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Abstract

Learning vectors that capture the meaning of concepts remains a fundamental challenge. Somewhat
surprisingly, perhaps, pre-trained language models have thus far only enabled modest improvements to the
quality of such concept embeddings. Current strategies for using language models typically represent a
concept by averaging the contextualised representations of its mentions in some corpus. This is poten-
tially sub-optimal for at least two reasons. First, contextualised word vectors have an unusual geometry,
which hampers downstream tasks. Second, concept embeddings should capture the semantic properties
of concepts, whereas contextualised word vectors are also affected by other factors. To address these is-
sues, we propose two contrastive learning strategies, based on the view that whenever two sentences reveal
similar properties, the corresponding contextualised vectors should also be similar. One strategy is fully
unsupervised, estimating the properties which are expressed in a sentence from the neighbourhood struc-
ture of the contextualised word embeddings. The second strategy instead relies on a distant supervision
signal from ConceptNet. Our experimental results show that the resulting vectors substantially outperform
existing concept embeddings in predicting the semantic properties of concepts, with the ConceptNet-based
strategy achieving the best results. These findings are furthermore confirmed in a clustering task and in the
downstream task of ontology completion.

1 Introduction
Since the introduction of BERT Devlin et al. [2019], the focus in Natural Language Processing (NLP) has
been on fine-tuning and exploiting large pre-trained language models, especially for solving sentence and
paragraph level tasks. However, accurately modelling the meaning of individual words, in the form of static
(i.e. not contextualised) vectors, also continues to be an important challenge. Static word vectors are used,
among others, as pre-trained label embeddings for zero-shot Socher et al. [2013], Ma et al. [2016] and few-
shot learning Xing et al. [2019], Yan et al. [2022], Xiong et al. [2019], Hou et al. [2020], Li et al. [2020a], Yan
et al. [2021]; as concept representations for ontology alignment Kolyvakis et al. [2018], ontology completion
Li et al. [2019] and taxonomy learning Vedula et al. [2018], Malandri et al. [2021]; for lexical substitution
Wada et al. [2022] and topic modelling Das et al. [2015], Dieng et al. [2020], Zhao et al. [2021]; and for
analysing social biases Bommasani et al. [2020]. Motivated by such applications, this paper focuses on
representations of concepts, rather than named entities.

The distributional hypothesis Harris [1954], Firth [1957] suggests that the meaning of a concept can
be inferred from the contexts in which it appears. Standard word embedding models Mikolov et al. [2013],
Pennington et al. [2014] implement this idea by using bag-of-words representations of these contexts. Clearly,
such representations can only capture what is revealed about a concept in a very approximate way. Pre-trained
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language models (LMs), on the other hand, are able to capture meaning at the sentence level. LMs should
thus enable us to obtain higher-quality context representations, which we would expect to translate into
higher-quality concept embeddings. In particular, several authors have explored the idea that embeddings of
concepts can be obtained by aggregating the contextualised embeddings of their mentions in some corpus
Ethayarajh [2019], Bommasani et al. [2020], Vulić et al. [2020], Li et al. [2021], Gan et al. [2020], Gupta
and Jaggi [2021], Wang et al. [2021]. While improvements over standard word embeddings are routinely
reported, such improvements tend to be relatively small, and they are not always consistent.

There are at least two challenges when it comes to learning concept embeddings in this way. First, con-
textualised word vectors are highly anisotropic Ethayarajh [2019]. For unsupervised sentence embeddings,
strategies aimed at reducing anisotropy have been found to result in substantial performance gains Li et al.
[2020b], Huang et al. [2021], Liu et al. [2021a]. We may thus expect that concept embeddings can similarly
benefit from such strategies. Second, and more fundamentally, contextualised word vectors do not only cap-
ture information about the meaning of words but also about their syntactic role and other characteristics of
the sentences in which they appear Tenney et al. [2019], Hewitt and Manning [2019], Mickus et al. [2020],
Luo et al. [2021], Timkey and van Schijndel [2021]. If we are interested in modelling the meaning of con-
cepts, it thus seems beneficial to specialise the contextualised word vectors towards this aspect. Ideally, two
contextualised word vectors should be similar if the corresponding sentences express similar properties, and
dissimilar otherwise. This key idea is illustrated in the following example.

Example 1. Consider the following sentences1:

(i) Submarines can hide under the water.

(ii) Some submarines run on diesel engines.

(iii) Some sharks live at the bottom of deep underwater canyons.

(iv) Trucks are used to transport people or things, they use fuel known as diesel.

We would like the contextualised representation of submarines in sentence (i) to be similar to the contex-
tualised representation of sharks in sentence (iii), as both sentences assert that the target concept has the
property of being underwater. Similarly, we would like the representation of submarines in sentence (ii) to be
similar to the representation of trucks in sentence (iv).

If we are able to learn contextualised word vectors that focus on the semantic properties that are ex-
pressed in a given sentence, we should be able to learn high-quality concept embeddings by averaging these
contextualised representations across different sentences.

In this paper, we propose and analyse a number of strategies based on contrastive learning to address
the two aforementioned issues. Contrastive learning has already been successfully used for alleviating the
anisotropy of BERT-based word and sentence embeddings Gao et al. [2021], Liu et al. [2021a], based on the
idea that embeddings of corrupted inputs should be similar to embeddings of the original word or sentence.
Different from these approaches, our motivation for using contrastive learning is to move contextualised word
vectors that capture similar semantic properties closer together, while vectors capturing different properties
are pushed further apart.

Crucially, to implement this idea, we need examples of sentences that express similar properties. We pro-
pose two strategies for identifying such sentences. Our first strategy is purely unsupervised. The main idea
is to rely on the neighbourhood structure of standard contextualised word vectors. First note that when ob-
taining contextualised word vectors, we mask the target concept, following Li et al. [2021]. This ensures that
contextualised word vectors reflect the sentence context of the given concept, rather than any prior knowledge
about the concept that is captured by the language model itself. Now suppose we have a contextualised repre-
sentation of submarine, and we look for the most similar contextualised word vectors, across a given corpus.

1All sentences were taken from GenericsKB Bhakthavatsalam et al. [2020].
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Since the target concept is masked, these vectors may correspond to different words. Suppose, for instance,
that they correspond to the words car, truck and airplane. Then we can intuitively assume that the given sen-
tence expresses the property of being a vehicle. Based on this idea, we can identify sentences that are likely
to express the same property. Our second strategy uses a form of distant supervision, using knowledge about
the commonsense properties of concepts from ConceptNet Speer et al. [2017]. For example, ConceptNet
contains the triple (gun,HasProperty,dangerous). Given this triple, if a sentence contains both the words gun
and dangerous, we assume it expresses that guns are dangerous. For each property encoded in ConceptNet,
we can thus find sentences which express that the target concept has that property. This, in particular, allows
us to find sentences that express the same property.

We experimentally compare the concept embeddings that are obtained with the two aforementioned strate-
gies. We are specifically interested in the extent to which different kinds of semantic properties can be
predicted from these embeddings. We also evaluate our embeddings in a clustering task and an ontology
completion task Li et al. [2019], Chen et al. [2022]. For both strategies, we find that our concept embeddings
consistently outperform existing models by a substantial margin.

2 Related Work
The use of pre-trained language models for generating static word embeddings has already been extensively
explored. A popular strategy is to aggregate the contextualised representation of a word w across a number
of sentences mentioning this word Ethayarajh [2019], Bommasani et al. [2020], Vulić et al. [2020]. Several
variations of this strategy have been studied, which mostly differ in how the contextualised representation
of w is computed. It is common to use the representation from the final layer of the transformer model
or to average the representations from the final four layers, while Vulić et al. [2020] suggested averaging
the first k layers, with the optimal k depending on the task. For words that consist of multiple tokens, the
representations of these tokens are typically averaged. To aggregate the contextualised representations of a
given word w across multiple sentences, the most common strategy is to simply average them. Ethayarajh
[2019] instead proposed to take the first principal component, which produces almost the same result, given
that the contextualised vectors are all located in a very narrow cone. In this paper, we build on the approach
from Li et al. [2021], which masks the target word w and uses the contextualised representation of the mask
token; this approach is discussed in more detail in the next section. Beyond averaging-based strategies, some
approaches have been inspired by Word2Vec Mikolov et al. [2013] or GloVe Pennington et al. [2014], relying
on BERT to obtain context embeddings Gupta and Jaggi [2021], Wang et al. [2021], or to generate synthetic
co-occurrence counts Gan et al. [2020].

Instead of relying on words in context, some approaches simply feed the word w to the language model.
Bommasani et al. [2020] found this to perform poorly with pre-trained models. However, better results
were reported by Vulić et al. [2021], after fine-tuning the BERT encoder on synonymy and antonymy pairs.
Gajbhiye et al. [2022] jointly fine-tuned a BERT encoder for concepts and an encoder for properties, using
hypernyms from Microsoft Concept Graph Ji et al. [2019] and sentences from GenericsKB Bhakthavatsalam
et al. [2020] as training data. MirrorBERT Liu et al. [2021a] is a BERT encoder for both words and sentences,
which is trained in a fully self-supervised way. It uses dropout to generate different variants of the same input,
and then fine-tunes BERT such that these variants are closer to each other than to encodings of other inputs.
The resulting encoder can generate high-quality word vectors, again without needing sentences mentioning
the word in context. MirrorWiC Liu et al. [2021b] can be seen as an adaptation of the MirrorBERT strategy
to words in context. In particular, given a sentence s mentioning some word w, multiple encodings of w are
obtained by (i) randomly masking different spans in s and (ii) using dropout. The model then encourages
different encodings of same sentence to be closer to each other than to encodings obtained from different
sentences (even if the target word w is the same).
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The aforementioned approaches have been developed with different tasks in mind. While word similarity
benchmarks remain a popular choice for evaluating word vectors, Li et al. [2021] and Gajbhiye et al. [2022]
were specifically interested in predicting the commonsense properties of concepts, while Liu et al. [2021b] fo-
cused on word sense disambiguation. Accordingly, some of these approaches have complementary strengths.
For instance, the model from Li et al. [2021] outperformed the baselines on concept categorisation tasks, but
under-performed in word similarity. In terms of downstream applications, since the introduction of BERT,
word embeddings have primarily been used in settings where word meaning has to be modelled in the ab-
sence of any sentence context. For instance, word embeddings have been used to estimate class prototypes
for few-shot learning, e.g. in image classification Xing et al. [2019], Yan et al. [2022, 2021] and for slot
tagging in dialogue systems Hou et al. [2020]. In Li et al. [2020a], word vector similarity was used to set
an adaptive margin, as part of a margin-based model for few-shot image classification, to capture the idea
that image classes with similar labels can be harder to differentiate. Word embeddings have also been used
for modelling label dependencies in multi-label classification Xiong et al. [2019]. Furthermore, word vectors
have been used for ontology engineering tasks, e.g. for aligning ontologies Kolyvakis et al. [2018] or for
inferring plausible rules Li et al. [2019]. In such applications, what matters is that concepts with similar word
vectors have similar properties. We will focus on ontology completion in more detail in Section 5.3. In other
applications, what matters is rather that clusters of word vectors are semantically coherent, e.g. when using
word vectors for learning taxonomies Vedula et al. [2018], Malandri et al. [2021] or for topic modelling Das
et al. [2015], Dieng et al. [2020], Zhao et al. [2021]. Word vectors are much easier to train than language
models, and can thus more easily be adapted. This advantage has been exploited to learn personal word
embeddings, as part of a system for personalised search Yao et al. [2022], or for studying how word meaning
changes over time Kutuzov et al. [2018]. Finally, some authors have found that even for tasks where we need
to model the meaning of words in context, using static word vectors can sometimes be beneficial Alghanmi
et al. [2020], Liu et al. [2020], Wada et al. [2022].

3 Distilling Concept Embeddings
In this section, we recall the concept embedding strategy from Li et al. [2021], which uses a pre-trained BERT
model. The aim of our paper is to analyse how better concept embeddings can be obtained by instead relying
on a suitably fine-tuned BERT model. Our proposed fine-tuning strategies will be the focus of Section 4.

Let s1, ..., sn be sentences in which some concept c is mentioned. To obtain a vector representation of c
from the sentence si, Li et al. [2021] replace c by the ¡mask¿ token and take the final-layer contextualised
representation of this token, using a BERT-based language model. By masking the concept c, the result-
ing vector intuitively captures what the sentence si reveals about the meaning of c, rather than any prior
knowledge about the meaning of c that is encoded in the language model itself. They found that this mask-
ing strategy improves how well the resulting embeddings capture the semantic properties of concepts. Let
x1, ...,xn be the vectors that are thus obtained from the available sentences. We refer to these vectors as the
mention vectors of concept c. We write µ(c) = {x1, ...,xn} for the set of mention vectors associated with c.
An embedding of concept c can be obtained by averaging these mention vectors:

c =
1

|µ(c)|
∑

{x | x ∈ µ(c)}

However, not all sentences are equally informative. Li et al. [2021] in particular highlighted issues that arise
when sentences use concepts in idiosyncratic ways. For instance, sentences about the children’s song “Mary
had a little lamb” are unlikely to be useful for learning a representation of the concept lamb. To reduce the
impact of such idiosyncratic sentences, they proposed the following filtering strategy. Let V be a vocabulary
of concepts and let M =

⋃
v∈V µ(v) be the set of all mention vectors, across all words in the vocabulary. For
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each mention vector x in µ(c), we compute its k nearest neighbours among the vectors in M . If all k of these
neighbours belong to µ(c), x is deemed to be idiosyncratic. The embedding of concept c is then obtained by
averaging the remaining mention vectors, after removing the idiosyncratic ones. The underlying intuition is
based on the idea that the mention vectors in µ(c) capture the properties of c. If all the neighbours of such a
mention vector x are associated with c, it suggests that the property which is captured by x only applies to
that concept and is thus unlikely to be important.

4 Contrastive Learning Strategies
Each mention vector in µ(c) intuitively encodes what the corresponding sentence reveals about the concept
c. It would thus be desirable if two mention vectors were similar if and only if the corresponding sentences
reveal similar properties. Unfortunately, this is not always the case, given that contextualised vectors are
affected by aspects such as word position, word frequency, and punctuation Mickus et al. [2020], Luo et al.
[2021], Timkey and van Schijndel [2021], which are irrelevant to word meaning, as well as the syntactic role
of a word Tenney et al. [2019], Hewitt and Manning [2019], which is only loosely related. Our solution is
to fine-tune the mention vectors using a contrastive learning strategy. While contrastive learning is a popular
representation learning technique, it is usually applied in a purely unsupervised setting. For instance, to
learn sentence embeddings using contrastive learning, one usually trains the model such that embeddings of
corrupted versions of the same sentence are similar to each other, and dissimilar from embeddings of other
sentences Gao et al. [2021], Liu et al. [2021a]. The same strategy has been used in Liu et al. [2021a] for
obtaining word embeddings from BERT. While it leads to embeddings that perform well on word similarity
benchmarks, as we will see in our experiments, they are less suitable for tasks such as ontology completion,
where we need concept embeddings that capture the semantic properties of the corresponding concepts.

In contrast to these existing approaches, our strategies will rely on weakly labelled training examples.
Each example consists of two sentence-concept pairs, (s1, c1) and (s2, c2), where ci is a concept that is men-
tioned in sentence si. For positive training examples, the assumption is that the property that sentence s1
expresses about concept c1 is the same as what sentence s2 expresses about c2. For instance, if we write s(i)
for sentence (i) from Example 1, and similar for s(ii) and s(iii), then (si, submarines); (siii, sharks) could
be a positive training example, while (si, submarines); (sii, submarines) could be a negative example. To
implement our strategy, we thus first need to find a way to obtain such weakly labelled training examples. In
Section 4.1 we propose two solutions for this problem: an unsupervised strategy which relies on the neigh-
bourhood structure of the mention vectors, and a distantly supervised strategy which is based on ConceptNet.
In Section 4.2 we then describe how the resulting training examples can be used for fine-tuning the model.

4.1 Constructing Weakly Labelled Examples
We propose two strategies for obtaining weakly labelled training examples. These examples will then be used
in Section 4.2 for fine-tuning the mention vectors.

4.1.1 Neighbourhood Structure

Consider sentences (i) and (iii) from Example 1. Even though these sentences express a similar property
(i.e. being located under water), the resulting mention vectors are not actually similar, even after masking
the target concepts. In fact, this is precisely our motivation for fine-tuning the mention vectors. To discover
sentences which are likely to express a similar property, it is thus not sufficient to directly compare the
corresponding mention vectors. Let us write ϕ(s, c) for the mention vector which is obtained after masking
concept c in sentence s. Essentially, two mention vectors ϕ(s1, c1) and ϕ(s2, c2) are similar if the following
two conditions are satisfied for the sentences s1 and s2: (i) they express a similar property about their target
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concepts (i.e. c1 and c2) and (ii) they have a similar structure, with c1 and c2 moreover occurring in a similar
syntactic role. In particular, if two mention vectors are similar, it is likely that they capture a similar property,
even if the converse is not true. This insight can be used to compare the mention vectors ϕ(s1, c1) and
ϕ(s2, c2) in an indirect way: we obtain the set X1 of mentions vectors which are most similar to ϕ(s1, c1)
and the set X2 of mention vectors which are most similar to ϕ(s2, c2). If the concepts associated with the
mention vectors in X1 are broadly the same as the concepts associated with the mention vectors in X2, it
intuitively means that the property expressed by the vector ϕ(s1, c1) applies to the same set of concepts as
the property expressed by the vector ϕ(s2, c2). In such a case, it is likely that ϕ(s1, c1) and ϕ(s2, c2) express
the same property.

We now describe the proposed method more formally. Let V be the vocabulary of all concepts and let
M =

⋃
c∈V µ(c) be the set of available mention vectors. In the following, we will assume that µ(c)∩µ(d) =

∅ for c ̸= d, i.e. we never have the exact same mention vector for different concepts. This assumption
simplifies the formulations and is satisfied in practice. In particular, we can then link each mention vector
x ∈ M to its unique corresponding concept, which we denote by ω(x), i.e. we have ω(x) = c iff x ∈ µ(c).
For a mention vector x ∈ M , we write neigh(x) for its k nearest neighbours from M , in terms of cosine
similarity. Our central assumption is that when two mention vectors x and y express a similar property, then
the concepts associated with the mention vectors in neigh(x) and neigh(y) will be similar. Formally, we
define the compatibility degree π(x,y) between x and y as follows:∑

c∈V min(freq(c, neigh(x)), freq(c, neigh(y))∑
c∈V max(freq(c, neigh(x)), freq(c, neigh(y))

where freq(c,X) = |{x ∈ X : ω(x) = c}| is the number of mention vectors in X that are associated with
concept c. The following toy example provides an illustration of how π(x,y) is computed.

Example 2. Figure 1 focuses on mention vectors x, y and z, along with their k = 4 nearest neighbours.
While x and y are not similar, their neighbours correspond to similar words. We have neigh(x) = {x1,x2,
x3,x4} and neigh(y) = {y1,y2,y3,y4}. We thus find:

freq(diver, neigh(x)) = 1 freq(diver, neigh(y)) = 1

freq(shark, neigh(x)) = 1 freq(shark, neigh(y)) = 1

freq(submarine, neigh(x)) = 1 freq(submarine, neigh(y)) = 0

freq(coral, neigh(x)) = 1 freq(coral, neigh(y)) = 2

with the frequencies for all other concepts being 0. We thus obtain:

π(x,y) =
1 + 1 + 0 + 1

1 + 1 + 1 + 2
=

3

5

As π(x,y) is rather high, we will aim to move x and y closer together. In particular, x should be closer to y
than to z, despite the fact that x and z correspond to the same word.

The figure shows a two dimensional embedding of some mention vectors. There are two mention vectors
which have a similar neighbourhood, namely x and y. Arrows in the figure indicate that these vectors should
be moved closer together.

In the following, we write Pos ⊆ (S × V ) × (S × V ) to denote the resulting set of positive examples.
Note that the elements of Pos are pairs of sentence-concept pairs. In particular, we have:

Pos = {((s1, c1), (s2, c2)) |π(ϕ(s1, c1), ϕ(s2, c2)) ≥ θ, s1 ̸= s2}

for some threshold θ > 0.
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Figure 1: Illustration of the neighbourhood-based selection of positive examples.

4.1.2 Distant Supervision from ConceptNet

We now consider a strategy which uses ConceptNet Speer et al. [2017] as a distant supervision signal to
identify positive training examples. ConceptNet contains a large number of triples of the form ([concept],
HasProperty, [property]). We first collected all the concept-property pairs that appear in such triples. We
then removed those concept-property pairs for which the property only appears for at most two concepts.
Let T be the resulting set of concept-property pairs. For each pair (c, p) ∈ T , we identified all sentences
in Wikipedia that mention both the concept c and the property p. We rely on the simplifying assumption
that such sentences express the knowledge that concept c has property p, similar to the standard assumption
underpinning distant supervision strategies for relation extraction Mintz et al. [2009]. Let Sp be the resulting
set of sentence-concept pairs for property p, i.e. (s, c) ∈ Sp if sentence s mentions both the concept c and
some property p such that (c, p) ∈ T . The set of positive examples is then defined as follows:

Pos = {((s1, c1), (s2, c2)) | ∃p . (s1, c1) ∈ Sp, (s2, c2) ∈ Sp, s1 ̸= s2}

In other words, (s1, c1) and (s2, c2) are treated as a positive example if (i) the sentences s1 and s2 mention
the same property p and (ii) the corresponding target concepts c1 and c2 have p in ConceptNet.

4.2 Fine-tuning Strategies
We now describe how the positive examples that were identified in Section 4.1 can be used for fine-tuning
the mention vectors. The most straightforward strategy, which we discuss in Section 4.2.2, is based on fine-
tuning the language model itself. The main drawback of this method is that it is computationally expensive.
For this reason, in Section 4.2.1 we first discuss a simpler strategy, which simply learns a linear projection of
the standard mention vectors.

4.2.1 Projection Method

Our aim is to learn a projection matrix A ∈ Rm×n such that vectors Aϕ(s1, c1) and Aϕ(s2, c2) are similar
iff ((s1, c1), (s2, c2)) ∈ Pos. Here n is the dimension of mention vectors while m is the dimension of the
resulting vectors. We can think of A as selecting the subspace of the mention vector space that is focused
on semantic properties. We use the supervised contrastive loss from Khosla et al. [2020] to learn A. Let
B ⊆ S × V be the set of sentence-concept pairs that are considered in a given mini-batch. Let X(s,c) =
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Table 1: Results (%) for BERT-large-uncased on the lexical classification tasks, in terms of F1 (%).

X-McRae CSLB Morrow WNSS BabelDom BM AP

SVM CNN SVM CNN SVM CNN SVM CNN SVM CNN SVM CNN SVM CNN

GloVe 63.6 - 42.7 - 57.1 - 48.6 - 41.9 - 59.4 - 60.7 -
Skip-Gram 61.3 - 50.2 - 64.7 - 55.9 - 49.3 - 60.3 - 61.7 -
Word2Sense 52.3 - 50.3 - 69.2 - 43.9 - 32 - 63.8 - 62.1 -
SynGCN 56.5 - 50.9 - 71.4 - 42.3 - 34.2 - 76.2 - 75.6 -
Numberbatch 63.5 - 57.8 - 71.1 - 63.4 - 41.5 - 80.7 - 82.3
MirrorBERT 63.3 - 51.6 - 69.8 - 59.1 - 50.3 - 79.2 - 82.8 -

MirrorWiC 64.2 67.6 52.7 60.1 70.6 79.3 59.1 63.4 50.4 56.2 80.1 81.6 81.4 82.6
No-Mask 55.9 57.3 45.6 46.8 67.5 68.2 50.9 51.8 40.3 42.4 67.2 68.4 62.5 64.1
Mask 62.8 66.8 44.8 47.2 57.8 59.3 56.5 57.3 49.3 51.1 78.6 80.1 79.3 81.9
Mask + filtering 64.1 67.7 51.4 54.3 73.5 75.4 58.5 61.3 50.9 53.6 79.6 82.6 81.9 82.3

ConProj 66.6 69.3 53.6 61.4 75.5 81.1 63.2 65.8 54.7 58.4 80.6 82.7 82.9 83.8
ConFT 67.4 69.8 55.7 63.6 76.9 82.4 65.7 67.2 55.8 59.6 81.1 82.9 83.3 84.2
ConCN 68.3 70.9 56.2 65.1 77.5 83.8 67.1 69.4 57.3 61.7 81.8 83.6 84.1 85.3
ConProj + filt. 70.1 73.2 56.3 68.8 78.8 83.7 65.2 68.6 59.1 63.9 81.2 83.3 83.4 84.6
ConFT + filt. 71.9 74.4 57.3 69.3 78.5 86.2 67.1 69.3 60.7 64.8 82.1 83.8 84.1 85.1
ConCN + filt. 73.7 75.2 59.4 71.8 81.1 87.5 68.9 70.8 62.5 67.1 83.2 84.7 84.7 85.9

{(s′, c′) | ((s, c), (s′, c′)) ∈ Pos ∩ (B × B)} be the set of positive examples for (s, c) in the mini-batch. The
loss is as follows: ∑

(s,c)∈B

−1

|X(s,c)|
∑

(s′,c′)∈X(s,c)

log
ecos(Aϕ(s,c),Aϕ(s

′,c′))/τ∑
(s′′,c′′) e

cos(Aϕ(s,c),Aϕ(s′′,c′′))/τ

where the summation in the denominator ranges over (s′′, c′′) ∈ B \ {(s, c)}, and the temperature τ > 0 is a
hyperparameter.

4.2.2 Fine-Tuning BERT

We now consider a variant in which the contrastive loss is used to fine-tune a BERT encoder. This should
allow us to learn more informative mention vectors, but at a higher computational cost. Let us write ψ(s, c)
for the encoding of sentence-concept pair (s, c) according to the fine-tuned BERT encoder (to distinguish
it from ϕ, which uses the pre-trained language model). Let B and X(s,c) be defined as before. We use the
following loss:

∑
(s,c)∈B

−1

|X(s,c)|
∑

(s′,c′)∈X(s,c)

log
ecos(ψ(s,c),ψ(s

′,c′))/τ∑
(s′′,c′′) e

cos(ψ(s,c),ψ(s′′,c′′))/τ

where the summation in the denominator ranges over (s′′, c′′) ∈ B \ {(s, c)}, as before, and τ > 0 is again a
hyperparameter.

5 Experiments
We present an evaluation of our proposed strategies2. We will in particular focus on the following variants:

2Datasets and code at https://github.com/lina-luck/semantic_concept_embeddings.
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ConProj uses the projection method for fine-tuning and the neighbourhood structure for obtaining positive
examples.

ConFT fine-tunes the BERT encoder and uses the neighbourhood structure for obtaining positive examples.

ConCN fine-tunes the BERT encoder and uses the distant supervision strategy based on Conceptnet for
obtaining positive examples.

By comparing these variants we are particularly interested in answering the following two research questions:
(i) is learning a linear projection sufficient or do we need to fine-tune the language model, and (ii) how ef-
fective are the two proposed strategies for obtaining weakly labelled positive examples. The primary focus
of our experiments is on word classification (Section 5.1), as these allow us to directly evaluate the extent to
which our embeddings capture different kinds of semantic properties. This is motivated by the observation
that this is precisely what matters in most applications where static concept embeddings are still needed. For
instance, tasks such as ontology completion or zero-shot learning directly use concept embeddings to link
concepts to their semantic properties. We also evaluate the quality of the clusters that arise from our embed-
dings (Section 5.2). To verify that the concept embeddings are indeed useful in downstream applications, we
present an evaluation on the downstream task of ontology completion (Section 5.3). We conclude with an
analysis of the main results (Section 5.4).

Baselines We compare our embeddings with Skip-gram Mikolov et al. [2013] and GloVe Pennington et al.
[2014], as representative examples of traditional word embeddings3, and with SynGCN4 Vashishth et al.
[2019] and Word2Sense5 Panigrahi et al. [2019], as examples of more recent static word embeddings. We
furthermore compare with the Numberbatch6 embeddings from Speer et al. [2017], as these were also fine-
tuned based on ConceptNet. Beyond traditional word embeddings, we compare with the method from Li
et al. [2021], as we use their mention vectors as our starting point. We include two variants: one version
where all mention vectors are averaged (Mask) and one version where their filtering strategy is applied first
(Mask+filtering). In addition, we consider a variant in which mention vectors are obtained without masking
the target concept (No-Mask). In this case, for words that consist of more than one token, the contextualised
token representations are averaged. Rather than taking the final layer representation, which has been found to
be sub-optimal Vulić et al. [2020], in this case, we select the optimal layer based on a validation split. Finally,
we include results for MirrorBERT7 Liu et al. [2021a] and MirrorWiC8 Liu et al. [2021b], both of which also
use a contrastively fine-tuned BERT model.

Training Details To obtain mention vectors, for each concept, we randomly sample up to 500 sentences
mentioning that concept from Wikipedia. We use the same sentences for our methods, for the baseline
methods from Li et al. [2021] and for MirrorWiC. Unless specified otherwise, we use BERT-large-uncased
as the pre-trained language model. The learning rate for our models was set to 2e-4, with cosine warm-up
for the first 2 epochs. We use early stopping with a patience of 10 and a minimum difference of 1e-10. We
used the AdamW optimizer. We set the temperature parameter in the contrastive loss to 0.05 and the number
of neighbours k for evaluating the compatibility degree to 5. The threshold θ on compatibility degrees to be
considered a positive example was set to 0.5. For implementing the contrastive loss, we relied on the Pytorch

3We used the Skip-gram embeddings trained on Google News (https://code.google.com/archive/p/word2vec/) and
Glove embeddings trained on Common Crawl (https://nlp.stanford.edu/projects/glove/).

4https://drive.google.com/file/d/1wYgdyjIBC6nIC-bX29kByA0GwnUSR9Hh/view
5https://drive.google.com/file/d/1kqxQm129RVfanlnEsJnyYjygsFhA3wH3/view
6https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-en-19.08.

txt.gz
7https://huggingface.co/cambridgeltl/mirror-bert-base-uncased-word
8https://huggingface.co/cambridgeltl/mirrorwic-bert-base-uncased

9

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://drive.google.com/file/d/1wYgdyjIBC6nIC-bX29kByA0GwnUSR9Hh/view
https://drive.google.com/file/d/1kqxQm129RVfanlnEsJnyYjygsFhA3wH3/view
https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-en-19.08.txt.gz
https://conceptnet.s3.amazonaws.com/downloads/2019/numberbatch/numberbatch-en-19.08.txt.gz
https://huggingface.co/cambridgeltl/mirror-bert-base-uncased-word
https://huggingface.co/cambridgeltl/mirrorwic-bert-base-uncased


Metric Learning library9. Based on the values reported by Li et al. [2021], we set the number of neighbours
for the filtering strategy to 50 for X-McRae, WNSS and BabelDomains, and 5 for CSLB, Morrow, BM and
AP. The dimension m of the transformed vectors, for the projection-based fine-tuning method, is 256. For
ConProj, we obtain the sentence-concept pairs for a given mini-batch by sampling 1024 such pairs from the
set Pos. For ConFT, we proceed similarly, but limit the number of pairs to 512 due to memory constraints.
For ConCN, the set of sentence-concept pairs for a given mini-batch is obtained by repeatedly (i) sampling a
property p and (ii) sampling 50 sentences from S(p).

5.1 Word Classification
We consider a number of benchmarks which involve predicting whether a given concept belongs to some
class, where the classes of interest correspond to different kinds of semantic properties, namely commonsense
properties (e.g. being made of wood), taxonomic categories (e.g. being an animal) and thematic domains (e.g.
related to music). We evaluate the extent to which these classes can be predicted from different kinds of
concept embeddings. We have included the five benchmarks that were used by Li et al. [2021]:

• the extension of the McRae feature norms McRae et al. [2005] that was introduced by Forbes et al.
[2019] (X-McRae10), covering 513 words and 50 classes (being commonsense properties);

• CSLB Concept Property Norms11, with 635 words and 395 classes (being commonsense properties);

• the Morrow dataset Morrow and Duffy [2005], covering 888 words and 13 classes (being broad taxo-
nomic categories such as animals);

• WordNet supersenses12 (WNSS), with 18200 words and 25 classes (being broad taxonomic categories);

• BabelDomains13 Camacho-Collados and Navigli [2017], covering 12477 words and 28 classes (being
thematic domains).

For these datasets, we use the same training-tuning-test splits as Li et al. [2021]14. We also include two
additional benchmarks15:

• the Battig and Montague norms Battig and Montague [1969], with 5321 words and 56 classes (being
fine-grained taxonomic categories such as weapon or unit of time);

• the dataset from Almuhareb and Poesio [2005], with 402 words and 21 classes (being WordNet hyper-
nyms).

For both datasets, we randomly split the positive examples, for each category, into 60% for training, 20% for
tuning and 20% for testing. As these datasets only specify positive examples, for each concept, we generate
5 negative examples by randomly selecting categories to which the concept does not belong to.

9https://kevinmusgrave.github.io/pytorch-metric-learning/
10https://github.com/mbforbes/physical-commonsense
11https://cslb.psychol.cam.ac.uk/propnorms
12https://wordnet.princeton.edu/download
13http://lcl.uniroma1.it/babeldomains/
14It should be noted that the annotations in CSLB are not complete, i.e. some properties which are not asserted to hold for a given con-

cept are nonetheless valid Misra et al. [2022]. This means that care is needed when drawing conclusions from the absolute performance
of models on this dataset. As we are mostly interested in the relative performance of different embeddings in this paper, this should not
affect the analysis.

15We used the versions available at https://github.com/vecto-ai/word-benchmarks.
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Methodology For each class, we train a linear SVM to classify concepts based on their embedding. We
report the results in terms of F1 score, macro-averaged across all classes from a given benchmark. We
furthermore experiment with a simple Convolutional Neural Network (CNN), which takes the individual
mention vectors as input, rather than their average. In particular, each mention vector is first fed through a
dense layer and the resulting vectors are aggregated using max-pooling. This aggregated vector is then fed
to a classification layer. For the SVM, we used the standard scikit-learn implementation. The C parameter
is tuned from {0.1, 1, 10, 100}. For the CNN model, we have used the standard PyTorch implementation,
setting the kernel size and stride to 1. We used 64 filters with ReLU activation, a batch size of 32 and a
learning rate of 1e-3. The CNN is trained with binary cross-entropy, using Adam.

Results The results are summarised in Table 1. A number of clear observations can be made. First, all
three of the proposed methods (ConProj, ConFT, ConCN) outperform the baselines16. The main exception
is CSLB, where Numerbatch outperforms all SVM-based models apart from ConCN with filtering. Among
our proposed methods, ConCN performs best, showing the effectiveness of the ConceptNet-based distant
supervision strategy, while ConFT outperforms ConProj, as expected. As a second observation, the filtering
strategy from Li et al. [2021] is highly effective, offering improvements that are complementary to those of
our proposed methods. Third, the CNN consistently outperforms the SVM model, with the margin being
particularly large for CSLB.

5.2 Clustering
The BM Battig and Montague [1969] and AP Almuhareb and Poesio [2005] datasets, which we used for
word classification, have also been used as clustering benchmarks in previous work Baroni et al. [2014].
Specifically, the aim is to organise the words from the dataset into semantically meaningful clusters. The
clusters are evaluated using cluster purity, using the categories which are provided in the dataset as the
ground truth. The main aim of this experiment is to analyse the quality of our embeddings in an unsupervised
setting, to test their suitability for tasks such as topic modelling Das et al. [2015], Dieng et al. [2020], Zhao
et al. [2021]. We use k-means to obtain the clusters, choosing k as the number of categories from the
dataset. Since the quality of the clusters is sensitive to the random initialisation of the clusters, we repeat the
experiment 10 times and report the average purity.

The results are shown in Table 2. As can be seen, our method outperforms all baselines. Similar as
for word classification, we can see that ConCN is the best variant and that the filtering strategy consistently
improves the results. Among the baselines, the strong performance of Numberbatch is also notable.

5.3 Ontology Completion
An ontology can be viewed as a set of rules. A simple rule takes the following form:

A1(x) ∧ ...An(x) → B(x)

It expresses the knowledge that whenever some entity x belongs to the concepts A1, ..., An then it also be-
longs to the concept B. In general, rules may also contain constructs of the form ∃y R(x, y) ∧ A(y), which
expresses that x is related, via relationR, to some instance ofA. The key principle underpinning the ontology
completion benchmarks from Li et al. [2019] is that real-world ontologies often contain sets of closely related
rules, which only differ in a single concept. Consider, for instance, an ontology containing the following rules:

16Note that MirrorBERT and MirrorWiC use BERT-base, whereas our models and those from Li et al. [2021] rely on BERT-large.
However, as we will see below, the outperformance of our model remains after changing the encoder to BERT-base. We use BERT-large
for the main experiments, as the methods from Li et al. [2021], which are our primary baselines, achieve substantially weaker results for
BERT-base.
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Table 2: Results for clustering and ontology completion using BERT-large-uncased. Clustering results are in terms of
purity (%) while ontology completion results are in terms of F1 (%).

Clustering Ontology Completion

BM AP Wine Econ Olym Tran SUMO

Glove 57.3 44.9 14.2 14.1 9.9 8.3 34.9
Skip-Gram 46.7 32.4 13.8 13.5 8.3 7.2 33.4
Word2Sense 25.5 16.6 13.4 13.2 8.1 7.2 33.1
SynGCN 56.9 39.2 13.9 13.8 9.4 8.1 33.9
Numberbatch 73.8 53.3 25.6 26.2 26.8 16.0 47.3
MirrorBERT 62.4 51.4 22.5 23.8 20.9 12.7 40.1
MirrorWiC 64.6 52.5 24.7 24.9 22.1 13.9 46.9
Mask + filt. 61.3 48.2 24.5 24.3 22.9 13.0 46.4

ConProj 75.8 54.2 26.9 27.3 25.6 15.9 48.2
ConFT 76.1 56.9 27.5 29.2 26.5 17.4 48.6
ConCN 76.9 57.2 29.1 31.3 27.6 19.7 50.4
ConProj + filt. 76.3 54.9 27.2 28.6 26.2 17.1 49.3
ConFT + filt. 76.8 57.3 28.7 30.3 28.2 19.1 50.3
ConCN + filt. 77.4 57.9 31.3 32.4 29.7 20.9 52.6

AppleJuice(x) ∧ Small(x) → SuitableForKids(x)

PineappleJuice(x) ∧ Small(x) → SuitableForKids(x)

MangoJuice(x) ∧ Small(x) → SuitableForKids(x)

For instance, the first rule intuitively captures the knowledge that a small portion of apple juice is suitable for
kids to drink. From these rules, we may infer that the following rule should also be considered valid within
the context of this ontology, even if it is not actually provided:

OrangeJuice(x) ∧ Small(x) → SuitableForKids(x)

The underlying principle is that orange juice satisfies all the properties that are common to apple juice,
pineapple juice and mango juice. To infer such plausible rules, we often need to combine prior knowledge
about the meaning of the concepts (e.g. that orange juice has similar properties to apple juice and pineapple
juice) with the knowledge that is inferred from the structure of the ontology itself (e.g. to deal with concepts
whose name is not descriptive). To this end, Li et al. [2019] introduced a graph neural network, in which
the nodes correspond to concepts. Concepts that co-occur in the same rule are connected with an edge.
The input representation of each node is a pre-trained concept embedding, which was taken to be the skip-
gram embedding of the concept name in Li et al. [2019]. Ontology completion has a number of practical
applications. For instance, apart from suggesting plausible missing knowledge to ontology engineers, the
ability to predict plausible rules also plays an important role in ontology alignment He et al. [2022].

Following, Li et al. [2021], we use ontology completion benchmarks for evaluating the quality of different
types of concept embeddings, using the same methodology. In particular, we first tokenise concept names,
based on the common naming conventions in ontologies. For instance, the concept PastaWithWhiteSauce
becomes “pasta with white sauce”. If the resulting concept name does not appear in Wikipedia, we never
predict this concept as a positive example. We use the same hyperparameters and training-test splits as Li
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Table 3: Comparison of different language models and strategies for selecting positive examples, for X-McRae, in terms
of F1 (%). Results are for BERT-base-uncased (BB), BERT-large-uncased (BL), RoBERTa-base (RB) and RoBERTa-
large (RL).

BB BL RB RL

SVM CNN SVM CNN SVM CNN SVM CNN

No-Mask 49.6 51.2 55.9 57.3 50.4 52.4 53.5 57.2
Mask 53.6 57.2 62.8 66.8 52.1 54.6 63.9 67.1
Mask + filtering 58.2 60.3 64.1 67.7 59.5 61.8 64.8 68.1

ConProj 64.3 67.6 66.6 69.3 64.9 67.9 67.2 69.8
ConFT 65.2 68.1 67.4 69.8 65.3 68.2 67.4 70.1
ConCN 66.4 69.5 68.3 70.9 67.2 70.0 69.6 71.3
ConProj + filt. 66.3 68.3 70.1 73.2 67.7 69.4 70.5 73.9
ConFT + filt. 67.0 70.1 71.9 74.4 68.2 71.6 71.3 73.5
ConCN + filt. 68.3 72.5 73.7 75.2 69.1 73.3 73.9 75.8

W-ConProj 61.2 65.9 64.9 68.7 62.1 66.2 65.9 69.2
W-ConProj + filt. 63.8 67.3 68.6 71.9 64.5 69.2 70.1 73.6

Table 4: The table shows pairs of sentences whose mention vectors are similar when using the model fine-tuned with the
ConCN strategy while being dissimilar when using pre-trained BERT model.

Similar after fine-tuning but not for pre-trained model

The second floor of the facade was originally designed to be a private Dis-
ney family apartment.

It would also allow the RTC to buy new curtains and wall coverings, and to
restore the building’s exterior.

A vinaigrette can be made with black garlic, sherry vinegar, soy, a neutral
oil, and Dijon mustard.

... in flood situations where normal foods are out of reach black swans will
feed on pasture plants on shore.

... raising the value of the Icelandic crown in 1925, very much as Winston
Churchill raised the value of the pound ...

There are further plans to reintroduce the South African cheetahs to the
Lower Zambezi.

et al. [2019], and use their evaluation scripts17. The benchmark includes five different ontologies. First, the
SUMO ontology was included as a prototypical example of a large open-domain ontology. The other four are
well-known domain-specific ontologies: Wine, Economy, Olympics and Transport18.

The results for ontology completion in Table 2 are broadly in line with those from the word classification
and clustering experiments. Note in particular how the performance of ConCN + filt, our best-performing
variant, is substantially higher than that of Numberbatch, MirrorBERT, MirrorWiC and Mask + filt, which in
turn substantially outperform the remaining baselines. Overall, these results clearly show that high-quality
concept embeddings can be extracted from language models, which have significant benefits over traditional
word embeddings. For instance, with the exception of SUMO, all our methods achieve F1 scores which
at least double the F1 scores of skip-gram. Moreover, compared to earlier BERT-based methods such as
MirrorBERT, MirrorWiC and Mask, our vectors are more focused on the semantic properties of concepts,
which gives them a clear advantage in this task.

17https://github.com/lina-luck/rosv_ijcai21
18We used the training and test splits from https://github.com/bzdt/GCN-based-Ontology-Completion.
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Table 5: Nearest neighbours, in terms of cosine similarity, for some selected words, using WordNet supersenses vocabu-
lary.

Word Neighbours

N
um

be
rb

at
ch

lemon citron, citrange, limeade, lime, lemonade
deepening broadening, deep, strengthening, deepness, worsening
icon iconology, symbol, iconography, iconoclasm, emblem
stunt trick, aerialist, jugglery, gimmickry, cartwheel
milkman dairyman, milk, creamery, clabber, lacteal
paradox antinomy, contradiction, duality, oxymoron, inconsistency
desk office, copyholder, desktop, bookcase, table
beer ale, brewery, microbrewery, brewpub, keg
steam steamer, steamboat, steamfitter, gasification, boiling
razor razorblade, shaver, blade, scissors, sharpener

M
ir

ro
rB

E
R

T

lemon lemonwood, lemonade, orangeade, limeade, dewberry
deepening deepness, broadening, deep, shallowness, diversification
icon iconoclast, iconography, iconoclasm, iconology, symbol
stunt trick, props, joyride, sabotage, leap
milkman dairyman, milk, alewife, grocer, milkwort
paradox contradiction, ambiguity, perplexity, singularity, unreality
desk office, clerk, bookcase, counter, receptionist
beer ale, liquor, rum, brewpub, brandy
steam steamfitter, boilerplate, turbine, generator, gasification
razor razorblade, blade, scissors, needle, knife

C
on

C
N

+
fil

t.

lemon lime, blueberry, tangerine, cranberry, lemonade
deepening broadening, weakening, mellowing, narrowing, depths
icon button, plaque, emblem, display, iconography
stunt handstand, gimmickry, skydiver, fling, skydiving
milkman cheesemonger, dairyman, barmaid, paperboy, cow
paradox singularity, irony, doublethink, unreality, perplexity
desk counter, sideboard, office, bookcase, drawer
beer mead, ale, vodka, brandy, tequila
steam electricity, furnace, turbine, vent, gasification
razor penknife, tool, scalpel, razorblade, shaver

5.4 Analysis
We now present some additional analysis of our models, focusing primarily on the results for word classifi-
cation.

Outperformance of the CNN The CNN is expected to outperform when the semantic properties we need
to predict are only rarely mentioned in text. Indeed, such properties will only be captured by a small number
of mention vectors, and this information will be largely lost after averaging them. CSLB focuses on com-
monsense properties, many of which are indeed rarely expressed in text Gordon and Durme [2013], which
explains the large outperformance of the CNN model for this benchmark (as well as the comparatively strong
performance of Numberbatch) in Table 1. For instance, the categories for which the difference in F1 score
between the SVM and CNN models is largest, for ConCN+filtering, are as follows: grows on plants, is cool,
has a top, is furry, has green leaves, is for soup, is ridden, is a body part, is found in America, has big eyes,
has arms, has a blade/blades. For X-McRae, the overall differences are smaller, which can be explained by
the fact that several taxonomic properties are included in this dataset as well. However, for many common-
sense properties, we similarly observe large differences in F1 score. The largest differences were observed
for the following X-McRae properties: loud, used for holding things, words on it, eaten in summer, worn for
warmth, flies, used for killing, used for cleaning, worn on feet.
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Figure 2: Histogram of cosine similarities between the embeddings of two randomly sampled concepts, chosen from
those appearing in the X-McRae, for the Mask and ConCN.
This figure shows two histograms, one in blue and one in orange. The blue histogram shows the distribution

of cosine similarities for the ConCN model; the orange histogram shows the distribution of cosine
similarities for the Mask model.

Comparing Language Models Table 3 analyses the impact of changing the language model encoder, show-
ing word classification results for BERT-base-uncased, BERT-large-uncased, RoBERTa-base and RoBERTa-
large Liu et al. [2019], for the SVM model. We can see that BERT-large and RoBERTa-large outperform
the base models, as expected, but the differences for our methods are relatively small. In contrast, for the
No-Mask, Mask and Mask+filtering baselines, switching to the base models is more detrimental. Across all
language models, we find that our proposed methods outperform the baselines.

Importance of the Compatibility Degree For the ConProj and ConFT variants, the set of positive exam-
ples is based on the neighbourhood structure of the mention vectors (see Section 4.1.1). Another possibility
could be to simply assume that sentences mentioning the same word are likely to express the same property.
In other words, we could define the set of positive examples as follows:

Pos = {((s1, c), (s2, c)) | s1, s2 ∈ S, c ∈ V, s1 ̸= s2}

The effectiveness of this alternative strategy is analysed in Table 3, where it is referred to as W-ConProj
(when used in combination with the projection-based contrastive loss). While this alternative strategy also
outperforms the baselines, it consistently underperforms our main neighbourhood-based strategy.

Anisotropy As mentioned in the introduction, one of the reasons for the underperformance of the Mask em-
beddings may be related to the high anisotropy of the BERT mention vectors. Figure 2 shows a histogram of
the cosine similarities between randomly sampled concept embeddings, for the Mask and ConCN strategies.
As can be seen, the cosine similarities are on average lower for ConCN, which shows that this contrastive
learning strategy has indeed led to a reduction in anisotropy.

Qualitative Analysis We now explore how the mention vectors are affected by the proposed fine-tuning
strategy. Specifically, we consider pairs (s1, c1), (s2, c2) where the mention vector for (s2, c2) is among the
top-100 nearest neighbours of the mention vector for (s1, c1) when using ConCN, while not being among the
top-1000 nearest neighbours when using Mask (for the full set of mention vectors M across all words). Table
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4 contains some examples of such sentence pairs. The examples illustrate how fine-tuning allows the model to
identify sentences that express similar properties, even when the sentences themselves are not similar, neither
in syntactic structure nor in their overall meaning. In the first example, both sentences express that the target
concept (which is masked) is some kind of building. Similarly, in the second example, the sentences express
that the target concepts can be black. The third example illustrates a more abstract property, capturing the
fact that country-specific versions of the target concept exist.

Finally, Table 5 shows the nearest neighbours of some selected target words, in terms of cosine similarity,
for three different concept embeddings: Numberbatch, MirrorBERT and ConCN (with filtering). For this
analysis, we considered the vocabulary from the WordNet supersenses dataset. A first observation is that the
neighbours for ConCN are often taxonomically closer. For instance, for MirrorBERT we see lemonwood as
a top neighbour of lemon, which is topically related but not taxonomically close. Similarly, for both Num-
berbatch and MirrorBERT we see milk as the second nearest neighbour of milkman. As another difference,
for ConCN we can see neighbours which involve some abstraction. For instance, a button has a similar role
as an icon in graphical user interfaces. Another notable example is cow as a neighbour of milkman, which
are both related to the production/delivery of milk. However, this notion of abstraction sometimes also leads
to sub-optimal neighbours. For instance, contradiction is shown as one of the top neighbours of paradox for
both Numberbatch and MirrorBERT but does not appear as a neighbour for ConCN.

6 Conclusions
We have proposed a method for learning concept embeddings, based on contextualised representations of
masked mentions of concepts in a text corpus. Our focus was on improving the contextualised representations
that can be obtained from a pre-trained BERT model, using a number of strategies based on contrastive
learning. The aim of these strategies is to ensure that two contextualised word embeddings are similar if and
only if the corresponding sentences express similar properties. To implement this idea, we need examples
of sentences that are likely to express the same property. We have proposed two methods for obtaining
such examples: an unsupervised method which relies on the neighbourhood structure of contextualised word
vectors, and a distantly supervised method which relies on ConceptNet. In our experimental results, we found
the latter method to perform best. Our proposed strategy was also found to outperform a range of baselines,
both in word classification experiments and for the task of ontology completion.

Acknowledgment
This work was supported by ANR-22-CE23-0002 ERIANA and EPSRC grant EP/V025961/1. Na Li is
supported by Shanghai Big Data Management System Engineering Research Center Open Funding.

References
I. Alghanmi, L. Espinosa Anke, and S. Schockaert. Combining BERT with static word embeddings for

categorizing social media. In Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT
2020), pages 28–33, Online, Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.wnut-1.5. URL https://aclanthology.org/2020.wnut-1.5.

A. Almuhareb and M. Poesio. Concept learning and categorization from the web. In Proceedings of the
Annual Meeting of the Cognitive Science Society, volume 27, 2005.

16

https://aclanthology.org/2020.wnut-1.5


M. Baroni, G. Dinu, and G. Kruszewski. Don’t count, predict! a systematic comparison of context-
counting vs. context-predicting semantic vectors. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 238–247, Baltimore, Mary-
land, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/P14-1023. URL https:
//aclanthology.org/P14-1023.

W. F. Battig and W. E. Montague. Category norms of verbal items in 56 categories: A replication and
extension of the connecticut category norms. Journal of Experimental Psychology, 80:1–46, 1969.

S. Bhakthavatsalam, C. Anastasiades, and P. Clark. GenericsKB: A knowledge base of generic statements.
CoRR, abs/2005.00660, 2020.

R. Bommasani, K. Davis, and C. Cardie. Interpreting Pretrained Contextualized Representations via Reduc-
tions to Static Embeddings. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4758–4781, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.431. URL https://aclanthology.org/2020.acl-main.431.

J. Camacho-Collados and R. Navigli. BabelDomains: Large-scale domain labeling of lexical resources. In
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguis-
tics: Volume 2, Short Papers, pages 223–228, Valencia, Spain, Apr. 2017. Association for Computational
Linguistics. URL https://aclanthology.org/E17-2036.
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