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A B S T R A C T   

In Europe, the heterogeneous features of crop systems with majority of small to medium sized agricultural 
holdings, and diversity of crop rotations, require high-resolution information to estimate cropland Net Ecosystem 
Exchange (NEE) and its two main components of Gross Ecosystem Exchange (GEE) and the Ecosystem Respi-
ration (RECO). In this context, this paper presents an assimilation of high-resolution Sentinel-2 indices with eddy 
covariance measurements at selected European cropland flux sites in a new modified version of Vegetation 
Photosynthesis Respiration Model (VPRM). VRPM is a data-driven model simulating CO2 fluxes previously 
applied using satellite-derived vegetation indices from the Moderate Resolution Imaging Spectroradiometer 
(MODIS). This study proposes a modification of the VPRM by including an explicit soil moisture stress function to 
the GEE and changing the equation of RECO. It also compares the model results driven by S2 indices instead of 
MODIS. The parameters of the VPRM model are calibrated using eddy-covariance data. All possible parameters 
optimization scenarios include the use of the initial version vs. the proposed modified VPRM, S2, or MODIS 
vegetation indices, and finally the choice of calibrating a single set of parameters against observations from all 
crop types, a set of parameters per crop type, or one set of parameters per site. Then, we focus the analysis on the 
improvement of the model with distinct parameters for different crop types vs. parameters optimized without 
distinction of crop types. Our main findings are: (1) the superiority of S2 vegetation indices over MODIS for 
cropland CO2 fluxes simulations, leading to a root mean squared error (RMSE) for NEE of less than 3.5 
μmolm− 2s− 1 with S2 compared to 5 μmolm− 2s− 1 with MODIS (2) better performances of the modified VPRM 
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version leading to a significant improvement of RECO, and (3) better performances when the parameters are 
optimized per crop-type instead of for all crop types lumped together, with lower RMSE and Akaike information 
criterion (AIC), despite a larger number of parameters. Associated with the availability of crop-type land cover 
maps, the use of S2 data and crop-type modified VPRM parameterization presented in this study, provide a step 
forward for upscaling cropland carbon fluxes at European scale.   

1. Introduction 

Studying the carbon cycle requires precise monitoring of the Net 
Ecosystem Exchange (NEE) of carbon dioxide (CO2) between the 
terrestrial biosphere and the atmosphere (Beer et al., 2010; Reichstein 
et al., 2013) as well as of its two component fluxes, the Gross Ecosystem 
Exchange (GEE) and the Ecosystem Respiration (RECO). Croplands 
represent 12 % of the global vegetated areas and contribute to 16 % of 
global NEE (Hicke et al., 2004; Potter et al., 1993). Between 2003 and 
2019, cropland area increased by 9 %, but NEE increased by 25 % 
(Potapov et al., 2021) due to intensification from irrigation, fertilizers, 
and better cultivars (Zeng et al., 2014). In the European Union, crop-
lands cover 157 million hectares, that is 38 % of the total land area. A 
better monitoring of the CO2 fluxes in cropland can help better under-
stand the drivers of crop yields, improve resource supply (Marshall et al., 
2018; Reeves et al., 2005), analyze the impacts of climate change on 
cropland productivity (Ciais et al., 2010, 2005; He et al., 2022), and 
inform policies for improving the C budget for croplands (Pique et al., 
2020). 

Remote sensing offers a powerful tool for land surface monitoring at 
large scales especially with the advances in deep learning models (Hong 
et al., 2023; Hong et al., 2023) . Remote sensing data combined with 
deep learning approaches have been applied in several geoscience ap-
plications, including and not limited to, land cover mapping (Ienco 
et al., 2019), forests heights and biomass estimations (Fayad et al., 
2023), and most recently in CO2 fluxes estimations (Nathaniel et al., 
2023). However, given the complexity of deep learning approaches and 
the sparse flux measurements of the CO2 fluxes, only few studies have 
explored the use of deep learning approaches in CO2 fluxes estimations. 
Recently, using MODIS (Moderate Resolution Imaging Spectroradi-
ometer) satellite data at 500 m spatial resolution, Nathaniel et al. (2023) 
applied a meta-learning procedure to train a model to learn from sparse 
data (sparse eddy-covariance flux measurements) to estimate CO2 fluxes 
at large scales. They reported that meta-learning better estimated fluxes 
in critical regions (such as semi-arid or tropical regions) especially in 
extreme cases. Pabon-Moreno et al. (2022) assessed the potential of 
Sentinel-2 (S2) spectral bands at 10 m spatial resolution to estimate GEE 
using linear regression and random forest. They report that despite the 
good accuracy obtained for predicting the GEE using machine learning 
techniques, optical remote sensing information alone was not enough to 
predict GEE under water-stress conditions. 

Specifically for cropland CO2 fluxes, models driven by remote 
sensing vegetation indices, such as SAFY-CO2 and SAFY-WB, have been 
extensively used to simulate NEE. These models give good performances 
at sites after calibration but may have limitations for large scale appli-
cations (Battude et al., 2016; Pique et al., 2020; Revill et al., 2013). 
Other models are more complex and calculate carbon fluxes at a half- 
hourly time step based on processing land surface models (Jung et al., 
2020; Keenan et al., 2016; Krinner et al., 2005; Kuppel et al., 2012; 
Santaren et al., 2014, 2014; Sellers et al., 1986). These process-based 
land surface models have many parameters that are difficult to cali-
brate (Santaren et al., 2014). Land surface models such as the 
ORCHIDEE, CLM (Community Land Model), JULES (Joint UK Land 
Environment Simulator), and LPJ GUESS (Lund-Potsdam-Jena General 
Ecosystem Simulator) included parameterizations for crops, yet without 
detailed information on varieties and management practices (Chen 
et al., 2015; Di Paola et al., 2016; Lawrence and Chase, 2007; Levis et al., 
2012; Smith et al., 2014, 2001). 

In this study, we chose to use the data-driven Vegetation Photosyn-
thesis Respiration Model (VPRM) (Mahadevan et al., 2008) for esti-
mating cropland NEE and its components. One advantage of this model 
is that it includes a limited number of parameters that can be optimized 
using flux tower data. VPRM is driven by remote sensing derived 
vegetation indices and climatic data. It was calibrated against eddy- 
covariance flux measurements over the American continent (Mahade-
van et al., 2008) and Europe (Kountouris et al., 2018). Generally, VPRM 
uses MODIS derived Enhanced Vegetation Index (EVI) and the Land 
Surface Water Index (LSWI) at 500 m spatial resolution in addition to 
temperature and radiation climatic data to describe the light dependent 
part (GEE) of the NEE. The ecosystem respiration flux was described by a 
simple function using air temperature data. The VPRM parameters were 
optimized using flux tower measurements grouped into nine vegetation 
classes including the evergreen forests, deciduous forest, mixed forest, 
shrublands, savannas, grassland, wetlands, and croplands. Following its 
validation on the USA, the VPRM was recalibrated on the European 
continent using 46 European eddy-covariance towers (Kountouris et al., 
2018) and is currently used by the European Integrated Carbon Obser-
vation System (ICOS) to provide hourly NEE, GEE and RECO maps across 
the European continent between − 15.0◦ to 35.0◦ east and 33.0◦ to 73.0◦

north (Gerbig and Koch, 2021). 
When first developed over the USA, VPRM considered croplands as a 

single vegetation class regardless of the specific crop type and the inter- 
crop variation effects on NEE, GEE and RECO. The use of a single class of 
cropland might be justified in the USA by the relatively low diversity of 
the crop types, with maize and soybean being the two dominant culti-
vated annual crops. In addition, the large size of agricultural fields 
(exceeding 500 m in length and width) in the USA made MODIS data a 
reasonable choice to extract vegetation indices over the same crop cover 
class with no mixture of reflectance from different land covers. How-
ever, in Europe, the heterogeneous features of agricultural landscapes 
and the complex cropping systems with small to medium size fields, 
variable crop rotations, different management practices, and a diversity 
of crop types make the quantification of cropland NEE challenging under 
the assumption of a single crop type. Given the complex European 
agricultural context, accurate estimation of the cropland CO2 fluxes 
requires detailed crop-type parametrization instead of a generic crop 
parametrization. However, a parametrization of VPRM per crop type 
expects fine spatial resolution satellite data capturing the details of crop 
development and photosynthetic activity with minimal interference of 
other land cover types. Here we opted for the S2 optical sensor from the 
Copernicus program which provides vegetation indices at a fine spatial 
resolution (between 10 and 60 m) with multispectral resolution (13 
bands) and a temporal resolution reaching 5 days in Europe. To the best 
of our knowledge, the aspect of performing a crop-specific parametri-
zation of the VPRM has not yet been explored. 

Another limitation of the VPRM described by Mahadevan et al., 
(2008) was the inability of remotely sensed Land Surface Water Index 
(LSWI) to detect the water stress conditions and its effect on the plant 
photosynthesis and therefore the GEE and the RECO fluxes. They reported 
that the lack of a soil moisture function in the VPRM equations repre-
sented the principal source of unaccounted variance in the fluxes’ sim-
ulations. Therefore, we proposed to include an additional soil moisture 
function for both GEE and RECO equations with the aim to better capture 
the effect of water stress on the photosynthetic activity. 

In this study, we present a crop-specific optimization of the VPRM 
parameters to simulate NEE, GEE and RECO at eddy covariance mea-
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surement sites from ten flux towers across Europe covering 11 different 
crop types between 2018 and 2020. Several scenarios for parameters 
optimizations were evaluated and compared including the use of MODIS 
or S2 vegetation indices, a generic set of parameters for all crop types vs. 
a different set of parameters per crop type and a set of parameters per 
individual site. In addition, two versions of VPRM were tested, the 
standard version developed by Mahadevan et al. (2008), and a modified 
version, proposed in this study, with an additional soil moisture stress 
function of GEE and a new equation for RECO. The objectives of this study 
are the following: 

1- Compare the performances of the standard and the new VPRM ver-
sions using MODIS and S2 vegetation indices for simulating CO2 
fluxes over croplands sites in Europe.  

2- Compare the performances using a default generic parameterization 
for all crop types vs. crop-specific parameterization of the VPRM.  

3- Propose new crop specific VPRM parameterization for simulations of 
the CO2 fluxes for different crop types. 

2. Materials and methods 

2.1. Vegetation photosynthesis and respiration model (VPRM) 

The model first described by Mahadevan et al. (2008) estimates the 
surface fluxes (NEE, GEE and RECO) at hourly time steps from remote 
sensing observations and meteorological data. NEE is divided into light- 
dependent photosynthesis (GEE) and light-independent ecosystem 
respiration (RECO). Since several studies have demonstrated a close 
correlation between satellite-based vegetation indices such as the 
Enhanced Vegetation Index (EVI) and photosynthesis (Xiao, 2004; Xiao 
et al., 2004), GEE in VPRM is represented as: 

GEE = λ × Tscale × Pscale × Wscale × EVI ×

⎛

⎜
⎜
⎝

1
1 + PAR

PAR0

⎞

⎟
⎟
⎠× PAR (1)  

EVI is calculated using the near infrared, the red, and the blue bands of 
multispectral satellite reflectance observations (see equation A.1 in 
Appendix A). λ is the light use efficiency, PAR is the Photosynthetically 
Active Radiation, and PAR0 the half saturation value. Since PAR values 
are not generally available in meteorological data as continuous spatial 
maps, the PAR is replaced by the shortwave radiation (SWRad) 
considering the close correlation between SWRad and PAR. 

Pscale and Wscale are factors that account for the leaf age and water 
stress effects on GEE respectively and are derived from the satellite- 
based Land Surface Water Index (LSWI). The LSWI is calculated using 
the infrared and the short-wave infrared bands (see equation A.2 in 
Appendix A). Tscale represents a temperature modifier to photosynthesis. 
Detailed equations of Tscale,PscaleandWscale are presented in Appendix A 
(see equations A.3, A.4 and A.5 respectively). 

In the standard VPRM version, RECO is modeled as a linear function of 
air temperature (T) given that plant and soil respiration rates increase as 
temperature rises as given by: 

RECO = α × T + β (2)  

NEE represents the difference between uptake (photosynthesis) and loss 
(respiration) of CO2. Following the negative sign convention that CO2 
uptake by the plant is negative, NEE is written as 

NEE = GEE − RECO (3)  

The NEE equation proposed by Mahadevan et al. (2008) has four model 
parameters (λ, SWRad0,α and β) that can be calibrated against flux 
tower data. Unit of λ is μmol.m− 2s− 1(Wm− 2)), of SWRad0 is Wm− 2, of α is 
μmolm− 2s− 1/

◦

C, and of β is μmolm− 2s− 1. 

2.2. Modified vegetation photosynthesis and respiration model (MVPRM) 

In this study, we propose a new version of the VPRM model with the 
aim to improve the model-data fitting of the fluxes NEE, GEE, and RECO. 
The first difference concerns the GEE equation where the effect of the 
soil moisture on water stress is explicitly considered. In the initial model 
version, this effect was accounted for implicitly through LSWI (Wscale). 
The modified version of the GEE equation includes a soil moisture 
function f(θ) such as: 

GEE = f(θ) × λ × Tscale × Pscale × Wscale × EVI ×

⎛

⎜
⎜
⎝

1
1 + SWRad

SWRad0

⎞

⎟
⎟
⎠× SWRad

(4)  

where f(θ) is expressed as: 

f (θ) =
{

q × (θ − θ*
) + 1 if θ ≤ θ*

1 if θ > θ* (5)  

f(θ) in the GEE is set to a value of 1 when the soil moisture value (θ) is 
above the critical soil moisture threshold of water stress (θ*). Below this 
threshold, f(θ) is a linear function of the soil moisture deficit from θ*, 
which reduces GEE under water stressed conditions. Both q and θ* are 
unitless parameters to be estimated. The soil water content is expressed 
in relative units (relative soil water content) and is calculated by 
normalizing the volumetric soil moisture to values between 0 and 1 
using the minimum–maximum normalization at each flux site. 

The second modification of VPRM concerns the RECO equation 
following Migliavacca et al. (2011) who demonstrated that climatic 
drivers are not sufficient to describe the temporal variability of RECO and 
proposed to express RECO as a function of GEE, temperature, and soil 
moisture as follows: 

RECO = f (T) × f2(θ) × f (GEE) (6)  

The temperature function f(T) is formulated as an exponential function 
of air temperature (equation (7) following the soil respiration temper-
ature function proposed by Lloyd and Taylor (1994) with an activation 
energy parameter E0 in ◦K, a reference temperature Tref fixed at 288.15 
◦K (15 ◦C), and T0 fixed at 227.13 ◦K (-46.02 ◦C). Air temperature is a 
simplification of soil and canopy temperatures and is probably justified 
by the fact that the air temperature is between the canopy and the soil 
temperature in most cases. 

f (T) = e
E0

(

1
Tref − T0

− 1
T− T0

)

(7)  

Migliavacca et al. (2011) used precipitation as a proxy of the soil water 
content. However, we replaced here the precipitation function by a soil 
moisture function f2(θ) since soil moisture is considered a more accurate 
driver of soil microbial processes affecting soil heterotrophic respira-
tion, and plant stress affecting autotrophic respiration. Following 
Reichstein et al. (2002) and Reichstein (2003), the soil moisture de-
pendency f2(θ) of RECO is formulated as in equation (8) using the 
commonly applied saturation function (Bunnell et al., 1977): 

f2(θ) =
θ

θmax + θ
(8)  

where θ is the relative soil water content and θmax is a soil moisture 
threshold parameter to be optimized. θ is expressed in relative units as 
proposed by Reichstein (2003) and calculated by normalizing the 
volumetric soil water content using the minimum–maximum normali-
zation at each flux site. 

Plant (shoot and roots) respiration increases with plant biomass, thus 
RECO dependency to GEE is modeled with a linear relationship given by: 
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f (GEE) = R0 + k × GEE (9)  

R0(μmolm− 2s− 1) is the reference respiration which refers to the 
ecosystem respiration at the reference temperature (Tref = 15 ◦C in 
equation (7) and under ideal soil moisture conditions (Migliavacca et al., 
2011; Reichstein et al., 2002). It serves as an indicator of the site’s 
ecosystem respiration, which is influenced by the unique site conditions, 
historical factors, and inherent characteristics. The parameter k (unit-
less) expresses the assumed response of the ecosystem respiration to 
GEE. R0 and k are both parameters to be optimized. 

Finally, RECO is expressed as: 

RECO = (R0 + k × GEE) ×
(

θ
θmax + θ

)

× e
E0

(

1
Tref − T0

− 1
T− T0

)

(10)  

The new equations of GEE and RECO include a higher number of pa-
rameters. While the original version included four parameters (λ, 
SWRad0,α and β), the new version includes eight parameters: four pa-
rameters for GEE (λ, SWRad0, q and θ*) and four parameters for 
RECO(R0, k, E0 and θmax). 

2.3. Dataset preparation and model-data fitting 

The flowchart in Fig. 1 summarizes the dataset extraction (eddy 
covariance and satellite data), the VPRM and MVPRM data fitting pro-
cedure as well as the assessments performed. The use of either MODIS or 
S2 satellite data in the VPRM and MVRPM was tested. The VPRM and 
MVPRM were optimized in different scenarios considering different 
spatial scales using both MODIS and S2 satellite products (SN1 to SN12). 
The evaluation of the model-data fitting using conventional accuracy 
metrics was also carried out at different spatial and temporal levels. 
Each part of the process is explained more in details in the following 
subsections. 

2.3.1. Eddy covariance data over croplands in Europe 
Across Western and Central European countries, ten crop flux towers, 

part of the ICOS, were used (Fig. 2). These sites are distributed across 
France (4 sites), Germany (3 sites), Switzerland (1 site), Czech Republic 

(1 site), and Belgium (1 site). Half-hourly flux data were obtained from 
the FLUXNET website (https://fluxnet.org) covering a three-year period 
from January 2018 to December 2020 (Table A.0 in Appendix A). The 
standard flux data processing methodologies for correction, gap-filling, 
and partitioning were applied for all the sites (Pastorello et al., 2020). In 
addition to NEE, GEE, and RECO, the FLUXNET sheets of the 10 sites 
included the meteorological data (Temperature and shortwave radia-
tion) and the volumetric soil water content (θ) at a half hourly time 
scale. The measured volumetric soil water content provided by the 
FLUXNET sheets corresponds to the topsoil layer between 0 and 20 cm 
depending on the sensor depth at each site. 

In the standard processing of the eddy-covariance flux data, GEE and 
RECO are partitioned from measured NEE using either the nighttime (NT) 
or the daytime (DT) partitioning methods. In this study, the NT parti-
tioning method of the RECO computed using variable Ustar (u*) 
(dimensionless friction velocity threshold) threshold (VUT) was used. 
For NEE, a variable u* threshold for each year was considered. Quality 
control filters were applied to eliminate unreliable half hourly obser-
vations. GEE values greater than 0 (GEE > 0), usually resulting from 
slight underestimation of the temperature response partitioned RECO, 
were set to zero and the observed NEE flux was all transferred to RECO 

only if u* > 0.1 and the quality flag of NEE was either measured (0) or 
very good gap filling (1) (Schaefer et al., 2012). Otherwise, half hourly 
measurements with GEE values greater than 0 were removed. Half 
hourly observations with zero GEE values at day-time measurements 
were also removed. Finally, half hourly values, where the quality flag 
(QC) of the NEE gap filling was poor (QC = 3), were removed. Removing 
a half hourly observation from one of the three CO2 fluxes implied 
removing it from the three fluxes simultaneously to maintain a consis-
tent dataset for the optimization of parameters. 

In addition to the flux data, the ICOS sites investigators provided 
detailed information about the crop type grown each year, agricultural 
management, and crop calendars (Table 1). Eleven different crop types 
were grown across all the studied sites from 2018 to 2020. Wheat was 
the dominant crop type (11 cycles across all sites and years) followed by 
maize and rapeseed (3 cycles). Only one cycle with sugar beet and 
sunflower was found. Two sites (CZ-KRP and CH-OE2) included rota-
tions with a temporary Ley for which parameters were also optimized 
even though it is not a conventional crop. In addition, Table 1 shows the 

Fig. 1. Flow chart summarizing the input data preparation, the VPRM and MVPRM model-data fitting and the performed assessments.  
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percentage of cropland areas within 500 m zone (corresponding to one 
MODIS pixel) around each flux site extracted using the Sentinel-2 dy-
namic land cover map (Brown et al., 2022) (Table A.0 in Appendix A). 
The cropland percentage within 500 m around the eddy covariance sites 
ranges between 67.6 % (FR-LAM) and 100 % (pure cropland) for 
different sites. 

2.3.2. Satellite vegetation indices 
The two vegetation indices used by both VPRM versions are the EVI 

and the LSWI. A time series of S2 EVI and LSWI (see equations in Ap-
pendix A) were calculated for each site using all available cloud free S2 
images at Level-2A atmospheric correction between 2018 and 2020 
(Table A.0 in Appendix A). Bi-Directional reflectance correction (BRDF) 
was applied to the S2 surface reflectance bands following the BRDF 
adjustment of S2 multispectral images proposed by Roy et al. (2017). 
The extraction of the S2 EVI and LSWI was performed using the Google 
Earth Engine (https://earthengine.google.com/). For S2 images at 10 m 
spatial resolution, the average pixel values of a buffer zone of 150 m 
around the flux tower, corresponding to the typical spatial footprint of 
each eddy covariance site, was considered to calculate the correspond-
ing EVI and LSWI at each S2 image. The 150 m buffer distance also 
guarantees the spatial crop-type purity of the averaged pixels within the 

buffer zone. MODIS EVI and LSWI at 500 m spatial resolution were also 
extracted for each site using the MCD43A4 product available on Google 
Earth Engine (Table A.0 in Appendix A). The MCD43A4 MODIS provides 
daily Nadir Bidirectional Reflectance Distribution Function Adjusted 
Reflectance (NBAR) at 500 m spatial resolution. Both S2 and MODIS 
indices were linearly interpolated at daily scales to obtain complete 
yearly time series, and then smoothed using the locally weighted least 
square algorithm (LOWESS) to reduce atmospheric noise in satellite 
data. For half-hourly scale optimization, the vegetation indices were 
also interpolated at half-hourly scale to match the eddy covariance 
measurements. 

2.3.3. Optimization scenarios 
In this study, the parameters were optimized for the VPRM or 

MVPRM versions using MODIS or S2 vegetation indices. We considered 
optimizing parameters for all the sites-years grouped together, for sites- 
years grouped per crop type (e.g., all wheat, all maize), and for each site- 
year (site-year notation corresponds to data at one site for one year and 
for each crop cycle in this year in case of more than one cycle in the 
year). For naming simplicity, the standard Initial and Modified VPRM 
are represented as (IV) and (MV) respectively. Optimization for each 
site-year is denoted by “Site”, grouping data per crop type is denoted by 

Fig. 2. Location of the studied crop flux towers. Green areas represent the cropland cover derived from Corine Land Cover Map 2018. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Description of the ten flux tower sites with their corresponding crop calendar between 2018 and 2020.  

Site Lat, Lon (◦) Elevation (m) Slope (%) %Cropland in 500 m Crop 2018 Crop 2019 Crop 2020 

FR-LAM 43.4964◦, 1.2378◦ 181 m Flat 67.6 % Wheat Maize Wheat 
FR-AUR 43.5496◦, 1.1061◦ 250 m (5 – 10 %) 82.6 % Rapeseed Wheat Sunflower 
FR-GRI 48.8442◦, 1.9519◦ 125 m < 2 % 90.3 % Wheat Maize Wheat 
FR-EM2 49.8721◦, 3.0206◦ 85 m Flat 100 % Wheat/Oat Barley/Oat Maize 
BE-LON 50.5516◦, 4.74623◦ 170 m < 2 % 96.1 % Potato Wheat/Bean Sugar beet 
DE-RUS 50.8659◦, 6.4471◦ 103 m Flat 100 % Wheat Potato Wheat 
DE-GEB 51.0997◦, 10.91463◦ 161 m Flat 100 % Wheat Wheat Potato 
DE-KLI 50.8930◦, 13.5224◦ 478 m Flat 87.3 % Maize Bean Rapeseed 
CZ-KRP 49.5732◦, 15.0787◦ 535 m (5 – 10 %) 69.5 % Ley Grass Wheat 
CH-OE2 47.2864◦, 7.7337◦ 452 m Flat 89.4 % Rapeseed Barley Ley  
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“CropT”, and grouping all sites and all years is represented by “ALL”. 
The combination of these options produced twelve different optimiza-
tion scenarios (2 models x 2 sensors x 3 grouping of observations) 
summarized in Table 2. The number of optimized parameters in each 
scenario differed according to the used VPRM version (IV or MV) and the 
number of independent groups considered in the scenario (number of 
crop types or number of sites-years). 

2.3.4. Bayesian optimization 
Parameters were optimized using a Bayesian inversion framework 

taking into consideration observation errors and prior parameter un-
certainties. This framework was implemented in previous CO2 flux es-
timations, using flux tower data, since it accounts for the uncertainty in 
the eddy covariance measurements in the optimization (Kuppel et al., 
2012; Lasslop et al., 2010; Santaren et al., 2007). It assumes a Gaussian 
distribution for the observation errors and the parameter uncertainties 
(Tarantola, 1987). The set of optimized parameters corresponds thus to 
a minimum of a cost function denoted by J(x) and expressed as: 

J(x) =
1
2
[
(ymeas − H(x) )tR− 1(ymeas − H(x) ) + (x − xb)

tB− 1(x − xb)
]

(11)  

The first part of J(x) corresponds to the mismatch between the estimated 
(modeled) flux H(x) and the measured (observed) flux (ymeas), whereas 
the second part of the cost function represents the mismatch between the 
optimized parameters (x) and the prior mean values of the parameters 
(xb). R is a diagonal matrix including the variances of the observations, 
in which we assume that the observation errors are independent. Simi-
larly, B is a diagonal matrix describing the prior variances of the pa-
rameters, assuming that they are also independent. Considering that R 
and B are two diagonal matrices, the cost function can be expressed as a 
weighted least square function expressed as: 

J(x) =
1
2

(
∑n

i=1

(ymeas,i − ymod,i(x))
2

σmeas,i
2 +

∑P

j=1

(
xj − xbj

)2

σxb,j
2

)

(12)  

where ymeas is the observed value, ymod is the modeled value dependent 
on the parameters (x), σmeas,i is the observation uncertainty (observation 
error), and σxb is the error standard deviation of the prior parameter 
values (xb). n and p are the numbers of observations and the number of 
parameters respectively. 

Since NEE is the difference of GEE and RECO, we choose to optimize 
only NEE and GEE assuming that we have only two degrees of freedom, 
and that the sum relation would directly optimize the third flux (here 
RECO). To apply the weighted least square cost function, the half hourly 
observations variances on NEE and GEE were calculated. For NEE, the 
FLUXNET data provide an observation uncertainty value computed as 
the quadratic mean from the combination of the uncertainty from 
multiple u* thresholds and the random observation uncertainty calcu-
lated by the method proposed by Hollinger and Richardson (2005). 
Since the FLUXNET sheet does not provide any information about the 

total GEE uncertainty, the uncertainty of GEE is assumed to include the 
uncertainty of the gap filling algorithm, the partitioning uncertainty, the 
random measurement uncertainty of NEE, as well as the threshold 
friction velocity (u*) uncertainty (Schaefer et al., 2012). The random 
uncertainty of GEE was estimated using the same method for that of 
NEE, following Hollinger and Richardson (2005), given as the standard 
deviation of the measured fluxes in a sliding window of ± 7 days and ±
1 h of the time-of-day of the current timestamp sharing the same 
meteorological conditions (MDS gap-filling method). The GEE gap 
filling uncertainty was considered as a relative error (8 %) derived from 
the standard deviation of multiple gap filling algorithms reviewed by 
Moffat et al. (2007) and applied only to gap filled GEE values. The 
partitioning uncertainty was considered as a 10 % relative error of the 
GEE value (Desai et al., 2008). The u* threshold uncertainty was pro-
vided by the FLUXNET data and calculated for 40 different u* values. 
The four GEE uncertainties were summed in quadrature (Schaefer et al., 
2012). 

The prior values of the parameters (8 parameters for the MVPRM and 
4 for the VPRM) were defined from the previous studies of Mahadevan 
et al. (2008) and Migliavacca et al. (2011) and expert knowledge. 
Nevertheless, a relative error of 40 % of prior parameters values was 
considered as a magnitude of the prior parameter uncertainty (matrix B) 
(Kuppel et al., 2012). This high relative uncertainty (40 %) was chosen 
to provide higher leverage of the observations’ misfit in the cost function 
and lesser influence of the prior knowledge on parameter values in the 
optimization. J(x) was minimized using a gradient-based method and 
the L-BFGS-B algorithm (Byrd et al., 1995). To account for the mismatch 
between the units of the parameter values and facilitate the conver-
gence, each parameter was normalized for a value between 0 and 1 
before optimization using the minimum–maximum normalization. 

2.3.5. Model-data fitting evaluation 
For each of the twelve scenarios in Table 2 the quality of model-data 

fit was assessed using the correlation coefficient between observations 
and simulations (r), the Root Mean Square Error (RMSE) of the simu-
lations, the standard deviation of the measured (SDm) and simulated 
data (SDs), the Relative Squared Error (RSE) of the simulations, and the 
Akaike information criterion (AIC) (see Appendix A, equations A.6 to 
A.11). Since scenarios may have different numbers of optimized pa-
rameters, the AIC helps us to analyze the gain in performance between 
scenarios taking into consideration the different degrees of freedom 
(total number of optimized parameters in the scenario in Table 2). 

To facilitate the comparative assessment of the twelve scenarios, the 
Taylor diagram (Taylor, 2001) was selected to represent the degree of 
correspondence for each scenario with observed data for the three fluxes 
(NEE, GEE and RECO). Taylor diagrams provide a summary of r, SDm, SDs, 
and finally the RMSE of the simulations. Assessment was first performed 
for all site-years together and then by grouping sites-years with the same 
crop type. The crop-type based assessment helps understand if some 
crop types are better fitted than others and allows the inter-scenario 
comparison between crop types. In addition, inter-scenarios 

Table 2 
Description of the optimization scenarios assessed in the study.  

Scenario Number (SN) Scenario Name Satellite VPRM Version Optimization Configuration Number of Parameters 

(1) MODIS_IV_ALL MODIS 
500 m 

Initial Standard VPRM All crops together 4 
(2) MODIS_MV_ALL Modified VPRM All crops together 8 
(3) MODIS_IV_CropT Initial Standard VPRM Per crop type 44 
(4) MODIS_MV_CropT Modified VPRM Per crop type 88 
(5) MODIS_IV_Site Initial Standard VPRM Per site-year 128 
(6) MODIS_MV_Site Modified VPRM Per site-year 256 
(7) S2_IV_ALL S2 

10 m 
Initial Standard VPRM All crops together 4 

(8) S2_MV_ALL Modified VPRM All crops together 8 
(9) S2_IV_CropT Initial Standard VPRM Per crop type 44 
(10) S2_MV_CropT Modified VPRM Per crop type 88 
(11) S2_IV_Site Initial Standard VPRM Per site-year 128 
(12) S2_MV_Site Modified VPRM Per site-year 256  
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assessment among each site-year was also presented. To enrich the 
quantitative assessment per crop-type and per site-year, we added to the 
12 tested scenarios the results obtained using the previously performed 
optimization of the initial standard VPRM for Europe (Kountouris et al., 
2018, 2015) which is currently used by ICOS to provide hourly NEE 
maps (Gerbig and Koch, 2021). The latter scenario was applied using 
MODIS data (the same used for optimization in 2007) and referred to as 
“EUR_2007”. Finally, half monthly diurnal cycles and daily variations of 
selected scenarios were analyzed for some common crop types. It is 
worth mentioning that the optimizations performed with a separate set 
of parameters at each site-year could not be generalized for further 
large-scale extrapolation of the model, yet they were included as a 
reference representing the best possible optimization for each site. 

3. Results 

3.1. Model-data fitting over all crop species 

Fig. 3 shows three Taylor Diagrams obtained for the three fluxes in 

the 12 different tested scenarios calculated for half hourly data for all 
sites-years together. An optimal model would be located in the bottom- 
right corner. The correlation coefficients across the 12 scenarios vary 
between 0.77 and 0.90 for NEE, between 0.80 and 0.92 for the GEE, and 
between 0.65 and 0.86 for RECO. Although all scenarios had a good 
correlation coefficient for the three fluxes, we noticed from the GEE and 
NEE Taylor diagrams (Fig. 3a and 3b) that scenarios using the MODIS 
vegetation indices (light and dark red) tended to have higher RMSE and 
lower correlation than those using the S2 vegetation indices (light and 
dark green). For example, the MODIS scenarios showed a RMSE for GEE 
ranging between 4.1 and 5.2 μmolm− 2s− 1 depending on the optimization 
configuration (ALL, CropT, Site), whereas S2 scenarios had lower RMSE 
for GEE that ranged between 3.4 and 4.2 μmolm− 2s− 1. A similar decrease 
in RMSE between MODIS and S2 scenarios is shown for NEE in Fig. 3a. In 
addition, for both NEE and GEE, the scenarios using S2 had standard 
deviation values closer to the observed standard deviation than the 
MODIS scenarios. The scenario with the initial standard VPRM, MODIS 
data, and a generic parameter optimization for all crops together (ALL) 
(SN 1 Fig. 3), as currently used for the ICOS CO2 fluxes product (Gerbig 

Fig. 3. Taylor Diagram for the 12 tested scenarios using half hourly data for (a) NEE, (b) GEE and (c) RECO. Green color presents S2 derived scenarios (light and dark 
for VPRM and MVPRM respectively). Light red and dark red colors represent MODIS derived scenarios with VPRM and MVPRM respectively. Numbers (1 to 12) 
represents the scenario numbers in Table 2 for different configurations. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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and Koch, 2021), failed to reproduce the observed standard deviation in 
both GEE and NEE for croplands. For scenario 1, the estimated SDs of 
GEE reached 5 μmolm− 2s− 1(4.4 μmolm− 2s− 1 for NEE) compared to 8.5 
μmolm− 2s− 1 for observed GEE (7.3 μmolm− 2s− 1 for NEE). 

The comparison between scenarios from MV and IV for NEE and GEE 
showed a slight enhancement in both fluxes’ simulations with less RMSE 
obtained by MV compared to the IV across scenarios using either MODIS 
or S2. Nevertheless, the performances of the different scenarios for RECO 

(Fig. 3c) clearly demonstrated that the IV (SN 1, 3, 5, 7, 9 and 11) 
showed a considerably less quality of model-data fit than the MV (SN 2, 
4, 6, 8, 10 and 12). The RMSE of the six scenarios using IV varied be-
tween 1.7 (optimal SN 11 at site- year scale using S2) and 2 μmolm− 2s− 1 

(SN 1, 7 and 3). The MV had lower RMSE values for the different sce-
narios and reached 1.55 μmolm− 2s− 1 for a S2 crop type optimization (SN 
10) with an optimal RMSE at site-year optimization (Site) reaching 1.39 
μmolm− 2s− 1. 

For both NEE and GEE, the Taylor diagrams show that the MODIS- 
based scenarios optimized for each crop type using IV and MV (SN 3 
and 4) performed better than those optimized for all crops together and 
were closer to the MODIS best possible optimization at each site-year 
(SN 5 and 6). The modeled standard deviation became closer to the 
observed one and the RMSE decreased as we moved from “ALL” to 
“CropT. Similarly, using the S2 data, the correlation coefficient 
increased and the RMSE decreased as we moved from the generic sce-
nario for all crops together (SN 7 and 8) to scenarios per crop type (SN 9 
and 10). However, using S2 data, the scenarios driven by IV (SN 7, 9 and 
11) had lower correlation and higher RMSE than those driven by the 
modified VPRM version (MV) (SN 8, 10 and 12). For both NEE and GEE, 
the closest scenario to the best potential optimization (SN 12) in terms of 
(r), SDs and RMSE was the crop-type based scenario using S2 and MV 
(SN 10). This scenario showed an estimated SDs of GEE equals to 7.70 
μmol.m− 2s− 1 (6.03 μmolm− 2s− 1 for NEE), thus closer to observed stan-
dard deviation. The best possible optimization at site-year using the MV 
(SN 12) attained a GEE SDs of 8.02 μmolm− 2s− 1 (6.39 μmolm− 2s− 1 for 
NEE). Regarding the RECO, the S2 based optimization per crop type using 
the MV (SN 10), with a correlation coefficient reaching 0.83, showed a 
better fitting of RECO than the S2 optimization for all crop types together 
using MV (SN 8) with a correlation of 0.77. The S2 based MV per crop 
type also showed a slightly better standard deviation (2.69 μmolm− 2s− 1) 

than that of the generic optimization of all crops together (2.33 
μmolm− 2s− 1), and its SDs was closer to the observed value. 

In addition to the Taylor diagram, Fig. B.1 in Appendix B presents the 
Mean squared deviation (MSD = RMSE2) for each scenario decomposed 
as a sum of three components: squared bias (SB), squared difference 
between measured and simulated standard deviation (SDSD), and lack 
of correlation weighted by standard deviations (LCS). A full description 
of the MSD decomposition is detailed in Kobayashi and Salam (2000) 
(see equations A.12 to A.14 in Appendix A). For NEE, the bias SB was 
negligible across the 12 scenarios and moderately low for the GEE where 
LCS was the major component of the MSD for these two fluxes. Fig. B.1 
shows that the better fit of data using S2 compared to MODIS in both 
NEE and GEE was related to the smaller values in the lack of regression 
fit (LCS) indicating that S2 better simulated the pattern of the fluxes’ 
fluctuations than MODIS. For GEE, the (MV), among all scenarios, 
decreased the SDSD component compared to the IV thus showing better 
simulation of the fluctuation magnitudes of the GEE using the MV. For 
the RECO, scenarios with IV represented high SB values compared to the 
MV whereas using the MV, both the SB and the SDSD were largely 
reduced which implies that the main gain in model-data fit using the MV 
corresponded to better fitting of both the RECO magnitudes and 
fluctuations. 

To better appreciate the improvement of the model-data fit between 
scenarios, Fig. 4 shows the AIC calculated for each scenario following 
the AIC of weighted least squares (Akaike, 1974; Banks and Joyner, 
2017). In general, lower AIC indicates a better performance. Fig. 4 
shows that the AIC gradually decreased as we moved from a generic 
optimization for all crops (ALL) to a per crop type optimization (CropT) 
and finally to a per site-year optimization (Site) for both MODIS and S2, 
and the IV or MV model versions. From the AIC variation, we notice that 
scenarios with higher degrees of freedom maintained lower AIC scores. 
The crop-type parameterization having 88 degrees of freedom in the MV 
(8 MV parameters/crop-type x 11 crop types) showed lower AIC values 
than the generic parameterization for all crops (only 8 parameters for all 
crop types). This indicates that using a per crop type optimization re-
mains significant regardless of the increase in the degrees of freedom 
which confirms the absence of overfitting in the optimization and gua-
rantees that the improvement in model-data fit between a generic and a 
crop type parameterization is not an artifact of increasing the degrees of 
freedom. These results are valid for both MODIS and S2 optimization 

Fig. 4. AIC for the 12 scenarios calculated using half hourly data for (a) NEE, (b) GEE and (c) RECO. Hatched bars represent AIC of models where a distinct set of 
parameters was adjusted for each site-year. Numbers inside each bar correspond to the number of parameters optimized for each scenario while numbers above bars 
represent the scenario number (SN). 
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scenarios. 
Regarding the model-data fit across different time scales, Fig. 5 

presents the relative squared error (RSE) calculated at half hourly, daily 
averaged, and weekly scales. In addition, Appendix B presents the Taylor 
diagrams of daily (Fig. B.2) and weekly (Fig. B.3) averaged output data 
for the 12 scenarios. Fig. 5 and the two Taylor diagrams in Appendix B 
allow us to compare the ability of each scenario to capture the daily/ 
weekly dynamics of fluxes which is mainly related to weather and 
weekly/seasonal variability associated to phenology, management 
events (such as fertilizations, pesticide and irrigation), and drought 
events, etc. In general, from Fig. 5 and the Taylor diagrams of Appendix 
B, we noticed similar inter-scenarios differences for daily and weekly 
scales, as for half-hourly scales, showing (1) the superiority of S2 on 
MODIS for both NEE and GEE, (2) the better performance of the MV 
compared to the IV model for RECO and (3) the better fit when the pa-
rameters are optimized per crop type instead of grouping all crop types 
together. Among the three timescales, Fig. 5 shows that all scenarios 
driven by MODIS data had higher RSE values (lower model-data fit 
quality) for daily and weekly scales than for half hourly scale for both 
NEE and GEE. This indicates the poor capacity of such scenarios driven 
by MODIS to capture the daily and weekly variability in the cropland 
CO2 fluxes which could be associated to weak representation of the 
phenological variability. On the other hand, S2 derived simulations 
averaged at daily and weekly time scales for both NEE and GEE were 
capable of maintaining similar quality of model-data fit than that of half- 
hourly data. For RECO, the daily and weekly variabilities for all scenarios 
were similar to that at the half-hour data with a clear superiority of the 
MV versus the IV at the three timescales. The three time-scales evalua-
tions for the three fluxes validate the possibility of passing from hourly 
to daily and weekly scales using the same half hour parameterization 
while maintaining an acceptable estimation of the three fluxes especially 
using the S2 data and the MV. Fig. B.4 in Appendix B, shows the RSE 
calculated at each season separately (winter, spring, summer and 
autumn). The models’ performances per season also follow the same 
pattern as hourly, daily and weekly time scales with better data-model 
fitting for S2 compared to MODIS and enhanced simulation of RECO 

using the MV model. However, it is noted from Fig. B.4 that spring and 
summer seasons (usually growing seasons of winter and summer crops) 
attain higher simulation accuracies in terms of RSE, for the three fluxes, 
than that obtained in winter and autumn periods (having bare soil 
conditions corresponding to sowing and harvesting) with lower RSE 
values than spring and summer for all scenarios. 

3.2. Evaluation per crop type 

In this analysis, only scenarios driven by the modified version of 
VPRM were considered since the previous results demonstrated better 
performance of the MV compared to the standard version. Fig. 6 rep-
resents three heat maps of the relative squared error (RSE) calculated for 
each crop type independently, for the 6 scenarios including EUR_2007 
(currently used optimization for ICOS flux maps), MODIS_MV_ALL, 
MODIS_MV_CropT, S2_MV_ALL, S2_MV_CropT, and the S2_MV_Site. 
These scenarios are considered as the key scenarios to be analyzed. The 
EUR_2007 and per site-year scenario (S2_MV_Site) were separated from 
the four other scenarios for comparison as the first represents an already 
existing and used optimization and the second has the best fit to the data 
but is not applicable for upscaling. 

The heatmaps of NEE and GEE (Fig. 6a and 6b) clearly show mod-
erate to high RSE values for both MODIS scenarios (ALL and CropT) 
across all crop types. For example, NEE in MODIS_MV_ALL had high RSE 
values for maize, oat, potato, barley, and radish (between 0.54 and 0.61) 
and moderate RSE values of 0.41 and 0.36 for wheat and rapeseed 
respectively. GEE also showed the same trend with moderate to high 
RSE values as that of NEE for both MODIS scenarios. The similarity 
obtained between the EUR_2007 scenario and the two MODIS derived 
scenarios was expected as the three scenarios (EUR_2007, MOD-
IS_MV_ALL and MODIS_MV_CropT) are based on MODIS vegetation 
indices and the slight positive difference between our two MODIS sce-
narios and EUR_2007 could be related to the enhancement provided 
using the modified VPRM. 

For the S2 driven scenarios, the difference in the model-data fit be-
tween an optimization mixing all crops (ALL) and a per crop type 

Fig. 5. Heatmap of the variation of the relative squared error (RSE) for the 12 scenarios at half-hourly, daily aggregated and weekly aggregated data.  
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optimization (CropT) was variable according to the crop type. It was 
noticed from the heatmaps of NEE and GEE (Fig. 6a and 6b) that crop 
types as barley, maize, oat, sugar beet, potato, and sunflower had sig-
nificant improvement when applying a specific crop-type based 
parameterization instead of a generic set of parameters for all crops. For 
example, the RSE value for maize NEE decreased from 0.26 (0.18 for 
GEE) using a S2 generic optimization (ALL) to 0.16 (0.13 for GEE) using 
S2 maize crop parameters. Similarly, the two sites-years with oat crop 
cover showed a NEE RSE value decreasing from 0.36 (0.44 for GEE) 
using generic “ALL” optimization to 0.25 (0.24 for GEE) using an oat- 
crop optimization. On the other hand, wheat crop did not show a sig-
nificant improvement when using a specific crop type optimization 
(CropT), and RSE values for both NEE and GEE remained close to those 
of a generic optimization of all crops (ALL). Despite this limited 
enhancement between “ALL” and “CropT” for some crops such as wheat, 
the improvement was variable across different sites-years and could be 
significant in some cases. For example, Fig. C.1 in Appendix C, repre-
senting the RSE values calculated for each site-year for the same sce-
narios of Fig. 6, shows that for the DE-Rus site having wheat crop in 
2018, the RSE of NEE and GEE decreased from 0.22 to 0.15 and from 
0.18 to 0.1 respectively when using the wheat-based optimization 
instead of the generic “ALL” optimization. Similarly, CZ-KrP site in 2020 
showed a comparable decrease of from 0.32 to 0.27 in NEE RSE value 
when using the wheat-based optimization instead of the “ALL”. 

In general, in the case of S2, the per crop-type optimization (CropT) 
tends to be closer to the case of a per site-year optimization (Site) than 
the all-crop optimization (ALL). The current EUR_2007 model used to 
generate the CO2 fluxes maps using MODIS and IV by ICOS seems to be 
significantly less explicit than our S2 “ALL” or “CropT” scenarios. A 
critical point to consider in this assessment is the variation of the ac-
curacy in the estimation of the ecosystem respiration between 
S2_MV_ALL and S2_MV_CropT. Generally, Fig. 6c shows that for almost 
all crop types, the estimation of RECO was less accurate using ALL than 
CropT. This can be noticed from the RSE values of the barley, ley, oat, 
potato, radish, rapeseed, sugar beet, and sunflower where the RSE 
values largely decreased when using the “CropT” parametrization 
compared to that using the “ALL” parametrization. Therefore, despite of 
having acceptable results for both NEE and GEE using the generic 
optimization (ALL) driven by S2 data and using the MV, the generic 

parameterization of all crops did not produce a good model-data fit of 
the RECO and the per crop-type optimization was more efficient for 
estimating the three fluxes simultaneously. 

3.3. Diurnal cycles 

Fig. 7 shows half-monthly composite diurnal cycles (averaged for 
each hour) for three different crop types including maize in FR-Lam 
2019 (Fig. 7a), wheat in DE-RuS 2018 (Fig. 7b), and rapeseed in FR- 
Aur 2018 (Fig. 7c) calculated for EUR_2007, S2_MV_ALL, 
S2_MV_CropT and S2_MV_Site key scenarios. For the three site-years, the 
scenarios showed considerable variations in the models’ performances 
regarding the diurnal variability of net carbon uptake, with a significant 
variation in the overall magnitude of the diurnal cycle, although they all 
follow the diurnal trend between day and night. First, the EUR_2007 
scenario considerably underestimated the day-time diurnal cycle mag-
nitudes during the whole growing season of maize and wheat with a 
maximum uptake reaching − 12 μmolm− 2s− 1 and − 15 μmolm− 2s− 1 

compared with the observed daytime diurnal magnitude reaching − 40 
(±7.95) μmolm− 2s− 1 and − 30 (±5.7) μmolm− 2s− 1 for maize (July – 
August) and wheat (April – May) respectively. For the rapeseed example, 
the EUR_2007 scenario overestimated the observed daytime diurnal 
magnitudes especially in the maximum vegetation development stage 
(between April and June). The EUR_2007 scenario showed low positive 
and underestimated night-time NEE values indicating lower ecosystem 
respiration estimation mainly caused by the linear respiration- 
temperature relation of the IV version, whereas MV based scenarios 
(ALL or CropT) showed better estimation of the nighttime NEE (positive 
NEE values) mainly due to better estimation of the ecosystem 
respiration. 

The “CropT” scenario (S2_MV_CropT) in the three examples out-
performed the generic scenario (S2_MV_ALL) with daytime NEE values 
approaching the extreme values of the observed peak daily magnitudes, 
with less underestimation than the MODIS derived scenarios and the 
EUR_2007. The closest performance to the observed diurnal cycles was 
found for the scenario calibrated per crop type (S2_MV_CropT). The 
green line representing the latter extremely approached, and sometimes 
laid, within the observational error shaded area for most of the half- 
monthly diurnal cycles in the three sites especially in the peak 

Fig. 6. Heatmap of the variation of the relative squared error (RSE) per crop type for 6 tested scenarios for (a) NEE, (b) GEE and (c) RECO. The number between 
parentheses next to each crop type represents the number of available sites-years for this crop type used to calculate the RSE value. 
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growing season (diurnal cycles of August for maize, April and May for 
wheat and rapeseed). This reflects the successful reproduction of the 
diurnal cycle magnitudes using the “CropT” optimization and the su-
periority of the crop-type based scenario to the generic “ALL” scenario. 
The peak growing season diurnal cycle presented by Fig. D.1 in Ap-
pendix D also guaranteed the same outperformance of the “CropT” with 
satisfactory predictions of the NEE diurnal cycles. 

In general, all the scenarios showed limited capability to reproduce 
the start of the growing season but then fitted well in the rest of the 
season. This inadequacy in the beginning of the season could be 
attributed to the limits in the EVI and LSWI determination (including 

Pscale and Wscale) when the canopy is not fully covering the soil. In 
addition, we noticed that even the best data fitting scenario per site-year 
(S2_MV_Site) could not reach the extreme values of the diurnal cycle in 
the maximum vegetation development (Fig. 7 and Fig. D.1 in Appendix 
D). This limitation could be attributed to two main reasons. First, the 
extremely large flux magnitudes have the highest observational uncer-
tainty values, given that the observational uncertainty increases with 
the value of the observation, which means less influence of these ob-
servations in the weighted least square optimization. Second, this limi-
tation could be due to the possible saturation of the EVI and the 
incapability to reflect the extreme photosynthetic activity during the full 

Fig. 7. Examples of half-monthly diurnal cycles during the growing season for (a) maize in FR-Lam 2019, (b) wheat in DE-RuS 2018 and rapeseed in FR-Aur 2018. 
The shaded region around the observed NEE represents the average observational uncertainty of the measured NEE. 

Fig. 8. Daily NEE during the peak growing season of (a) maize crop in FR-Lam 2019, (b) wheat crop in DE-RuS 2018 and rapeseed crop in FR-Aur 2018. The shaded 
region around the observed NEE represents the average observational uncertainty of the measured NEE. 
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vegetation development. 
Fig. 8 presents the daily mean NEE variability during the peak 

growing season for the three sites-years above, in July for maize and in 
April for wheat and rapeseed. For maize, the EUR_2007 and the generic 
scenarios from S2 (S2_MV_ALL) failed to accurately reproduce the daily 
variation especially in the peak uptake period between 10 and 20 July 
2019 and showed high underestimation of the flux magnitudes. The 
scenario optimized per crop-type (S2_MV_CropT) had better simulation 
of the daily variability. This scenario was also capable of capturing the 
sudden drop in NEE values between 25 and 28 July 2019, which was 
most probably related to a drought event since temperatures recorded 
for the period between 23 and 28 July at the flux tower reached its 
maximum value of July (35 ◦C) accompanied with the maximum 
recorded VPD (Vapour-Pressure Deficit) of the month. At the wheat site- 
year, both the S2_MV_ALL and the S2_MV_CropT captured the daily 
changes in NEE, similar to that of the rapeseed site-year except for the 
period between 15 and 20 April where a slight overestimation was 
observed for S2_MV_ALL compared to S2_MV_CropT for the rapeseed 
site-year (Fig. 8c). 

3.4. Variability in the estimated parameters values 

The results presented in the previous sections showed better model- 
data fit of scenarios calibrated per crop type compared to the generic 
ALL parameterization using S2. To understand the variability in the 
performance, Fig. 9 presents the optimized parameters per crop type 
(CropT) compared to that obtained by the generic (ALL) scenario using 
S2 data and the modified VPRM (4 GEE parameters and 4 RECO pa-
rameters). Although the average values of all the crop-specific param-
eters were quite similar to that of the generic (ALL) scenario, the 
parameters differed significantly between the crop types. 

For the GEE, the light use efficiency λ had an average value of 0.32 
μmolm− 2s− 1(Wm− 2) for different crop types compared to 0.31 μmol.
m− 2s− 1(Wm− 2) for “ALL”, with a variation between 0.21 (maize) and 
0.67 (oat). The variation of the light use efficiency value across crop 
types was expected as this parameter is a plant functional-type depen-
dent parameter that relies on temperature and vapor pressure deficit 
(VPD). SWRad0 values (Wm− 2) were less varying across the crop types, 

except for maize, and attaining a value between 155 Wm− 2 (ley) and 393 
Wm− 2 (sunflower). Higher SWRad0 value estimated for maize (579 
Wm− 2) is consistent with the findings of Mahadevan et al. (2008) for 
maize sites in the USA. The two soil moisture parameters in the GEE (q 
and θ*) had larger variability across the crop types. We noticed that the 
critical soil moisture θ* for crops such as beans, oat and sugar beet were 
generally higher than the average value (0.29) and ranged between 0.33 
(sugar beet) and 0.63 (oat). Winter crops including wheat, rapeseed, and 
barley had lower θ* values than summer crops, ranging between 0.09 
(wheat) and 0.24 (rapeseed). The dependency of the RECO on GEE 
(unitless parameter k) had an average value of 0.36 among different 
crops (0.37 for ALL) and varying between 0.23 and 0.57. This average 
value was slightly higher than that obtained over crop sites in the study 
of Migliavacca et al. (2011) which was 0.244. The sensitivity of the 
ecosystem respiration to temperature (E0) attained an average value of 
216.6 (◦K) with an “ALL” value reaching 224.3 (◦K). However, crops 
such as radish, bean, barley, and potato showed higher E0 values 
compared to the average crop value. The high value of θmax for radish 
compared to other crops denotes the dependency of this crop on the soil 
surface wetness. The high variation of all optimized parameters between 
the “ALL” and the “CropT” confirms that a generic optimization of all 
crops together could not always generate satisfactory estimation of NEE, 
GEE and RECO for all the crop types since each crop attains different crop 
dependent optimized values. 

4. Discussion 

4.1. Modified and default VPRM 

The modified VPRM presented an improved performance for simu-
lating all three CO2 fluxes. The evaluation of the IV showed that a simple 
model with a linear relation between ecosystem respiration and tem-
perature underestimates the amplitude of the RECO at crop sites and is 
not appropriate for further applications concerned by the seasonal cycle 
of global CO2 and annual carbon balance. Adding both a productivity 
dependence (GEE) and a soil water content dependence to the RECO 

equation in VPRM enhanced the description of RECO. However, even 
with the MVPRM, the general moderate accuracy of the RECO, compared 

Fig. 9. Optimized parameters for all-crop optimization (ALL) and crop type optimization (CropT) using the S2 vegetation indices and the modified VPRM. Pa-
rameters with no units shown on the y-axis are unitless. 
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to the NEE and GEE, could be related to management impacts in crop-
lands which are not yet explained by the RECO equation (tillage, fate of 
crop residues, irrigation etc.). In addition, the low estimation accuracy 
of RECO using a generic scenario for all crops together (Fig. 5c and 6c) 
compared to that obtained using a per crop-type optimization (CropT) 
could be assigned to the specific crop management associated to each 
crop type that can be hardly expressed using a generic parametrization 
for all crops together. A better estimation of RECO for croplands could be 
obtained by including crop management drivers especially during the 
non-growing season such as tillage, cover crops, and the management of 
crop residues. 

The addition of the soil water content function as a driver in the GEE 
enhanced both GEE and NEE estimates. In fact, the effect of water 
availability on GEE and RECO depend on and the magnitude of water 
stress and the sensitivity of related biotic processes. The modified VPRM 
for GEE mainly decreased the difference between the measured and 
simulated standard deviation which implies that the MV better captured 
the fluctuation in the GEE, which in return could be mainly related to the 
daily/weekly variations caused by drought events and water stress for 
croplands. This ensures that with the additional soil moisture driver, the 
modified VPRM can better simulate GEE values at water stress condi-
tions which was adjusted by the proposed water stress parameter (θ*)

and (q). The limitation in accurate fluxes’ estimations in the water stress 
periods was one of the systematic errors reported by Mahadevan et al. 
(2008) where sites affected by water stress were less accurately captured 
by the initial VPRM using only the LSWI as a water stress descriptor. 

Nevertheless, for large scale applications, the integration of the soil 
water content as a driver for both GEE and RECO requires accurate large 
scale spatial estimations of the soil moisture at acceptable spatial and 
temporal resolutions. Current remote sensing-based soil moisture 
products providing satisfactory soil moisture estimations at several 
spatial and temporal resolutions include, and are not limited to, the 
microwave L-band Soil Moisture Active Passive (SMAP) at ~9–30 km 
spatial resolution (Entekhabi et al., 2010), the enhanced version of 

SMAP combined with Sentinel-1 product (SMAP-S1) at ~1–3 km spatial 
resolution (Das et al., 2019) and the Soil Moisture and Ocean Salinity 
(SMOS) product at ~25 km spatial resolution (Kerr et al., 2001) etc. The 
global dataset for land components of the European ReAnalysis product 
(ERA5) (Hersbach et al., 2020, p. 5) provides, in addition to the tem-
perature and shortwave radiation products, the hourly soil moisture 
estimations at ~9 km spatial resolution which can be used for the large- 
scale application of the modified VPRM proposed in this study. 

4.2. Spatial upscaling using Sentinel-2 vs MODIS 

The S2 derived vegetation indices showed considerable improve-
ment in the simulation of the GEE and NEE for crops, especially when 
using a per crop-type optimization instead of a generic crop optimiza-
tion for all crop types together. The improvement of GEE and NEE could 
be mainly related to the finer spatial resolution of S2 which helped 
reducing the effect of combined reflectance of mixed land cover classes 
at 500 m scale thus providing an accurate description of the plant 
phenology independent of the surrounding land cover. Although all sites 
had approximately pure cropland areas within 500 m around the site 
according to the S2 dynamic land cover (Table 1), the MODIS derived 
fluxes showed less model-data fitting accuracy than S2 at site level. To 
understand this difference between MODIS and S2 in fluxes simulations 
for croplands, we analyzed the crop-type distribution within the 500 m 
MODIS pixels for four French sites using the OSO French Land Cover 
Map (OSO for Occupation des Sols Opérationnelle in French) at 10 m 
spatial resolution which provides detailed crop-type classification 
(Inglada et al., 2017) (Table A.0 in Appendix A). These sites could be 
representative of other European sites. Fig. 10 shows the distribution of 
land cover classes, including crop types, for the MODIS pixels of the four 
flux sites in 2018, 2019 and 2020. From Fig. 10 we noticed that most of 
the flux tower sites had a mixture of different crop types within the 500 
m pixel of MODIS. In FR-Aur, FR-Lam and FR-EM2, a mixture of more 
than 3 crop types are identified in the 500 m MODIS as well as other land 

Fig. 10. Distribution of land cover classes within the 500 m pixel of MODIS for four French flux tower sites. Land cover classes are extracted from the yearly OSO 
French land cover map. Class “Other” includes urban areas, orchards, natural grassland etc. Crop type under each pie chart is the true crop type of the site- 
year (Table 1). 
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cover classes (other class stands for urban areas, orchards, natural 
grassland etc.). The case of FR-Gri showed a dominance of one cop type 
(more than 85 % single crop) with less heterogeneity but not complete 
purity. This analysis validates the assumption that the complex hetero-
geneous features of the cropping system in Europe necessitate fine 
spatial resolution data for crop CO2 fluxes and that MODIS vegetation 
indices may have a mixture of different land cover reflectance that af-
fects the estimation of the cropland CO2 fluxes in MODIS based 
scenarios. 

To emphasize the importance of using S2 instead of MODIS, and to 
show the ability to spatially generalize the proposed crop-type param-
etrization of our propose modified VPRM, we conducted a spatial rep-
resentation of the CO2 fluxes over a 30 km x 30 km study site located in 
the south of France (near FR-Aur flux tower site) at 500 m spatial res-
olution. We considered the example of wheat crops (common winter 
crop) where we performed two different CO2 flux mapping for the year 
2019, one using the wheat crop parameters of the MODIS_MV_CropT 
scenario and the other using the wheat crop parameters of the 
S2_MV_CropT scenario. MODIS vegetation indices were calculated for 
the year 2019 for the study site using the MCD43A4 product (same 
product used for optimization). S2 vegetation indices were extracted 
only for wheat crops by averaging, within each 500 m pixel, the 10 m S2 
pixels corresponding to wheat crops using a wheat crop (cereals) mask 
from the 10 m French Land Cover Map of the same year (2019). For 
meteorological data and soil water content, we used the ERA5 dataset 
that provides hourly temperature, shortwave radiation and soil water 
content (top first soil layer 0 – 7 cm) at 9 km spatial resolution (see 
Table A.0 in Appendix A). Finally, GEE was calculated for both MODIS 
and S2 scenarios using their corresponding wheat parameters and the 
results were compared with the FR-Aur flux measurements in 2019 (FR- 
Aur measurement field in 2019 had wheat crop). Besides the objective of 
showing the difference between S2 and MODIS for CO2 fluxes upscaling, 
the second objective here is to test whether the use of spatially contin-
uous meteorological and soil moisture datasets for large scale applica-
tions, such as that of ERA5, would affect the estimations accuracies. 

Fig. 11 shows examples of daily averaged GEE over a study site near 
FR-Aur flux tower (Fig. 11a) calculated using S2_MV_CropT and MOD-
IS_MV_CropT (Fig. 11b) for winter wheat (cereals) crops. Daily examples 
are taken at day of year (DOY) 60, 90, 120, 150 and 180 during the 
wheat growing season. The GEE maps of MODIS and S2 clearly showed 
the underestimation of the MODIS derived GEE compared to that esti-
mated from S2 especially in the peak growing season (DOY 120 and DOY 
150). While MODIS GEE saturated in the peak growing season at an 
order of 10 to 15 μmolm− 2s− 1, S2 provided higher estimation reaching 
an order of 20–25 μmolm− 2s− 1. This underestimation of MODIS GEE is 
most likely due to lower magnitude of vegetation indices of MODIS 
pixels having a mixture of either other crop types or bare soil fields 
within the 500 m resolution (summer crops are usually bare soil in 
winter. At the end of the wheat crop cycle (DOY 180), MODIS GEE es-
timations showed higher values than that for S2 having lower GEE 
values representing the possible harvest (end of cycle). These high 
values by MODIS at the end of the wheat growth cycle could probably be 
due to the contribution of the summer crops in the MODIS EVI and LSWI 
values within the 500 m spatial resolution of MODIS pixels (starting 
season of summer crops in May-June). The scatter plots of the com-
parison of hourly estimated GEE for both MODIS and S2 with FR-Aur 
flux measurements (Fig. 11c) show that MODIS GEE underestimated 
the measured GEE values with an RMSE reaching 4.90 μmolm− 2s− 1 

compared to 3.55 μmolm− 2s− 1 for the S2 derived GEE. The comparison 
between the spatially upscaled S2 GEE and the measured GEE in Fig. 11c 
demonstrates that the use of ERA 5 data for temperature, shortwave 
radiation and soil water content in the spatial upscaling did not highly 
affect the estimation accuracy. Indeed, the flux site FR-Aur in 2019 had 
an optimization accuracy reaching 0.17 by means of RSE (using flux 
meteorological data and soil moisture) which slightly decreased to 0.19 

using the ERA-5 forced estimations. This guarantees the capacity of 
generalizing the crop-type optimized MVPRM at large scales using 
spatially continuous meteorological and soil moisture data such as that 
provided by the ERA5. 

To understand the lower GEE values simulated by MODIS compared 
to S2 in the peak growing season and higher values at the end of the 
wheat crop cycle, Fig. E.1. in Appendix E presents the time series of both 
EVI and LSWI derived from S2 and MODIS and averaged over all 500 m 
sub-pixels in the study zone. The EVI time series shows that MODIS EVI 
reached a maximum value of 0.47 ± 0.10 less than that of S2 that 
reached 0.61 ± 0.12 in the peak growing season. Moreover, MODIS 
derived EVI and LSWI showed higher values than S2 for the period be-
tween June and August 2019. Fig. E.2a in Appendix E presents the 
distribution of the land cover classes within the study area while 
Fig. E.2b shows the percentage of MODIS pixels as a function of the 
wheat area percentage within each 500 m pixel. While wheat is the 
dominant crop type in the study site (29 %), sunflower crop represents 
about 17 % of the land cover classes followed by urban areas (15 %) and 
grassland (12 %). Sunflower and urban areas contributing to the MODIS 
500 m spectral reflectance probably reduced EVI values in the peak 
growing season (in spring) where sunflower (summer crops) are bare 
soil and urban areas usually have very low EVI values. In summer (end of 
wheat crop cycle), the sunflower crop cycle starts and higher EVI values 
for MODIS was obtained probably due to the contribution of the sun-
flower crop cover in the MODIS surface reflectance. Analyzing the wheat 
area percentage within the 500 m pixels (Fig. E.2b), we noticed that 
about 36 % of the 500 m pixels in the study site had less than 20 % of 
wheat areas whereas only 33 % of the pixels had more than 40 % pure 
wheat area. These findings confirm the assumption that the 500 m 
spatial resolution of MODIS could not be always adequate for European 
cropping systems with heterogeneous features, complex rotations and 
small farmland properties. In an estimation of the global distribution of 
the agricultural fields sizes, Lesiv et al. (2019) showed that in the Eu-
ropean agricultural areas, fields’ sizes are either small (between 0.64 
and 2.56 ha) or medium (between 2.56 and 16 ha) which is less than the 
size of one MODIS pixel (25 ha).In addition, according to the European 
statistics of farmland, about 63.8 % of the European agricultural hold-
ings are less than 5 ha (Farms, nd) . Consequently, the diversity of the 
land cover types, and the small sized European farms compared to the 
500 m spatial resolution of MODIS led to less accurate representation of 
the vegetation phenology and inadequate estimation of the GEE and 
NEE. 

For larger scale applications of crop-type optimized MVPRM (i.e., 
European scale), crop type land cover maps at fine spatial resolution are 
required to distinguish between different crop types. Where at the 
French scale we used the French land cover map which includes detailed 
recognition of several crop types (as shown in Figs. 10 and 11), at the 
European scale the current advances in machine learning demonstrated 
the capability of obtaining quite accurate crop type classification maps 
at fine spatial resolution. A recent study by d’Andrimont et al. (2021) 
proposed the first 10-m crop type map for the European Union for 
nineteen (19) crop types developed using the RF classification and based 
on the Sentinel-1 time series data. Such dataset is sufficient to produce 
CO2 flux maps for each crop type using the crop-type parameterization 
provided in this study at the European Union scale. With the near-real- 
time availability of Sentinel-2 data, future work will concentrate on 
establishing a continuous monitoring system for cropland CO2 fluxes at 
national and continental scales, enabling quasi-real-time tracking at 
high spatial resolution. A detailed and accurate spatial representation of 
cropland CO2 fluxes would aid in the precise monitoring of crop health 
in near real-time, the analysis and assessment of the impact of extreme 
events such as droughts and heatwaves on crop yields, and the fore-
casting of crop yields during the growing season. Future work will also 
focus on enhancing the VPRM equation to consider more drivers for 
cropland CO2 fluxes, including crop management practices such as 
tillage, harvest, fertilization, and irrigation. Despite optimizing the 
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Fig. 11. Example of the application of the S2_MV_CropT and MODIS_MV_CropT optimizations on wheat (cereals) in south France using the ERA-5 meteorological and 
soil moisture data. (a) the study site near FR-Aur flux tower (30 km x 30 km) with the corresponding land cover map and cereals mask in 2019. (b) Daily aggregated 
examples of estimated GEE for wheat using MODIS and S2 at 500 m spatial resolution for selected days of years during the wheat cycle. White areas in GEE maps 
represent 500 m pixels having no cultivated wheat in 2019 according to the land cover map. (c) Density scatter comparing the hourly estimated and measured GEE at 
the FR-Aur flux tower in 2019 for both S2_MV_CropT and MODIS_MV_CropT optimizations. 
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VPRM and MVPRM using site scale meteorological and soil moisture 
data, the use of the ERA5 data for meteorological data as well as the soil 
moisture estimates proved to be efficient for large scale mapping of CO2 
fluxes as shown in the upscaling example. However, the use of the 
SWRad in the GEE equations instead of the PAR can induce potential 
uncertainties. In the VPRM as well as the MVPRM equations for GEE, 
PAR was replaced by SWRad since, unlike PAR, the SWRad is usually 
available operationally at large scales through meteorological datasets 
such as the ERA5. Although PAR is proportional to the SWRad with PAR 
being about 45 % of the SWRad (Howell et al., 1983), this value can vary 
from 42 % to 59 % depending on the weather conditions (cloudiness and 
solar angles). Under cloudy conditions, Zhang et al. (2020) showed that 
larger GEE could be observed in the morning and afternoon mainly due 
to higher diffuse PAR fraction whereas larger GEE in midday could be 
due to lower temperature and VPD. In such cloudy conditions, shaded 
leaf photosynthesis could be limited by light, but the diffuse light can 
increase GEE. Therefore, the assumption of a direct linear relationship 
between PAR and SWRad can be limited for such cloudy conditions and 
may induce potential uncertainty in the upscaling. 

5. Conclusion 

We proposed a modification of the VPRM model to improve the 
simulation of cropland CO2 fluxes in Europe. Modifications of the VPRM 
included first the replacement of the commonly used MODIS vegetation 
indices at 500 m spatial resolution by the Sentinel-2 vegetation indices 
at 10 m spatial resolution to address the complex heterogenic feature of 
the European cropping system. Second modification incorporated the 
addition of soil moisture functions to the GEE and RECO equations to 
account for water stress effects on both fluxes. Contrary to the conven-
tional assumption of having one set of parameters for all crop types in 
the initial VPRM, the study proposed to optimize crop-type specific 
parameters for common crops in Europe. Modified VPRM parameters 
were optimized using eddy covariance measurements at selected Euro-
pean cropland flux sites comprising 11 different crop types. Main results 
showed that the use of S2 vegetation indices in the modified VPRM 
better simulated the three CO2 fluxes (NEE, GEE and RECO) especially in 
the peak growing season whereas MODIS underestimated the CO2 fluxes 
for most crop types. Compared to a single parameterization of all crops 
together, the crop-specific parametrization of the modified VPRM 
enhanced the simulations of CO2 fluxes obtaining lower RMSE and RSE 
values for several crops including maize, oat, sugar beet and barley. The 
addition of the soil moisture functions in both GEE and RECO allowed 
better simulations of the CO2 fluxes in drought periods illustrated by 
better fitting of the daily/weekly fluxes’ fluctuations caused by drought 
events. The modified RECO equation better fitted the ecosystem respi-
ration than the simple respiration-temperature linear function used in 
the initial VPRM for all crop types. An example of a spatial upscaling of 
the CO2 fluxes for wheat crops, using the modified VPRM, detailed crop 
type land cover map and ERA 5 data for soil moisture, demonstrated the 
superiority of S2 over MODIS. Using MODIS data, the mixture of 
different land cover classes in the 500 m spatial resolution of MODIS 
revealed less accurate fluxes’ estimations than the high resolution S2 

data. With less accuracy obtained for RECO compared to NEE and GEE, 
future work will concentrate on better improving the cropland RECO 
equation by considering crop management effects on the vegetation 
respiration. Future work will also concentrate on producing high reso-
lution cropland CO2 flux maps over the European continent using S2 and 
the crop-type parameterized modified VPRM. 
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Appendix A  

Summary table of data used in this study with their corresponding data source  

Data Description Source 

Eddy Covariance 
Data 

Half hourly CO2 flux measurements at flux towers (footprint ~ 150 m) https://www.icos-cp.eu/data-products 
https://fluxnet.org/data/fluxnet2015-dataset/fullset-da 
ta-product/ 

S2 Dynamic Land 
Cover 

10 m near-real-time (NRT) Land Use/Land Cover (LULC) dataset that includes class probabilities 
and label information for nine classes 

https://developers.google.com/earth-engine/datasets/c 
atalog/GOOGLE_DYNAMICWORLD_V1 

(continued on next page) 
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(continued ) 

Data Description Source 

MCD43A4.061 
MODIS 

Daily Nadir Bidirectional Reflectance Distribution Function Adjusted Reflectance (NBAR) product 
at 500 m spatial resolution. Combines data from both the Terra and Aqua spacecrafts, choosing 
the best representative pixel from the 16-day period 

https://developers.google.com/earth-engine/datasets/ 
catalog/MODIS_061_MCD43A4 

Sentinel-2 
Level-2A 

~ 5 to 10 days cloud free optical images at 10 m spatial resolution. BRDF corrected using (Roy 
et al., 2017) adjustment 

https://developers.google.com/earth-engine/datase 
ts/catalog/COPERNICUS_S2_SR 

ERA5-Reanalysis Half hourly meteorological data and soil moisture estimations at ~ 9 km spatial resolution https://cds.climate.copernicus.eu/cdsapp#!/search? 
type=dataset 

French Land Cover 
Map 

Classified land cover map of France including 23 different classes and 11 different crop types https://www.theia-land.fr/en/product/land 
-cover-map/  

where ρNIR, ρRed, ρBlue and ρSWIRed are the near infrared, red, blue and the shortwave infrared bands respectively. For Sentinel-2, the ρNIR , ρRed, ρBlue and 
ρSWIRed correspond to bands B8, B4, B2 and B11 respectively. 

Enhanced Vegetation Index (EVI) EVI =
2.5 × (ρNIR − ρRed)

(ρNIR + 6 × ρRed − 7.5 × ρBlue + 1)
A.1  

Land Surface Water Index (LSWI) LSWI =
ρNIR − ρSWIRed

ρNIR + ρSWIRed
A.2  

Temperature scale(Tscale) Tscale =
(T − Tmin) × (T − Tmax)[

(T − Tmin)(T − Tmax) −
(
T − Topt

)2
] A.3  

Tmin (5 ◦C), Tmax (40 ◦C) and Topt (22 ◦C) are the minimum, maximum and optimal temperatures for photosynthesis in croplands respectively and 
fixed at literature values. 

Water Scale (Wscale) Wscale =
1 + LSWI

1 + LSWImax
A.4  

Phenology Scale (Pscale) Pscale =
1 + LSWI

2
A.5  

Pscale was calculated as in equation A.5 from bud burst to leaf full expansion, then considered as a value of “1″ after the leaf full expansion until the 
senescence phase where equation A.5 is reapplied. The three phenology phases were identified using a simple EVI seasonal thresholding. 

Correlation coefficient (r) r =

∑n
i=1(yi − ŷ)(ŷi − ŷ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷ)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(ŷi − ŷ)2

√ A.6  

Standard deviation of the measured fluxes (SDm) SDm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(yi − y)

N

√

A.7  

Standard deviation of the simulated fluxes (SDs) SDs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ŷi − ŷ)
N

√

A.8  

Root Mean Squared Error (RMSE) RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

N

√

A.9  

Relative Squared Error (RSE) RSE =

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 A.10  

AIC AIC = Nln

(∑n
i=1wj

− 2(yi − ŷi)
2

N

)

+ 2(p+ 1) A.11  

Squared Bias (SB) SB = (y − ŷ)2 A.12  

SDSD SDSD = (SDs − SDm)
2 A.13  

LCS LCS = 2SDsSDm(1 − r) A.14  

where yi is the measured flux value, ŷi is the simulated flux value, yis the mean of the measured flux values, ̂yis the mean of the simulated flux values, N 
is the total number of simulated flux values, wj is the flux observation uncertainty and p is the number of optimized parameters. 
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Appendix B

Fig. B1. Mean squared deviation (MSD) and its components squared bias (SB), squared difference between measured and simulated standard deviations (SDSD) and 
lack of correlation weighted by standard deviation (LCS) for the 12 scenarios calculated using half hourly data. Numbers over bars represent the scenario numbers 
(SN) shown in Table 2. (a) NEE, (b) GEE and (c) RECO.  

H. Bazzi et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 127 (2024) 103666

19

Fig. B2. Taylor Diagram for the 12 tested scenarios for aggregated daily data. (a) NEE, (b) GEE and (c).RECO   
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Fig. B3. Taylor Diagram for the 12 tested scenarios for aggregated weekly data. (a) NEE, (b) GEE and (c).RECO  

Fig. B4. Heatmap of the variation of the relative squared error (RSE) per season for the 12 scenarios. Winter: December-January-February, Spring: March-April-May, 
Summer: June-July-August, Autumn: September-October-November). 
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Appendix C

Fig. C1. Heatmap of the variation of the relative squared error (RSE) per site-year for 6 tested scenarios. (a) NEE, (b) GEE and (c).RECO  

. 
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Appendix D

Fig. D1. Peak growing season diurnal cycles of (a) maize crop in FR-Lam 2019, (b) wheat crop in DE-RuS 2018 and rapeseed crop in FR-Aur 2018. x-axis represents 
the hour. 

Appendix E

Fig. E1. Time series of the average EVI (a) and LSWI (b) for 500 m pixels derived using S2 (green) and MODIS (red) data at the upscaling study site (30 km x 30 km). 
Shaded region corresponds to the standard deviation of the calculated average of all 500 m pixels. 

Fig. E2. (a) Percentage of the land cover classes within the upscaling study site (30 km x 30 km) and (b) the frequency of the MODIS pixels as a function of the wheat 
area percentage within the 500 m pixel. 
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Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., 
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., 
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., 
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., 
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Pongratz, J., Rödenbeck, C., Sitch, S., Tramontana, G., Walker, A., Weber, U., 
Reichstein, M., 2020. Scaling carbon fluxes from eddy covariance sites to globe: 
synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365. 
https://doi.org/10.5194/bg-17-1343-2020. 

Keenan, T.F., Prentice, I.C., Canadell, J.G., Williams, C.A., Wang, H., Raupach, M., 
Collatz, G.J., 2016. Recent pause in the growth rate of atmospheric CO2 due to 
enhanced terrestrial carbon uptake. Nature Communications 7, 13428. 

Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J., Font, J., Berger, M., 2001. Soil 
moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. 
IEEE Trans. Geosci. Remote Sensing 39, 1729–1735. https://doi.org/10.1109/ 
36.942551. 

Kobayashi, K., Salam, M.U., 2000. Comparing Simulated and Measured Values Using 
Mean Squared Deviation and its Components. Agron. J. 92, 345. https://doi.org/ 
10.1007/s100870050043. 

Kountouris, P., Gerbig, C., Totsche, K.-U., Dolman, A.J., Meesters, A.G.C.A., Broquet, G., 
Maignan, F., Gioli, B., Montagnani, L., Helfter, C., 2015. An objective prior error 
quantification for regional atmospheric inverse applications. Biogeosciences 12, 
7403–7421. https://doi.org/10.5194/bg-12-7403-2015. 
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