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Abstract 

Silver supported on ceria solids (1 and 4 wt% Ag) are prepared by three different methods: 

Impregnation–Reduction with Citrate (IRC), Deposition–Precipitation with Urea (DPU), and 

Wetness Impregnation (WI). The catalysts are tested in the total oxidation of propylene. 

Presence of Ag2+ with Ag+ improves the catalytic activity. The solid prepared by the (IRC) 

method with a silver loading of 4 wt%, shows a better catalytic activity compared to the other 

solids. H2-Temperature Programmed Reduction (TPR) and Electron Paramagnetic Resonance 

(EPR) techniques confirm that the presence of three different redox couples: Ag2+/Ag+, 

Ag2+/Ag0, and Ag+/Ag0 in the (IRC) solid containing 4wt% of silver is responsible for its 

superior catalytic performance.  
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1. Introduction 

Volatile organic compounds (VOC) are harmful pollutants. One promising way to 

eliminate diluted VOC is their total oxidation using catalysts. Silver based-catalysts are 

efficient solids among the catalytic systems studied in oxidation reactions. The catalytic 

activity and stability of such compounds depend on many criteria [1-10]: the silver particle 
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size, the presence of silver cations, the metal oxide support, the preparation method, the 

precursors used in these preparations, the calcination temperature and the pre-treatment 

procedure. Among these parameters, the preparation method has been reported to significantly 

affect the activity of the silver–cerium oxide system. The most common applied methods: 

impregnation, deposition–precipitation, and co-precipitation strongly influence the catalytic 

activity due to the large differences in silver particles size and/or to the availability of active 

silver sites in the vicinity of the support surface defects [7-10]. Previous studies [11-12] dealt 

with the preparation of silver supported catalysts by the deposition-precipitation (DP) or/and 

the impregnation (IM) methods and showed that DP leads to the formation of better 

performing catalysts in the oxidation reactions. This is attributed to the formation of silver 

nanoparticles in the catalysts prepared by DP compared to large silver particles obtained when 

using the IM method. In addition, Skaf et al. [4] obtained a better activity in propylene, CO, 

and soot oxidation over 10wt%Ag/CeO2 (IM) compared to 10wt%Ag/CeO2 (DP). This is 

assigned to an easier reduction of silver species and to the presence of Ag2+ species detected 

by electron paramagnetic resonance. In all the above mentioned studies [4, 11-12], a silver 

nitrate (AgNO3) solution is used to introduce silver in the catalytic material. 

Furthermore, cerium oxide (CeO2) has received considerable attention especially in 

oxidation catalysis as catalyst or catalytic support [13-21]. This is due to its low temperature 

reducibility and its oxygen storage and release properties in the presence of noble or transition 

metal particles. The oxidation/reduction couple (Ce3+/Ce4+) of ceria particles which is in 

direct contact with the metal particles promotes the catalytic activity in most cerium based 

materials. 

In this work, propylene is chosen as VOC model, CeO2 as support, and silver species as active 

phase. Three different methods are used to synthesize the catalytic systems Ag/CeO2: 

Impregnation–Reduction with Citrate (IRC), Deposition–Precipitation with Urea (DPU), and 

Wetness Impregnation (WI). Two different Ag loadings, 1 and 4 wt%, are studied. These two 

contents are chosen based on a previous study from our team [22] where different Ag contents 

ranging between 1 and 20 wt% were impregnated on ceria support, using silver nitrate as 

precursor, and evaluated in propylene total oxidation. The content 3.5wt% gave better 

activities than lower Ag contents and similar activities to higher Ag contents. In order not to 

make our catalysts expensive, we selected the content 4wt% and for the sake of comparison, 

we also prepared the content 1wt%. Ceria support used in this work being mesoporous, we 

expect higher dispersion of silver species over ceria support than in our previous work [22]. 
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The performances of the systems prepared in this work are compared in total oxidation of 

propylene. The elucidation of the reasons for the differences in catalytic performances is then 

made, using the H2-temperature programmed reduction (TPR) and the electron paramagnetic 

resonance (EPR) techniques.  

 

2. Experimental part 

2.1. Catalysts preparation 

The catalysts are prepared by three different methods: impregnation–reduction with citrate 

(IRC), deposition–precipitation with urea (DPU), and wetness impregnation (WI). The 

detailed procedure of catalysts preparation, along with characterization of BET surface area 

and pore volume, are reported previously [7, 23]. The catalysts are calcined at 400°C. Besides 

pure ceria, CeO2, the six prepared samples are designated by x%Ag/CeO2(IRC) or (DPU) or 

(WI), where x is the silver loading in wt% (x = 1 or 4).  

2.2. Catalytic tests 

The catalysts are evaluated in the reaction of total oxidation of propylene. The experiments 

are carried out in a conventional fixed bed and plug-flow micro reactor, between 25 and 

400°C (1°C.min-1). The reactive mixture (100 mL min-1) is composed of air and 6000 ppm of 

propylene. Before the catalytic test, the catalyst (200 mg) is pre-treated under a flow of air 

(2 L.h-1) at 400°C (1°C.min-1). The amounts of reactants and products are followed by a 

microgas phase chromatography equipped with thermo-conductivity detector (TCD) (Varian 

CP-4900 microGC). Propylene, C3H6, conversion is calculated as follows:  

100
(initial)HC%

)(remainingHC%(initial)HC%
(%)conversionHC

63

6363

63 ×
−

=  

Indeed, in our case the initial molar flow F of propylene as well as the catalyst weight m are 

kept constant. Therefore the ratio  
�

�
  is constant and the rate "r = 

�

�
× conversion percentage " 

is proportional to the conversion percentage and therefore the light-off curves reflect well the 

kinetic rate.  

2.3. Characterization techniques  
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The Temperature Programmed Reduction (TPR) experiments are carried out in an 

Altamira AMI-200 apparatus. The TPR profiles are obtained by passing a 5% H2/Ar flow (30 

mL.min-1) through 50 mg of samples heated at 5°C.min-1 from ambient temperature to 900°C. 

The hydrogen concentration in the effluent is continuously monitored by a thermo-

conductivity detector (TCD).  

Electron Paramagnetic Resonance (EPR) measurements are performed at −196 °C and 

room temperature on an EMX BRUKER spectrometer with a cavity operating at a frequency 

of ∼9.5 GHz (X band). 50 to 55 mg of the calcined catalysts are vacuum treated before 

analysis (P = 1.2 x 10-5 bar). The magnetic field is modulated at 100 kHz. The g values are 

determined from precise frequency and magnetic field values. 

3. Results and discussions 

3.1. Catalytic test 

Figure 1 shows the propylene conversion as a function of reaction temperature on 

x%Ag/CeO2 (IRC), (DPU), and (WI) catalysts. CO2 and water are the only products detected 

during the reaction. Propylene conversion is enhanced when the silver content increases; 

1%Ag/CeO2 catalysts are less active than the corresponding 4%Ag/CeO2 ones. Over the 

1%Ag/CeO2 catalysts, propylene conversion is not total even at 400°C. However, propylene 

conversion was complete in the presence of 4%Ag/CeO2 catalysts at temperatures lower than 

400°C. The temperature at which 50% of propylene is converted (T50), is used to compare the 

catalytic performance. According to the results, the catalysts are ranked according to 

decreasing catalytic performance as follows : 4%Ag/CeO2(IRC) > 4%Ag/CeO2(WI) 

> 4%Ag/CeO2(DPU) > 1%Ag/CeO2(IRC) > 1%Ag/CeO2(WI) > 1%Ag/CeO2(DPU). 

In order to explain the difference in the catalytic activities between the different studied 

samples, TPR and EPR characterization methods are used.  
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Figure 1: Propylene conversion versus reaction temperature on x%Ag/CeO2 (IRC), (DPU), 

and (WI) catalysts, (x = 1 or 4 wt%).  

 

3.2. TPR study 

The TPR technique is used to study the surface and bulk reducibility of the catalysts. For 

pure ceria (Figure 2), two broad reduction peaks in the 300-550°C and the 600-850°C 

temperature ranges are observed. Similar results were already obtained in previous studies 

[15, 20-21]. The first peak is attributed to the reduction of ceria surface, with the formation of 

Ce3+ species and an oxygen lacuna. The second peak corresponds to the reduction of bulk 

ceria along with the reduction of Ce4+ into Ce3+ ions. 

The TPR profiles of all x%Ag/CeO2 catalysts are also shown in Figure 2. The surface ceria 

reduction peak shifted to lower temperatures in almost all catalysts. The position and shape of 

the first reduction peak depend on the silver content and preparation method. New reduction 

peaks are also observed at temperatures lower than 200°C on the TPR profiles of all silver 

containing catalysts.  

For the 4%Ag/CeO2(IRC) catalyst, two reductions peaks are observed at 81°C and 130°C 

while the peak corresponding to surface ceria was shifted to 340°C. For the 1%Ag/CeO2(IRC) 
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catalyst, a reduction peak is observed at 128°C while surface and bulk ceria reductions 

yielded a broad and flattened peak.   

For the 4%Ag/CeO2(DPU) catalyst, a broad peak extending from 400°C to 750°C 

corresponds to surface and bulk ceria reduction. Two additional reduction peaks are present at 

90°C and 179°C. The TPR profile of 1%Ag/CeO2(DPU) presented one reduction peak at 

167°C with no identified peak for surface ceria reduction.   

The TPR profile of the 4%Ag/CeO2(WI) catalyst is different as it shows that surface ceria 

reduction was delayed, peaking at 502°C, in addition to a new intense reduction peak 

observed at 173°C. For the 1%Ag/CeO2 catalysts, ceria reduction peaks (surface and bulk) are 

barely observed in addition to a broad reduction peak centered at 103°C.  

All reduction peaks observed at temperatures lower than 200°C can be attributed to the 

reduction of silver oxide species (AgxOy). In literature, similar peaks were obtained at low 

temperatures for solids prepared by the impregnation and deposition-precipitation methods 

and were ascribed to the reduction of AgO and Ag2O respectively [4, 24-25]. Peaks at 

temperatures lower than 100°C are ascribed to reduction of Ag2+ species (AgO into Ag2O and 

Ag(0)) [4, 25]. Peaks at 100-180°C are attributed to the reduction of Ag2O into Ag(0) [4, 24-

25]. Reducibility of Ag+ species is easier when Ag+ species are in higher proximity or 

interaction with oxygen. For example, Ag+ species in 4% Ag/CeO2(WI) show a maximum 

reduction at 173°C whereas in 1%Ag/CeO2(IRC) this maximum is at 128°C, revealing that 

oxygen species are more close to Ag+ species in the latter [4].  

Despite that the 4%Ag/CeO2(IRC) catalyst contains species that reduce at the lowest observed 

temperatures, it cannot account for its superior catalytic performance. In fact, all catalysts 

with 4wt% of silver, showed reduction peaks at low and close temperature values (especially 

for temperatures lower than 100°C). The EPR technique is able to identify the nature of silver 

species present in the different catalysts and helps in the elucidation of the differences in 

catalytic performances.  
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Figure 2: H2-Temperature-programmed reduction (H2-TPR) profiles of CeO2 and 

x%Ag/CeO2 (IRC), (DPU) and (WI) catalysts, (x = 1 or 4 wt%).  

 

It is worthy to note that X-ray photoelectron (XPS) studies were performed on 10%Ag/CeO2 

prepared by impregnation (IM) and deposition-precipitation (DP) in a previous work from our 
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group [4]. Presence of Ag+ (binding energies 367.7 and 374.2 eV), Ag0 (binding energies 

369.2 and 375.2 eV), and Ag2+ (binding energies 367.4 and 373.2 eV) was evidenced. Ag2+ 

was only evidenced in the IM sample and was behind the better catalytic performance of IM 

compared to DP in oxidation reactions of propylene, carbon black, and CO. It would be also 

interesting to perform XPS studies on our samples.  

 

3.3. EPR study 

Figure 3 shows the EPR spectra recorded at −196°C for the x%Ag/CeO2 catalysts (IRC, DPU, 

WI). Prior to analysis, the catalysts are calcined at 400°C for 4 h, and then treated under 

vacuum at the same temperature for 1 min.  

The 1%Ag/CeO2(IRC) spectrum (Figure 3.a) is composed of four signals. The first signal, 

denoted “C”, shows an orthorhombic symmetry with gzz = 1.980, gyy = 1.964, and gxx = 1.940. 

This signal was extensively studied in the literature [26-29] and is attributed to Ce3+ ions. The 

second signal, denoted “S”, is an isotropic signal centred at g = 2.0028 with a peak-to-peak 

width; ∆H = 6 G. It corresponds to a trapped electron in the ceria matrix [29-31]. The third 

signal, denoted “O”, has an axial symmetry with g// = 2.034, g⊥ = 2.011, and is 

unambiguously attributed to O�
� species located on Ce4+ ions. Indeed, a similar signal with a 

slight difference in the g// value is obtained after adsorption of molecular O2 on pure ceria [32-

34]. The “O” signal remains stable, and its intensity decreases according to the Curie law 

when the spectrum is recorded at room temperature (Figure 4a). This means that the O�
� 

species is strongly adsorbed on ceria. Finally, the last signal, denoted “G”, is characterized by 

a doublet of lines centered at g⊥ = 2.038 with a hyperfine splitting constant of A⊥ = 24 G. This 

new signal can be attributed to Ag2+ ions despite the absence of their parallel components. 

Indeed, similar doublets were obtained on numerous solids containing silver [4-6]. Indeed, 

TPR peak ascribed to reduction of silver species in 1%Ag/CeO2(IRC), with maximum at 

128°C is broad. It starts at temperature lower than 100°C. Therefore it is not excluded the 

existence of some Ag2+ species with Ag+ in this sample. As EPR is very sensitive, the 

presence of Ag2+ is well evidenced by this technique.   

The 4%Ag/CeO2(IRC) spectrum contains four signals. Three of these signals correspond to 

the already identified “C”, “S”, and “G” signals. These signals have different intensities 

compared to 1%Ag/CeO2(IRC).  However, the “O” signal is absent and a new signal, denoted 
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“T”, is present. The “T” signal consists of a triplet centered at g = 1.997 with a hyperfine 

splitting constant of 33 G. The intensities ratios of the three lines composing this triplet are 

1:2:1. This triplet “T” can be unambiguously attributed to an unpaired electron shared 

between two equivalent entities possessing each a nuclear spin of I=1/2. These entities can be 

in the form of: 

Ag0Ag+ ↔ Ag+Ag0 

Despite the absence of the O�
� species in the 4%Ag/CeO2(IRC) catalyst, it contains Ag2+, Ag+, 

and Ag0 species  which means  that three different redox couples; Ag2+/Ag+, Ag2+/Ag0, and 

Ag+/Ag0; are available. The presence of these redox couples in the 4%Ag/CeO2(IRC) catalyst 

accounts for its superior catalytic activity in the total oxidation of propylene compared to the 

1%Ag/CeO2(IRC) catalyst which only contains the Ag2+/Ag+ redox couple.  

Figure 3.b shows the EPR spectra recorded at −196°C for the x%Ag/CeO2(DPU) catalysts. 

The 1%Ag/CeO2(DPU) spectrum contains two signals. The “C” signal discussed previously 

and a second signal, denoted “O” with an axial symmetry (g// = 2.024 and g⊥ = 2.010) 

attributed to O�
� species located on ceria surface. The O�

� species remained stable when the 

spectrum is recorded at room temperature (Figure 4.b). The EPR spectrum of 

4%Ag/CeO2(DPU) shows three signals. A “C” signal, an “O” signal (g// = 2.028 and 

g⊥ = 2.009) obtained at −196°C (Figure 3.b) and room temperature (Figure 4.b) corresponding 

to surface O�
� species and a “G” signal centred at g⊥ = 2.038 with a hyperfine splitting 

constant equal to 24 G. This “G” signal is attributed to the presence of Ag2+ ions in the 

catalyst. The presence of these Ag2+ ions for high silver content is probably responsible for the 

superior catalytic activity of 4%Ag/CeO2(DPU) compared to 1%Ag/CeO2(DPU) in propylene 

oxidation [4].  
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3.b. 

 

3.c.  

Figure 3: Electron paramagnetic resonance (EPR) spectra, recorded at −196°C, of 

x%Ag/CeO2 catalysts (x = 1 or 4 wt%), a) (IRC), b) (DPU) and c) (WI).  
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When the spectrum is recorded at room temperature, the “G” signal remains stable and its 

intensity decreases according to the Curie law. The higher resolution of “G” signal may be 

attributed to the lower amount of Ag2+ present in this sample. Indeed, lower interactions 

between paramagnetic Ag2+ species leads to more resolved signals. In fact, the reduction peak 

due to Ag2+ species (at 96°C) in TPR profile of 4%Ag/CeO2(WI) is very small compared to 

the homologous ones in 4%Ag/CeO2(IRC) and 4%Ag/CeO2(DPU).  The stability of the Ag2+ 

ions obtained for high silver content explains the enhanced performance in the catalytic 

oxidation of propylene [4] compared to the 1%Ag/CeO2(WI) counterpart.  
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4.c 

Figure 4: Electron paramagnetic resonance (EPR) spectra, recorded at ambient temperature, 

of x%Ag/CeO2 catalysts (x = 1 or 4 wt%), a) (IRC), b) (DPU), and c) (WI).  

 

4. Conclusion 

Three different preparation methods are used to prepare catalysts Ag supported on CeO2 

(IRC, DPU, and WI, with 1 and 4 wt% Ag). The catalysts are evaluated in propylene total 

oxidation. The order of catalytic activity is: 4%Ag/CeO2(IRC) > 4%Ag/CeO2(WI) 

> 4%Ag/CeO2(DPU) > 1%Ag/CeO2(IRC) > 1%Ag/CeO2(WI) > 1%Ag/CeO2(DPU). TPR 

and EPR techniques allowed the identification of the type of silver species.  

Presence of Ag2+ species is responsible for the improvement of the catalytic activity. 

Indeed, the absence of Ag2+ species in 1%Ag/CeO2(DPU) may explain its lowest catalytic 

performance compared to all the other catalysts, for which Ag2+ species was detected by 

EPR. In addition, the low stability of Ag2+ species in 1%Ag/CeO2(WI), as revealed by EPR, 

may be at the origin of its lower activity in propylene oxidation compared to 

1%Ag/CeO2(IRC). In fact, 1%Ag/CeO2(IRC) showed catalytic performance closer to 

catalysts 4%Ag contents than to 1%Ag content. The existence and stability of Ag2+ species in 

1%Ag/CeO2(IRC) may explain this behavior.  

All the 4%Ag contents samples show better activity towards propylene oxidation than their 

homologous 1%Ag, due to the presence of higher amount of Ag2+ (reduction peak at 

temperature lower than 100°C in TPR and Ag2+ signals in EPR), besides Ag+.  Furthermore, 

EPR revealed the existence of Ag(0) on 4%Ag/CeO2(IRC). The presence of the Ag2+, Ag+, 

and Ag0 species in the 4%Ag/CeO2(IRC) catalyst allows an electronic interaction among 

three different redox couples:  Ag2+/Ag+, Ag2+/Ag0, and Ag+/Ag0. The simultaneous presence 

of these redox couples may be the reason behind the superior catalytic activity of the 

4%Ag/CeO2(IRC) catalyst in the total oxidation of propylene compared to the catalysts 

comprising only the Ag2+/Ag+ redox couple. Finally, it is stated that Ag content and the 

preparation method are parameters influencing the catalyst performance in oxidation 

reactions by affecting the type and amount of silver species.   
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