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Abstract: The aim of this study is to propose a successful method for the treatment of water con-
taminated by pharmaceutical pollutants through homogeneous photocatalysis in the presence of
decatungstate ions (W10O32

4−). Sulfamethazine (SMZ), a sulfonamide antibiotic, was used as a
model molecule. The results showed that SMZ could be effectively degraded with this process under
simulated solar irradiation. SMZ degradation kinetics were studied with different dioxygen and SMZ
concentrations, pH values, and photocatalyst masses. Optimal conditions were determined to be pH
7, [Na4W10O32] = 0.33 g/L, and [SMZ] = 13.9 mg/L under the aerated condition, resulting in 85%
SMZ degradation in 240 min, using a 36W-UVA/UVB light source. Hydroxyl radicals were identified
as the major contributors to SMZ elimination. Four photoproducts identified with high-performance
liquid chromatography coupled with mass spectrometry were formed by the cleavage of the sul-
fonamide bond and the hydroxylation of both the aromatic ring and pyrimidine moiety. SMZ was
completely mineralized after 90 h of irradiation in the presence of decatungstate anions. These results
provided a mechanism for the photocatalytic degradation of SMZ in an aqueous solution. To sustain
this mechanism, theoretical studies were carried out using density functional theory calculations. This
involved Fukui functional analyses, including ring hydroxylation, C-S bond cleavage, and molecular
rearrangement processes.

Keywords: decatungstate ions; antibiotic; photocatalysis; hydroxyl radicals; SMZ; mineralization

1. Introduction

Thousands of tons of pharmaceuticals are produced and consumed annually to im-
prove human and animal health. However, a significant portion of these enter the envi-
ronment through various pathways, including human, industrial, and veterinary activi-
ties [1]. These substances are persistent pollutants and can be pharmacologically active
and toxic [2,3]. Although the actual risks to humans are still unclear, some research in-
dicates that they can damage the ecosystem and have dangerous effects on humans and
wildlife [4,5].

Pharmaceutical compounds detected in wastewater are often classified as polar mi-
cropollutants that cannot be readily removed using conventional wastewater treatment
plants (WWTPs) [6]. Sulfonamide antibiotics are widely used in the treatment of vari-
ous bacterial infections due to their low cost, low toxicity, and high efficiency [7]. They
have been detected in municipal WWTP effluents at concentrations ranging from 70 to
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227 ng/L [8,9]. In surface waters, the occurrence of sulfonamides has been confirmed with
concentrations in the range 21–132 ng/L in Japanese rivers and 0.1–42.5 ng/L in Spanish
ones, supporting their partial removal during wastewater treatment [10,11].

In recent decades, many techniques have been employed for wastewater treatment.
Chemical coagulation and precipitation stand out as efficient methods for removing phar-
maceuticals from wastewater. These processes entail the formation of insoluble complexes,
easily separable through sedimentation or filtration [12]. Another widely used approach
involves activated carbon, which has demonstrated remarkable efficiency in adsorbing
various organic compounds, including pharmaceutical residues, from wastewater [13].
Biological treatment methods, such as conventional activated sludge and aerobic biore-
actors, can also be tailored for pharmaceutical wastewater treatment. Microorganisms
play a pivotal role in biodegrading pharmaceutical compounds, albeit some may display
resistance, necessitating longer hydraulic retention times for complete removal [14,15].
Furthermore, membrane-based technologies such as nano-filtration and reverse osmosis
have proven valuable for eliminating both organic and inorganic contaminants, including
pharmaceuticals, from wastewater [16].

Recently, numerous studies have focused on advanced oxidation processes for the
removal of pharmaceutical pollutants from wastewaters [17–20]. These processes have
demonstrated their effectiveness against toxic and non-biodegradable organic pollutants.
In general, the excitation of the photoactive material under the action of artificial or natural
light leads to the formation of hydroxyl radicals (OH•). These radicals are very strong
oxidizing agents, i.e., they can oxidize many organic compounds, up to mineralization
(conversion of the pollutants into CO2, H2O, and inorganic ions) [17,19–22].

In addition, polyoxometalates (POMs) are a model of a homogenous photocatalyst and
have attracted much attention for their photocatalytic activities due to their charge transfer
properties; the first report of these compounds in photochemistry was published over
100 years ago [23–27]. The decatungstate anion (W10O32

4−), a member of the POMs, has
been shown to be one of the most active species for photocatalytic degradation of various
organic pollutants with UV light [25,28–31]. The photoexcitation of the decatungstate
anion occurs in the range of 300-400 nm, especially at the maximum absorption wavelength
(λmax = 324 nm). This leads to an excited state and the formation of photoexcited W10O32

4−*

through an intramolecular charge transfer from HOMO of O2− to the LUMO of W6+. The
photoexcited radical is highly active and can act as an oxidant by electron transfer and/or
as a reductant by hydrogen abstraction because it has an electron-deficient oxygen center.
In addition, it can react with hydroxyl ions to form hydroxyl radicals responsible for the
degradation of organic pollutants. Finally, the oxidized form of the decatungstate ion
(W10O32

5−) reacts with dioxygen available in the medium to regenerate the initial form,
allowing its reuse for photocatalytic applications [24,25].

This study aims to present an innovative method for treating water contaminated
with pharmaceutical pollutants through the utilization of homogeneous photocatalysis
in the presence of decatungstate ions. Homogeneous photocatalysis was selected due to
its superior efficiency in degrading organic pollutants attributed to the direct interaction
between the dissolved catalyst and pollutants, facilitating a less selective and more rapid
and complete reaction [25,26,32,33]. Sulfamethazine (SMZ) is chosen as the model molecule
due to its persistence in the aquatic environment, toxicity, and low photo and biodegradabil-
ity [10,34]. The research will specifically focus on the process’s efficiency under simulated
solar irradiation (kinetics and mineralization) and the optimized conditions to achieve
maximum SMZ degradation. In addition, the mechanistic pathways will be deeply ex-
plored by (i) investigating the short-lived species responsible for the degradation process,
(ii) identifying the photoproducts, and (iii) carrying out theoretical studies using density
functional theory calculations (DFT). The general goal is to emphasize the significance of
this research in advancing environmental remediation strategies.
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2. Materials and Methods
2.1. Materials

SMZ (MW of 279 g/mol) (99%) (Figure S1) and acetonitrile (HPLC grade) Isopropanol
(IPA) (C3H7OH) (99.8%) CHROMANORM (Sigma Aldrich, Shanghai, China). Sodium
tungstate (Na2WO4, 2H2O) and hydrochloric acid (HCl) (37%) (VWR, Rosny-sous-Bois,
France). Perchloric acid (HClO4) (60%), sodium hydroxide (NaOH) (98%), and sodium
chloride (NaCl) (pure)(LOBA Chimie Pvt Ltd., Mumbai, India). All chemicals were used
without further purification. Solutions were prepared using ultrapure water (Millipore
MilliQ, Merck SA, Darmstadt, Allemagne) with a resistivity of 18.2 MΩ.cm. The initial pH
of the solutions was adjusted with NaOH and HClO4.

2.2. Preparation of Sodium Decatungstate

The procedure described in the literature [35] was slightly modified. A boiling solution
of sodium tungstate (Na2WO4, 2H2O) was mixed with boiling 1.0 M hydrochloric acid and
the mixture was refluxed to give a green solution according to the following equation:

10Na2WO4 + 16H+ −→ Na4W10O32 + 8H2O + 16Na+ (1)

To the above solution, solid sodium chloride was added with stirring, then brought to
a boil, and then quickly placed in an ice-water bath. This suspended solution was kept in a
freezer overnight. After 24 h, the crude NaCl/Na4W10O32 suspension solution was filtered
and the recovered solid was dissolved in acetonitrile. Then, the acetonitrile solution was
heated under reflux and filtered to remove the insoluble NaCl. Finally, the acetonitrile solu-
tion was carefully evaporated in a hot water bath to obtain the Na4W10O32 photocatalyst.

2.3. Photoreactor

The irradiation was performed with six mercury vapor lamps with a total power of
36 W. The envelope of the lamp is made of a special doping glass that allows the emission of
UVB-UVA radiation like that of sunlight. The system is equipped with an internal reflector
to focus the radiation and a Pyrex reactor((Sigma Aldrich, Shanghai, China) located 10 cm
from each lamp with a double envelope that allows constant circulation of water. This type
of glass reactor cuts the wavelengths below 300 nm to avoid direct photolysis. The device
is equipped with a magnetic stirrer to ensure the homogeneity of the solution.

2.4. Procedure

In total, 30 mL of the samples containing the SMZ (27.8 mg/L) and catalyst (0.5 g/L)
was added to the reactor (UVA/UVB-36W). The lamps were then turned on to trigger a
light response. Throughout the reaction, stirring and aeration were maintained to keep the
suspension homogeneous.

2.5. Analysis

Spectrophotometric measurements were recorded using a UV-6300PC spectropho-
tometer equipped with UV-Vis Analyst software for storage and processing of spectra.
Quartz cells with an optical path length of 1 cm were used. Intermediates formed during
SMZ degradation were determined with high-performance liquid chromatography (HPLC)
using a Shimadzu LC-2030C 3D (Shimadzu Corporate, Kyoto, Japan) plus with a UV-vis
detector. This system is connected to a data acquisition and processing unit, which operates
using the analysis software.

An EC 250/4,6 Nucleodur 100-5 C18ec (Thermo Fisher Scientific, Illkirch, France)
column was used, and the analysis was performed with an isocratic method using a mobile
phase of ultrapure water and acetonitrile (40/60, v/v). The flow rate was set at 0.8 mL/min,
and the temperature was maintained at 30 ◦C. Under these conditions, SMZ retention time
was 7.9 min and the detection wavelength was 264 nm.
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Identification of photoproducts from the photocatalytic degradation of SMZ was per-
formed using HPLC coupled with time-of-flight mass spectrometry (TOF-MS). The instru-
ment used was a Q-tof-Micro/Water 2699 (Thermo Fisher Scientific, Illkirch, France). The
mode used in this technique is “Positive Electrospray Ionization”/ESI+. This is an ioniza-
tion method that results in the formation of protonated molecules with m/z = [M+ H]+. The
scan was performed in the m/z range between 50 and 400.

2.6. Computational Details

Theoretical investigations were performed with DFT calculations using the Gaussian
09W program [36] to predict the photodegradation mechanism of SMZ. The geometry opti-
mization of SMZ, intermediates, and products was performed with a B3LYP/6-311G(d,p)
basis set [37,38] using water as a solvent with the conductor-like polarizable continuum
solvent model [39]. Moreover, the Fukui functions were calculated to predict the most
electrophilic and nucleophilic sites, explaining the highest possible photodegradation
mechanism of SMZ in the presence of the decatungstate anion under UV irradiation in an
aqueous medium [40].

3. Results
3.1. Characterization

The crystalline structure, surface morphology, and thermal stability of the decatungstate
anion were thoroughly explored in our previous studies in perfect agreement with the
literature [41]. The UV-vis absorption spectrum of decatungstate (Figure 1a) shows dis-
tinct bands in the UV region due to the ligand-to-metal charge transfer (LMCT) process:
electrons are transferred from the oxygen ligand O2− (2p) to the tungsten metal W+6 (5d).
It shows an absorption band centered at 324 nm with a molar absorption coefficient of
14,700 ± 300 M−1.cm−1. This shows a remarkable overlap with the solar emission spec-
trum (Figure 1b). Indeed, its excitation in its lowest energy band, λ > 300 nm, seems to
be the easiest irradiation to realize from the practical point of view for potential applica-
tions [31,41].
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Figure 1. UV−vis spectrum of W10O32
4− (0.27 g/L), pH = 4.5, in aqueous solution (a) and solar light

emission (b) (left) and FTIR spectrum of W10O32
4− (right).

The FT-IR spectrum of W10O32
4− contains several bands with different positions

and intensities. In particular, the strong band at 958 cm is characteristic of the stretching
vibration of the W = Ot bond, while the vibration due to the deformation of the W-Ob-W
bond is observed at about 889 to 768 cm (Figure 1) [27,42]. The broad band at 3400 cm−1

and the peak at 1620 cm−1 are also worth mentioning, which are due to the O-H stretching
vibration and the bending modes of the water molecule.

3.2. Kinetics of SMZ Degradation

The SMZ UV absorption spectrum (Figure S1), recorded at 1.0 × 10−4 mol/L and
pH = 4, shows two maximum wavelengths around 240 and 260 nm. Since absorption is
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observed at λ > 295 nm, SMZ is therefore susceptible to direct degradation by sunlight.
Therefore, the photodegradation of SMZ (27.8 mg/L, pH = 4) in an aqueous solution was
followed both in the presence and absence of W10O32

4− (0.5 g/L). The evolution of SMZ
degradation as a function of irradiation time is presented in Figure 2.
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4−] = 0.5 g/L, pH=4, irradiation: UVA/UVB−36 W).

The results indicate that the presence of Na4W10O32 allows the induced SMZ degrada-
tion by photocatalysis. In fact, in the absence of the photocatalyst, only a small percentage
of degradation was observed upon direct light excitation, highlighting the quite good pho-
tochemical stability of SMZ under the experimental conditions. In contrast, the pollutant
completely disappears in the presence of W10O32

4− after 13 h of irradiation (Figure 2). This
degradation process corresponds to apparent first-order kinetics with a rate constant of
6.14 × 10−3 min−1 and a half-life time of about 2 h.

3.3. Effect of pH

Even if decatungstate is known as a very reactive species, it is necessary to control the
pH in an aqueous solution because another species like H2W12O40

6− or/and W7O24
6−, ab-

sorbing at lower wavelengths, can exist in acid and alkaline conditions, respectively [43,44].
Therefore, the influence of pH was investigated, and the results are shown in Figure 3.
Hence, the pH has a significant effect on the degradation kinetics of SMZ in the presence of
decatungstate anions. The maximum efficiency is observed in a pH range of 5–6, with a
rate constant of around 8 × 10−3 min−1, and it remains promising (above 6 × 10−3 min−1)
at a pH similar to that of WWTP conditions.
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Table 1. Initial rate constants and half-life times of photocatalytic degradation as a function of SMZ. 

SMZ (mg/L) 2.78 13.9 27.8 55.6 83.4 
t1/2 (min) 30.2 66.1 101.2 267.6 471.5 

k × 103 (min−1) 23.9 10.5 6.8 2.6 1.7 

Figure 3. The evolution of the rate constant of SMZ degradation as a function of pH in the presence
of decatungstate ([SMZ] =27.8 mg/L, [W10O32

4−] =0.5 g/L, UVA/UVB−36W irradiation).
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3.4. Pollutant Concentration Effect

The effect of SMZ concentration on the photocatalytic process was studied in the
range of 2 to 83 mg/L with a constant photocatalyst dose (0.5 g/L) and pH (7). From the
results shown in Figure 4, SMZ degradation decreases with increasing SMZ concentration.
At the lower concentration (10−5 mol/L ≈ 2.78 ppm), SMZ disappears completely after
6 h of irradiation with a rate constant around 24 × 10−3 min−1 and a half-life time of
30 min. However, with the highest concentration, k and t1/2 are 14 times lower and 16 times
higher, respectively, and SMZ is partially eliminated (Table 1). This is probably due to a
larger amount of SMZ to be degraded and to an absorbance competition between SMZ and
the decatungstate anions, this being unfavorable for the photocatalytic reaction [17,45,46].
However, considering that the pollutant concentration under real natural conditions ranges
from a few nanograms/liter to µg/L, it is reasonable to assume that this photocatalytic
process could achieve complete degradation of SMZ and possibly its mineralization [47–49].
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Figure 4. Photocatalytic degradation kinetics as a function of SMZ concentration ([W10O32
4−] =

0.5g/L, pH =7, irradiation: UVA/UVB-36 W).

Table 1. Initial rate constants and half-life times of photocatalytic degradation as a function of SMZ.

SMZ (mg/L) 2.78 13.9 27.8 55.6 83.4

t1/2 (min) 30.2 66.1 101.2 267.6 471.5
k × 103 (min−1) 23.9 10.5 6.8 2.6 1.7

3.5. Decatungstate Mass Effect

To determine the optimal dose of the photocatalyst (W10O32
4−), a solution containing

13.9 mg/L of SMZ was maintained at a constant pH (7), and various masses of Na4W10O32
were added to achieve concentrations of 0.16, 0.33, 0.5, and 0.66 g/L. Based on the de-
termined initial rate constants (Figure 5), it was found that increasing the mass of the
photocatalyst leads to an improvement in SMZ degradation until a plateau is reached for
an optimal mass of 10 mg (equivalent to 0.33 g/L) (Figure 5). This is attributed to the
potential aggregation of the photocatalyst at very high concentrations, which can lead to
the formation of clumps. This, in turn, can reduce the surface area available for reactions
and reduce the overall efficiency of the process [18,50–52].

A few studies focused on the elimination of other PP in water using decatungstate
anions both in homogeneous and heterogeneous photocatalysis (Table 2). Hence, it was
demonstrated that in homogeneous conditions, the degradation of PP is efficient depending
on PP initial concentration, photocatalyst mass, and irradiation set up. In heterogeneous
conditions, good results in the elimination of PP were also obtained, underlining the
advancements and efficiencies of the decatungstate anion in pharmaceutical pollutant
degradation [32,41,53].
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Table 2. Comparison of photocatalytic efficiency for DCT across different Pollutants.

PP Photocatalyst Photocatalyst
Mass (g/L) PP (mg/L) %

Degradation Time (h) References

Sulfamethoxazole Na4W10O32 0.48 10 60 1 [53]
Propranolol silica-NH3

+/Na3W10O32
− 5 10 60–65 3 [53]

Sulfasalazine Na4W10O32 0.097 19 16 2 [32]
Carbamazepine (CTAB)4W10O32 0.6 2.5 88.64 7 [41]
Carbamazepine Na4W10O32 0.6 2.5 45.64 7 [41]
Sulfamethazine Na4W10O32 0.33 13.9 85 4 This study

3.6. Effect of Oxygen Concentration

To understand the role of oxygen in SMZ-induced degradation, oxygen was removed
using nitrogen bubbling before and during irradiation. The results shown in Figure 6
indicate that the degradation of SMZ in the presence of decatungstate is lower under
deaerated conditions (k= 1.1 × 10−3 min−1, t1/2= 10.5 h) than under aerated conditions
(k = 10.11 × 10−3 min−1, t1/2 = 1.8 h). This implies that oxygen is a key element in SMZ
elimination. Namely, it enables the regeneration of W10O32

4− from W10O32
5−, as shown in

Equation (2) [25], with the continuous formation of reactive species. Such a photocatalytic
cycle should favor the complete disappearance of SMZ in the solution.

W10O32
5− + O2 −→W10O32

4− + O2
•−, (2)
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3.7. Inhibition of Radical’s Activity

It is well known that the species involved in the photocatalytic oxidation reactions are
usually the photogenerated radicals (HO•). To study their contribution to this photocat-
alytic process, a solution of SMZ was irradiated in the presence of decatungstate, adding
small amounts (2% v/v) of IPA. This alcohol was described as the most effective inhibitor
of HO•, with a rate constant of 1.9 × 109 M−1.s−1 [46]. The inhibition reaction proceeds
according to Equation (3):

(CH3)2CH-OH +•OH −→ (CH3)2C•-OH + H2O (3)

Figure 6 shows that the presence of IPA significantly slows down the photocatalytic
degradation of SMZ (as well as the initial rate constant (Table 3)), but it remains higher
than that in the absence of POM. This result indicates that hydroxyl radicals are mainly
(about 81%) involved in the degradation of SMZ, and other radicals or reactive species are
implicated in the process to a lesser extent.

Table 3. Rate constants of SMZ direct and photocatalytic degradation.

Conditions k × 103 (min−1)

Direct radiation 1.4
With 2% of IPA 1.9

Without IPA 10.1

3.8. Mineralization

Total degradation of a pollutant results in the conversion of organic carbon to harmless
gaseous CO2, while nitrogen and sulfur heteroatoms are converted to inorganic ions such
as nitrate, ammonium, and sulfate ions, respectively. Figure 7 illustrates the mineralization
profiles of SMZ at an initial concentration of 13.9 mg/L (equivalent to 7.2 mgC/L) in the
presence of decatungstate anion photocatalysts at 0.33 g/L under UV-vis irradiation at a
pH of 7. From Figure 7, it can be seen that the total organic carbon content decreases signif-
icantly upon irradiation without an induction period, and SMZ is completely converted
into carbon dioxide in almost 100 h.
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Figure 7. Photocatalytic mineralization of SMZ by decatungstate anion ([SMZ] =13.9 mg/L,
[Na4W10O32] = 0.33 g/L, pH = 7, UVA/UVB-36 W irradiation).

3.9. LC-MS Studies for Product Analysis

The irradiated solutions were analyzed with liquid chromatography coupled to elec-
trospray time-of-flight mass spectrometry (LC–ESI+TOF–MS) in the positive mode. The
chromatogram shown in Figure 8. is the one of a solution of SMZ irradiated 30 min in the
presence of the decatungstate anion ([SMZ] = 13.9 mg/L; [W10O32

4−] = 0.33 g/L, pH = 7)
with a conversion level of 30%.
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4− (0.33 g/L) at pH = 7.

Under our experimental conditions, several photoproducts (P1-P4) were formed with
a shorter retention time compared to the starting product (SMZ, tr = 7.88 min). This is in
complete agreement with the formation of more polar and/or smaller molecules. All the
results obtained are listed in Table 4.

Supplementary experiments with different collision energies (CEs) were performed to
obtain more and irrefutable information about the hypothetical and unknown structure
of the transformation products. After isolation and fragmentation of the precursor ion,
the mass spectra obtained at different CE (10, 20, and 30 eV) were also complied in the
Supporting Information.

SMZ was eluted after about 7.9 min and its ESI+ mass spectrum (Figure S2) shows,
among others, two peaks at m/z 279 (100%) and 301 (1.9%) corresponding to [SMZ+H]+ and
[SMZ+Na]+, respectively. Moreover, in agreement with the literature [10,54–56], several
peaks are observed at m/z 204, 186, 156, 124, 108, and 92, corresponding to fragments
formed by the scission of the C-S and S-N bonds.

The photoproducts P1 and P2 were formed as primary products because they were
readily observed during the first hours of irradiation. These two compounds are isomers
since they have the same m/z = 295, with retention times of 6.25 and 5.7 min, respectively
(Table 4). Considering their mass difference with SMZ (16 Da), both products should
correspond to hydroxylated SMZ derivatives.

The Collision-Induced Dissociation (CID) spectrum of P1 shows three common prod-
uct ions with SMZ at 204, 186, and 124 (Figure S3), indicating that the OH group is not
located on the pyrimidine moiety. This is confirmed with the two fragment ions (m/z =186
and 124) indicating the addition of 16 Da to the observed SMZ fragments (m/z =172 and
108) corresponding to the aromatic moiety. This suggests that the hydroxyl group in com-
pound P1 is located on the aromatic moiety [57]. However, the precise position of the OH
group remains unknown.

Similarly, comparison of the mass spectra of P2 and SMZ CID (Figure S4) reveals the
presence of three common ions containing the aromatic cycle (108, 156, and 92), while
all other fragment ions containing the pyrimidine moiety indicate the addition of 16 Da.
This indicates the presence of an OH-function in the free para position of the pyrimidine
moiety [54,55,57].
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Table 4. Retention time (tr), ratio of mass/charge (m/z), elementary formula of protonated compound
[M+ H]+, mass difference with SMZ (∆M), and proposed chemical structures of SMZ photoproducts,
analyzed with the LC/MS/ESI+.

tr (min) Products m/z Formula ∆M Chemical Structure

7.88 SMZ 279 C12H15N4O2S
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Compound P3 has a mass difference of 32 Da compared with SMZ, indicating the
presence of 2 OH functions (Table 4). From Figure S5, the fragments at m/z 124, 172, and
245 confirm the presence of an OH group on the aromatic ring and the ones at m/z 140 and
202 confirm the presence of the same group on the pyrimidine moiety. Compound P3 corre-
sponds to SMZ substituted by two OH functions, one on the aromatic ring and the other
on the pyrimidine moiety, without information on the OH position on the benzene [57].

The CID spectrum of P4 shows a fragment ion at m/z = 215, which is due to a mass loss
of 34 Da from SMZ that could be attributed to the loss of the SO2 group (Table 4). This is
confirmed by the absence of the [M + H + 2]+ fragment at m/z = 217, which is characteristic
of the 34S isotope (Figure S6). Moreover, the presence of the two fragments at m/z = 124
and 92, corresponding to the aromatic and pyrimidine moieties, respectively, confirms the
proposed structure of P4.

3.10. Mechanism of Photocatalytic Degradation of SMZ

The photocatalytic degradation pathways of SMZ by decatungstate anions under light
irradiation have been elucidated with previous results and DFT calculations [58]. Fukui
indices representing the most electrophilic (fk

−) and radical attack (f0) sites of atoms on the
SMZ molecule are shown in Figure 9 [59–62].
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Figure 9. Chemical structure and Fukui functions (f− f0) of SMZ.

The Fukui functions show that carbon atoms C21 and C22 of the aromatic ring and
C2 of the pyrimidine moiety are the most reactive sites, which is confirmed by the highest
value of f0 and f− (Figure 9). This indicates that these sites are the hydroxylation sites
corresponding to P1, P2, and P3 photoproducts. In addition, the energetic barriers for the
hydroxylation step were calculated using the DFT calculation via the B3LYP/6−311G(d,p)
basis set with water as the solvent. The energetic barrier for the formation of the hydroxy-
lated product P1 is 19.57 kcal/mol and for P3, it is 11.20 kcal/mol. These results confirm
that the most favorable product is P3 as reported by Xu et al. [63].

Accordingly, it can be suggested that the initial steps of SMZ degradation occur with
the direct addition of the hydroxyl group to carbon C2 of the pyrimidine group (most
favorable) and to a lesser extent to carbon C21 and C22 of the aromatic ring (Scheme 1).
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photocatalytic degradation of SMZ.

However, as we demonstrated that SMZ transformation could occur in the presence
of a hydroxyl radical quencher, one can suppose the involvement of another mechanism.
In fact, the photoproducts can also be formed with an electron transfer from the aromatic
and pyrimidine groups to W10O32

4−* (redox process) followed by the addition of oxygen
(pathway 3 and 4) (Scheme 2).
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photocatalytic degradation of SMZ.

In addition, the analysis of the Fukui functions shows that the sulfur atom has a
significative value of f0, confirming the possibility of radical attack at this molecular site
(see Figure 9). This suggests that the desulfurization reaction can be carried out with the
attack of the hydroxyl radical on the sulfur atom. Such a reaction was recently described by
Cheng et al. [32] with the attack of the hydroxyl radical on the adjacent amine group via
an electron or/and a hydrogen abstraction process. The desulfurization reaction leads to
the formation of two radicals, whose recombination (in-cage rearrangement) can lead to
compound P4 (Scheme 3). Since the energetic barrier for the formation of the byproduct P4
is 2.52 kcal/mol, this confirms its favorable formation.
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4. Conclusions

In this work, the decatungstate anion has shown very high photocatalytic activity
under UVA and UVB light excitation in the degradation of SMZ in water. The process
requires the presence of oxygen, as a key element in the photocatalytic cycle, and is
optimized in the pH range of 5-6 with a decatungstate mass concentration of 0.33 g/L in the
presence of 13.9 mg/L of SMZ. Hydroxyl radicals are mainly involved in SMZ elimination
and are continuously generated during the irradiation of the decatungstate anion in water,
allowing SMZ mineralization. SMZ elimination occurs mainly through the cleavage of
the sulphonamide bridge, and by the hydroxylation of both the aromatic ring and the
pyrimidine group to a lesser extent.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w15234058/s1. Figure S1: Molecular structure of SMZ. Figure S2: Absorption
spectrum of the Sulfamethazine ([SMZ] =27.8 mg/L, pH=4 in water), Figure S3: CID spectrum of
SMZ (CE = 20 eV), Figure S4: CID spectrum of P1 (CE = 20 eV), Figure S5: CID spectrum of P2
(CE = 20 eV), Figure S6: CID spectrum of P3 (CE = 20 eV), Figure S7: CID spectrum of P4 (CE = 20 eV)
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