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Summary  
 
TP53 is the most commonly mutated gene in human cancer, typically occurring 
in association with complex cytogenetics and dismal outcomes. Understanding 
the genetic and non-genetic determinants of TP53-mutation driven clonal 
evolution and subsequent transformation is a crucial step towards the design of 
rational therapeutic strategies. Here, we carry out allelic resolution single-cell 
multi-omic analysis of haematopoietic stem/progenitor cells (HSPCs) from 
patients with a myeloproliferative neoplasm who transform to TP53-mutant 
secondary acute myeloid leukaemia (AML), a tractable model of TP53-mutant 
cancer evolution. All patients showed dominant TP53 ‘multi-hit’ HSPC clones at 
transformation, with a leukaemia stem cell transcriptional signature strongly 
predictive of adverse outcome in independent cohorts, across both TP53-mutant 
and wild-type AML. Through analysis of serial samples, antecedent TP53-
heterozygous clones and in vivo perturbations, we demonstrate a hitherto 
unrecognised effect of chronic inflammation, which supressed TP53 wild-type 
HSPCs whilst enhancing the fitness advantage of TP53-mutant cells and 
promoting genetic evolution. Our findings will facilitate the development of risk-
stratification, early detection and treatment strategies for TP53-mutant 
leukaemia, and is of broad relevance to other cancer types. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Main Text 
 
Tumour protein 53 (TP53) is the most frequently mutated gene in human cancer, 

typically occurring as a multi-hit process with a point mutation in of one allele and loss 

of the other wild-type allele1,2. TP53 mutations are also strongly associated with copy 5 

number alterations (CNA) and structural variants, reflecting the role of p53 in the 

maintenance of genomic integrity2,3. In myeloid malignancies, presence of a TP53 

mutation defines a distinct clinical entity1, associated with complex CNA, lack of 

response to conventional therapy and dismal outcomes2,4,5. Understanding the 

mechanisms by which TP53 mutations drive clonal evolution and disease progression 10 

is a crucial step towards the development of rational strategies to diagnose, stratify, 

treat and potentially prevent this condition. 

 

Myeloproliferative neoplasms (MPN) arise in haematopoietic stem cells (HSC) through 

the acquisition of mutations in JAK/STAT signalling pathway genes (JAK2, CALR or 15 

MPL), leading to aberrant proliferation of myeloid lineages6. Progression to secondary 

acute myeloid leukaemia (sAML) occurs in 10-20% of MPN and is characterized by 

cytopenias, increased myeloid blasts, acquisition of aberrant leukaemia stem cell 

(LSC) properties by haematopoietic stem/progenitor cells (HSPC) and median survival 

of less than one year7,8. TP53 mutations are detected in approximately 20-35% of post-20 

MPN sAML9-11 (collectively termed TP53-sAML), often in association with loss of the 

remaining wild-type allele12 and multiple CNAs13. Furthermore, deletion of Trp53 

combined with JAK2V617F mutation leads to a highly penetrant myeloid leukaemia in 

mice11,14.  

 25 

Notwithstanding the established role of TP53 mutation in MPN transformation, TP53-

mutant subclones are also present in 16% of chronic phase MPN (CP-MPN) and in 

most cases this does not herald the development of TP53-sAML15. However, little is 

known about the additional genetic and non-genetic determinants of clonal evolution 

following the acquisition of a TP53 mutation. Resolving this question requires 30 

unravelling multiple layers of intratumoural heterogeneity, including reliable 

identification of the TP53 mutation, loss of the wild-type allele and presence of CNA. 

Integrating this mutational landscape with cellular phenotype and transcriptional 

signatures will resolve aberrant haematopoietic differentiation and molecular 



properties of LSC in TP53-sAML. This collectively requires single-cell approaches 35 

which combine molecular and phenotypic analysis of HSPCs with allelic-resolution 

mutation detection, an approach recently enabled by the TARGET-seq technology16. 

  

Convergent clonal evolution during TP53-driven leukaemic transformation 
To characterize the genetic landscape of TP53-sAML, we analysed 33 TP53-sAML 40 

patients (Table S1) through bulk-level targeted next generation sequencing and SNP 

array (Extended Data Fig.1). We detected MPN-driver mutations (JAK2, CALR) in 28 

patients (85%), and co-occurring myeloid driver mutations in 24 patients (73%). 

Multiple TP53 mutations were present in one third (n=11) of patients, including 2 

patients with 3 TP53 mutations. 82% (18/22) of patients with a single TP53 mutation 45 

showed a high variant allelic frequency (VAF) of >50%. CNAs were present in all 

patients analysed, and 87% (20/23) had a complex karyotype (≥ 3 CNA; Extended 

Data Fig.1a-g). Deletion or copy neutral loss of heterozygosity affecting the TP53 locus 

(chr17p13.1) was detectable at the bulk level in 43% of patients (10/23) (Extended 

Data Fig.1b-d). Taken together, these findings support that TP53-sAML is associated 50 

with complex genetic intratumoural heterogeneity. 

 

To characterize tumour phylogenies and subclonal structures, we performed TARGET-

seq analysis16, a technology that allows allelic-resolution genotyping, whole 

transcriptome and immunophenotypic analysis from the same single-cell, on 17517 55 

Lin-CD34+ HSPCs from 14 TP53-sAML patients (Extended Data Fig.1a), 9 age-

matched healthy donors (HD) and 8 previously published myelofibrosis (MF) patients 

(Fig.1a, gating strategy shown in Extended Data Fig.2a). HSPCs wild-type for all 

mutations analyzed were present in 10 of 14 patients (Extended Data Fig.2b-o), 

providing a valuable population of cells for intra-patient comparison with mutation-60 

positive cells17. In all cases, the dominant clone showed loss of wild-type TP53 through 

4 patterns of clonal evolution: (1) biallelic TP53 mutations by acquisition of a second 

mutation on the other TP53 allele, (2) hemizygous TP53 mutations (deleted TP53 wild-

type allele), (3) parallel evolution with 2 clones harbouring different TP53 alterations, 

(4) a JAK2 negative dominant clone with biallelic TP53 mutations in patients with 65 

previous JAK2-mutant MPN18 (Fig.1b-e, Extended Data Fig.2b-o). Biallelic mutations 

were confirmed by single molecule cloning and computational analysis (Extended Data 

Fig.1h-j). Integration of index-sorting data revealed that dominant TP53 multi-hit clones 



were enriched in progenitor populations as previously described in de novo  AML19, 

whereas TP53-mutant cells were less frequent in the HSC compartment (Extended 70 

Data Fig.3a). CNA analysis using single-cell transcriptomes showed that all TP53 

multi-hit clones harboured at least one highly clonally-dominant CNA, with very few 

TP53-mutant cells without evidence of a CNA (3.4±1.2%) and an additional 5/14 (36%) 

patients also showing cytogenetically-distinct subclones (Fig.1f,g, Extended Data 

Fig.2p,q).  75 

 

To confirm that dominant HSPC clones were functional LSCs, we established patient-

derived xenografts (PDX) for 2 TP53-sAML patients (Fig.1h). Mice developed 

leukaemia in 27-31 weeks with high numbers of human CD34+ myeloid blast cells in 

the bone marrow (BM) (Extended Data Fig.3b-d), with a progenitor phenotype, TP53 80 

mutations and CNAs similar to the dominant clone from patients’ primary cells (Fig. 1i, 

Extended Data Fig.3e-l). In Patient IF0131, a monosomy 7 subclone (Fig.1f) 

preferentially expanded in PDX models (Fig.1i). Monosomy 7 cells showed a distinct 

transcriptional profile with increased WNT, RAS, MAPK signalling and cell cycle 

associated transcription (Extended Data Fig.3m,n). Together, these data are 85 

compatible with a fitness advantage of monosomy 7 cells, a recurrent event in TP53-

sAML (Extended Data Fig.1b,c), driven by activation of signalling pathways which may 

relate to deletion of chromosome 7 genes such as EZH220. In summary, the dominant 

leukaemic clones in TP53-sAML were invariably characterized by multiple hits affecting 

TP53 (multi-hit state), indicating strong selective pressure for complete loss of wild-90 

type TP53, together with gain of CNAs and complex cytogenetic evolution, with very 

few TP53 multi-hit cells with a normal karyotype (Fig.1j).    

 

Molecular signatures of TP53-mutant mediated transformation 
To understand the cellular and molecular framework through which TP53 mutation 95 

drives clonal evolution, we next analysed single-cell RNA-seq data from 10459 TP53-

sAML HSPCs alongside 2056 MF and 5002 HD HSPCs passing quality control. Force-

directed graph analysis revealed separate clustering of TP53-mutant HSPC in 

comparison with HD and MF cells, with a high degree of inter-patient heterogeneity 

(Extended Data Fig.4a) as observed in other haematopoietic malignancies21. This 100 

could potentially be explained by patient-specific cooperating mutations and 

cytogenetic alterations (Extended Data Fig.1). TARGET-seq analysis uniquely enabled 



comparison of TP53 multi-hit HSPC to TP53 wild-type preleukaemic stem cells 

(“preLSCs”) from the same TP53-sAML patients as well as HD and MF, to derive a 

specific TP53 multi-hit signature including known p53-pathway genes (Extended Data 105 

Fig.4b,c).  

 

Integration of single cell transcriptomes and diffusion map analysis of HSPCs from 

TP53-sAML patients showed that TP53 multi-hit HSPCs clustered separately from 

TP53 wild-type preLSCs in two distinct populations with enrichment of LSC and 110 

erythroid-associated transcription respectively (Fig.2a, Table S3), and a differentiation 

trajectory towards the erythroid-biased population (Fig.2b), an unexpected finding 

given that erythroleukaemia is uncommon in TP53-sAML22,23. Sorted CD34+ TP53-

multi-hit cells exhibited potential for erythroid differentiation in vivo and in vitro, 

supporting that this occurs downstream of the LSC population (Extended Data Fig.5a-115 

c). TP53 multi-hit LSCs showed enrichment of cell cycle, inflammatory, signalling 

pathways and LSC associated transcription, whereas TP53 multi-hit erythroid cells 

were depleted of the latter (Extended Data Fig.4d). 

 

To further explore this erythroid-biased population, we projected TP53 multi-hit cells 120 

onto a previously published healthy donor haematopoietic hierarchy24. TP53-sAML 

differed from de novo AML with an enrichment into HSC and early erythroid 

populations, whereas de novo AML were enriched in myeloid progenitors (Fig.2c,d)25. 

A similar enrichment was observed for TP53 multi-hit cells when mapped on a Lin-

CD34+ MF cellular hierarchy (Extended Data Fig.5d,e), with erythroid-biased 125 

populations being highly enriched in immunophenotypically defined MEPs (Extended 

Data Fig.5f). Taken together, these findings support an aberrant erythroid-biased 

differentiation trajectory in TP53-sAML.  

 

To determine whether upregulation of erythroid-associated transcription was a more 130 

widespread phenomenon in TP53-mutant AML, we investigated erythroid-myeloid 

associated transcription in the BeatAML and TCGA cohorts26,27. Erythroid scores were 

increased in TP53 mutant compared to TP53 wild-type AML, whereas there was no 

significant difference in myeloid scores (Fig.2e-f, Extended Data Fig.5g-j, scores 

described in Table S3). Concomitantly, patients with high erythroid scores also showed 135 

decreased TP53-target gene expression (Extended Data Fig.5k). We next investigated 



the expression of key transcription factors for erythroid/granulomonocytic commitment 

and found increased GATA1 expression in Lin-CD34+ TP53 multi-hit HSPCs, whereas 

CEBPA was only expressed at low levels (Fig.2g). Analysis of the BeatAML cohort 

revealed increased GATA1 and reduced CEBPA expression in association with TP53 140 

mutation (Extended Data Fig.5l), with consequent reduction in the CEBPA/GATA1 

expression ratio (Fig.2h). Similar findings were observed in TP53 knock-out or mutant 

isogenic MOLM13 cell lines (Extended Data Fig.5m)28. These observations suggest 

that the CEBPA/GATA1 expression ratio, an important transcription factor balance 

which affects erythroid versus myeloid differentiation in leukaemia29,30 is disrupted by 145 

TP53 mutation. 

 

To determine whether p53 directly influences myeloid-erythroid differentiation, we 

knocked-down TP53 in JAK2V617F CD34+ cells from MPN patients (Extended Data 

Fig.5n). TP53 knock-down led to increased erythroid (CD71+CD235a+) and decreased 150 

myeloid (CD14+/CD15+/CD11b+) differentiation in vitro (Fig.2i) and consequently 

decreased CEBPA/GATA1 expression ratio (Fig.2j), suggesting that p53 may directly 

contribute to the aberrant myelo-erythroid differentiation observed. 

 

As ‘stemness scores’ have previously been applied to determine prognosis in AML31, 155 

we next asked whether a single-cell defined TP53 multi-hit LSC signature might identify 

AML patients with adverse outcomes. Single cell multi-omics allowed us to derive a 

44-gene “p53LSC-signature” (Table S4) by comparing gene expression of HD, JAK2-

mutant MF HSPC and TP53 wild-type preLSC to transcriptionally-defined TP53-mutant 

LSCs (Fig.2a,k). High p53LSC-signature score (Extended Data Fig.6a,b) was strongly 160 

associated with TP53 mutation status, although some TP53 wild-type patients also 

showed a high p53LSC score. A high p53LSC score predicted for poor survival in the 

independent BeatAML and TCGA cohorts, irrespective of TP53 mutational status 

(Fig.2l, Extended Data Fig.6c-e). The p53LSC signature performed well as a predictor 

of survival, including in sAML patients, as compared to the previously published LSC17 165 

score31 and p53-mutant score generated using all TP53-mutant HSPC rather than 

LSCs (Extended Data Fig.6f-g, TableS4), providing a powerful new tool to aid risk 

stratification in AML. 

 



Preleukaemic TP53-wild-type cells display self-renewal and differentiation 170 

defects 

TARGET-seq uniquely enabled phenotypic and molecular characterization of rare 

TP53 wild-type cells, referred to as preLSCs, which include both residual HSPCs that 

were wild-type for all mutations analyzed, as well as HSPCs which form part of the 

antecedent MPN clone. These preLSCs were obtained in sufficient numbers (>20 cells) 175 

from 9 of 14 TP53-sAML patients, including all patterns of clonal evolution (Fig.3a and 

Extended Data Fig.7a). PreLSCs representing the antecedent MPN clone (positive for 

MPN-associated driver mutations) were more frequent (60.5%) than preLSCs that 

were wild-type for all mutations (39.5%). PreLSCs were enriched in HSC-associated 

genes, and mapped onto HSC clusters in HD and MF haematopoietic hierarchies 180 

(Fig.3a,b). Index sorting revealed that preLSCs were strikingly enriched in the 

phenotypic HSC compartment, unlike TP53 multi-hit HSPCs (Fig.3c, Extended Data 

Fig.3a). Pre-LSCs were rare, as reflected by a reduction in the numbers of phenotypic 

HSCs present within the Lin-CD34+ HSPC compartment in TP53-sAML compared to 

HD (Extended Data Fig.7b).  185 

 

We reasoned that the HSC phenotype of preLSCs, with reduced frequency in 

progenitor compartments, might reflect impaired differentiation. To explore this 

hypothesis, we carried out scVelo analysis, which showed absence of a transcriptional 

differentiation trajectory in preLSCs, unlike HD HSCs (Fig.3d). PreLSCs showed 190 

increased expression of haematopoietic stem cell and Wnt b-catenin genes and 

decreased cell cycle genes as compared to HD and MF cells (Fig.3e-g, TableS3). To 

functionally confirm these findings, we sorted phenotypic HSCs (to purify preLSCs), as 

well as other progenitor cells, from HD, MF and TP53-sAML patients for long term 

culture initiating cell (LTC-IC) and short-term cultures (Fig.3h; Extended Data Fig.7c). 195 

PreLSC LTC-IC activity was similar to HD and increased compared to MF, with 

preserved terminal differentiation capacity and confirmed TP53 wild-type genotype 

(Fig.3i, Extended Data Fig.7d-g). In short-term liquid culture, preLSCs showed reduced 

clonogenicity, with retained CD34 expression and decreased proliferation (Fig.3j, 

Extended Data Fig.7h-i). In summary, we identified rare and phenotypically distinct 200 

preLSCs from TP53-sAML samples which were characterized by differentiation defects 

and distinct stemness, self-renewal and quiescence signatures. As these cells were 

TP53-wild-type, and showed normal differentiation after prolonged ex vivo culture, we 



reasoned that these functional and molecular abnormalities are likely to be cell-

extrinsically mediated. Indeed, preLSCs showed enrichment of gene-signatures 205 

associated with certain cell-extrinsic inflammatory mediators (TNFα, IFNg, TGFb, IL2) 

(Fig. 3k). 

 

Inflammation promotes TP53-associated clonal dominance 
 210 

To understand the transcriptional signatures associated with leukaemic progression 

we analysed samples from 5 CP-MPN patients who subsequently developed TP53-

sAML (“pre-TP53-sAML”) alongside 6 CP-MPN patients harbouring TP53 mutated 

clones who remained in chronic phase (“CP TP53-MPN”, median 4.43 years [2.62-

5.94] of follow-up, Fig.4a, Extended Data Fig.8). Compared to TP53-sAML samples, 215 

CP TP53-MPN had a lower VAF and number of TP53 mutations (Extended Data 

Fig.8a-d). The type, distribution and pathogenicity score of TP53 mutations were 

similar between chronic and acute stages (Extended Data Fig.8e,f). All 5 pre-TP53-

sAML samples and 4 of the 6 CP TP53-MPN were then analysed by TARGET-seq 

(Fig.4a). HSPC immunophenotype was similar for pre-TP53-sAML and CP TP53-MPN 220 

patients (Extended Data Fig.9a-c), and clearly distinct from the TP53-sAML stage 

(Extended Data Fig.9d). Heterozygous TP53 clones were identified in 3 pre-TP53-

sAML patients and all 4 CP TP53-MPN (Fig.4b, Extended Data Fig.9e-m). A minor 

homozygous TP53 mutated clone initially present in one CP TP53-MPN patient was 

undetectable after 4 years (Extended Data Fig.9h). As TP53-heterozygous mutant 225 

HSPCs represent the direct genetic ancestors of TP53 “multi-hit” LSCs, we compared 

gene expression of heterozygous TP53 mutant HSPC from pre-TP53-sAML (n=296) 

to CP TP53-MPN (n=273) (Fig.4b, blue boxes) to identify putative mediators of 

transformation. TP53-heterozygous HSPC from pre-TP53-sAML patients showed 

downregulation of TNFα and TGFb associated gene signatures, both of which are 230 

known to be associated with  HSC attrition32,33, with upregulated expression of 

oxidative phosphorylation, DNA repair and interferon response genes (Table S5, 

Fig.4c-e), without changes in IFN receptor expression levels or concurrent interferon 

treatment (Extended Data Fig.9n, Table S1). Upregulation of inflammatory signatures 

was detected in TP53-homozygous cells from the same pre-TP53-sAML patients at a 235 

higher level than in TP53-heterozygous cells (Extended Data Fig.9o). Collectively, 



these findings raise the possibility that inflammation might contribute to preleukaemic 

clonal evolution towards TP53-sAML. 

 

To evaluate the role of inflammation in TP53-driven leukaemia progression, we 240 

performed competitive mouse transplantation experiments between CD45.1+ Vav-Cre 

Trp53R172H/+ and CD45.2+ Trp53+/+ BM cells followed by repeated poly(I:C) or LPS 

intraperitoneal injections, recapitulating chronic inflammation through induction of 

multiple pro-inflammatory cytokines34,35 known to be increased in the serum of patients 

with MPN36, including IFNg (Fig.5a, Extended Data Fig.10a). Trp53 mutant peripheral 245 

blood (PB) myeloid cells, BM HSCs (Lin-Sca1+c-Kit+CD150+CD48-) and LSKs (Lin-

Sca1+c-Kit+) were selectively enriched upon poly(I:C) treatment (Fig.5b,c, Extended 

Data Fig.10b-e). Crucially, the fitness advantage of Trp53 mutant HSCs and LSKs was 

exerted both through an increase in numbers of Trp53R172H/+ HSPCs and reduction in 

numbers of wild-type competitors (Fig.5d,e, Extended Data Fig.10f,g). Treatment of 250 

chimeric mice with LPS (Fig.5a), which induces an inflammatory response mediated 

through release of IL1β and IL637, amongst others, lead to a similar increase in the 

number of Trp53 mutant PB myeloid cells and LSKs (Fig.5f,g). These results indicate 

that a variety of inflammatory stimuli can promote expansion of the Trp53 mutant clone. 

 255 

To determine how inflammation might alter haematopoietic differentiation and exert a 

selective pressure to drive the expansion of the Trp53 mutant clone, we established 

an inducible SCL-CreERT Trp53R172H/+ mouse model (Fig.5h). Poly(I:C) treatment led 

to inflammation-associated changes in blood cell parameters, including anaemia, 

leucopenia and thrombocytopenia (Extended Data Fig.10h-j). Similarly to the Vav-Cre 260 

model, poly(I:C) treatment promoted the selection of myeloid Trp53 mutant cells in the 

PB (Extended Data Fig.10k), with a myeloid bias induced by the inflammatory stimulus 

in PB leucocytes specifically associated with Trp53-mutation (Fig.5i,j, Extended Data 

Fig.10l). Analysis of HSPCs showed the expected selection for Trp53 mutant HSCs 

and LSKs following Poly(I:C) treatment (Extended Data Fig.10m). Numbers of wild-265 

type competitor erythroid progenitors were reduced upon poly(I:C) treatment as 

expected38, whereas Trp53-mutation was associated with an increase in erythroid 

progenitors that was not impacted by inflammation (Fig.5k, Extended Data Fig.10n) in 

line with the erythroid bias detected in patient samples. Finally, to determine the 



mechanisms by which inflammation might promote a fitness advantage for Trp53 270 

mutated cells, we performed cell cycle and apoptosis analysis following chronic 

poly(I:C) treatment. Cell cycle was similarly increased in poly(I:C)-treated WT and 

Trp53-mutated LSKs39; however, Trp53-mutated LSKs were resistant to inflammation-

induced apoptosis40 in comparison with their WT counterparts (Fig.5l,m).  

 275 

Inflammation promotes genetic evolution of Trp53 mutant HSPC 

As exit from dormancy promotes DNA-damage-induced HSPCs attrition41, we 

reasoned that Trp53 mutation might rescue HSPCs that acquire DNA damage (and 

would otherwise undergo apoptosis) driven by chronic inflammation-associated 

proliferative stress. To explore this possibility, we carried out M-FISH karyotype 280 

analysis of Trp53+/+ LSKs expanded in vitro from mice following poly(I:C) treatment and 

Trp53R172H/+ LSKs from mice with or without poly(I:C) treatment. Wild-type competitor 

LSK-derived cells from poly(I:C) treated mice were karyotypically normal. In contrast, 

we observed a striking increase in the frequency and number of karyotypic 

abnormalities in Trp53 mutated LSK-derived cells upon poly(I:C) treatment (Fig.6a-d). 285 

Collectively, these results support a model whereby chronic inflammation promotes the 

survival and genetic evolution of TP53 mutated cells whilst suppressing wild-type 

haematopoiesis, ultimately promoting clonal expansion of TP53 mutant HSPCs 

(Fig.6e).  

 290 

Discussion 
Here, we unravel multi-layered genetic, cellular and molecular intratumoural 

heterogeneity in TP53 mutation driven disease transformation through single-cell multi-

omic analysis. Allelic resolution genotyping of leukaemic HSPCs revealed a strong 

selective pressure for gain of TP53 missense mutation, loss of the TP53 wild-type allele 295 

and acquisition of complex CNAs, including cases with parallel genetic evolution during 

TP53-sAML LSC expansion. Despite the known dominant negative and/or gain of 

function effect of certain TP53 mutations28,42, loss of the TP53 wild-type allele, a 

genetic event associated with a particularly dismal prognosis2, confers additional 

fitness advantage to TP53-sAML LSCs. As CNA were universally present in TP53-300 

sAML with a very high clonal burden, it is not possible, even with high-resolution single-

cell analyses, to disentangle the impact of TP53-multi hit mutation versus the effects 

of patient-specific CNA which were inextricably linked in all patients analysed.  



 

Three distinct clusters of HSPCs were identified in TP53-sAML, including one 305 

characterized by overexpression of erythroid genes, of particular note as 

erythroleukaemia is a rare entity, associated with adverse outcome and TP53 

mutation43,44. Analysis of a large AML cohort also revealed overexpression of erythroid 

genes as a more widespread phenomenon in TP53 mutant AML, with disrupted 

balance of GATA1 and CEBPA expression. Notably, CEBPA knockout or mutation is 310 

reported to cause a myeloid to erythroid lineage switch with increased expression of 

GATA129,30 and, in addition, GATA1 associates with and inhibits p5345. Importantly, our 

data do not distinguish whether this lineage-switch is primarily an instructive versus 

permissive effect of TP53-mutation46. A second ‘TP53-sAML LSC’ cluster allowed us 

to establish a novel p53LSC-signature, which we demonstrated to be highly relevant 315 

to predict outcome in AML, independently of TP53 status. This powerful approach 

could be more broadly applied in cancer, whereby single multi-omic cell derived gene 

scores can be used to stratify larger patient cohorts using bulk gene expression data. 

 

A third TP53 wild-type ‘preLSC’ HSPC cluster was characterized by quiescence 320 

signatures and defective differentiation, reflecting the impaired haematopoiesis 

observed in patients with TP53-sAML. Through integration of single cell multi-omic 

analysis with in vitro and in vivo functional assays we show that TP53-wild-type 

preLSCs are cell-extrinsically suppressed whilst chronic inflammation promotes the 

fitness advantage of TP53 mutant cells, ultimately leading to clonal selection (Fig.6e). 325 

Inflammation is a cardinal regulator of HSC function with many effects on HSC fate 

and function47, including proliferation-induced DNA-damage and depletion of HSCs41. 

There is emerging evidence that clonal HSCs can become inflammation-adapted47-49 

and by altering the response to inflammatory challenges, mutations can thus confer a 

fitness advantage to HSCs. Here, we demonstrate a hitherto unrecognized effect of 330 

TP53 mutations, which conferred a marked fitness advantage to HSPC in the presence 

of chronic inflammation induced with both poly(I:C) as well as LPS.  We provide 

evidence that TP53 mutant HSCs showing dysregulated inflammation-associated gene 

expression are enriched in patients who will develop TP53-sAML. We propose that 

HSCs that would otherwise undergo inflammation-associated and DNA-damage-335 

induced attrition, are rescued by TP53 mutation, ultimately leading to the accumulation 

of HSCs which have acquired DNA damage, thus promoting genetic evolution that 



underlies disease progression. This hypothesis was strongly supported through in vivo 

experiments in which inflammation promoted genetic evolution of Trp53 mutant mouse 

HSPCs. Further studies are required to characterize the key inflammatory mediators 340 

and molecular mechanisms involved, which we believe are unlikely to be restricted to 

a single axis, with a myriad of inflammatory mediators overexpressed in MPN50. 

Furthermore, loss of the wild-type Trp53 allele confers an additional fitness advantage 

to Trp53 mutant HSPC following DNA-damage as previously described28, providing an 

explanation for the selection for multi-hit TP53 mutant clones observed in patients. 345 

Consequently, we believe that approaches which target the inflammatory state, rather 

than a specific cytokine, are likely to be required to restrain disease progression, as 

reported for bromodomain inhibitors51. Collectively, our findings provide a crucial 

conceptual advance relating to the interplay between genetic and non-genetic 

determinants of TP53-mutation associated disease transformation. This will facilitate 350 

the development of early detection and treatment strategies for TP53-mutant 

leukaemia. Since TP53 is the most commonly mutated gene in human cancer3,52, we 

anticipate that these findings will be of broader relevance to other cancer types. 
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Methods 

Banking and processing of human samples 

Primary human samples (peripheral blood or bone marrow, described in Table S1) 

were analysed with approvals from the Inserm Institutional Review Board Ethical 

Committee (project C19-73, agreement 21-794, CODECOH n°DC-2020-4324); and 375 

from the INForMeD Study (REC: 199833, 26 July 2016, University of Oxford). Patients 

and normal donors provided written informed consent in accordance with the 

Declaration of Helsinki for sample collection and use in research. For secondary AML 

patients, we specifically selected samples from patients with known TP53-mutation.  

Cells were subjected to Ficoll gradient centrifugation and for some samples, CD34 380 

enrichment was performed using immunomagnetic beads (Miltenyi). Total 

mononuclear cells (MNCs) or CD34+ cells were frozen in FBS supplemented with 10% 

DMSO for further analysis. 

Targeted bulk sequencing  

Bulk genomic DNA from patient samples’ mononuclear or CD34+ cells was isolated 385 

using DNeasy Blood & Tissue Kit (Qiagen) or QIAamp DNA Mini Kit (Qiagen) as per 

manufacturer’s instructions. Targeted sequencing was performed using a TruSeq 

Custom Amplicon panel (Illumina) or a Haloplex Target Enrichment System (Agilent 

technologies) with amplicons designed around 32, 44 or 77 genes53. Targets were 

chosen based on the genes/exons most frequently mutated and/or likely to alter clinical 390 

practice (diagnostic, prognostic, predictive or monitoring capacity) across a range of 

myeloid malignancies (e.g. MDS/AML/MPN). Targets covered in all panels include 

ASXL1, CALR, CBL, CEBPA, CSF3R DNMT3A, EZH2, FLT3, HRAS, IDH1, IDH2, 

JAK2, KIT, KRAS, MPL, NPM1, NRAS, PHF6, RUNX1, SETBP1, SF3B1, SRSF2, 

TET2, TP53, U2AF1, WT1, ZRSR2. Sequencing was performed with a MiSeq 395 

sequencer (Illumina), according to the manufacturer’s protocols. Results were 

analysed after alignment of the reads using two dedicated pipelines, SOPHiA DDM® 

(Sophia Genetics) and an in-house software GRIO-Dx®. For all samples, an average 

depth exceeding 200X for > 90% of the target regions was required, or as previously 

described16. All pathogenic variants were manually checked using Integrative 400 

Genomics Viewer software. Analysis is presented in Extended Data Fig.1a and 

Extended Data Fig.8a. 



Pathogenic scores for each TP53 variant (Extended Data Fig.8e) were derived from 

COSMIC (Catalogue Of Somatic Mutations In Cancer) using the FATHMM-MKL 

algorithm. The FATHMM-MKL algorithm integrates functional annotations from 405 

ENCODE with nucleotide-based hidden Markov models to predict whether a somatic 

mutation is likely to have functional, molecular and phenotypic consequences. Scores 

greater than 0.7 indicate that a somatic mutation is likely pathogenic, whilst scores less 

than 0.5 indicate a neutral classification.  

The type and location of TP53 mutations from this study, de novo AML patients and 410 

CHIP individuals represented in Extended Data Fig.8f were generated using Pecan 

Portal54. De novo AML TP53 mutations were downloaded from Papaemmanuil, et al.55 

and Ley, et al.27; CHIP associated TP53 mutations were obtained from Coombs, et al., 

Desai, et al., Young, et al. 56-58 

Sanger sequencing of patient-associated mutations in PDX models 415 

Genomic DNA from PDX sorted populations (LMPP: hCD45+Lin-CD34+CD38-

CD45RA+CD90- and GMP: hCD45+Lin-CD34+CD38+CD45RA+CD123+) was extracted 

using QIAamp DNA Mini Kit (Qiagen). Sanger sequencing was performed with forward 

or reverse primers (TableS6a) targeting mutations identified by targeted bulk 

sequencing in the corresponding primary samples using Mix2seq kit (Eurofins 420 

Genomics) and sequences were analysed with the ApE editor. 

Single Nucleotide Polymorphism Array sample preparation, Copy Number 
Variant and Loss of Heterozygosity Analysis 

Bulk genomic DNA from patients’ mononuclear cells was isolated using DNeasy Blood 

& Tissue Kit (Qiagen) as per manufacturer’s instructions. 250 ng of gDNA were used 425 

for hybridization on an Illumina Infinium OmniExpress v1.3 BeadChips platform.  

To call mosaic copy number events in primary patient samples, genotyping intensity 

data generated was analysed using the Illumina Infinium OmniExpress v1.3 

BeadChips platform. Haplotype phasing, calculation of log R ratio (LRR) and B-allele 

frequency (BAF) and calling of mosaic events was performed using Mocha (Mocha: A 430 

BCFtools extension to call mosaic chromosomal alterations starting from phased VCF 

files with either B Allele Frequency (BAF) and Log R Ratio (LRR) or allelic depth (AD)), 

as previously described59,60. In brief, Mocha comprises the following steps: (1) filtering 



of constitutional duplications; (2) use of a parameterized hidden Markov model to 

evaluate the phased BAF for variants on a per-chromosome basis; (3) deploying a 435 

likelihood ratio test to call events; (4) defining event boundaries; (5) calling copy 

number; (6) estimating the cell fraction of mosaic events. A series of stringent filtering 

steps was applied to reduce the rate of false positive calls. To eliminate possible 

constitutional and germline duplications, excluding calls with lod_baf_phase <10, those 

with length <500kbp and rel_cov>2.5, and any gains with estimated cell fraction >80%, 440 

logR>0.5 or length <24Mb. Given that interstitial LOH are rare and likely artefactual, all 

LOH events <8Mb were filtered59. Events on genomic regions reported to be prone to 

recurrent artefact59 (chr6<58Mb, chr7>61Mb, and chr2 >50Mb) were also filtered, and 

those where manual inspection demonstrated noise or sparsity in the array.  

 445 

To find common genomic lesions on a focal and arm level, Infinium OmniExpress 

arrays were initially processed with Illumina Genome Studio v2.0.4. Following this, Log 

R Ratio (LRR) data was extracted for all probes and array annotation obtained from 

Illumina (InfiniumOmniExpress-24v1-3_A1). LRR data was then smoothed and 

segmentation called using the CBS algorithm from the DNACopy61,62 v1.60.0 package 450 

in R. A minimum number of 5 probes was required to call a segment, and segments 

where analysed using GenomicRanges63 v1.38.0. Definitions of amplification, gain, 

loss and deletion events where as outlined in Bashton, et al.64. Segmentation data was 

then analysed in GISTIC65 v2.023. 

For PDX models, genomic DNA from sorted populations (LMPP: hCD45+Lin-455 

CD34+CD38-CD45RA+CD90- and GMP: hCD45+Lin-CD34+CD38+CD45RA+CD123+) 

was extracted using QIAamp DNA Mini Kit (Qiagen). SNP-CGH array hybridization 

was performed using the Affymetrix Cytoscan® HD (Thermo Fisher Scientific) 

according to the manufacturer's recommendations. DNA amplification was checked 

using BioSpec-nanoTM spectrophotometer (Shimadzu) with expected concentrations 460 

between 2,500 and 3,400ng/μL. DNA length distribution post-fragmentation was 

checked using D1000 ScreenTapes on Tapestation 4200 instrument (Agilent 

Technologies). Cytoscan HD array includes 2.6 million markers combining SNP and 

non-polymorphic probes for copy number evaluation. Raw data CEL files were 

analysed using the Chromosome Analysis Suite software package (v4.1, Affymetrix) 465 

with genome version GRCh37 (hg19) only if achieving the manufacturer’s quality cut-



offs. Only CNAs > 10kb were reported in the analysis presented in Extended Data 

Fig.3k,l. 

Single-molecule cloning and sequencing of patient-derived cDNA 

To experimentally verify the biallelic nature of TP53 mutations in TP53-sAML patients, 470 

cDNA from a selected patient with putative TP53 biallelic status (Patient ID GR004) 

was PCR-amplified using cDNA-specific primers spanning both TP53 mutations (Fwd: 

5’-GACCCTTTTTGGACTTCAGGTG-3’, Rev: 5’-CCATGAGCGCTGCTCAGATAG-3’). 

PCR amplification was performed with KAPA 2X Ready Mix (Roche), a Taq-derived 

enzyme with A-tailing activity, for direct cloning into a TA vector (pCR2.1 TOPO vector, 475 

TOPO® TA Cloning® Kit, Invitrogen) as per manufacturer’s instructions. Sanger 

sequencing for 10 different colonies was performed using M13 forward and reverse 

primers; a representative example is shown in Extended Data Fig.1h. 

Fluorescent activated cell sorting (FACS) and single-cell isolation  

Single cell FACS-sorting was performed as previously described16, using BD Fusion I 480 

and BD Fusion II instruments (Becton Dickinson) for 96-well plate experiments or bulk 

sorting experiments, and SH800S or MA900 (SONY) for 384-well plate experiments. 

Experiments involving isolation of human haematopoietic stem and progenitor cells 

(HSPCs) included single colour stained controls (CompBeads, BD Biosciences) and 

Fluorescence Minus One controls (FMOs). Antibodies used for HSPC staining are 485 

detailed in TableS7a (Panel A or B). 

Briefly, single cells directly sorted into 384-well plates containing 2.07 μL of TARGET-

seq lysis buffer66. Lineage-CD34+ cells were indexed for CD38, CD90, CD45RA, 

CD123 and CD117 markers, which allowed us to record the fluorescence levels of 

each marker for each single cell. 7- aminoactinomycin D (7-AAD) was used for dead 490 

cell exclusion. Flow cytometry profiles of the human HSPC compartment (Extended 

Data Fig.2, Fig.9) were analysed using FlowJo software (version 10.1, BD 

Biosciences).  

Single-cell TARGET-seq cDNA synthesis.  

RT and PCR steps were performed as previously described66, using 24 cycles of PCR 495 

amplification. Target-specific primers spanning patient-specific mutations were added 

to RT and PCR steps (TableS6a). After cDNA synthesis, cDNA from up to 384 single-



cell libraries was pooled, purified using Ampure XP Beads (0.6:1 beads to cDNA ratio; 

Beckman Coulter) and resuspended in a final volume of 50 μL of EB buffer (Qiagen). 

The quality of cDNA traces was checked using a High Sensitivity DNA Kit in a 500 

Bioanalyzer instrument (Agilent Technologies).  

Whole transcriptome library preparation and sequencing 

Pooled and bead-purified cDNA libraries were diluted to 0.2 ng/μL and used for 

tagmentation-based library preparation using a custom P5 primer and 14 cycles of 

PCR amplification66. Each indexed library was purified twice with Ampure XP beads 505 

(0.7:1 beads to cDNA ratio), quantified using Qubit dsDNA HS Assay Kit (Invitrogen, 

Cat# Q32854) and diluted to 4 nM. Libraries were sequenced on a HiSeq4000, HiSeqX 

or NextSeq instrument using a custom sequencing primer for read1 (P5_seq: 

GCCTGTCCGCGGAAGCAGT GGTATCAACGCAGAGTTGC*T, PAGE purified) with 

the following sequencing configuration: 15 bp R1; 8 bp index read; 69 bp R2 (NextSeq) 510 

or 150 bp R1; 8 bp index read; 150 bp R2 (HiSeq). 

TARGET-seq single-cell genotyping 

After RT-PCR, cDNA+amplicon mix was diluted 1:2 by adding 6.25 μL of 

DNAse/RNAse free water to each well of each 384-well plate. Subsequently, a 1.5 μL 

aliquot from each single cell derived library was used as input to generate a targeted 515 

and Illumina-compatible library for single cell genotyping66. In the first PCR step, target-

specific primers containing a plate-specific barcode (TableS6b) were used to amplify 

the target regions of interest. In a subsequent PCR step, Illumina compatible adaptors 

(PE1/PE2) containing single-direction indexes (Access Array™ Barcode Library for 

Illumina® Sequencers-384, Single Direction, Fluidigm) were attached to pre-amplified 520 

amplicons, generating single-cell barcoded libraries. Amplicons from up to 3,072 

libraries were pooled and purified with Ampure XP beads (0.8:1 ratio beads to product; 

Beckman Coulter). These steps were performed using Biomek FxP (Beckman Coulter), 

Mosquito (TTP Labtech) and VIAFLO 96/384 (INTEGRA Biosciences) liquid handling 

platforms. Purified pools were quantified using Qubit dsDNA HS Assay Kit (Invitrogen, 525 

Cat# Q32854) and diluted to a final concentration of 4 nM. Libraries were sequenced 

on a MiSeq or NextSeq instrument using custom sequencing primers as previously 

described66 with the following sequencing configuration: 150 bp R1; 10 bp index read; 

150 bp R2. 



Targeted single-cell genotyping analysis 530 

Data pre-processing 

For each cell, the FASTQ file containing both targeted gDNA and cDNA-derived 

sequencing reads was aligned to the human reference genome (GRCh37/hg19) using 

Burrow-Wheeler Aligner (BWA v0.7.17)31 and STAR (v2.6.1d)67. Custom perl scripts 

were used to demultiplex the gDNA and mRNA reads in the BAM file into separate 535 

SAM files based on targeted-sequencing primer coordinates 

(https://github.com/albarmeira/TARGET-seq). Next, Samtools (v1.9)68 was used to 

concatenate the BAM header to the resulting SAM files before re-converting the SAM 

file to BAM format, which was subsequently sorted by genomic coordinates and 

indexed. Both gDNA and mRNA reads were tagged with the cell’s unique identifier 540 

using Picard (v2.3.0) “AddOrReplaceReadGroups” and duplicate reads were 

subsequently marked using Picard “MarkDuplicates”. The sequencing reads 

overhanging into intronic regions in the mRNA reads were additionally hard-clipped 

using GATK (v4.1.2.0) SplitNCigarReads69,70.  

Variant calling 545 

Variants were called from the processed BAM files using GATK Mutect2 with the 

options [--tumor-lod-to-emit 2.0 --disable-read-filter NotDuplicateReadFilter --max-

reads-per-alignment-start] to increase the sensitivity of detecting low-frequency 

variants. The frequency of each nucleotide (A, C, G, T) and indels at each pre-defined 

variant site were also called using a Samtools mpileup as previously described16. 550 

Lastly, the coverage at each pre-defined variant site were computed using Bedtools 

(v2.27.1)71. 

To determine the coverage threshold of detection for each variant site, the coverage 

for “blank” controls (empty wells) were first tabulated. A cut-off coverage outlier value 

was computed as having a coverage exceeding 1.5 times the length of the interquartile 555 

range from the 75th percentile. Next, a value of 30 was added to this outlier value to 

yield the final coverage threshold to be used for genotype assignment.  

Genotype assignment 

For each pre-defined variant site, the number of reads representing the reference and 

alternative (variant) alleles for indels (insertion and deletions) and SNVs (single 560 



nucleotide variants) were tabulated from the outputs of GATK Mutect2 and Samtools 

mpileup, respectively.  

Here, a genotype scoring system was introduced to assign each variant site into one 

of three possible genotypes: wildtype, heterozygous, or homozygous mutant. Chi-

square (χ!) test was first used to compare the observed frequency of reference and 565 

alternative alleles against the expected fraction of reference and alternative alleles 

corresponding to the three genotypes. The expected fraction of the reference alleles 

was 0.999, 0.5, and 0.001, and the expected fraction of the alternative alleles was 

0.001, 0.5, and 0.999 for wildtype, heterozygous, and homozygous mutant genotype, 

respectively. The χ!	statistics were then tabulated for each fitted model and converted 570 

to genotype scores using the following formula: 

𝑆𝑐𝑜𝑟𝑒"#$%&'(# =	
1

𝑙𝑜𝑔10(χ! + 1) 

 

The genotype assigned to the variant site was based on the genotype model with the 

highest score. 575 

Next, the variant (alternative) allele frequency (VAF) was computed and variant sites 

with 2 < VAF < 4 and 96 < VAF < 98 were reassigned as “ambiguous”. For cells with 

no variants detected at the specific variant sites by the mutation callers (either due to 

the absence of the variants, i.e. wild-type genotype, or that such variants were present 

below the detection limit), a “wild-type” genotype was assigned to those cells with a 580 

coverage above the specific threshold and “low coverage” to those cells with coverage 

below such threshold.  

Taken together, each variant site was assigned one of the five following genotypes: 

wildtype, heterozygous, homozygous mutant, ambiguous, or low coverage. Variants 

with ambiguous or low coverage assignments for a particular cell were excluded from 585 

the analysis. 

Computational reconstruction of clonal hierarchies 

Genotypes for each single cell were recoded for input to SCITE in a manner inspired 

by Morita et al 72: each mutation in each gene was coded as two loci, representing two 

different alleles. In the first recorded loci, all homozygous calls from each mutation 590 



where coded as heterozygous genotype calls. In the second recorded loci, all 

heterozygous and homozygous genotype calls in the original mutation matrix were 

coded as homozygous reference (i.e. WT) and heterozygous, respectively. For 

example, if for a certain mutation 0 represents WT status, 1 encodes heterozygous 

and 2 refers to homozygous status, these would be encoded as (0,0), (1,0) and (1,1) 595 

respectively, where the first term in the parenthesis corresponds to the first loci and the 

subsequent, to the second loci. 

Then, SCITE was used (git revision 2016b31, downloaded from https://github.com/cbg-

ethz/SCITE.git73) to sample 1000 mutation trees from the posterior for every single-cell 

genotype matrix corresponding to a particular patient, where all possible mutation trees 600 

are equally likely a priori. For patients in which several disease timepoints were 

available, all timepoints were merged for SCITE analysis. As parameters for every 

SCITE run “–fd 0.01” (corresponding to the allelic dropout rate of reference allele in our 

adapted SCITE model), “-ad 0.01” (corresponding to the allelic dropout of the alternate 

allele), a chain length (-l) of 1e6, and a thinning interval of 1 while marginalizing out cell 605 

attachments (-p 1 -s) were used. 

To summarize the posterior tree sample distribution, the number of times a particular 

sample matched each tree was computed. For each patient, the most common tree 

topology in the posterior tree samples is reported (Extended Data Fig.2b-o, Fig.9e-m), 

where “pp” is the proportion of samples that match this tree. For each clade in the most 610 

common posterior tree, clade probabilities were estimated as the proportion of trees in 

the posterior that contained the clade. These are indicated in each square for each 

mutation in (Extended Data Fig.2b-o, Fig.9e-m). 

Clone assignment 

For every patient’s most common posterior tree, we assigned every cell to the tree 615 

node that matches the genotype of that particular cell. If an exact match was not found, 

then for every tree node the loss of assigning a cell to that node was calculated using 

the following loss function: 

 



where 𝑚 is a confusion matrix generated across all loci of a cell in which the first index 620 

represents the genotype that was measured for that particular cell (1 = homozygous 

reference, 2 = heterozygous, 3 = homozygous alternate), and the second index 

represents the genotype implied by the tree node. ADO = 0.01 and FD = 0.001 were 

used. Every cell was assigned to the node with the lowest loss 𝑙. For the trees 

presented in Extended Data Fig.2b-o and Extended Data Fig.9e-m only the numbers 625 

of cells with exact genotype matches were reported.  

Testing for evidence of homozygous genotypes 

Due to the nature of our loci-specific mutation encoding (each gene is encoded as two 

loci), homozygous mutations are placed in the clonal hierarchy independently of their 

accuracy. Therefore, for every patient and at every locus with observed homozygous 630 

alternate genotype calls, the tested null hypothesis was that all homozygous alternate 

genotype calls are due to allelic dropout at a level not exceeding 0.05 using a one-

tailed binomial test. The total number of draws for the test is the number of 

heterozygous and homozygous alternate genotype calls at the locus, the number of 

successful draws is the number of homozygous alternate calls, and the success rate 635 

is 0.05. Only homozygous alternate genotype calls below this 0.05 cut-off were 

reported in Extended Data Fig.2b-o and Extended Data Fig.9e-m; the results of the 

binomial test are reported for each patient and mutation in TableS8. 

Computational validation of TP53 biallelic status from single-cell targeted 
genotyping datasets 640 

To further validate the biallelic status of TP53 mutations in our dataset, the patterns of 

allelic dropout in TARGET-seq single-cell genotyping data from patient carrying at least 

2 different TP53 mutations were investigated (n=6; Extended Data Fig.1j).  

To test the hypothesis that the observed TP53-WT/TP53-homozygous (TP53-

WT/HOM; or (0,2)) cells are the result of a chromosomal loss (and therefore, in different 645 

alleles), the following null hypothesis (H0) was formulated: observed TP53-WT/HOM 

cells are double allelic dropout events. Under H0, every TP53-WT/HOM cell (0,2), 

TP53-HOM/WT cell (2,0), TP53-HOM/HOM (2,2) as well as an unknown number of 

TP53-WT/WT (0,0) are the result of a TP53-HET/HET (1,1) cell undergoing allelic 

dropout (ADO) at both sites. The following assumptions were made: (a) ADO is 650 

unbiased towards HOM or WT and (b) ADO events at each TP53 site are independent. 



The null hypothesis was then tested with a binomial test, where the number of (2,2) 

events should be half the sum of (0,2) + (2,0) events (Extended Data Fig.1j). (0,0) 

events were disregarded.  

If TP53 mutations are biallelic, the expected number of WT/HOM and HOM/WT would 655 

be higher than HOM/HOM cells considering TARGET-seq expected allelic dropout 

rates (1-5%).  

 

Single cell 3’-biased RNA-sequencing data pre-processing 

FASTQ files for each single cell were generated using bcl2fastq (version 2.20) with 660 

default parameters and the following read configuration: Y8N*, I8, Y63N*. Read 1 

corresponds to a cell-specific barcode, index read correspond to an i7 index sequence 

from each cDNA pool, and read 2 corresponds to the cDNA molecule. PolyA tails were 

trimmed from demultiplexed FASTQ files with TrimGalore (version 0.4.1). Reads were 

then aligned to the human genome (hg19) using STAR (version 2.4.2a) and counts for 665 

each gene were obtained with FeatureCounts (version 1.4.5-p1; options --primary). 

Counts were then normalized by dividing each gene count by the total library size of 

each cell and multiplying this value by the median library size of all cells processed, as 

implemented in the “normalize_UMIs” function from the SingCellaR package74 

(https://github.com/supatt-lab/SingCellaR). A summary of the pre-processing pipeline 670 

can be found in https://github.com/albarmeira/TARGET-seq-WTA.  

Quality control was performed using the following parameters: number of genes 

detected>500, percentage of ERCC derived reads<35%, percentage of mitochondrial 

reads<0.25%, percentage of unmapped reads<75%. Cells with less than 2000 reads 

in batch1, 5000 reads in batch2 and 20000 reads in batch3 were further excluded. This 675 

QC step was performed independently for each sequencing batch owing to differences 

in sequencing depth (mean library size: 42949 batch 1, 93580 batch 2 and 171393 

batch3). After these QC steps, 7123 cells passed QC for batch1, 5779 for batch2 and 

6319 for batch 3 (79.3%, 68.9% and 80.3% of cells processed, respectively). Then, 

2734 cells from a previously published study16 corresponding to 8 myelofibrosis 680 

patients and 2 normal donor controls were further integrated, encompassing a final 

dataset of 21955 cells in total. 

Identification of highly variable genes 



Highly variable genes above technical noise were identified by fitting a gamma 

generalized linear model (GLM) model of the log2(mean expression level) and 685 

coefficient of variation for each gene, using the 

“get_variable_genes_by_fitting_GLM_model” from SingCellaR package and the 

following options: mean_expr_cutoff = 1, disp_zscore_cutoff = 0.1, 

quantile_genes_expr_for_fitting = 0.6, quantile_genes_cv2_for_fitting = 0.2. Those 

genes with a coefficient of variation above the fitted model and expression cut-off were 690 

selected for further analysis, excluding those annotated as ribosomal or mitochondrial 

genes. 

CNA inference from single cell transcriptomes 

InferCNV was used to identify CNAs in single-cell transcriptomes75 

(https://github.com/broadinstitute/inferCNV/wiki). Briefly, inferCNV creates genomic 695 

bins from gene expression matrices and computes the average level of expression for 

each of these bins. The expression across each bin is then compared to a set of normal 

control cells, and CNAs are predicted using a hidden markov model. For each patient, 

inferCNV was performed with the following parameters: “cutoff=0.1, denoise=T, 

HMM=T”, compared to the same set of normal donor control cells (n=992). To identify 700 

CNA subclones, inferCNV in analysis_mode='subclusters' was used. CNAs identified 

by inferCNV were manually curated by removing those with size<10kb, merging 

adjacent CNA calls with identical CNA status into larger CNA intervals and comparing 

them to SNP-Array bulk CNA calls. Finally, to generate combined TARGET-seq single-

cell genotyping and CNA-based clonal hierarchies, the CNA status from each inferCNV 705 

cluster was assigned to its predominant genotype. 

Dimensionality reduction, data integration and clustering 

PCA was performed using “runPCA” function from the SingCellaR  R package, and 

Force-directed graph analysis was subsequently performed using the 

“runFA2_ForceDirectedGraph” with the top 30 PCA dimensions to generate the plots 710 

in Extended Data Fig.4a. 

For the analysis of patient IF0131 presented in Extended Data Fig.3m, PCA was 

performed using “runPCA” function from the SingCellaR  R package and then UMAP 

was performed using the “runUMAP” function with the top 10 PCA dimensions and the 



following options: n.neighbors=20, uwot.metric = "correlation", uwot.min.dist=0.30, 715 

n.seed = 1. 

Integration of TARGET-seq single-cell transcriptomes from 10459 cells corresponding 

to 14 TP53-sAML samples was performed using “runHarmony” function implemented 

in the SingCellaR package, using the patient ID as covariate and the following options: 

n.dims.use=20, harmony.theta = 1, n.seed = 1. Diffusion map analysis was performed 720 

using “runDiffusionMap” with the integrative Harmony embeddings and the following 

parameters: n.dims.use=20, n.neighbors=5, distance="euclidean". Signature scores 

were calculated using “plot_diffusionmap_label_by_gene_set” to generate the plots in 

Fig.2a and Fig.3a. 

Pseudotime trajectory analysis 725 

Monocle376 (https://cole-trapnell-lab.github.io/monocle3/) was used to infer 

differentiation trajectories from single cell transcriptomes.  Raw UMI count matrix and 

clustering annotations were extracted from the SingCellaR object to build a Monocle3 

‘cds’ object. Next, we retrieved the first two components of the diffusion map (DC1 and 

DC2), and the ‘learn_graph’ function was then used calculate the trajectory on the two-730 

dimensional (2D) diffusion map, using TP53-WT preleukemic cell cluster as the root 

node. Pseudotime was calculated using ‘order_cells’ function and overlayed on the 

diffusion map embeddings to generate the plot in Fig.2b. 

 

Differential expression analysis 735 

Differentially expressed genes from TARGET-seq datasets were identified using a 

combination of non-parametric Wilcoxon test, to compare the expression values for 

each group, and Fisher’s exact test, to compare the frequency of expression for each 

group, as previously described17. Logged normalized counts were used as input for 

this comparison, including genes expressed in at least 2 cells. Combined p-values 740 

were calculated using Fisher’s method and adjusted p-values were derived using 

Benjamini & Hochberg procedure. Significance level was set at p-adjusted<0.05. For 

the analysis presented in Extended Data Fig.4b and TableS2, the top 100 differentially 

expressed genes with log2(fold-change)>0.3 and at least 20% expressing cells are 

shown. Differentially expressed genes identified between TP53-multi-hit versus TP53-745 

WT cells were further assessed for the enrichment of known p53 target genes (337 



curated p53 target genes from Fisher et al 77) for the analysis presented in Extended 

Data Fig.4c. We assessed the extent of overlap of these gene lists using the R 

package GeneOverlap. The overlapping genes were further assessed for enrichment 

of p53-related pathways using the R package clusterProfiler. 750 

 

For the analysis presented in Fig.2k,l, only genes overexpressed in TP53 multi-hit cells 

and log2(fold-change)>0.75 were included; for Fig.4d, only those with log2(fold-

change)>1 were considered. Violin plots (Fig.4e and Extended Data Fig.9n) from 

selected differentially expressed genes were generated using “ggplot2” package in R. 755 

 

Gene-Set Enrichment analysis 

For analysis involving <600 cells (Fig.4c, TableS5) GSEA was performed using GSEA 

software (https:/www.gsea-msigdb.org/gsea/index.jsp) with default parameters and 

1000 permutations on the phenotype, using log2(normalized counts). 760 

 

For analysis involving >600 cells per group (Fig.3k, Extended Data Fig.4d and Fig.9o), 

GSEA was performed with “identifyGSEAPrerankedGene” function from SingCellaR R 

package with default options. Briefly, differential expression analysis was performed 

between two cell populations using Wilcoxon rank sum test and the resulting p-values 765 

were adjusted for multiple testing using the Benjamini-Hochberg approach. Prior to the 

differential expression analysis, down-sampling was performed so that both cell 

populations had the same number of cells. Next, -log10(p-value) transformation was 

performed and the resulting p-values were multiplied by +1 or -1 if the corresponding 

log2FC was>0.1 or <-0.1, respectively. The genelist was ranked using this statistic in 770 

ascending order and used as input for GSEA analysis using “fgsea” function from 

the fgsea R package with default options.  

 

MSigDB HALLMARK v7.4 50-gene sets or previously published signatures 

(https://www.gsea-775 

msigdb.org/gsea/msigdb/cards/GENTLES_LEUKEMIC_STEM_CELL_UP) were used 

for all analysis. Normalised enrichment scores (NES) were displayed in a heatmap 

using pheatmap R package. Gene sets with False Discovery Rate (FDR) q-value lower 

than 0.25 were considered significant. 
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Projection of single cell transcriptomes 

A previously published human haematopoietic atlas was downloaded from 

https://github.com/GreenleafLab/MPAL-Single-Cell-2019 and used as a normal 

haematopoietic reference to project TP53-sAML and de novo AML transcriptions using 

Latent Semantic Index Projection (LSI)78. Common genes to all datasets were selected 785 

and then, TP53-sAML or previously published de novo AML cells25 were projected 

using “projectLSI’ function for the analysis presented in Fig.2c,d. A previously 

published human myelofibrosis atlas79 was used as a reference to project TP53-sAML 

multi-hit cells in the analysis presented in Extended Data Fig.5d,e, using previously 

defined force-directed graph embeddings. 790 

Velocyto analysis 

Loom files were generated for each single cell using velocyto (v0.17.13) with options -

c and -U, to indicate that each BAM represents an independent cell and reads are 

counted instead of molecules (UMIs), respectively80. The individual loom files were 

subsequently merged using the combine function from the loompy python module.  795 

Healthy donors with at least 300 cells with RNA-sequencing data and patients with at 

least 300 cells consisting of >50 preleukemic (TP53 wildtype) cells and > 50 TP53 

multi-hit cells were included for analysis. For each individual, Seurat object was created 

from the merged loom file and processed for downstream RNA-velocity analysis81. 

Specifically, for each patient, the spliced RNA counts were normalised using 800 

regularised negative binomial regression with the SCTransform function82. Next, linear 

dimension reduction was performed using RunPCA function and the first 30 principal 

components were further used to perform non-linear dimension reduction using the 

RunUMAP function. Ninety-six multiple rate kinetics (MURK) genes previously shown 

to possess coordinated step-change in transcription and hence violate the 805 

assumptions behind scVelo were removed 83. The processed and MURK gene-filtered 

Seurat object was then saved as h5Seurat format using the SaveH5Seurat function 

and finally converted to h5ad format using the Convert function.  

AnnData object was created from the h5ad file using the scvelo python module for RNA 

velocity analysis84. Highly variable genes were identified and the corresponding spliced 810 

and unspliced RNA counts were normalized and log2-transformed using the 



scvelo.pp.filter_and_normalize function. Next, the 1st and 2nd order moments were 

computed for velocity estimation using the scvelo.pp.moments function. The velocities 

(directionalities) were computed based on the stochastic model as defined in the 

scvelo.t1.velocity function, and the velocities was subsequently projected on the UMAP 815 

embeddings generated from Seurat above. Finally, the UMAP embeddings were 

annotated using the HSPC and erythroid lineage signature scores 74, and TP53 

mutation status. For each cell, the cell lineage signature score was computed using 

the average SCTransform expression values of the individual cell lineage genes. 
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Analysis of bulk BeatAML and TCGA gene expression datasets 

Data retrieval and pre-processing 

Two publicly available AML cohorts with genetic mutation and RNA-sequencing data 

available were used to validate findings from our single-cell analysis, namely 

BeatAML26 and The Cancer Genome Atlas (TCGA)27. Gene expression values in 825 

FPKM (fragments per kilobase of transcript per million mapped reads) were retrieved 

from the National Cancer Institute (NIH) Genomic Data Commons (GDC)85. Gene 

expression values were then offset by 1 and log2-transformed. TP53 point mutation 

status was retrieved from the cBio Cancer Genomics Portal (cBioPortal)86. Clinical data 

including survival data for BeatAML and TCGA was retrieved from the BeatAML data 830 

viewer (Vizome) and NIH GDC, respectively.  

We selected samples from the BeatAML cohort with an AML diagnosis (540 de novo 

AML and 96 secondary AML) collected within 1 month of the patient’s enrolment in the 

study, and with both TP53 mutation status and RNA-sequencing data available. For 

patients in which multiple samples were available, samples were collapsed to obtain 835 

patient-level data. Specifically, the mean gene expression value for each gene from 

multiple samples was used to represent patient-level gene expression value. 

Furthermore, patients with at least one sample with a TP53 mutation were considered 

TP53-mutant. Analysis of TP53 variant allele frequency and reported karyotypic 

abnormalities indicated that the vast majority of patients could be classified as “multi-840 

hit”, and therefore patients were classified as TP53-mutant or WT without taking into 

account TP53 allelic status. In total, 360 patients with TP53 mutation status (329 TP53-

WT and 31 TP53-mutant) and RNA-sequencing data available were included for 



analysis. Of these, 322 patients had concomitant survival data available (294 TP53-

WT and 28 TP53-mutant). 845 

 

The TCGA cohort consisted for 200 de novo AML patients represented by one sample 

each, out of which 151 patients had TP53 mutation status (140 TP53-WT and 11 TP53-

mutant) and RNA-sequencing data available, and were included for analysis. Of these, 

132 patients had concomitant survival data available (124 TP53-WT and 8 TP53-850 

mutant). 

 

Cell lineage gene signature scores 

For each sample, a given cell lineage gene signature score was computed as the mean 

expression values of the individual genes belonging to the cell lineage gene signature. 855 

Here, the gene signature scores for two cell lineages were computed, namely myeloid 

and erythroid populations. Two gene sets for each cell lineage were compiled. The first 

gene set was based on cell lineage markers previously reported in the literature 

whereas the second gene set was based on cell lineage markers derived from 

analysing a published single-cell dataset78.  Genes from each score are described in 860 

TableS3. 

For the former approach, six erythroid genes (KLF1, GATA1, ZFPM1, GATA2, GYPA, 

TFRC; Fig.2e, Extended Data Fig.5k, 5m) and seven myeloid genes (FLI1, SFPI1, 

CEBPA, CEBPB, CD33, MPO, IRF8; Fig.2f) were identified. For the latter approach, 

the expression values of erythroid and myeloid cell clusters were first compared 865 

separately against all other cell clusters using Wilcoxon ranked sum test. The erythroid 

cluster consisted of the early and late erythroid populations while the myeloid cluster 

consisted of granulocyte, monocyte, and dendritic cell populations. Erythroid and 

myeloid-specific gene signatures were defined as genes having FDR values < 0.05 

and log2 fold change > 0.5 in >=20 and 17 comparisons, respectively. In total, 100 870 

erythroid genes and 135 myeloid genes were identified from this single-cell dataset 

(TableS3), and were used to compute the scores presented in Extended Data Fig.5g-

j. 

TP53 target gene score 

Genes downregulated in TP53-multi-hit compared to TP53-WT cells (defined as per 875 

“Differential expression analysis” section above; related to Figure S4b) and p53 targets 



positively regulated from Fisher et al77 were used to compute a TP53-target gene-score 

presented in Extended Data Fig.5k.  

 

Prognostic signatures and Cox-regression survival models 880 

Leukaemic stem cell (LSC) signature score 

The 17-gene leukaemic stem cell (LSC17) gene set was retrieved from Ng et al 31. For 

each sample, the LSC17 score was defined as the linear combination of gene 

expression values weighted by their respective regression coefficients.  

To identify TP53-sAML leukaemic stem cell signatures from our TARGET single-cell 885 

dataset, two different approaches were used. First, differentially expressed genes were 

identified as overexpressed in all Lin-CD34+ TP53 multi-hit cells regardless of their 

transcriptional classification (“p53-all-cells”) versus myelofibrosis, healthy donor and 

TP53-WT preleukaemic cells; this gene-set consists of 29 genes (TableS4a). For the 

second approach, the same analysis was performed, but TP53 multi-hit cells 890 

transcriptionally defined as leukaemic stem cells (falling in the leukaemic stem cell-like 

cluster, Fig.2a, middle) were specifically selected; this gene-set is comprised of 51 

genes (“p53LSC”; TableS4a). 

Next, lasso cox regression with 10-fold cross-validation implemented in the glmnet R 

package was used to identify p53-all-cells and p53-LSC genes that were associated 895 

with survival and to estimate their respective regression coefficients87. Specifically, 

Harrel’s concordance measure (C-index) was used to assess the performance of each 

fitted model during cross-validation. The best model was defined as the fitted model 

with the highest C-index. Subsequently, the coefficient for each gene estimated using 

the best model was used to compute the gene signature scores. Only genes with non-900 

zero coefficient values were included in the final gene set. In total, 9 and 44 genes 

were retained from the p53-all-cells and p53-LSC gene sets, respectively. For each 

sample, the gene signature score for each gene set was defined as the linear 

combination of gene expression values weighted by their respective regression 

coefficient31,87. The list of p53-LSC and p53-all-cells gene signatures is provided in 905 

TableS4b. 

Survival analysis 



For each gene expression signature, patients were first split using the median gene 

expression signature score. This resulted in two groups of patients, namely patients 

with high expression scores (greater than or equal to the median) and patients with low 910 

expression scores (lower than the median), exemplified in Extended Data Fig.6a,b.  

The Cox proportional hazards regression model implemented by the survival R 

package was fitted to estimate the hazard ratio associated with each feature.  Log-rank 

test was used to test the differences between survival curves. The features analysed 

here were LSC17, p53-all-cells and p53-LSC signatures. Patients with low gene 915 

expression signature scores (below median) and patients with TP53 wildtype status 

were specified as the reference groups in the model. Kaplan-Meier curves were plotted 

using the survminer R package to visualize the probability of survival and sample size 

at a respective time interval. 
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In vitro assays 

Short-term liquid culture experiments 

For short-term liquid culture differentiation experiments (Fig.3j, Extended Data 

Fig.7h,i), single cells from different Lineage-CD34+ HSPC populations (HSC: 

CD34+CD38-CD45RA-CD90+, MPP: CD34+CD38-CD45RA-CD90-, LMPP: 925 

CD34+CD38-CD45RA+ and more committed progenitors CD34+CD38+) were directly 

sorted into a 96-well tissue culture plate containing 100 μL of differentiation media: 

StemSpan (Catalog #09650, StemCell Technologies), 1% Penicillin+Streptomycin, 20 

% BIT9500 (Cat# 9500, StemCell Technologies), 10 ng/mL SCF (Cat #300-07, 

Peprotech), 10 ng/mL FLT3L (Cat# 300-19, Peprotech), 10 ng/mL TPO (Cat# 300-18-930 

10, Peprotech), 5 ng/mL IL3 (Cat # 200-03, Peprotech), 10 ng/mL G-CSF (Cat# 300-

23, Peprotech), 10 ng/mL GM-CSF (Cat# 300-03, Peprotech), 1 IU/mL EPO (Janssen, 

erythropoietin alpha, clinical grade) and 10 ng/mL IL6 (Cat# 200-06, Peprotech). 

For all liquid culture experiments, 50 μL of fresh 1X differentiation media was added at 

day 4. Readout was performed by flow cytometry after 12 days of culture using the 935 

antibodies detailed in TableS7.c (Panel D). 

Long-term culture initiating-cell (LTC-IC) assay 



50 cells from each Lin-CD34+ population (HSC; MPP; LMPP; CD38+) and donor type 

(HD, MF, TP53-sAML) were sorted in triplicate. Cells were resuspended in 100 μL of 

myelocult (Stem Cell Technologies, #H5150) supplemented with Hydrocortisone (10-940 
6M; Stem Cell Technologies, Cat#74142) and plated into an irradiated supportive 

stromal cell layer (5000 SI/SI cells and 5000 M2-10B4 cells per well) in a 96-well tissue-

culture plate coated with Collagen type I (CORNING; Cat#354236). 

Medium was changed weekly and after 6 weeks of culture, cells were washed in 

IMDM+20%FCS and plated into 1.4 mL of cytokine-rich methylcellulose (Methocult 945 

H4435, Stem Cell Technologies). Colonies were scored 14 days later under an inverted 

microscope, and each colony was classified according to its morphology as BFU-E 

(Burst-forming unit erythroid), CFU-G (granulocyte), CFU-GM (granulocyte-

macrophage), CFU-M (macrophage) or CFU-GEMM (granulocyte, erythrocyte, 

macrophage, megakaryocyte). Selected colonies were used for cytospin and 950 

genotyping as outlined below. 

LTC-IC colony genotyping 

LTC-IC colonies were picked from methylcellulose media, washed, resuspended in 10 

μL of PBS and transferred to individual wells in a 96-well PCR plate. 15 μL of lysis 

buffer (Triton X-100 0.4%, Qiagen Protease 0.1 AU/mL) were added to each well and 955 

samples were incubated at 56 °C for 10 minutes and 72 °C for 20 minutes. A 3 μL 

aliquot from each lysate was used as input to generate a targeted and Illumina-

compatible library for colony genotyping. The preparation of single cell genotyping 

libraries involves 3 PCR steps. In the first PCR step, target-specific primers spanning 

each mutation of interest are used for amplification (TableS6a); in the second PCR 960 

step, nested target-specific primers (TableS6b) attached to universal CS1 / CS2 

adaptors (Forward adaptor, CS1: ACACTGACGACATGGTTCTACA; Reverse 

adaptor, CS2: TACGGTAGCAGAGACTTGGTCT) further enrich for target regions and 

in the third PCR step, Illumina-compatible adaptors containing sample-specific 

barcodes are used to generate sequencing libraries. 965 

TP53 knockdown and differentiation of human CD34+ cells 

shRNA sequence for p53 knockdown has been previously cloned into the lentiviral 

vector pRRLsin-PGK-eGFP-WPRE and validated88. Primary human CD34+ cells from 

patients with MPN (Table S1) were infected twice with scramble (shCTL) or shTP53 



with a MOI (Multiplicity of Infection) of 15 and sorted 48h later on CD34 and GFP 970 

expression. Cells were cultured in serum-free medium with a cocktail of human 

recombinant cytokines containing EPO (1 U/mL, Amgen), FLT3-L (10 ng/mL, Celldex 

Therapeutics, Inc.), G-CSF (20 ng/mL, Pfizer), IL-6 (10 ng/mL, Miltenyi), GM-CSF (5 

ng/mL, Peprotech), IL-3 (10 ng/mL, Miltenyi), TPO (10 ng/mL, Kirin Brewery) and SCF 

(25 ng/mL, Biovitrum AB). 975 

At day 12 of culture, cells were stained with the antibodies detailed in TableS7.c (Panel 

C). DAPI was used for dead cell exclusion before acquisition on a FACSCanto II (BD 

Biosciences) instrument. Analysis of FACS data was performed using Kaluza 

(Beckman Coulter) software. 

Quantitative real time PCR in shRNA experiments 980 

In TP53 knockdown experiments, RNA from either CD34+ cells sorted after 

transduction or bulk cells at day 12 of culture was extracted using Direct-Zol RNA 

MicroPrep Kit (Zymo Research) and reverse transcription was performed with 

SuperScript Vilo cDNA Synthesis Kit (Invitrogen). Quantitative RT-PCR was performed 

on a 7500 Real-Time PCR Machine using SYBR-Green PCR Master Mix (Applied 985 

Biosystems). Expression levels were normalized to PPIA (housekeeping gene). 

Primers used are listed in TableS6c.  

Xenotransplantation 

Purified CD34+ cells from AML patients were transplanted via retroorbital vein injection 

in sublethally irradiated (1.5Gy) NOD.CB17-Prkdcscid IL2rgtm1/Bcgen mice (B-NDG, 990 

Envigo). All experiments were approved by the French National Ethical Committee on 

Animal Care (n° 2020-007-23589). Blood cell counts were performed monthly by 

submandibular sampling of mice with blood chimerism assessed by flow cytometry 

using hCD34, hCD45 and mCD45 antibodies (TableS7.b; PDX PB panel). At sacrifice, 

human BM was stained with the antibodies listed in TableS7.b (PDX BM panel) and 995 

HSPC fractions were sorted on an Influx Cell sorter (BD Biosciences).  

Evaluation of cell morphology 

Cell morphology from PDX models (Extended Data Fig.3d) and in vitro LTC-IC cultures 

(Extended Data Fig.7f) was assessed after cytospin of 50-100,000 cells onto a glass 



slide (5 min at 500 rpm) and May-Grünwald Giemsa staining, according to standard 1000 

protocols. Images were obtained using an AxioPhot microscope (Zeiss). 

Mouse Bone Marrow Chimaeras 

Trp53tm2Tyj Commd10Tg(Vav1-icre)A2Kio or Trp53tm2Tyj Tg(Tal1-cre/ERT)42-056Jrg mice (hereafter 

referred to as Vav-Cre Trp53R172H/+ or SCL-CreERT Trp53R172H/+ respectively) and wild-

type mice used for BM chimera experiments were bred and maintained in accordance 1005 

to UK and France Home Office regulations. All experiments carried out were performed 

under Project License P2FF90EE8 approved by the University of Oxford Animal 

Welfare and Ethical Review Body or under the Project License n° 2020-007-23589, 

approved by the French National Ethical Committee on Animal Care. Trp53tm2Tyj 89, 

Commd10Tg(Vav1-icre)A2Kio 90 (Jackson laboratory stock number #008610) and Tg(Tal1-1010 
cre/ERT)42-056Jrg  91 have been previously described.  

For in vivo experiments, two different chimera settings were used. For the first setting 

(Fig.5a), 1 million bone marrow (BM) cells from Vav-Cre Trp53R172H/+ CD45.1 mice and 

1 million BM CD45.2 wild-type cells from competitor mice were transplanted intra-

venously into lethally irradiated (10 Gy total body irradiation, split dose) congenic 1015 

CD45.2 mice. For the second setting (Fig.5h), 0.9 million bone marrow (BM) cells from 

Trp53LSL-R172H/+ CD45.2 mice and 2.1 million BM CD45.1 wild-type competitor mice 

were transplanted intra-venously into lethally irradiated (9.5 Gy total body irradiation) 

congenic CD45.2 mice and Trp53 mutation was induced 4 weeks after transplantation 

by tamoxifen (gavage 200 mg/kg, Sigma) during 4 days, followed by tamoxifen feeding 1020 

during 2 weeks (Ssniff Diet). In each cohort, a selection of mice were injected intra-

peritoneally with 3 rounds of 6 injections each of 200μg poly(I:C) (first setting) or 100μg 

poly(I:C) (second setting) (GE Healthcare, #27-4732-01) or placebo (PBS1X). 

Alternatively, Vav-Cre Trp53R172H/+ mice were injected with 3 rounds of 8 injections 

each of 35μg Lipopolysaccharide from Escherichia Coli O111:B4 (LPS; Cat. #L4391-1025 

1MG and #L5293-2ML; Sigma-Aldrich).   

Poly(I:C) and LPS were administered during weeks 6-7-8, 10-11-12, 14-15-16 (setting 

1), or during weeks 7-8, 11-12, 15-16 (setting 2) post-transplantation. Within each 

round, injections were spaced one or two days apart. Blood cell counts and analysis of 

peripheral blood chimerism along with mature lymphoid and myeloid populations (PB) 1030 

were performed every 2-4 weeks by submandibular sampling of mice; while BM 



chimerism and HSPC populations were analysed 18-20 weeks after transplantation. 

The antibodies used are detailed in TableS7.d. 7AAD (Sigma) or DAPI (BD 

Biosciences) were used for dead cell exclusion. FACS analyses were carried out on 

BD Fortessa or BD Fortessa X20 (BD Biosciences) and profiles were later analysed 1035 

using FlowJo (version 10.1, BD Biosciences) or Kaluza (Beckman Coulter) softwares. 

LSK apoptosis and cell cycle 

BM LSK cells (setting 2) were stained with Annexin-V and DAPI in Annexin V binding 

buffer 1X (BD Biosciences) for apoptosis analysis. BM LSK cell cycle was assessed 

by flow cytometry using Ki-67 and DAPI staining, after fixation and permeabilization 1040 

(BD Cytofix/Cytoperm and Permeabilization Buffer Plus, BD Biosciences). 

Multiplex in-situ hybridization (M-FISH) 

50 CD45.1 (Trp53R172H/+) or CD45.2 (wild-type) LSK (Lin-Sca1+c-Kit+) cells from 

poly(I:C)-treated and control recipient mice were sorted and cultured for one week into 

Complete X-vivo15 media (Cat. #BE-04-418Q, Lonza) supplemented with 10% Fetal 1045 

Calf Serum (FCS, #F9665, Sigma-Aldrich), 0.1 mM 2-mercaptoethanol (#21985023, 

Gibco), 1% penicillin-streptomycin (PAA laboratories), 2ng/ml mouse stem cell factor 

(mSCF, #250-03, PeproTech), 10ng/ml mouse granulocyte-monocyte colony-

stimulating factor (mGM-CSF, Immunex), 5ng/ml human thrombopoietin (hTPO, Cat# 

300-18-10 PeproTech), 10ng/ml human granulocyte colony-stimulating factor (hG-1050 

CSF, Neopogen) 5ng/ml human FLT3 ligand (hFL, Cat# 300-19, Immunex), 5ng/ml 

mouse interleukin 3 (mIL-3, #213-13, PeproTech).  Cells were cultured at 37°C 5% 

CO2. On day seven of culture, metaphase spreads were harvested following 

synchronisation with Colcemid (KaryoMAX™; Cat # 11519876, ThermoFisher 

Scientific) 50 ng/ml, for 3 hours at 37°C. The cells were then incubated with KCl 75mM 1055 

for 15 minutes at 37°C and spun down. Following this, the cells were fixed in a 

methanol-acetic acid and then dropped onto glass slides.  

 

M-FISH was performed with the 21XMouse- Multicolor FISH probe kit (Cat #D-0425-

060-DI, Metasystem Probes), following the manufacturer’s instructions. For 1060 

microscopy analysis, slides were mounted in Vectashield Antifade Mounting Medium 

with DAPI (Cat. H-1200 2BScientific). Images were acquired and analysed using Leica 

Cytovision software, on an Olympus BX-51 epifluorescence microscope equipped with 



a JAI CVM4+ progressive-scan 24 fps B&W fluorescence CCD camera. All cells were 

karyotyped, excluding metaphases severely damaged for technical reasons.  1065 

 

The analysis of the M-FISH hybridised cells was blinded. The cells on each slide were 

scored for the presence of structural aberrations (translocations, and/ or derivative 

chromosomes and fragments) and/or numerical abnormalities. The presence of more 

than 40 chromosomes per cell was considered a numerical abnormality, except for 1070 

cases where it could clearly be attributed to the presence of adjacent metaphases. 

Chromosome counts lower than 40 were not scored as numerical abnormalities for the 

impossibility to rule out technical issues (i.e. metaphases bursting at the hypotonic 

step). We scored as follows: translocations and presence of one chromosome plus one 

or more extra chromosomal fragment(s)/derivative(s) as “structural abnormalities” 1075 

(except for sex chromosomes); presence of two chromosomes (or one in case of sex 

chromosomes) plus one or more extra chromosomal fragment(s)/derivative(s) as 

“partial chromosome gains”; two chromosomes (or one in case of sex chromosomes) 

plus one or more extra chromosomes as “whole chromosome gains”; two 

chromosomes plus two chromosomes with at least 5 different chromosomes present 1080 

in number=4n as “tetraploidy or sub-tetraploidy”. Counts of numbers of karyotypic 

aberrations per cell were performed scoring every type of event occurring on one 

chromosome as single event (i.e., presence of four chromosomes is counted as one 

aberration). 

IFNγ ELISA assay 1085 

Wild-type mice were injected intra-peritoneally with a single dose of 200 μg poly(I:C) 

and spleens were collected from injected mice and non-treated controls 4 hours after 

injection. Spleens were processed into a single-cell suspension in 200 μl PBS, spun 

down at 500g for 5 minutes and supernatant was collected and used as spleen serum. 

IFNγ levels were assessed using mouse IFNγ Quantikine ELISA assay (R&D Systems, 1090 

cat MIF00) following the manufacturer’s instructions. 450nm and 540nm optical 

densities were determined using Clariostar microplate reader (BMG Labtech). 

Statistical analysis 



Statistical analyses are detailed in Figure Legends and performed using GraphPad 

Prism software (7 or later version) or R (version 3.6.1) software. Number of 1095 

independent experiments, donors and replicates for each experiment are detailed in 

Figure Legends. 

Data and code availability 

Scripts to reproduce all figures will be available in GitHub upon publication 

(https://github.com/albarmeira/).  1100 

The dataset generated in this paper is also available as an interactive vignette 

https://wenweixiong.shinyapps.io/TP53_MPN_AML_Single_Cell_Atlas/.  

Raw sequencing data is available through GEO (GSE226340) and targeted single-cell 

genotyping data is publicly available through SRA (PRJNA930152). 
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