. In total, 360 patients with TP53 mutation status (329 TP53-WT and 31 TP53-mutant) and RNA-sequencing data available were included for analysis. Of these, 322 patients had concomitant survival data available (294 TP53-

WT and 28 TP53-mutant).

The TCGA cohort consisted for 200 de novo AML patients represented by one sample each, out of which 151 patients had TP53 mutation status (140 TP53-WT and 11 TP53mutant) and RNA-sequencing data available, and were included for analysis. Of these, 132 patients had concomitant survival data available (124 TP53-WT and 8 TP53mutant).

Cell lineage gene signature scores

For each sample, a given cell lineage gene signature score was computed as the mean expression values of the individual genes belonging to the cell lineage gene signature.

Here, the gene signature scores for two cell lineages were computed, namely myeloid and erythroid populations. Two gene sets for each cell lineage were compiled. The first gene set was based on cell lineage markers previously reported in the literature whereas the second gene set was based on cell lineage markers derived from analysing a published single-cell dataset [START_REF] Granja | Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia[END_REF] . Genes from each score are described in TableS3.

For the former approach, six erythroid genes (KLF1, GATA1, ZFPM1, GATA2, GYPA, TFRC; Fig. 2e, Extended Data Fig. 5k, 5m) and seven myeloid genes (FLI1, SFPI1, CEBPA, CEBPB, CD33, MPO, IRF8; Fig. 2f) were identified. For the latter approach, the expression values of erythroid and myeloid cell clusters were first compared separately against all other cell clusters using Wilcoxon ranked sum test. The erythroid cluster consisted of the early and late erythroid populations while the myeloid cluster consisted of granulocyte, monocyte, and dendritic cell populations. Erythroid and myeloid-specific gene signatures were defined as genes having FDR values < 0.05 and log2 fold change > 0.5 in >=20 and 17 comparisons, respectively. In total, 100 erythroid genes and 135 myeloid genes were identified from this single-cell dataset (TableS3), and were used to compute the scores presented in Extended Data Fig. 5gj.

TP53 target gene score

Genes downregulated in TP53-multi-hit compared to TP53-WT cells (defined as per "Differential expression analysis" section above; related to Figure S4b) and p53 targets positively regulated from Fisher et al [START_REF] Fischer | Census and evaluation of p53 target genes[END_REF] were used to compute a TP53-target gene-score presented in Extended Data Fig. 5k.

Prognostic signatures and Cox-regression survival models

Leukaemic stem cell (LSC) signature score

The 17-gene leukaemic stem cell (LSC17) gene set was retrieved from Ng et al [START_REF] Ng | A 17-gene stemness score for rapid determination of risk in acute leukaemia[END_REF] . For each sample, the LSC17 score was defined as the linear combination of gene expression values weighted by their respective regression coefficients.

To identify TP53-sAML leukaemic stem cell signatures from our TARGET single-cell dataset, two different approaches were used. First, differentially expressed genes were identified as overexpressed in all Lin -CD34 + TP53 multi-hit cells regardless of their transcriptional classification ("p53-all-cells") versus myelofibrosis, healthy donor and TP53-WT preleukaemic cells; this gene-set consists of 29 genes (TableS4a). For the second approach, the same analysis was performed, but TP53 multi-hit cells transcriptionally defined as leukaemic stem cells (falling in the leukaemic stem cell-like cluster, Fig. 2a, middle) were specifically selected; this gene-set is comprised of 51 genes ("p53LSC"; TableS4a).

Next, lasso cox regression with 10-fold cross-validation implemented in the glmnet R package was used to identify p53-all-cells and p53-LSC genes that were associated with survival and to estimate their respective regression coefficients [START_REF] Anande | RNA Splicing Alterations Induce a Cellular Stress Response Associated with Poor Prognosis in Acute Myeloid Leukemia[END_REF] . Specifically, Harrel's concordance measure (C-index) was used to assess the performance of each fitted model during cross-validation. The best model was defined as the fitted model with the highest C-index. Subsequently, the coefficient for each gene estimated using the best model was used to compute the gene signature scores. Only genes with nonzero coefficient values were included in the final gene set. In total, 9 and 44 genes were retained from the p53-all-cells and p53-LSC gene sets, respectively. For each sample, the gene signature score for each gene set was defined as the linear combination of gene expression values weighted by their respective regression coefficient [START_REF] Ng | A 17-gene stemness score for rapid determination of risk in acute leukaemia[END_REF][START_REF] Anande | RNA Splicing Alterations Induce a Cellular Stress Response Associated with Poor Prognosis in Acute Myeloid Leukemia[END_REF] . The list of p53-LSC and p53-all-cells gene signatures is provided in TableS4b.

Survival analysis

For each gene expression signature, patients were first split using the median gene expression signature score. This resulted in two groups of patients, namely patients with high expression scores (greater than or equal to the median) and patients with low expression scores (lower than the median), exemplified in Extended Data Fig. 6a,b.

The Cox proportional hazards regression model implemented by the survival R package was fitted to estimate the hazard ratio associated with each feature. Log-rank test was used to test the differences between survival curves. The features analysed here were LSC17, p53-all-cells and p53-LSC signatures. Patients with low gene expression signature scores (below median) and patients with TP53 wildtype status were specified as the reference groups in the model. Kaplan-Meier curves were plotted using the survminer R package to visualize the probability of survival and sample size at a respective time interval.

In vitro assays

Short-term liquid culture experiments

For short-term liquid culture differentiation experiments (Fig. 3j, Extended Data Fig. 7h,i), single cells from different Lineage -CD34 + HSPC populations (HSC:

CD34 + CD38 -CD45RA -CD90 + , MPP: CD34 + CD38 -CD45RA -CD90 -, LMPP:
CD34 + CD38 -CD45RA + and more committed progenitors CD34 + CD38 + ) were directly sorted into a 96-well tissue culture plate containing 100 μL of differentiation media:

StemSpan (Catalog #09650, StemCell Technologies), 1% Penicillin+Streptomycin, 20 % BIT9500 (Cat# 9500, StemCell Technologies), 10 ng/mL SCF (Cat #300-07, Peprotech), 10 ng/mL FLT3L (Cat# 300-19, Peprotech), 10 ng/mL TPO (Cat# 300-18-10, Peprotech), 5 ng/mL IL3 (Cat # 200-03, Peprotech), 10 ng/mL G-CSF (Cat# 300-23, Peprotech), 10 ng/mL GM-CSF (Cat# 300-03, Peprotech), 1 IU/mL EPO (Janssen, erythropoietin alpha, clinical grade) and 10 ng/mL IL6 (Cat# 200-06, Peprotech).

For all liquid culture experiments, 50 μL of fresh 1X differentiation media was added at day 4. Readout was performed by flow cytometry after 12 days of culture using the antibodies detailed in TableS7.c (Panel D). 

Long-term culture initiating-cell (LTC-IC) assay

Evaluation of cell morphology

Cell morphology from PDX models (Extended Data Fig. 3d) and in vitro LTC-IC cultures (Extended Data Fig. 7f) was assessed after cytospin of 50-100,000 cells onto a glass slide (5 min at 500 rpm) and May-Grünwald Giemsa staining, according to standard protocols. Images were obtained using an AxioPhot microscope (Zeiss).

Mouse Bone Marrow Chimaeras

Trp53 tm2Tyj Commd10 Tg(Vav1-icre)A2Kio or Trp53 tm2Tyj Tg (Tal1-cre/ERT) plus one or more extra chromosomes as "whole chromosome gains"; two chromosomes plus two chromosomes with at least 5 different chromosomes present in number=4n as "tetraploidy or sub-tetraploidy". Counts of numbers of karyotypic aberrations per cell were performed scoring every type of event occurring on one chromosome as single event (i.e., presence of four chromosomes is counted as one aberration).

IFNγ ELISA assay

Wild-type mice were injected intra-peritoneally with a single dose of 200 μg poly(I:C) and spleens were collected from injected mice and non-treated controls 4 hours after injection. Spleens were processed into a single-cell suspension in 200 μl PBS, spun down at 500g for 5 minutes and supernatant was collected and used as spleen serum.

IFNγ levels were assessed using mouse IFNγ Quantikine ELISA assay (R&D Systems, cat MIF00) following the manufacturer's instructions. 450nm and 540nm optical densities were determined using Clariostar microplate reader (BMG Labtech). 

Statistical analysis

Statistical analyses are detailed in

  Committee (project C19-73, agreement 21-794, CODECOH n°DC-2020-4324); and from the INForMeD Study (REC: 199833, 26 July 2016, University of Oxford). Patients and normal donors provided written informed consent in accordance with the Declaration of Helsinki for sample collection and use in research. For secondary AML patients, we specifically selected samples from patients with known TP53-mutation.

  , using BD Fusion I and BD Fusion II instruments (Becton Dickinson) for 96-well plate experiments or bulk sorting experiments, and SH800S or MA900 (SONY) for 384-well plate experiments. Experiments involving isolation of human haematopoietic stem and progenitor cells (HSPCs) included single colour stained controls (CompBeads, BD Biosciences) and Fluorescence Minus One controls (FMOs). Antibodies used for HSPC staining are detailed in TableS7a (Panel A or B). Briefly, single cells directly sorted into 384-well plates containing 2.07 μL of TARGETseq lysis buffer 66 . Lineage -CD34 + cells were indexed for CD38, CD90, CD45RA, CD123 and CD117 markers, which allowed us to record the fluorescence levels of each marker for each single cell. 7-aminoactinomycin D (7-AAD) was used for dead cell exclusion. Flow cytometry profiles of the human HSPC compartment (Extended Data Fig.2, Fig.9) were analysed using FlowJo software (version 10.1, BD Biosciences).

  50 cells from each Lin -CD34 + population (HSC; MPP; LMPP; CD38+) and donor type (HD, MF, TP53-sAML) were sorted in triplicate. Cells were resuspended in 100 μL of myelocult (Stem Cell Technologies, #H5150) supplemented with Hydrocortisone(10 - 6 M; Stem Cell Technologies, Cat#74142) and plated into an irradiated supportive stromal cell layer (5000 SI/SI cells and 5000 M2-10B4 cells per well) in a 96-well tissueculture plate coated with Collagen type I (CORNING; Cat#354236).Medium was changed weekly and after 6 weeks of culture, cells were washed in IMDM+20%FCS and plated into 1.4 mL of cytokine-rich methylcellulose (Methocult H4435, Stem Cell Technologies). Colonies were scored 14 days later under an inverted microscope, and each colony was classified according to its morphology as BFU-E (Burst-forming unit erythroid), CFU-G (granulocyte), CFU-GM (granulocytemacrophage), CFU-M (macrophage) or CFU-GEMM (granulocyte, erythrocyte, macrophage, megakaryocyte). Selected colonies were used for cytospin and genotyping as outlined below.LTC-IC colony genotypingLTC-IC colonies were picked from methylcellulose media, washed, resuspended in 10 μL of PBS and transferred to individual wells in a 96-well PCR plate. 15 μL of lysis buffer (Triton X-100 0.4%, Qiagen Protease 0.1 AU/mL) were added to each well and samples were incubated at 56 °C for 10 minutes and 72 °C for 20 minutes. A 3 μL aliquot from each lysate was used as input to generate a targeted and Illuminacompatible library for colony genotyping. The preparation of single cell genotyping libraries involves 3 PCR steps. In the first PCR step, target-specific primers spanning each mutation of interest are used for amplification (TableS6a); in the second PCR step, nested target-specific primers (TableS6b) attached to universal CS1 / CS2 adaptors (Forward adaptor, CS1: ACACTGACGACATGGTTCTACA; Reverse adaptor, CS2: TACGGTAGCAGAGACTTGGTCT) further enrich for target regions and in the third PCR step, Illumina-compatible adaptors containing sample-specific barcodes are used to generate sequencing libraries.TP53 knockdown and differentiation of human CD34+ cellsshRNA sequence for p53 knockdown has been previously cloned into the lentiviral vector pRRLsin-PGK-eGFP-WPRE and validated[START_REF] Mahfoudhi | P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis[END_REF] . Primary human CD34 + cells from patients with MPN (TableS1) were infected twice with scramble (shCTL) or shTP53 with a MOI (Multiplicity of Infection) of 15 and sorted 48h later on CD34 and GFP expression. Cells were cultured in serum-free medium with a cocktail of human recombinant cytokines containing EPO (1 U/mL, Amgen), FLT3-L (10 ng/mL, Celldex Therapeutics, Inc.), G-CSF (20 ng/mL, Pfizer), IL-6 (10 ng/mL, Miltenyi), GM-CSF (5 ng/mL, Peprotech), IL-3 (10 ng/mL, Miltenyi), TPO (10 ng/mL, Kirin Brewery) and SCF (25 ng/mL, Biovitrum AB).At day 12 of culture, cells were stained with the antibodies detailed in TableS7.c (Panel C). DAPI was used for dead cell exclusion before acquisition on a FACSCanto II (BD Biosciences) instrument. Analysis of FACS data was performed using Kaluza (Beckman Coulter) software.Quantitative real time PCR in shRNA experimentsIn TP53 knockdown experiments, RNA from either CD34 + cells sorted after transduction or bulk cells at day 12 of culture was extracted using Direct-Zol RNA MicroPrep Kit (Zymo Research) and reverse transcription was performed with SuperScript Vilo cDNA Synthesis Kit (Invitrogen). Quantitative RT-PCR was performed on a 7500 Real-Time PCR Machine using SYBR-Green PCR Master Mix (Applied Biosystems). Expression levels were normalized to PPIA (housekeeping gene).Primers used are listed in TableS6c.XenotransplantationPurified CD34 + cells from AML patients were transplanted via retroorbital vein injection in sublethally irradiated (1.5Gy) NOD.CB17-Prkdcscid IL2rgtm1/Bcgen mice (B-NDG, Envigo). All experiments were approved by the French National Ethical Committee on Animal Care (n° 2020-007-23589). Blood cell counts were performed monthly by submandibular sampling of mice with blood chimerism assessed by flow cytometry using hCD34, hCD45 and mCD45 antibodies (TableS7.b; PDX PB panel). At sacrifice, human BM was stained with the antibodies listed in TableS7.b (PDX BM panel) and HSPC fractions were sorted on an Influx Cell sorter (BD Biosciences).

For

  in vivo experiments, two different chimera settings were used. For the first setting (Fig.5a), 1 million bone marrow (BM) cells from Vav-Cre Trp53 R172H/+ CD45.1 mice and 1 million BM CD45.2 wild-type cells from competitor mice were transplanted intravenously into lethally irradiated (10 Gy total body irradiation, split dose) congenic CD45.2 mice. For the second setting (Fig.5h), 0.9 million bone marrow (BM) cells from Trp53 LSL-R172H/+ CD45.2 mice and 2.1 million BM CD45.1 wild-type competitor mice were transplanted intra-venously into lethally irradiated (9.5 Gy total body irradiation) congenic CD45.2 mice and Trp53 mutation was induced 4 weeks after transplantation by tamoxifen (gavage 200 mg/kg, Sigma) during 4 days, followed by tamoxifen feeding during 2 weeks (Ssniff Diet). In each cohort, a selection of mice were injected intraperitoneally with 3 rounds of 6 injections each of 200μg poly(I:C) (first setting) or 100μg poly(I:C) (second setting) (GE Healthcare, #27-4732-01) or placebo (PBS1X). Alternatively, Vav-Cre Trp53 R172H/+ mice were injected with 3 rounds of 8 injections each of 35μg Lipopolysaccharide from Escherichia Coli O111:B4 (LPS; Cat. #L4391-1MG and #L5293-2ML; Sigma-Aldrich). Poly(I:C) and LPS were administered during weeks 6-7-8, 10-11-12, 14-15-16 (setting 1), or during weeks 7-8, 11-12, 15-16 (setting 2) post-transplantation. Within each round, injections were spaced one or two days apart. Blood cell counts and analysis of peripheral blood chimerism along with mature lymphoid and myeloid populations (PB) were performed every 2-4 weeks by submandibular sampling of mice; while BM chimerism and HSPC populations were analysed 18-20 weeks after transplantation. The antibodies used are detailed in TableS7.d. 7AAD (Sigma) or DAPI (BD Biosciences) were used for dead cell exclusion. FACS analyses were carried out on BD Fortessa or BD Fortessa X20 (BD Biosciences) and profiles were later analysed using FlowJo (version 10.1, BD Biosciences) or Kaluza (Beckman Coulter) softwares.LSK apoptosis and cell cycleBM LSK cells (setting 2) were stained with Annexin-V and DAPI in Annexin V binding buffer 1X (BD Biosciences) for apoptosis analysis. BM LSK cell cycle was assessed by flow cytometry using Ki-67 and DAPI staining, after fixation and permeabilization (BD Cytofix/Cytoperm and Permeabilization Buffer Plus, BD Biosciences).Multiplex in-situ hybridization (M-FISH)50 CD45.1 (Trp53 R172H/+ ) or CD45.2 (wild-type) LSK (Lin -Sca1 + c-Kit + ) cells from poly(I:C)-treated and control recipient mice were sorted and cultured for one week into Complete X-vivo15 media (Cat. #BE-04-418Q, Lonza) supplemented with 10% Fetal Calf Serum (FCS, #F9665, Sigma-Aldrich), 0.1 mM 2-mercaptoethanol (#21985023, Gibco), 1% penicillin-streptomycin (PAA laboratories), 2ng/ml mouse stem cell factor (mSCF, #250-03, PeproTech), 10ng/ml mouse granulocyte-monocyte colonystimulating factor (mGM-CSF, Immunex), 5ng/ml human thrombopoietin (hTPO, Cat# 300-18-10 PeproTech), 10ng/ml human granulocyte colony-stimulating factor (hG-CSF, Neopogen) 5ng/ml human FLT3 ligand (hFL, Cat# 300-19, Immunex), 5ng/ml mouse interleukin 3 (mIL-3, #213-13, PeproTech). Cells were cultured at 37°C 5% CO2. On day seven of culture, metaphase spreads were harvested following synchronisation with Colcemid (KaryoMAX™; Cat # 11519876, ThermoFisher Scientific) 50 ng/ml, for 3 hours at 37°C. The cells were then incubated with KCl 75mM for 15 minutes at 37°C and spun down. Following this, the cells were fixed in a methanol-acetic acid and then dropped onto glass slides. M-FISH was performed with the 21XMouse-Multicolor FISH probe kit (Cat #D-0425-060-DI, Metasystem Probes), following the manufacturer's instructions. For microscopy analysis, slides were mounted in Vectashield Antifade Mounting Medium with DAPI (Cat. H-1200 2BScientific

  Legends and performed using GraphPad Prism software (7 or later version) or R (version 3.6.1) software. Number of independent experiments, donors and replicates for each experiment are detailed in

  Figure1 a
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   mice (hereafter referred to as Vav-Cre Trp53 R172H/+ or SCL-CreER T Trp53 R172H/+ respectively) and wildtype mice used for BM chimera experiments were bred and maintained in accordance to UK and France Home Office regulations. All experiments carried out were performed under Project License P2FF90EE8 approved by the University of Oxford Animal Welfare and Ethical Review Body or under the Project License n° 2020-007-23589, approved by the French National Ethical Committee on Animal Care. Trp53 tm2Tyj 89 ,

	Commd10 Tg(Vav1-icre)A2Kio 90 (Jackson laboratory stock number #008610) and Tg (Tal1-
	cre/ERT)42-056Jrg 91 have been previously described.

  ). Images were acquired and analysed using Leica Cytovision software, on an Olympus BX-51 epifluorescence microscope equipped with a JAI CVM4+ progressive-scan 24 fps B&W fluorescence CCD camera. All cells were karyotyped, excluding metaphases severely damaged for technical reasons.The analysis of the M-FISH hybridised cells was blinded. The cells on each slide were scored for the presence of structural aberrations (translocations, and/ or derivative chromosomes and fragments) and/or numerical abnormalities. The presence of more than 40 chromosomes per cell was considered a numerical abnormality, except for cases where it could clearly be attributed to the presence of adjacent metaphases.

	Chromosome counts lower than 40 were not scored as numerical abnormalities for the
	impossibility to rule out technical issues (i.e. metaphases bursting at the hypotonic
	step). We scored as follows: translocations and presence of one chromosome plus one
	or more extra chromosomal fragment(s)/derivative(s) as "structural abnormalities"
	(except for sex chromosomes); presence of two chromosomes (or one in case of sex
	chromosomes) plus one or more extra chromosomal fragment(s)/derivative(s) as

"partial chromosome gains"; two chromosomes (or one in case of sex chromosomes)
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