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Abstract

Low-carbon hydrogen is expected to be crucial to the energy transition in the coming years. However, its production
is not yet competitive with fossil-fuel-based hydrogen production. This paper proposes an economic analysis of an
electrolyzer providing grid services combined with multi-market participation to fully exploit the flexibility potential
of this technology. Optimization under uncertainty is combined with a rolling horizon algorithm to simulate the day-
to-day trading decisions of the plant, first in a deterministic, then in a robust fashion. The impact of the multiple
uncertainty sources on the production cost reduction is assessed. The case of German markets combined with the
ENTSO-E harmonization project for secondary frequency reserve is considered. The effects of the 2021 energy
crisis on the different strategies is also analyzed. The results show that both uncertain approaches behave similarly
when adding the reserve, with a cash flow increase of around 10% before the crisis but a higher exposure to risk.
The addition of reserve provision during the crisis drastically improves the performance of uncertain strategies with
close to a 300% increase in cash flow. The robust approach greatly reduces the imbalances caused by wind power
generation uncertainty compared to its deterministic counterpart. Finally, the addition of reserve provision induces a
notable decrease in the green H2 breakeven price, but not enough to compensate for the costs associated with high
electricity market prices.

Keywords: Ancillary Services, Robust Optimization, Low-carbon Hydrogen, Multi-market Electricity Provision,
Industrial Flexibility

1. Introduction

With the increase in global warming and natural resources depletion, an energy transition has become inevitable for
society. Increased renewable energy penetration in the energy mix is a major part of this energy transition. Variable
Renewable Energy (VRE) sources introduce additional volatility into energy production. Power system flexibility has
already been identified as one of the main levers to manage this supply volatility. In addition to reducing the amount of
flexibility that can be provided by generators in the power system, VRE introduces increasing generation uncertainty
and seasonal dependency into power generation Dudurych (2021).

Green hydrogen (H2) has been identified as critical for the ongoing energy transition IEA (2021b). However, as
of today, means of H2 production are mostly carbonated and represent around 830Mt CO2/yr (2.5% of global CO2
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emissions) IEA (2019). Hydrogen currently has multiple uses, the main ones being oil refining and industry. However,
to meet its “Net Zero Emissions by 2050” scenario, the IEA is expecting H2 demand to multiply almost sixfold by
2050 IEA (2021a). The goal is therefore not only to decarbonize existing means of H2 production, but to also increase
the overall volumes produced. Among the solutions considered to decarbonize H2 production, two main techniques
stand out, each with their own drawback. The first solution is water electrolysis powered by low-carbon electricity.
The production costs of this type of green H2 are high, due to its dependency on electricity prices IRENA (2020). In
addition, this solution needs to deal with supply volatility. The second solution is Carbon Capture and Storage (CCS),
which retains the CO2 output at the cost of reducing the efficiency of the process Martı́nez-Rodrı́guez and Abánades
(2020). In addition, SMR plants are themselves dependent on natural gas, which clashes with the objectives set by the
European Commission regarding the reduction of dependency on natural gas imports Commission (2022).

In this paper, we put the focus on water electrolysis and the potential means of increasing its financial viability for
green hydrogen production. In this context, two main technical challenges emerge.

First comes electricity supply volatility. The industrial consumer have to reduce its imbalances to the minimum,
especially when considering grid services provision. Adding uncertainty in the form of a volatile energy supply
brings difficulties in the management of the plant electricity profile.

The second challenge regarding water electrolysis is its production cost. The price of one kilogram of H2 produced
from electrolysis is currently higher than one kilogram produced from fossil-fuel-based technologies (SMR for in-
stance). While investment cost reduction can be expected as technology matures Seck et al. (2022), this requires time
and heavy investments. In the meantime, cost reduction strategies have to be developed to facilitate the transition
toward low-carbon H2 production.

The interest of building tools to exploit electrolysis flexibility with VRE supply is therefore twofold. First, it brings
additional flexibility levers needed in the network to facilitate the increasing share of VRE in the electricity mix.
Second, the revenues yielded by the provision of ancillary services from an electrolyzer powered with green electricity
reduce the cost of producing green H2 and narrow the competitiveness gap with fossil-fuel-based H2.

H2 production is usually considered as a means to hedge the uncertainty resulting from VRE production Scolaro
and Kittner (2022); Massana et al. (2022), rather than for the production of hydrogen itself. However, this results in
small electrolysis plants not producing enough for large H2 consumers. Regarding larger plants producing H2 for
industry, the question arises of the advantages of optimal flexible operation. In this paper, we simulate the day-to-day
scheduling of electricity and the provision of grid-balancing services for a large-scale industrial electrolyzer powered
by variable wind energy in order to assess the potential revenues of such a set-up and the impact of the various
uncertain quantities on the achievable production cost of green H2.

1.1. Related Research
The ability of electrolyzers to provide Ancillary Services (AS) is extensively discussed in the literature. While the
theoretical ramping of an electrolyzer could allow the provision of primary frequency reserve (or Frequency Contain-
ment Reserve, FCR), as investigated in Baetens et al. (2020); Dadkhah et al. (2021); Dozein et al. (2021); Samani et al.
(2020), the impact of such a dynamic operation on cell degradation is not very well known. In Bergen et al. (2009)
an electrolyzer is subject to large changes in power consumption for 30 seconds, with a 10 min frequency between
events. This type of operation shows large amounts of degradation in the cell if the electrolyzer has no operating floor
in terms of current, and normal degradation otherwise. Similar conclusions are drawn in Weiß et al. (2019). Based
on the assumption that the activation of a secondary frequency reserve (automatic or manual Frequency Restoration
Reserve, respectively aFRR and mFRR) will not require ramp changes within less than 30 sec when activating an
asset, there is no need for a degradation model accounting for the dynamic operation of the electrolyzer.

In Dadkhah et al. (2022), the comparison of potential revenues coming from the three types of frequency reserve
(FCR, aFRR, and mFRR) is considered in the context of investment in a hydrogen refueling station. Under the authors’
assumptions regarding uncertainty and market modeling, it appears that automatic secondary reserve (aFRR) is the
most profitable of the three options. These assumptions do not however consider the sequential uncertainties resulting
from the interactions between the various markets and services. These sequential uncertainties can be handled in
several ways.
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Nomenclature

Variables: Indices:

Q Flow (Nm3) (·)DA Day-ahead

P Power (MW) (·)ID Intra-day

E Energy (MWh) (·)PPA Power Purchase

Agreement

C Cost (€) (·)Re aFRR Reserve

R Revenue (€) (·)ELY Electrolyzer

λ Price (€/MW) (·)cbid Capacity Bid

Price (€/MWh)

(·)ce Clearing Energy

Parameters: Price

V Sell Value (€/kg) (·)↑↓
Participation

Direction

h Period length (·)C Contracted Reserve

KH2
e f f

ELY Efficiency
(·)NC Non-Contracted

(MWh/kgH2) Reserve

In Wu et al. (2021), an H2 refueling station uses multi-stage stochastic programming to handle the sequential uncer-
tainty resulting from multi-market and reserve participation. The authors do not however consider the possibility of
not being scheduled for reserve. In Al-Lawati et al. (2021), a set of two-stage stochastic optimization problems is
used to operate a VRE plant in a sequential energy market context. Running the multiple problems together allows the
re-actualization of the data used for decision-making within the process but induces a heavier computational burden.

Rolling horizon approaches can also be used to manage sequential uncertainties. In the context of scheduling the
operation of a plant, a rolling horizon approach allows simpler models to be run consecutively over time in order to
decrease the computational costs Sahin et al. (2013). The same simpler optimization problem can be run consecutively
simply by changing the input, therefore actualizing the uncertain quantities as the lead times change Ziarnetzky et al.
(2018). Applied to sequential electricity markets, this approach allows for the modeling of known and unknown
information regarding the gate closure and positions on the various markets and mechanisms. It also accounts for the
changing lead times in the forecasts that affect decision-making when it comes to VRE Ding et al. (2015). Thanks to
the use of rolling horizon methods, the varying forecast lead-times can be handled and the uncertain parameters can
be managed through the repeating optimization problem.

Optimization under uncertainty is a well-researched field. Stochastic optimization can be used to manage the uncertain
inputs, either through synthetic scenarios Dadkhah et al. (2022), or using past data Wu et al. (2021). This method
however involves a large computational burden and requires scenario reduction techniques. In addition, it computes
an average revenue over a period. When considering plants with operational constraints, one also needs to make sure
that the operation of the plant will be feasible regardless of the realization of the uncertain parameters. To do so,
robust optimization can be used. In Wang et al. (2017), robust optimization is applied to manage the uncertainty of
wind and solar power in the context of a microgrid with joint energy and reserve participation. In Gu et al. (2019),
a robust formulation handles wind power uncertainty in the context of power-to-gas hydrogen injection into natural
gas pipelines. Robust optimization tends to represent less of a computational burden due to the absence of scenarios,

3



which makes it more appropriate in the context of a rolling horizon algorithm with multiple iterations of similar
optimization problems.

To summarize, sequential uncertainties can be modeled inside the optimization model itself through multistage
stochastic optimization, or outside by running the optimization model within a rolling horizon algorithm. The lat-
ter has the advantage of being less computationally heavy and more tractable. In addition, the rolling horizon allows
an easy switch between deterministic robust optimization problems, which presents an advantage when comparing
both methods. The rolling horizon combined with an optimization problem approach will therefore be used in this
work.

1.2. Key contributions

The main goal of this work is to simulate the day-to-day trading of a large-scale industrial Proton Exchange Membrane
(PEM) electrolyzer providing secondary reserve to reduce the production cost of green hydrogen. Using close to real-
life market modeling assumptions, we assess the impact of market quantities and wind power sourcing uncertainties
on the overall revenue generation. The rules of the ENTSO-E aFRR framework PICASSO ENTSO-E (b) are used to
model the secondary reserve provision, including the possibility to participate with non-contracted energy bids. This
framework is presented in Section 3.2. The main contributions of this paper are:

• By considering a large-scale electrolyzer (hundreds of MW) producing H2 for industrial use rather than the
usual smaller-scale plants considered for either refueling stations or to hedge wind power plant uncertainty,
we assess how profitable secondary reserve provision could be when operating a plant large enough not to be
limited by rules of participation in the market and services.

• A robust optimization problem is embedded in a rolling horizon algorithm to handle the evolution of information
throughout the day and hedge the risk associated with forecasting errors. The trading behavior and decision-
making of the plant are represented in a close to real-life way. Each market and service is modeled following
the related gate closure and bid rules, and the PPA modeling is set to correspond to a potential PPA contracting
for industrial application.

• The competitiveness of green hydrogen is analyzed based on various production and trading strategies. Ap-
plying evolving uncertainty management, we assess the impact of unknown quantities, which allows us to
formulate green H2 break-even price ranges that can be compared to the price of gray hydrogen.

• Risk management analyses are performed to assess the exposure to extreme events for each trading strategy and
optimization approach.

This paper is organized as follows. Section 2 presents the methodology of the work. In Section 3, the modeling
assumptions and rules associated with the multi-market participation and balancing services provision are introduced.
The deterministic and robust formulations of the optimization problem are then presented in Section 4. Section 5
describes the use-case considered in this work. Finally, Section 6 presents the results of the simulation and their
analysis.

2. Methodology

This section presents the methodology used to model the day-to-day operation of this electrolyzer. First, the model of
the electrolyzer itself is described, followed by the characteristics of the PPA contract and the electricity markets and
services. Finally, the optimization and rolling horizon approaches are presented.

2.1. Electrolyzer model and H2 production

When modeling the behavior of an electrolyzer, it is important to consider the non-linearities of this process. In the
literature, the relationship between the electricity input and the hydrogen output for this type of plant is very often
simplified to a constant value regardless of operating modes. In Baumhof et al. (2023), the authors challenge this
simplistic modeling approach. It is shown that adding segments of piece-wise linearization does indeed increase the
final revenue. However, it also adds new binary variables and increases the computational burden. Here we keep the
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Figure 1: Trading timeline

constant ratio assumption to ensure tractability of the problem, but it is worth noting that increasing the complexity
of the electrolyzer modeling while ensuring tractability of the simulation would add a worthwhile perspective to this
work.

Regarding the power ramping of the electrolyzer, the PEM water electrolysis technology is highly flexible and we
assume that the available ramp is similar to the rated power. In other words, we can change the set point of the asset
from 0 to 100% of the rated power almost instantaneously.

Pt =
1
h

QH2
t KH2

e f f (1)

The power coming from renewable sources produces green H2, while any other source of electricity (grid or reserve)
will count toward gray H2 production.

2.2. Wind power PPA contract

As the main electricity source, direct access is granted to a wind farm producer in the form of a Power Purchase
Agreement (PPA) contract. PPAs can take many forms depending on various contractual aspects. The wind power
production is forecasted using numerical weather predictions combined with a random forest approach. The assump-
tions regarding the contractual aspects of the PPA production and the production forecast are investigated in Section 5.

2.3. Electricity markets and balancing mechanisms

A multi-market approach is taken when looking at electricity sourcing other than the PPA. The plant participates on
the day-ahead market and in intraday continuous auctions to benefit from low prices when producing gray H2. It
also provides secondary frequency reserve. This reserve mechanism is modeled following the German rules for the
capacity auctions and the rules of the ENTSO-E PICASSO project for the energy auctions. The trading timeline
with the various gate closures is represented in Figure 1. The rules and modeling assumptions regarding markets and
balancing mechanisms are presented in detail in Section 3.
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Figure 2: Optimization problem organization

2.4. Optimization and rolling horizon approach
The day-to-day scheduling of the plant is modeled using an optimization problem. This optimization returns optimal
positions on the various markets, based on the imperfect knowledge used as input. The formulation is presented
in Section 4. One should keep in mind that uncertainties vary depending on the lead time and the time of day
considered. To account for this and the impact of the different market gate closure times, we develop a rolling horizon
algorithm. Its goal is two-fold. First, it provides a model with realistic knowledge patterns. By running the rolling
horizon over multiple periods, we simulate the chain of decisions the plant operator would have to take during the
day. The algorithm can therefore adapt market bids and operational set points in line with the knowledge unlocked
by passing a certain gate closure (as shown on the right side of Figure 2). Second, it simplifies the modeling for the
analysis because the horizon of the optimization will be shorter and the separation between what is known and what
is uncertain can be done beforehand while running the algorithm. A flowchart of the algorithm is shown in Figure 3.
The chain of decisions changes based on which timestep is considered first in the algorithm to account for market
positions after gate closure. Similarly, the forecasts are set accordingly, depending on which time of day the algorithm
is considering (not shown in the algorithm flowchart for the sake of readability). In addition to the first trading period,
an additional period representing the last known realization is added to compute the effective energy activation for the
aFRR mechanism.

3. Electricity Markets and ENTSO-E Balancing Framework for aFRR

With the various changes coming to electricity trading and networks all over Europe, mostly due to an increasing share
of VRE, electricity markets and ancillary services are evolving. This evolution brings new opportunities for industrial
flexibility, with a general lowering of product resolution, and an opening of markets to demand-side participants.

In the past, European countries had their own way of providing balancing services for their own network. Most coun-
tries keep the same general structure (primary, secondary, and tertiary reserves), with different clearing mechanisms,
standard products, settlement period length, and only certain types of actors admitted in the market as participants. In
recent years, the ENTSOE (European Network of Transmission System Operators for Electricity) has developed a set
of guidelines for a pan-European electric network that would ensure stability of the interconnected power system, in
all time frames. Some, like the primary reserve, are already running at a European scale, while the others are expected
to come online in the coming years. This paper focuses on Automatic Frequency Restoration Reserves (aFRR). In
addition to system services, electricity markets are also considered in this work.

3.1. Day-ahead and intraday markets: rules and modeling assumptions
DA market participation is mainly characterized by the gate closure time (D-1 12:00), the bid energy, and time granu-
larity (1-hour periods with a 1 MWh bid resolution). After the gate closure, the positions chosen by the plant are fixed
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Figure 3: Rolling horizon algorithm flowchart showing the blocking of the positions on the various markets and mechanisms
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and have to be respected. The intraday market constraints are similar but more flexible, with a bid energy granularity
of 0.1 MWh, a period length of 15 min, and a gate closure time set at T-5 min. In addition to the rules relative to the
participation on the markets, grid usage also has to be considered (see Section 5 for the specific use-case).

3.2. ENTSO-E aFRR framework: rules and bidding

In this section, the ENTSO-E aFRR framework is introduced. A particular feature of this aFRR framework is the
combination of contracted (C) and non-contracted (NC) participation. This is a major aspect of the new framework,
as it allows the Balancing Service Provider (BSP) to participate with balancing energy without a prior capacity reserve.
It also means that the capacity price and energy price are decoupled and have two different gate closure times. First,
the capacity reserve mechanism is presented for contracted participation. Next, the energy reserve bids and the energy
activation mechanism are presented. Figure 4 shows an overview of the aFRR mechanism for both contracted and
non-contracted participation.

Contracted capacity bidding: The ENTSO-E aFRR mechanism only considers energy activation. Therefore, the
capacity reserve mechanism is still dependent on the country considered. German rules are considered in this work.
The Gate Closure Time (GCT) for capacity bids is set at D-1 08:00. The bids take the shape of the following tuple:
(Reserve Power (MW), Capacity Price (€/MW)). The bid validity period is 4 h. Capacity reserve acceptation follows
a merit order clearing process driven by the capacity price. When a capacity reserve bid is accepted, the BSP must
send contracted energy bids for each 15-min period within the 4h reserve period. The remuneration for capacity
reserve is set in a pay-as-bid fashion.

Energy bidding: Regarding energy bids, both contracted and non-contracted bids follow the same rules. The gate
closure time is set at T-25 min. Energy bids take the shape of the following tuple: (Reserve Power (MW), Energy
Price (€/MWh)). The bid validity period is 15 min. For contracted bids, the reserve power in this tuple must be the
same as the reserve power of the accepted capacity bid if the contracted bid were accepted. Non-contracted energy
bids can be sent or not for any given period, as long as the gate closure constraint is respected.

Energy bid activation: The ENTSO-E framework runs a real time optimization for aFRR energy activation. As of
now, the optimization cycle is set at 4 sec. An activation signal is sent to the BSP every 4 sec to indicate whether
they have to activate their asset or not to balance the system. The energy bids are gradually activated based on the
real-time imbalance needs of the system. This gradual activation follows the merit order curve formed by the prices of
the energy bids (both contracted and non-contracted). Depending on its position in the merit order list, each bid has a
certain imbalance threshold past which it is activated (if a bid is placed at 600 MW in terms of cumulative volumes on
the merit order line, then it is activated if the imbalance reaches 600 MW or more). Every 4 sec a certain number of
bids are activated based on the target signal. The full activation time is 5 min (supposed to be enforced by December
2024 ENTSO-E (2021)), which means that for a given order, the BSP has a maximum of 5 min to reach the total
capacity offered. Energy bid remuneration is based on a pay-as-clear fashion. A different clearing is done every 4
seconds based on which bids are activated due to the real-time imbalance. Therefore, the marginal price for a given
15-minute period is the volume weighted average of the marginal prices for each 4-second period in which a given
BSP is activated.

3.3. ENTSO-E aFRR framework: modeling assumptions

When modeling aFRR participation and bid activation, a few assumptions have to be made and fixed policies have to
be set.

The two assumptions presented in this section are related to the energy activation mechanism. They are as follows:

• The activation signal data is not available, as the framework itself has not been put into place yet. A simulated
signal has to be used.

• An assumption has to be made regarding whether a BSP can be only partially activated for its energy bids, or if
the activation signal automatically activates all of the available reserve.

Activation signal: In order to simulate the activation signal, the second based aFRR target signal published by the
German TSOs is used. This signal is averaged every 4 sec, resulting in a 4-second-based signal. This second based
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Figure 4: aFRR bidding and activation process

signal represents the real-time imbalance of the German grid, and is therefore the closest to the actual aFRR signal
sent by the TSO. This signal is available on the German balancing website Regelleistung.

Partial activation: In this work, the assumption is made that if a bid is activated for energy balancing, it is fully
activated.

4. Optimization Model

This section presents the deterministic optimization model used to produce the optimal scheduling of the electrolyzer.

4.1. Objective function
In the objective function, the costs of electricity transactions are minimized, while the revenues from hydrogen and
secondary reserve provision are maximized.

minimize
Ω

∑
t

CELEC
t − RaFRR↑↓

t − RH2
t (2)

Ω = {PDA
t , EaFRR

t , PID
t ,Q

H2
t ∈ R, PRe↑↓

t ∈ N}

4.2. Electricity markets transactions
The electricity transactions include the day-ahead and intraday markets participation, the amount of electricity re-
ceived from the PPA, and the imbalance costs. It should be noted that the imbalance costs are both considered positive
to penalize the objective function should they occur. The imbalance price λIMB cannot be known when running the
optimization and is therefore set to an arbitrary amount high enough to only consider putting the system out of bal-
ance as a last resort. The actual imbalance costs are computed in post-processing when extracting the results of the
optimization.

CELEC
t = h(λDA

t PDA
t + λ

PPA
t P̃PPA

t

+ λID
t (PID, Buy

t − PID, S ell
t ))

+ λIMBPIMB↑↓
t

(3)
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4.3. Electrolyzer operational constraints

The power consumed by the electrolyzer is represented by Equation (5). Equations (7) and (8) represent the power
boundaries of the electrolyzer. In these two equations, the power imbalance is added to allow the system to go out
of balance. This imbalance power is penalized in the objective function, as previously mentioned. Equations (9)
and (10) represent the relationship between both green and gray H2 outputs. Downward reserve electricity cannot
be counted as green supply, it will therefore count toward gray H2 production. A symbolic split between green and
gray electricity is however made to represent the fact that the power sent to the grid for upward regulation can impact
either green or gray H2 output. This split does not represent any physical differentiation of flux and is only used for
modeling purposes (green certification is based on guarantees of origins accompanying the PPA volumes). The energy
activation formulation is presented in the next section. The ELY ramping constraints are presented in equations (11)
and (12).

PM
t = PDA

t + PID, Buy
t − PID, S ell

t (4)

PRe↓
t = PRe↓, C

t + PRe↓, NC
t (5)

PRe↑
t = PRe↑, C

t + PRe↑, NC
t (6)

PM
t + P̃PPA

t + PRe↓
t − PIMB↓

t ≤ PELY
MAX (7)

PM
t + P̃PPA

t − PRe↑
t + PIMB↑

t ≥ PELY
MIN (8)

QH2, gray
t KH2

e f f = h(PDA
t + PID, Buy

t )

+ ERe↓
t − ERe↑, gray

t

(9)

QH2, Green
t KH2

e f f = h(P̃PPA
t −PID, S ell

t )

− ERe↑, Green
t

(10)

PELY
Ramp ↑ ≥ (PM

t+1 + P̃PPA
t+1 + PRe↓

t+1 )

− (PM
t + P̃PPA

t − PRe↑
t )

(11)

PELY
Ramp ↓ ≥ (PM

t + P̃PPA
t + PRe↓

t )

− (PM
t+1 + P̃PPA

t+1 − PRe↑
t+1 )

(12)

4.4. aFRR energy activation and revenues

The energy activation constraints are presented in equations (13), (15) and (16). The ratio β represents the activation
ratio for a given period t which, once multiplied by the reserve power and the factor h, gives the exact energy activation
for period t. The aFRR revenue is represented by Equation (17). And finally, Equation (18) represents the revenue
earned from the production of both green and gray H2.
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ERe↓
t =h(β↓, Ct PRe↓, C

t +β↓, NC
t PRe↓, NC

t ) (13)

ERe↑
t = ERe↑, Green

t + ERe↑, gray
t (14)

ERe↑, Green
t =h(β↑, Ct PRe↑, Green, C

t

+ β↑, NC
t PRe↑, Green, NC

t )
(15)

ERe↑, gray
t =h(β↑, Ct PRe↑, gray, C

t

+ β↑, NC
t PRe↑, gray, NC

t )
(16)

RaFRR
t = λcbid↑

t PRe↑, C
t + λce↑

t ERe↑

+ λcbid↓
t PRe↓, C

t − λce↓
t ERe↓

(17)

RH2
t = VH2,Green

t QH2,Green
t +VH2, gray

t QH2, gray
t (18)

4.5. Market rules
When considering 15-minute periods, both the day-ahead and capacity reserve markets have to be considered due to
their larger trading time blocks. Equation (19) ensures that for all t within a given hour, all the power consumptions
have to be the same. Similarly, Equation (20) ensures that all the offered power reserves are the same for each 4-hour
trading block.

PDA
t = PDA

t−t% 1
h

∀ t | t %
1
h
, 0 (19)

PRe↑↓, C
t = PRe↑↓, C

t−t% 4
h

∀ t | t %
4
h
, 0 (20)

4.6. aFRR / ID direction
Finally, the ELY can only participate in one direction at a time in both the secondary reserve and intraday markets.
This is represented by equations (21) to (24) using binary variables δ.

PRe↑
t ≤ δRe, dir M (21)

PRe↓
t ≤ (1 − δRe, dir)M (22)

PID, S ell
t ≤ δID, dir M (23)

PID, Buy
t ≤ (1 − δID, dir)M (24)

4.7. Locked market positions
To model the settled positions on a given market past its gate closure time, additional constraints are introduced to
ensure the correct power levels for the corresponding time window. The information regarding which position is
locked for which market and the position itself are stored in the matrices ΘGCT and ΘPositions respectively, both of
dimension TxN with T the number of timesteps and N the number of markets considered.

ΘGCT
t,n =

1 if t ≥ GCT for market n
0 Otherwise

(25)

Using this information, the fixed positions for each market are forced to match the scheduled amount through the
constraints shown in (26).
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Pn
t = Θ

Positions
t,n , ∀n, ΘGCT

t,n > 0 (26)

4.8. Robust reformulation
A robust reformulation of the optimization problem is done to account for the uncertain generation of the PPA Gorissen
et al. (2015). The uncertain generation is associated with a box uncertainty (obtained from probabilistic forecasts) as
follows:

P̃PPA
t ∈ [Pt

PPA, Pt
PPA

]

The reformulation can be simplified to remove the dual variables and additional constraints, leaving only eqs. (27)
to (32) (Only the constraints containing the uncertain parameter PPPA

t and PPPA
t+1 ):

CELEC
t ≥ h(λDA

t PDA
t + λ

PPA
t Pt

PPA

+ λID
t (PID, Buy

t − PID, S ell
t ))

+ λIMBPIMB↑↓
t

(27)

QH2, Green
t KH2

e f f ≤ h(Pt
PPA−PID, S ell

t ) (28)

PM
t + Pt

PPA
+ PRe↓

t − PIMB↓
t ≤ PELY

MAX (29)

PM
t + Pt

PPA − PRe↑
t + PIMB↑

t ≥ PELY
MIN (30)

PELY
Ramp ↑ ≥ (PM

t+1 + Pt+1
PPA
+ PRe↓

t+1 )

− (PM
t + Pt

PPA − PRe↑
t )

(31)

PELY
Ramp ↓ ≥ (PM

t + Pt
PPA
+ PRe↓

t )

− (PM
t+1 + Pt+1

PPA − PRe↑
t+1 )

(32)

5. Use-case Presentation

In this work, a large-scale Proton Exchange Membrane (PEM) electrolyzer integrated into an industrial H2 network
is considered noa. Certified green hydrogen produced by the plant can be sold as such in the industrial processes con-
nected to the H2 network. This network is mainly fed through gray hydrogen production units such as SMR plants. It
is assumed that the flow of H2 in the network is constant, large enough, and has sufficient other H2 production tech-
nologies for the output flow of the electrolyzer to be injected seamlessly without a need for storage. This electrolyzer
is connected to a wind power plant through a PPA contract. Only the electricity procured through this contract will
produce green hydrogen. In addition, the electrolyzer is connected to the grid and has the ability to buy electricity
from the day-ahead market and to buy and sell from the intraday continuous market, and can provide secondary re-
serve (aFRR). Any MWh obtained from the grid will produce gray hydrogen. The considered use-case is presented
in Figure 5. The left side of the picture represents the electricity bought (from the markets or the PPA) to power the
electrolyzer. This electricity is consumed in the electrolysis process to produce hydrogen (right side of the figure). In
addition, the electrolyzer can adjust its consumption profile to respond to the grid signal when providing secondary
reserve. This is represented at the top of the figure. Any additional electricity consumed in this context participates
toward gray H2 production. Regarding the value of hydrogen, a different price is set depending on whether the hydro-
gen can be qualified as “green” or not. The selling price of gray hydrogen is set at 2 €/kg, while the price for green
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Figure 5: Electrolyzer use-case representation

hydrogen is set at 6 €/kg. Both prices are identified in ref Ji and Wang (2021) (The price for gray H2 is set at the
same price as gray H2 produced using SMR units).

5.1. Component and market participation dimensioning

Regarding the size of the components, the electrolyzer has a rated power of 200 MW. Its minimal consumption is 10
MW, with the assumption that this operating power maintains the minimum current requirement Chardonnet (2017).
The efficiency of the electrolyzer is set at 57 kWh/kg Proost (2019). The PPA contract is “as produced”, meaning that
a certain percentage of the rated power of the wind farm will be allocated to the electrolyzer. The size of the PPA
contract is set at 200 MW. The plant has to manage its profile to follow this power input, or pay the corresponding
imbalance fee if it cannot. The PPA contract price is set as an indexation of the spot price (discount to market with
collar WBCSD (2021)). Each MWh of PPA is bought at 80% of the current spot price. To protect both producer and
consumer, it is assumed that the PPA price is bounded within [40, 100] €/MWh against extreme electricity prices.

The secondary reserve allowed is set at 20MW combining contracted and non-contracted bids.

For the DA and Intraday markets, it is assumed that the plant will always manage to buy energy as long as the gate
closure constraints are respected. For the day-ahead market, the clearing price will be the buying price. The plant
cannot sell energy on the DA market.

A mixed pay-as-bid approach is assumed for the intraday market. The least favorable option between the bid price
on the intraday market and the index price is taken when considering energy transactions. This is closest to reality
since if the wanted price was not in line with the market but the plant still had to take a position on it, the market
price would have to be accepted anyway. In this work, the German electricity markets and reserve mechanisms are
considered, therefore the grid fees have been taken from one of the four German TSOs, 50Hertz. This grid fee amounts
to 5€/MWh bought or sold on any electricity market noa (2020). This fee is included in the electricity price for every
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transaction performed on the two electricity markets. The price relative to installed capacity is not considered in this
work, as the investment costs of the assets are not considered.

Intraday participation is also constrained in both time and power. By allowing intraday participation too far in the
future, the optimization problem can consider it a better option than day-ahead participation. It is however not the
goal here to use intra-day market participation in a day-ahead fashion. Rather, the goal is to reposition the plant by
following the evolution of the forecast errors. To do so, intraday participation is only allowed from 1 to 6 hours ahead
of the current time-step. This prevents the optimization problem from replacing a day-ahead participation with an
intraday bid perceived as better at the time of the day-ahead gate closure. The theoretical gate closure time for the
intraday continuous market is T - 5 min to delivery. In this paper, we assume that the plant will not participate in the
intraday market less than 1 h before delivery. The closer to gate closure, the lower the liquidity of the intraday market.
This last constraint makes it easier to assume that the plant will always be able to buy power on the intraday market.
Following the same reasoning, the maximal bid volume is set at 20 MW when participating in the ID market.

5.2. Data

Historical data for the year 2021 is used for the simulation. The wind power generation profile is built using open
source data from Belgian offshore wind power plants, provided by Elia Elia. It is assumed that a fraction of the
Belgian offshore production is bought using a PPA contract. The global offshore wind power output is normalized and
scaled to have a power generation profile. The Belgian offshore wind production was chosen because it is the closest
open data set to Germany. The goal is to capture as much correlation between wind generation and market quantities
as possible. In addition, the Belgian offshore is all aggregated in a small geographical area, which makes it possible
to forecast with weather data.

The secondary reserve bids and prices and the second-based aFRR data are extracted from the German TSO’s reserve
platform, Regelleistung.net Regelleistung for the year 2021. The spot and imbalance prices (Rebap) are obtained from
the ENTSO-E transparency platform for the year 2021 ENTSO-E (a). Finally, the intraday prices for the year 2021
are obtained from the EPEX spot platform EPEX.

5.3. Forecast methods

Electricity market forecasting: This work considers many uncertain sources of information. On the first hand, market
quantities are forecasted. This includes spot market prices, continuous intraday index prices, aFRR capacity prices,
and energy activation ratios. On the second hand, the wind power provided by the wind farm is forecasted using
meteorological data. The market quantities are forecasted using persistence approaches coupled with knowledge
relative to the seasonal behavior of each market. Spot market prices are forecasted using prices from the last known
day for each hour (the price at hour 08:00 for day D will be the price at hour 08:00 for day D-1). The intraday price
will be constant over all time periods and will be equal to the last known intraday index price.

aFRR capacity reserve price forecast: Due to the pay-as-bid nature of this auction, a compromise has to be made
between the absolute error regarding the price and the fact that if the forecasted price is higher than the marginal
price for a given period, the plant will not be scheduled and the revenue will be zero. Therefore, purposefully aiming
below the marginal price would increase the error and decrease the revenue while increasing the probability of being
scheduled at the auction. To assess this, two persistence methods are compared to forecast the aFRR capacity price.
The prices of the previous period are used (i.e. POS 00 04 for D-1 is used to forecast POS 00 04 for D). These two
methods use the previous marginal price or the previous average price for a given period. They are respectively called
“Marginal” and “Average”. Since the average price is lower than the marginal price, using it to forecast the next day’s
marginal price increases the probability of being scheduled, but reduces the revenue when scheduled.

Wind power production forecast: A probabilistic forecast of wind power production was derived using a state-of-
the-art quantile regression approach known to be effective for wind forecasting, namely Quantile Regression Forests
(QRF) Camal (2020). The model predicts the production of the target wind site depending on two types of explana-
tory variables known to be relevant for hours-ahead to day-ahead horizons, recent lags of observed production, and
Numerical Weather Predictions Petropoulos et al. (2022). The QRF is trained for each horizon in the horizon range
H={15 min, 30 min, . . . , 48 h} and predicts the following quantiles of the expected distribution: {5%, 10%, . . . , 50%,
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Table 1: Spot and intraday price forecast comparison for the year 2021

Bias MAE RMSE
Spot Market 0.1 25.33 43.79

Intraday Market 0 14.86 24.24

Table 2: Positive aFRR capacity price forecast comparison for the years 2020 and 2021

Sched.
(%)

Av. Rev.
(€/MW)

Bias MAE RMSE

Perfect 100.0 21.66 0 0 0
Marginal 34.2 3.28 0 18.89 107.13
Average 72.8 6.47 -11.36 12.62 81.51

. . . , 95%}. The regression model parameters i.e. number of trees, and the number of variables considered per split are
tuned by cross-validation in a training-validation set spanning over the year 2020, then predictions are issued for the
year 2021.

The model predicts the total production of the multiple offshore wind farms in Belgium, concentrated in a geographical
area small enough to be approximated as a single large production site. The predicted wind speeds and the air
temperature across the NWP grid points covering the different offshore farms are retrieved from ECMWF HRES at
00h00 runtimes and hourly lead-times up to the maximum horizon in the horizon range H. The target variable of
the regression is the total active production. It is scaled by the total installed capacity, which is reported to increase
monotonously in the training and testing set but is not affected to the different farms in the offshore portfolio. The
uncertainty on this affectation creates significant bias in the model, but further forecasting improvements are out of
the scope of this paper and the results reported below are sufficient for the considered application.

5.4. Forecast analysis

Electricity markets forecast: The quality of the electricity market price forecasting is assessed using the bias, MAE
and RMSE metrics. The results are presented in Table 1. For both markets, the bias is very close to zero, most likely
due to the persistence nature of the forecasting method. In addition, the forecasting is better for the intraday market.
This can be explained by the fact that the prices for the intraday market are all forecasted one hour ahead, when the
decision regarding the placement of the bids is final. The bids on the spot market on the other hand have to be placed
at 12:00 D-1 for the whole day D, therefore the lead time goes from 12 to 36 hours ahead.

aFRR forecast: The comparisons of the results for the two aFRR capacity prices forecasts are presented in Table 2
and Table 3 for positive and negative aFRR prices respectively. Forecasting these prices using the previous average
price consistently performs better than using the previous marginal price. For both directions, the bias indicates that
we are under-evaluating the price using the previous average price, but this increases the amount of time the bid is
actually accepted, therefore increasing the average capacity revenue.

Table 3: Negative aFRR capacity price forecast comparison for the years 2020 and 2021

Sched.
(%)

Av. Rev.
(€/MW)

Bias MAE RMSE

Perfect 100.0 23.04 0 0 0
Marginal 43.4 3.41 -0.01 24.01 290.42
Average 78.7 5.57 -13.97 16.10 210.07

15



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Lead time: 30 min 1h 12h 40h

Expected

O
bs

er
ve

d

Figure 6: Probabilistic wind forecast reliability diagram

Wind probabilistic forecast: In this section we analyze the quality of the wind forecast using QRF with NWP. A
reliability diagram can be found in Figure 6 and sharpness and NRMSE diagrams in Figure 7. It can be observed that
the forecast tends to under-evaluate the quantiles (more values are observed below a given quantile than would be
expected). This under-evaluation increases as the quantiles become less extreme. This bias also generally increases
with the lead time. The quantile interval size and NRMSE quickly rise up to a 4 h lead time, and then continue to
increase less sharply. This leads to a better performance of the forecast for shorter lead times, hence increasing the
quality of repositioning on the intraday market.

5.5. Market price distribution and month selection

A set of months representing the possible state of market prices is selected for the analysis. The goal is to represent
both extremes in terms of electricity and reserve prices. To do so, the monthly distributions of the spot and intraday
market prices are represented in Figure 8. We can observe the impact of the energy crisis that started at the end
of 2021, reflected in the increase in the average price and the variance of the prices as the year goes by. A similar
distribution analysis is performed on the capacity prices for the aFRR in both directions, shown in Figure 9. For the
reserve prices, no particular trend can be observed in the distributions. However, the capacity reserve prices can vary
greatly from one month to the next.

For the analysis, four months have been selected: January, February, October, and December. The first two are months
presenting low electricity market prices, while January presents low reserve prices and February high reserve prices.
The last two months show high electricity market prices, with October presenting high reserve prices and December
low reserve prices.
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Figure 8: Monthly price distribution for each market and PPA contracts for the year 2021
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Figure 9: Monthly reserve price distribution for each reserve direction for the year 2021. In the lower part of the figure, extreme prices are cropped
to better display the distribution. These prices are shown in the upper scatter plots
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Table 4: Statistics on the cash flow per period for the base case for the year 2021

Cash Flow
(€/15min)

Perfect Det. Robust

Mean 735 682 670
std 872 900 884

95%-Var -1365 -1402 -1407
95%-CVar -1437 -1790 -1684

Table 5: Statistics on the cash flow per period for the full case for the year 2021

Cash Flow
(€/15min)

Perfect Det. Robust

Mean 1600 900 845
std 2061 1168 1159

95%-Var -1184 -1459 -1496
95%-CVar -1331 -1801 -1813

6. Results

For each month of 2021, we run the algorithm for two cases. The base case will serve as a reference. It will only
consider the electrolyzer powered through the PPA, with a day-ahead market participation to handle the volatility of the
renewable power source. The full case will consider that the participation comprises all the market and services (PPA,
day-ahead, intraday, and secondary reserve). For each case, three uncertainty management strategies are considered.
First, the perfect knowledge approach will consider no uncertainty, therefore putting an upper limit on the potential
of each market participation strategy. The deterministic and robust runs will then be compared to assess the pros and
cons of each approach.

6.1. Cash flow analysis
The cash flow for each monthly run is extracted and averaged per 15-min period over the whole year. The correspond-
ing results are shown for the base case and the full case in Table 4 and Table 5 respectively. When comparing the
average cash flow for a given strategy in the full case with the corresponding strategy in the base case, the addition
of the reserve and intraday participation presents better results. The standard deviation of the average cash flow also
increases accordingly. This can be explained by the higher volatility in revenues due to the changing reserve prices.
In addition, a higher increase in standard deviation is observed in the perfect knowledge strategy compared to the
uncertain strategies, due to the better utilization of the extreme reserve prices. Regarding exposure to risk, the Var
and CVar are higher when adding the reserve and ID participation for the uncertain cases, but lower when considering
the perfect knowledge approach. This shows that reserve provision reduces the risk exposure with a perfect knowl-
edge assumption, but increases it when accounting for the uncertainty. Overall, the robust approach appears to show
slightly worse results when compared to the deterministic approach. This is to be expected, as the robust approach is
more conservative, and focuses on avoiding imbalances, at the cost of lost opportunities.

Figure 10 shows the monthly averaged cash flow for each strategy in both the full case and the base case. We can
observe that the difference between strategies is limited when considering the base case. When considering the full
case, the uncertain approaches show similar performances and follow a similar trend to the one observed in the base
case. The perfect knowledge strategy makes the most of the revenue potential of the reserve, therefore drastically
increasing the cash flow. This is especially true in October, which shows extreme reserve prices, as previously seen in
Figure 9.

To assess the performance of the full case against the base case, Figure 11 shows the cash flow increase per month,
for each of the strategies, as a percentage of the base case cash flow. The perfect knowledge strategies once again
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Figure 10: Cash flow comparison between uncertainty management approaches for both the full and the base cases
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Figure 11: Cash flow increase between uncertainty management approaches of the full case as a percentage of the base case

drastically outperform both uncertain strategies, except for the last two months of the year. This shows that the addition
of the reserve provision is a good tool to compensate lower revenues due to large electricity prices. To illustrate this,
the same data has been averaged over two periods of the year. First, before the crisis until August, when the spot
and intraday prices were still within the expected market price range. Second, after August, when the market prices
started skyrocketing, and finally over the whole year. These results are shown in Table 6. This table shows an increase
in performance of around 10% before the crisis for both uncertain strategies, whereas the same strategies show an
increase of more than 290% on average during the crisis. The perfect knowledge approach also shows a large increase
during the crisis, but this is to be expected, as the algorithm can take advantage of extreme market prices (both high
and low).

6.2. Imbalance analysis

The revenue analysis shows slightly worse performances when considering the robust approach compared to the
deterministic approach. However, the revenue analysis does not account for the behavior of the algorithm in terms of
imbalances. Indeed, due to the one-price settlement of the balancing mechanism, the plant can generate profit when
out of balance. This however is not a situation in which an actor wants to be, as it is very hard to forecast which
way the prices will go, therefore exposing the plant to large imbalance costs. In addition, plants subject to frequent
imbalances can receive additional penalties. The robust approach focuses on reducing the risk of imbalance when
running the optimization, at the cost of higher conservatism and lost opportunities. Table 7 and Table 8 show statistics
on the imbalance averaged per period for each strategy for the base case and the full case respectively. As expected, the
perfect knowledge approach shows no imbalance. Regarding the uncertain strategies, the robust approach drastically
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Table 6: Average percentage of increase per month between full case and base case, before the crisis, during the crisis, and over the whole year,
using the data shown in Figure 11

Cash Flow
Increase (%)

Perfect Det. Robust

Until August 83 12 10
After August 450 297 292
Whole Year 205 107 104

Table 7: Statistics on the imbalance count and average volumes per period for the base case for the year 2021

Imbalance
(MW)

Perfect Det. Robust

Occurence (%) 0.0 2.24 0.78
Av. Imb. Vol. 0.0 9.33 4.47

95%-Var 0.0 15.43 10.75
95%-CVar 0.0 26.02 18.08

reduces the percentage of occurrence of periods when the plant finds itself in imbalance, as well as the average volume
of imbalance. The risk exposure is also reduced when looking at the volume of imbalance.

6.3. Green Hydrogen Strike Price Analysis

Finally, we compare the breakeven price for green H2 for each case and strategy with the formula shown in Equa-
tion (33).

V strike = Vgreen −
RTot∑T

t QH2,green
t

(33)

Figure 12 shows the monthly average value of the H2 breakeven price for both the full case and the base case, for
each of the three strategies. For the best case, all three strategies behave similarly, as they are mostly driven by
market prices. This induces an increase in the breakeven price as the year goes by and the crisis appears. The perfect
knowledge strategy and both uncertain strategies show this price to be above the originally fixed price of 6 €/kg for
5 and 6 months of the year 2021 respectively (most of them after August). For the full case, the uncertain strategies
show 5 months with a breakeven price above 6 €/kg. The perfect strategy drastically outperforms the other two,
with most of the breakeven prices being negative (meaning that the revenue obtained through the reserve provision is
greater than the cost of the electricity used to produce H2).

Table 8: Statistics on the imbalance count and average volumes per period for the full case for the year 2021

Imbalance
(MW)

Perfect Det. Robust

Occurence (%) 0.0 1.49 0.28
Av. Imb. Vol. 0.0 6.01 3.40

95%-Var 0.0 18.22 12.00
95%-CVar 0.0 26.58 16.78

23



January
February
M

arch
April
M

ay
June
July
August
Septem

ber
O

ctober
N

ovem
ber

D
ecem

ber

−50

−40

−30

−20

−10

0

10

20

30

January
February
M

arch
April
M

ay
June
July
August
Septem

ber
O

ctober
N

ovem
ber

D
ecem

ber

Original sell price Perfect Deterministic Robust

Av
. H

2 
br

ea
ke

ve
n 

pr
ic

e 
(€

/k
g)

Full Case Base Case

Figure 12: H2 breakeven price comparison between uncertainty management approaches for both the full case and the base case
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Table 9: Absolute decrease in the green H2 breakeven price for the full case compared to the base case (to account for negative breakeven prices)

Breakeven price
Decrease (%)

Perfect Det. Robust

Until August 563.91 10.08 25.21
After August 185.77 7.55 -1.11
Whole Year 301.34 8.47 8.55

The percentage of absolute decrease (to account for negative value) in breakeven prices between the full case and the
base case before and during the crisis as well as for the whole year is shown in Table 9. As expected, it shows a
very large improvement for all three periods. Both uncertain strategies show an improvement before the crisis, with
the robust approach showing better performances. However, the robust approach also shows a negative performance
compared to the base case in time of crisis, which means that the robust approach actually increases the breakeven
price of the green H2 in this period and therefore has a negative impact.

7. Conclusions

This paper proposed an economic analysis of an electrolyzer providing grid services combined with multi-market
participation. Optimization under uncertainty was combined with a rolling horizon algorithm to simulate the day-
to-day operation of the plant. Multiple uncertain sources were considered and market rules were implemented to
model the expected trading behavior as close as possible to real life. Deterministic and robust formulations were
used to account for uncertainties in renewable generation and market prices, and the results of both approaches were
compared. This algorithm was run over the year 2021 for two market participation strategies both in perfect knowledge
and uncertain contexts. The cash flow, the imbalance volumes and frequency, and the green H2 breakeven price are the
three performance indicators considered for the performance analysis of each scenario. The revenue analysis shows
that the addition of secondary reserve provision increases the mean cash flow of both uncertain approaches, with a
slight advantage going to the deterministic approach. However, it is also observed that adding the reserve provision
increases the risk exposure when accounting for uncertainties. Regarding the performances in times of crisis (at
the end of 2021), the addition of reserve provisions greatly increases the performances of the uncertain strategies
(∼ 300 % cash flow increase for the full case compared to the base case, against ∼ 10% before the crisis). The
imbalance analysis shows much better performances from the robust approach in terms of percentage of occurrence,
average imbalance volumes, and risk exposure. In terms of the effect on the breakeven price of green H2, both
uncertain approaches show similar yearly performances of around an 8.5% decrease in price compared to the base
case. However, the robust approach performs much better before the start of the crisis (25% reduction against 10%
for the deterministic approach), whereas it shows a negative performance compared to the base case with a 1.1%
increase in the breakeven price, and the deterministic approach still shows an improvement with a 7.55 % decrease
in the breakeven price. Finally, the perfect knowledge strategy shows a very high potential in all the performance
indicators, with much better performances than its uncertain counterparts. This approach even shows a negative green
H2 breakeven price, meaning that the perfect knowledge participation in the reserve alone more than compensates the
cost of buying renewable power to produce hydrogen. This shows the potential benefits that would come from higher
forecast quality, especially in the secondary reserve quantities.

References
, . Air Liquide Normand’Hy Project. URL: https://normandhy.airliquide.com/en/air-liquide-normandhy/

project-heart-normandy-industrial-basin.
, 2020. 50Hertz Grid Access Price Sheet 2021. URL: https://www.50hertz.com/en/Partners/Gridcustomers/Gridaccess.
Al-Lawati, R.A., Crespo-Vazquez, J.L., Faiz, T.I., Fang, X., Noor-E-Alam, M., 2021. Two-stage stochastic optimization frameworks to aid in

decision-making under uncertainty for variable resource generators participating in a sequential energy market. Applied Energy 292, 116882.
doi:10.1016/j.apenergy.2021.116882.

25

https://normandhy.airliquide.com/en/air-liquide-normandhy/project-heart-normandy-industrial-basin
https://normandhy.airliquide.com/en/air-liquide-normandhy/project-heart-normandy-industrial-basin
https://www.50hertz.com/en/Partners/Gridcustomers/Gridaccess
http://dx.doi.org/10.1016/j.apenergy.2021.116882


Baetens, J., De Kooning, J.D.M., Van Eetvelde, G., Vandevelde, L., 2020. A Two-Stage Stochastic Optimisation Methodology for the Operation
of a Chlor-Alkali Electrolyser under Variable DAM and FCR Market Prices. Energies 13, 5675. doi:10.3390/en13215675. number: 21
Publisher: Multidisciplinary Digital Publishing Institute.

Baumhof, M.T., Raheli, E., Johnsen, A.G., Kazempour, J., 2023. Optimization of Hybrid Power Plants: When Is a Detailed Electrolyzer Model
Necessary? ArXiv:2301.05310 [cs, eess, math].

Bergen, A., Pitt, L., Rowe, A., Wild, P., Djilali, N., 2009. Transient electrolyser response in a renewable-regenerative energy system. International
Journal of Hydrogen Energy 34, 64–70. doi:10.1016/j.ijhydene.2008.10.007.

Camal, S., 2020. Forecasting and optimization of ancillary services provision by renewable energy sources. phdthesis. Université Paris sciences et
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Önkal, D., Paccagnini, A., Panagiotelis, A., Panapakidis, I., Pavı́a, J.M., Pedio, M., Pedregal, D.J., Pinson, P., Ramos, P., Rapach, D.E., Reade,
J.J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H.L., Spiliotis, E., Syntetos, A.A., Talagala, P.D., Talagala, T.S., Tashman, L.,
Thomakos, D., Thorarinsdottir, T., Todini, E., Trapero Arenas, J.R., Wang, X., Winkler, R.L., Yusupova, A., Ziel, F., 2022. Forecasting: theory
and practice. International Journal of Forecasting 38, 705–871. doi:10.1016/j.ijforecast.2021.11.001.

Proost, J., 2019. State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings. International Journal
of Hydrogen Energy 44, 4406–4413. doi:10.1016/j.ijhydene.2018.07.164.

Regelleistung, . Regelleistung Open Data Portal. URL: https://www.regelleistung.net/apps/datacenter/tenders/.
Sahin, F., Narayanan, A., Robinson, E.P., 2013. Rolling horizon planning in supply chains: review, implications and directions for future research.

International Journal of Production Research 51, 5413–5436. doi:10.1080/00207543.2013.775523.
Samani, A.E., D’Amicis, A., De Kooning, J.D., Bozalakov, D., Silva, P., Vandevelde, L., 2020. Grid balancing with a large-scale electrolyser

providing primary reserve. IET Renewable Power Generation 14, 3070–3078. doi:10.1049/iet-rpg.2020.0453.
Scolaro, M., Kittner, N., 2022. Optimizing hybrid offshore wind farms for cost-competitive hydrogen production in Germany. International Journal

of Hydrogen Energy 47, 6478–6493. doi:10.1016/j.ijhydene.2021.12.062.
Seck, G.S., Hache, E., Sabathier, J., Guedes, F., Reigstad, G.A., Straus, J., Wolfgang, O., Ouassou, J.A., Askeland, M., Hjorth, I., Skjelbred, H.I.,

26

http://dx.doi.org/10.3390/en13215675
http://dx.doi.org/10.1016/j.ijhydene.2008.10.007
https://pastel.archives-ouvertes.fr/tel-02973808
https://hsweb.hs.uni-hamburg.de/projects/star-formation/hydrogen/P2H_Full_Study_FCHJU.pdf
https://hsweb.hs.uni-hamburg.de/projects/star-formation/hydrogen/P2H_Full_Study_FCHJU.pdf
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1511
https://ec.europa.eu/commission/presscorner/detail/en/ip_22_1511
http://dx.doi.org/10.1016/j.ijhydene.2020.10.130
http://dx.doi.org/10.1109/TIA.2022.3167377
http://dx.doi.org/10.1109/TIA.2022.3167377
http://dx.doi.org/10.1109/TPWRS.2014.2364272
http://dx.doi.org/10.1109/TSTE.2021.3063245
http://dx.doi.org/10.1109/MPE.2020.3043614
https://opendata.elia.be/pages/home/
https://transparency.entsoe.eu/
https://www.entsoe.eu/network_codes/eb/picasso/
https://www.entsoe.eu/events/2021/12/02/picasso-mari-stakeholder-workshop/
https://www.entsoe.eu/events/2021/12/02/picasso-mari-stakeholder-workshop/
https://www.epexspot.com/en
http://dx.doi.org/10.1016/j.omega.2014.12.006
http://dx.doi.org/10.1016/j.omega.2014.12.006
http://dx.doi.org/10.1016/j.apenergy.2018.12.028
https://www.iea.org/reports/the-future-of-hydrogen
https://www.iea.org/reports/global-hydrogen-review-2021
https://www.iea.org/reports/net-zero-by-2050
https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction
https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction
http://dx.doi.org/10.1016/j.ijhydene.2021.09.142
http://dx.doi.org/10.3390/e22111286
http://dx.doi.org/10.1016/j.jclepro.2022.134996
http://dx.doi.org/10.1016/j.jclepro.2022.134996
http://dx.doi.org/10.1016/j.ijforecast.2021.11.001
http://dx.doi.org/10.1016/j.ijhydene.2018.07.164
https://www.regelleistung.net/apps/datacenter/tenders/
http://dx.doi.org/10.1080/00207543.2013.775523
http://dx.doi.org/10.1049/iet-rpg.2020.0453
http://dx.doi.org/10.1016/j.ijhydene.2021.12.062
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