Na Li
email: li_na@usst.edu.cn

Zied Bouraoui
email: bouraoui@cril.fr

Steven Schockaert
email: schockaerts1@cardiff.ac.uk

Ultra-Fine Entity Typing with Prior Knowledge about Labels: A Simple Clustering Based Strategy

Ultra-fine entity typing (UFET) is the task of inferring the semantic types, from a large set of fine-grained candidates, that apply to a given entity mention. This task is especially challenging because we only have a small number of training examples for many of the types, even with distant supervision strategies. Stateof-the-art models, therefore, have to rely on prior knowledge about the type labels in some way. In this paper, we show that the performance of existing methods can be improved using a simple technique: we use pre-trained label embeddings to cluster the labels into semantic domains and then treat these domains as additional types. We show that this strategy consistently leads to improved results, as long as high-quality label embeddings are used. We furthermore use the label clusters as part of a simple post-processing technique, which results in further performance gains. Both strategies treat the UFET model as a black box and can thus straightforwardly be used to improve a wide range of existing models. 1

Introduction

Entity typing is the task of inferring the semantic type(s) of an entity that is mentioned in some sentence. While only a few coarse types were traditionally considered, such as person and organisation, the focus has shifted to increasingly finergrained types. Consider the following example:2 "The company said its production upgrades would also have a "short-term impact" on the delivery of vaccines to the UK". From this sentence, we cannot only infer that "the company" refers to an organisation but also that it refers to a pharmaceutical company. To allow for more informative predictions, [START_REF] Ling | Fine-grained entity recognition[END_REF] proposed the task of fine-grained entity typing. However, the 122 entity types that were considered in their work are still too coarse for many applications. For instance, the most specific type from their taxonomy that applies to the example above is company. A further refinement of entity types was proposed by [START_REF] Choi | Ultra-fine entity typing[END_REF], who considered a total of 10, 331 semantic types and introduced the term ultra-fine entity typing (UFET). For instance, the ultra-fine type pharmaceutical is available for the above example.

UFET is essentially a multi-label text classification problem. The main challenge stems from the fact that we only have a few labelled training examples for most of the semantic types, and sometimes even none at all. The solution proposed by [START_REF] Choi | Ultra-fine entity typing[END_REF] is based on two distant supervision strategies. Their first strategy is to use mentions that link to a Wikipedia page and use the definition on that page to infer semantic types. Their second strategy relies on nominal expressions which include their semantic type as a head word (e.g. president Joe Biden). More recent work has improved on these strategies using denoising techniques [START_REF] Onoe | Learning to denoise distantly-labeled data for entity typing[END_REF][START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF].

Even with distant supervision, the number of training examples remains prohibitively small for many types. State-of-the-art methods, therefore rely on prior knowledge about the labels themselves. For instance, [START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF] use the representation of the labels in the decoder of BERT to initialise the weights of the label classifiers, while [START_REF] Huang | Unified semantic typing with meaningful label inference[END_REF] use a fine-tuned BERT [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] model to map type labels onto prototypes. However, the token embeddings from BERT are known to be sub-optimal as pre-trained representations of word meaning [START_REF] Bommasani | Interpreting Pretrained Contextualized Representations via Reductions to Static Embeddings[END_REF], whereas fine-tuning a BERT encoder may lead to overfitting. In this paper, we therefore pursue a different strategy to inject prior knowledge about the labels into UFET models. We use pretrained embeddings to cluster the labels into groups, which we call domains. Rather than changing the UFET model itself, we simply treat these domains as additional semantic types. In other words, given a training example with labels l 1 , ..., l n , we now also add the synthetic labels c 1 , ..., c n , where c i is the cluster to which l i belongs. This strategy has the advantage that arbitrary label embeddings can be used and that the UFET model itself does not need to be modified. Despite its simplicity, we find this strategy to perform remarkably well, provided that high-quality label embeddings are used. The best results are obtained with recent BERTbased strategies for learning word vectors [START_REF] Li | Distilling semantic concept embeddings from contrastively fine-tuned language models[END_REF]. In contrast, the representations from classical word embedding models [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF][START_REF] Pennington | GloVe: Global vectors for word representation[END_REF] are too noisy to have a positive impact, with ConceptNet Numberbatch [START_REF] Speer | Conceptnet 5.5: An open multilingual graph of general knowledge[END_REF] being a notable exception.

Apart from using pre-trained label embeddings, another line of work has focused on modelling label correlations [START_REF] Jiang | Modeling label correlations for ultra-fine entity typing with neural pairwise conditional random field[END_REF]. Essentially, the idea is to train a probabilistic model on top of the predictions of a base UFET classifier. While meaningful improvements are possible in this way, the extent to which label correlations can be learned is inherently limited due to the sparsity of the training data. As an alternative, we focus on two simple strategies to improve the predictions of the base UFET model. Both strategies directly rely on prior knowledge about the labels and are thus well-suited for labels that are rare in the training set. The first strategy is aimed at inferring missing labels: if the domain label c i is predicted but none of the labels that belong to that domain, we add the most likely label from c i to the predicted set. The second strategy is aimed at removing conflicting labels: if an entity is predicted to have multiple labels from the same cluster, then we use a pre-trained classifier to check whether these labels are mutually inconsistent, and if so, we remove the labels with the lowest confidence degree.

The contributions of this paper can be summarised as follows. We use pre-trained label embeddings to group the given set of type labels into semantic domains. These domains are then used to improve a base UFET model in different ways:

• By adding the domains as synthetic labels to

the training examples (Section 4), the UFET model is exposed to the knowledge that these labels have something in common.

• After the UFET model is trained, we can use the domains to post-process its predictions (Section 5). In this way, we can infer missing labels or remove conflicting labels.

Related Work

Ultra-Fine Entity Typing Methods for ultrafine entity typing typically rely on training sets that are automatically constructed from Wikipedia links [START_REF] Ling | Fine-grained entity recognition[END_REF][START_REF] Choi | Ultra-fine entity typing[END_REF]. As a different strategy, [START_REF] Dai | Ultra-fine entity typing with weak supervision from a masked language model[END_REF] extract weakly labelled examples from a masked language model, using Hearst-like patterns [START_REF] Hearst | Automatic acquisition of hyponyms from large text corpora[END_REF] to rephrase the original sentence. For instance, the sentence "In late 2015, Leonardo DiCaprio starred in The Revenant" is transformed into "In late 2015, [MASK] such as Leonardo DiCaprio starred in The Revenant". The predictions of the language model for the [MASK] token are then used as weak labels for the target entity. Yet another possibility, considered by [START_REF] Li | Ultra-fine entity typing with indirect supervision from natural language inference[END_REF], relies on transfer learning. Specifically, they use a pre-trained Natural Language Inference (NLI) model, where the original sentence is used as the premise, and the hypothesis is a sentence expressing that the target entity has a given type. While their approach achieves strong results, they have to run the NLI model for every possible type, which is prohibitively expensive for ultra-fine entity typing.

Label Dependencies In fine-grained entity typing, there are usually various dependencies between the labels. For instance, in the case of FIGER [START_REF] Ling | Fine-grained entity recognition[END_REF] and OntoNotes [START_REF] Gillick | Contextdependent fine-grained entity type tagging[END_REF], the labels are organised into a tree, which models can exploit [START_REF] Ren | AFET: Automatic finegrained entity typing by hierarchical partial-label embedding[END_REF][START_REF] Shimaoka | Neural architectures for finegrained entity type classification[END_REF][START_REF] Xu | Neural finegrained entity type classification with hierarchyaware loss[END_REF][START_REF] Murty | Hierarchical losses and new resources for fine-grained entity typing and linking[END_REF][START_REF] Chen | Hierarchical entity typing via multi-level learning to rank[END_REF]. In the case of UFET, however, the label set is essentially flat [START_REF] Choi | Ultra-fine entity typing[END_REF] Label Embeddings Recent UFET models typically rely on some kind of prior knowledge about the labels. As already mentioned, [START_REF] Xiong | Imposing label-relational inductive bias for extremely fine-grained entity typing[END_REF] rely on GloVe embeddings to construct a label graph. [START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF] initialise the scoring function for each label based on that label's representation in the decoder of the language model (see Section 3). Rather than using pre-trained embeddings, [START_REF] Huang | Unified semantic typing with meaningful label inference[END_REF] encode the labels using a language model, which is fine-tuned together with the entity mention encoder. A similar approach was used by [START_REF] Ma | Label semantics for few shot named entity recognition[END_REF] in the context of few-shot entity typing. In these approaches, the label embeddings are directly used as label prototypes for the classification model, which could make it harder to distinguish between similar but mutually exclusive labels. In a broader context, label embeddings have also been used for few-shot text [START_REF] Hou | Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network[END_REF][START_REF] Halder | Task-aware representation of sentences for generic text classification[END_REF][START_REF] Luo | Don't miss the labels: Label-semantic augmented meta-learner for few-shot text classification[END_REF] and image [START_REF] Xing | Adaptive cross-modal few-shot learning[END_REF][START_REF] Yan | Aligning visual prototypes with BERT embeddings for few-shot learning[END_REF][START_REF] Yan | Inferring prototypes for multi-label few-shot image classification with word vector guided attention[END_REF] classification. Clusters of label embeddings have been used in the context of extreme multi-label text classification [START_REF] Prabhu | Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising[END_REF][START_REF] Chang | Taming pretrained transformers for extreme multi-label text classification[END_REF][START_REF] Jiang | Lightxml: Transformer with dynamic negative sampling for high-performance extreme multi-label text classification[END_REF]. However, in this setting, clusters are used to make the problem tractable, rather than being a strategy for injecting prior knowledge.

The representation of each label is typically derived from the sparse features of the documents that label, and the focus is on learning balanced clusters.

Problem Setting

In ultra-fine entity typing, the input consists of a sentence in which a particular entity mention is highlighted. The aim is to assign all the semantic types that apply to that entity, given a large set L of around 10,000 possible types [START_REF] Choi | Ultra-fine entity typing[END_REF]. This task can be treated as a standard multilabel classification problem. In particular, let ϕ be an encoder which maps an input sentence s with entity mention m to a corresponding embedding ϕ(s, m) ∈ R n . Together with the encoder ϕ, we also learn a scoring function f l : R n → [0, 1] for each label l ∈ L. The probability that label l applies to the entity mentioned in the input is then estimated as f l (ϕ(s, m)). As a representative recent approach, we consider the DenoiseFET model from [START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF], which uses a BERT encoder with the following input:

s [P 1] m [P 2][P 3][MASK]
Here s is the input sentence, m is the span corresponding to the entity mention, and [P 1], [P 2], [P 3] are trainable tokens. These trainable tokens intuitively allow the model to learn a soft prompt, and were found to improve performance by [START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF]. The encoding ϕ(s, m) is then taken to be the embedding of [MASK] in the final layer of the BERT model. The scoring functions f l take the form f l (x) = σ(x • y l + b l), where σ is the sigmoid function, y l ∈ R n corresponds to a prototype of label l and b l ∈ R is a bias term. The parameters y l and b l are initialised according to the corresponding weights in the decoder of the masked language model (where the average across all tokens is used if l consists of several tokens).

Adding Domain Labels

We now describe our main strategy for improving UFET models based on pre-trained label embeddings. Broadly speaking, the label embeddings provide us with prior knowledge about which labels are similar. Crucially, however, the fact that two labels have similar embeddings does not necessarily mean that the occurrence of these labels is positively correlated. Labels can be similar because they denote categories with similar meanings (e.g. student and learner), but similar labels can also denote mutually exclusive categories from the same domain (e.g. student and teacher, or ambulance and fire truck). For this reason, we do not require that the scoring functions (or prototypes) for similar labels should always be similar. Instead, we propose a strategy based on clusters of labels.

We use an off-the-shelf clustering method to cluster labels based on their pre-trained embedding. Each cluster intuitively represents a domain. We associate a synthetic label with each of the domains and add these synthetic labels to the training examples. For instance, consider the following cluster:

L i = {fire truck,

Post-processing Predictions

Domains can also be used for improving the predictions of an UFET model post hoc. We focus on two simple strategies that exclusively rely on prior knowledge about the label dependencies. In particular, we do not attempt to learn about label dependencies from the training data. We assume that dependencies between frequent labels are already modelled by the base UFET model, whereas for rare labels, relying on the training data may lead to overfitting. This also has the advantage that we can continue to treat the base UFET model as a black box. We only require that the base UFET model can provide us with a confidence score conf(l; s, m) for any label l ∈ L and input (s, m).

Inferring Missing Labels

The use of domain labels allows us to improve the predictions of the model through a simple postprocessing heuristic. Let L 1 , ..., L k be the different domains, and let us write c i for the synthetic domain label that was introduced to describe cluster L i . If c i is predicted for a given input (s, m), then it seems reasonable to assume that we should also predict at least one label from L i . Indeed, the meaning of c i was precisely that one of the labels from L i applies. If c i is predicted but none of the labels from L i , we therefore add the label l from L i with the highest confidence score conf(l; s, m) to the set of predicted labels. For instance, consider again the cluster L i from (1). If c i is predicted but none of the labels in L i , then this intuitively means that the model believes the entity is an emergency vehicle, but it has insufficient confidence in any of the individual types in L i . However, its confidence in ambulance may still be higher than its confidence in the other options, in which case we add ambulance to the set of predicted labels. Note that this is clearly a recall-oriented strategy.

Identifying Conceptual Neighbourhood

As we already discussed, the labels in a given cluster often correspond to mutually exclusive categories from the same domain. We will refer to such labels as conceptual neighbours. 4 For instance, the same entity cannot be both an ambulance and a police car, even though these entity types are similar. Now suppose we have prior knowledge about which labels are conceptual neighbours. We can then implement a straightforward post-processing method: if the model predicts a label set which contains two conceptual neighbours, we should only keep one of them. In such a case, we simply discard the label in which the model was least confident. We now discuss how knowledge about conceptual neighbourhood can be learned. [START_REF] Bouraoui | Modelling semantic categories using conceptual neighborhood[END_REF] proposed a method for predicting whether two BabelNet [START_REF] Navigli | Ba-belNet: Building a very large multilingual semantic network[END_REF] concepts are conceptual neighbours. Their method can only be used for concepts whose instances are named entities (for which we have a pre-trained embedding). Hence we cannot use their strategy directly. However, using their method, we obtained a list of 5521 positive examples (i.e. concept pairs from BabelNet which are believed to be conceptual neighbours) and 2318 negative examples. We then trained a classifier to detect conceptual neighbourhood. We started from a Natural Language Inference (NLI) model that was pre-trained on the WANLI dataset [START_REF] Liu | WANLI: worker and AI collaboration for natural language inference dataset creation[END_REF], initialised from RoBERTa-large [START_REF] Liu | Roberta: A robustly optimized BERT pretraining approach[END_REF], and we finetuned this model using the training examples from BabelNet. Specifically, for a concept pair (l 1 , l 2) we use "The category is l 1 " as the premise and "The category is l 2 " as the hypothesis. We train the model to predict contradiction for positive examples and neutral for negative examples (as l 1 and l 2 are always co-hyponyms in the training examples).

To test the effectiveness of the conceptual neighbourhood classifier, we carried out an experiment where 20% of the BabelNet training data was held out. After training the Conceptual Neighbourhood classifier on the remaining 80% of the training data, we achieved an accuracy of 97.2% on the held-out fragment, suggesting that the considered strategy is indeed highly effective.

Once the NLI model is fine-tuned, we use it to identify conceptual neighbourhood among the labels in L. To this end, we test every pair of labels from the same domain. The label pairs that are classified as positive examples are then used for implementing the considered post-processing strategy. Note that this is a precision-oriented strategy.

Experimental Results

We evaluate our approach on the ultra-fine entity typing (UFET) benchmark from [START_REF] Choi | Ultra-fine entity typing[END_REF]. Although we expect our strategies to be most effective for ultra-fine entity types, we also carry out an evaluation on two standard fine-grained entity typing benchmarks: OntoNotes5 [START_REF] Gillick | Contextdependent fine-grained entity type tagging[END_REF] and FIGER6 (Ling and Weld, 2012).

Experimental Set-up

Pre-trained Label Embeddings We consider several pre-trained label embeddings. First, we include a number of standard word embedding models: Skip-gram7 [START_REF] Mikolov | Linguistic regularities in continuous space word representations[END_REF], GloVe (Pennington et al., 2014)8 , SynGCN [START_REF] Vashishth | Incorporating syntactic and semantic information in word embeddings using graph convolutional networks[END_REF], Word2Sense [START_REF] Panigrahi | Word2Sense: Sparse interpretable word embeddings[END_REF], and ConceptNet Numberbatch [START_REF] Speer | Conceptnet 5.5: An open multilingual graph of general knowledge[END_REF]. Beyond traditional word embeddings, we also include two models that distil static word embeddings from BERT-based language models: MirrorBERT (Liu et al., 2021a) (2022), which we will refer to as ComBiEnc. The former is a contrastively fine-tuned BERT-base encoder, which maps any given word onto a static vector. The latter is a BERT-base encoder that was fine-tuned to predict commonsense properties. Finally, we include two approaches which learn word embeddings by averaging the contextualised representations of different mentions: the AvgMASK method from (Li et al., 2021b) and the ConCN method from [START_REF] Li | Distilling semantic concept embeddings from contrastively fine-tuned language models[END_REF]. The former obtains the representation of a word w by finding up to 500 mentions of that word in Wikipedia. These mentions are masked, and the contextualised representations of the MASK token are obtained using RoBERTa-large. The resulting vectors are finally averaged to obtain the embedding of w. ConCN follows a similar strategy, but instead of a pre-trained RoBERTa model, they use a RoBERTa-large model that was contrastively fine-tuned using distant supervision from ConceptNet. We use this latter model as our default choice for the experiments in Section 6.2. A comparison with the other embeddings is presented in Section 6.3.

Training Details For the conceptual neighbourhood classifier, we tune the confidence level above which we consider two labels to be conceptual neighbours using the development set. We use Affinity Propagation (AP) as the clustering algo- rithm. Affinity Propagation does not require us to specify the number of clusters, but instead requires a so-called value to be specified. Rather than tuning this preference value, we obtain clusters for each of the following values: {0.5, 0.6, 0.7, 0.8, 0.9}. We use all these clusters together. This means that our method essentially uses domains at multiple levels of granularity. We use DenoiseFET [START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF] as the base entity typing model. For UFET and OntoNotes, we also rely on their denoised training set9 . For FIGER, we use the standard training set.

Results

We refer to our proposed strategy as PKL (Prior Knowledge about Labels). The results for UFET are presented in Table 1. Following the original paper, we report macro-averaged precision, recall and F1. We compare our model with Box4Types [START_REF] Onoe | Modeling fine-grained entity types with box embeddings[END_REF], LRN (Liu et al., 2021b), MLMET [START_REF] Dai | Ultra-fine entity typing with weak supervision from a masked language model[END_REF], DenoiseFET [START_REF] Pan | Automatic noisy label correction for fine-grained entity typing[END_REF], UNIST [START_REF] Huang | Unified semantic typing with meaningful label inference[END_REF], NPCRF [START_REF] Jiang | Modeling label correlations for ultra-fine entity typing with neural pairwise conditional random field[END_REF] and LITE [START_REF] Li | Ultra-fine entity typing with indirect supervision from natural language inference[END_REF]. The baseline results were obtained from the original papers. For each method, we also mention which pre-trained model was used for initialising the entity encoder.

As can be seen, our approach outperforms all baselines. This is even the case when using BERT-base or RoBERTa-base for the entity encoder, although the best results are obtained with BERT-large.

The results for fine-grained entity typing are presented in Table 2. Following the tradition for these benchmarks, we report both macro-averaged and micro-averaged F1. In addition to the baselines from Table 1 (for which results for OntoNotes or FIGER are available), we also include results for the following fine-grained entity typing models: DSAM [START_REF] Hu | Diversified semantic attention model for fine-grained entity typing[END_REF], RIB (Li et al., 2021a) and SEPREM [START_REF] Xu | Syntax-enhanced pre-trained model[END_REF]. For both OntoNotes and FIGER, our model consistently outperforms the base DenoiseFET model. While the improvements are smaller than for UFET, this is nonetheless remarkable, given that our strategies are targeted at ultra-fine entity types. For OntoNotes, our model outperforms all baselines. In the case of FIGER, its performance is comparable to LITE (i.e. slightly better macro-F1 but worse micro-F1) and outperformed by RIB. The latter model uses a GNN based strategy to learn correlations between labels and keywords from the training data.

Analysis

We now present some additional analysis, to better understand which components of the model are

Input Predictions

Jazz coach Jerry Sloan, angry over the officiating, had two technicals called against him and was ejected from the game in the closing minutes. person, coach, trainer, athlete, player Queen Mary, the Queen Mother, came to see it, and after the performance asked Cotes where he found "those wonderful actors." play, performance, show, event, opera Eurostat said output fell in all euro nations where it had data, with Finland booking the sharpest drop at 23.2 per cent organization, institution, corporation agency, administration, company, business, firm Table 5: Examples of differences between the predictions of the base model and those of the full model, using BERT-base. Labels in green are only predicted by the full model; labels in red are only predicted by the base model.

Input Predictions Gold standard

Yes -although regular coffee drinking isn't harmful for most people, that might not hold true for pregnant women. most responsible for its outperformance.

Ablation Study In Table 3, we report the results that are obtained when only using some of the components of our strategy. We use DL to refer to the use of domain labels (Section 4), missing to refer to post-processing based on domain labels (Section 5.1) and CN for the post-processing based on conceptual neighbourhood (Section 5.2). We also include a variant that uses Local Linear Embeddings (LLE) as an alternative strategy for taking into account the pre-trained label embeddings. LLE acts as a regularisation term in the loss function, which essentially imposes the condition that prototypes with similar labels should themselves also be similar. word embeddings distilled from language models capture word meaning in a richer way. From this perspective, the strong performance of Numberbatch also stands out. Interestingly, ConCN, Com-BiEnc and Numberbatch all rely on ConceptNet, which suggests that having label embeddings that capture commonsense properties might be important for achieving the best results.

Qualitative Analysis Table 5 shows some examples where the post-processing strategies improve the predictions of the base model (DenoiseFET).

On the one hand, our method results in a number of additional labels being predicted. On the other hand, the conceptual neighbourhood strategy removes some incompatible labels. In the first example, athlete and player are removed because they are conceptual neighbours of coach; in the second example, opera is removed because it is a conceptual neighbour of play; in the third example, company, business and firm are removed because they are conceptual neighbours of corporation.

Table 6 shows a number of examples where the full model has introduced a mistake, compared to the base model. In the top four examples, the full model predicted an additional label that was not included in the ground truth. As can be seen, the added labels are somewhat semantically close, especially in the last two cases, where it could be argued that the labels are actually valid. In the bottom three examples, the conceptual neighbourhood strategy incorrectly removed a label. In particular, in the first of these, dispute was removed because it was (incorrectly) predicted to be a conceptual neighbour of conflict. In the following example, vessel was incorrectly assumed to be a conceptual neighbour of ship. In the final example, coach was removed as a conceptual neighbour of player. Unlike the previous two cases, it is less clear whether this is actually a mistake. Indeed, it is highly unlikely that the person who is referred to is both a coach and a player. However, the sentence leaves it ambiguous which of these labels applies. In general, for DenoiseFET with BERT-large on UFET, the missing strategy from Section 5.1 was applied to 744 out of 1998 test instances. A total of 879 labels were added, and 513 of these were correct. The conceptual neighbourhood strategy affected 504 instances. A total of 983 labels were removed, and 709 of these deletions were correct.

Table 7 lists some examples of conceptual neighbours that were predicted by our classifier (for the UFET label set). As can be seen, in most cases, the conceptual neighbours that were found indeed refer to disjoint concepts. However, we can also see a small number of false positives (e.g. summer camp and holiday camp).

Finally, Table 8 shows examples of domains that were found. As can be seen, most of the domains are meaningful. However, in the case of Mirror-BERT, we also find clusters containing terms with rather different meanings, such as permit and residence in the first example. Often such terms are thematically related but taxonomically distinct. For instance, in the last cluster, we find two sub-types of person, namely career criminal and serial killer, together with sub-types of crime. Treating these labels as being part of the same domain may confuse the model, as they apply to very different types of entities. For GloVe, we can similarly see words which are thematically related but taxonomically different. This is illustrated in the first example, where grape is included in a cluster about wines.

Conclusions

We have analysed the effectiveness of two types of external knowledge for ultra-fine entity typing: pretrained label embeddings and a conceptual neighbourhood classifier. The strategies that we considered are straightforward to implement and can be added to most existing entity typing models. One of the most effective strategies simply requires adding synthetic labels, corresponding to clusters of semantic types, to the training examples. We also discussed two post-processing strategies which can further improve the results. Despite their simplicity, the proposed strategies were found to consistently improve the performance of the base UFET model. The nature of the pre-trained label embeddings played an important role in the performance of the overall method. An interesting avenue for future work would be to design strategies for identifying label domains which are specifically designed for the UFET setting.

Limitations

Using conceptual neighbourhood for postprocessing the predictions of an entity typing model is straightforward and effective, but there are other important types of label dependencies which we are currently not considering. Entailment relations, for instance, could be learned in a similar way to how we learn conceptual neighbourhood. In some cases, it could also be useful to combine the strategies we have proposed in this paper with models that learn label correlations from the training data itself, especially for fine-grained (rather than ultra-fine grained) entity types. However, as we have argued in the paper, this would come with the risk of overfitting the training data. The label domains that we currently use are essentially taxonomic categories, i.e. sets of labels that have similar meanings (e.g. student and teacher). We may expect that incorporating thematic groupings of labels could further improve the results (e.g. where student would be grouped with other university related terms such as lecture hall).

 and the model fromGajbhiye et al.

	Method	LM	P	R	F1
	Box4Types *	Bl	52.8 38.8 44.8
	LRN *	Bb	54.5 38.9 45.4
	MLMET *	Bb	53.6 45.3 49.1
	DenoiseFET *	Bb	55.6 44.7 49.5
	UNIST *	Rb	49.2 49.4 49.3
	UNIST *	Rl	50.2 49.6 49.9
	NPCRF *	Bb	52.1 47.5 49.7
	NPCRF *	Bl	55.3 46.7 50.6
	LITE *	RlMNLI 52.4 48.9 50.6
	DenoiseFET	Bb	52.6 46.2 49.2
	DenoiseFET	Bl	52.6 47.5 49.8
	DenoiseFET	Rb	52.3 46.0 49.0
	DenoiseFET	Rl	52.9 47.4 50.0
	DenoiseFET + PKL Bb	52.7 49.2 50.9
	DenoiseFET + PKL Bl	53.8 50.2 51.9
	DenoiseFET + PKL Rb	53.1 48.5 50.7
	DenoiseFET + PKL Rl	53.7 50.1 51.8
	Table 1: Results for Ultra-Fine Entity Typing (UFET),
	in terms of macro-averaged precision, recall and F1.
	Results with				

* are taken from the original papers. The LM encoders are BERT-base (Bb), BERT-large (Bl), RoBERTa-base (Rb), RoBERTa-large (Rl) and RoBERTA-large fine-tuned on MNLI (Rl MNLI).

Table 2 :

 2 Results for fine-grained entity typing, in terms of macro-F1 and micro-F1. Results with

	Method	LM	OntoNotes	FIGER
			macro micro macro micro
	Box4Types *	Bl	77.3 70.9 79.4 75.0
	LRN *	Bb	84.5 79.3	-	-
	MLMET *	Bb	85.4 80.4	-	-
	DenoiseFET *	Bb	87.1 81.5	-	-
	NPCRF *	Bb	85.2 80.0	-	-
	NPCRF *	Rl	86.0 81.9	-	-
	DSAM *	LSTM 83.1 78.2 83.3 81.5
	SEPREM *	Rl	-	-	86.1 82.1
	RIB *	ELMo 84.5 79.2 87.7 84.4
	LITE *	RlMNLI 86.4 80.9 86.7 83.3
	DenoiseFET	Bb	87.2 81.4 86.2 82.8
	DenoiseFET	Bl	87.5 81.6 86.5 82.9
	DenoiseFET	Rb	87.4 81.5 86.4 82.9
	DenoiseFET	Rl	87.6 81.8 86.7 83.0
	DenoiseFET + PKL Bb	87.7 81.9 86.8 82.9
	DenoiseFET + PKL Bl	87.9 82.1 87.0 83.1
	DenoiseFET + PKL Rb	87.8 82.2 86.9 83.0
	DenoiseFET + PKL Rl	87.9 82.3 87.1 83.1

* are taken from the original papers. The LM encoders are BERT-base (Bb), BERT-large (Bl), RoBERTa-base (Rb), RoBERTa-large (Rl) and RoBERTA-large fine-tuned on MNLI (Rl MNLI).

Table 3 :

 3 Ablation analysis on UFET for different variants of our model, using BERT-base for the entity encoder.

	Method		P	R	F1
	DenoiseFET + DL + missing + CN 52.7 49.2 50.9
	DenoiseFET + DL + missing	52.9 48.5 50.6
	DenoiseFET + DL		52.5 48.4 50.4
	DenoiseFET + LLE		53.0 46.1 49.4
	DenoiseFET		52.6 46.2 49.2
	Embedding	P	R	F1
	Skip-gram	53.9 44.8 49.0
	GloVe	53.5 45.9 49.4
	Numberbatch 53.5 46.9 50.0
	Word2Sense	53.7 45.5 49.3
	SynGCN	54.6 44.3 48.9
	MirrorBERT	51.7 46.9 49.2
	ComBiEnc	53.2 47.9 50.4
	AvgMASK	53.7 46.9 50.1
	ConCN	52.7 49.2 50.9

Table 4 :

 4 Performance of different pre-trained label embeddings on UFET, using DenoiseFET with BERT-base as the base UFET model.

Table 6 :

 6 Error analysis, showing cases where the full model incorrectly added or removed a label (compared to the base model), using BERT-base. Labels in green are only predicted by the full model; labels in red are only predicted by the base model.

Table 7 :

 7 Examples of conceptual neighbours for some labels from the UFET benchmark.

Table 8 :

 8 Examples of the domains that were found with different word embeddings.

Our code and evaluation scripts are available at https: //github.com/lina-luck/ufet_with_domains.

https://www.bbc.co.uk/news/ world-europe-55666399

Note that the label "emergency vehicle" is not included in the vocabulary of the UFET dataset from[START_REF] Choi | Ultra-fine entity typing[END_REF].

Formally, conceptual neighbours are concepts that are represented by adjacent regions in a conceptual space[START_REF] Gärdenfors | Conceptual spaces -the geometry of thought[END_REF]. In this paper, however, we treat the notion of conceptual neighbourhood in a more informal fashion.

http://nlp.cs.washington.edu/entity_type/ data/ultrafine_acl18.tar.gz

https://www.cs.jhu.edu/~s.zhang/data/figet/ Wiki.zip

We used the model that was trained on Google News (https://code.google.com/archive/p/word2vec/).

We used the model that was trained on Common Crawl (https://nlp.stanford.edu/projects/glove/).

Available from https://github.com/CCIIPLab/ DenoiseFET.

Acknowledgments This work was supported by EPSRC grant EP/V025961/1, ANR-22-CE23-0002 ERIANA and by HPC resources from GENCI-IDRIS (Grant 2023-[AD011013338R1]). Na Li is supported by Shanghai Big Data Management System Engineering Research Center Open Funding.

A Locally Linear Embedding

Locally Linear Embedding (LLE) [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF] is a well-known dimensionality reduction technique, which aims to preserve linear structure in the neighbourhood of each data point. Rather than using LLE for dimensionality reduction, we use it for regularising the space of the label prototypes. This is somewhat reminiscent of how LLE has been used in NLP for transforming word embeddings [START_REF] Hasan | Word reembedding via manifold dimensionality retention[END_REF].

Let us write N l for the k nearest labels to l ∈ L, in terms of their cosine similarity in the pretrained embedding space. We can approximate the embedding l as a linear combination of the embeddings of the labels in N l , by solving the following optimisation problem:

Then we add the following regularisation term to the loss function of the entity typing model:

In other words, we encourage the model to preserve the linear dependence that holds between l and its neighbours in the pre-trained embedding space. The overall loss then becomes:

where L entity is the loss function from the entity typing model and λ > 0 is a hyper-parameter to control the strength of the regularisation term.