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Abstract—Cities have undergone significant changes due to
the rapid increase in urban population, heightened demand for
resources, and growing concerns over climate change. To address
these challenges, digital transformation has become a necessity.
Recent advancements in Artificial Intelligence (AI) and sensing
techniques, such as synthetic sensing, can elevate Digital Twins
(DTs) from digital copies of physical objects to effective and
efficient platforms for data collection and in-situ processing. In
such a scenario, this paper presents a comprehensive approach
for developing a Traffic Monitoring System (TMS) based on
Edge Intelligence (EI), specifically designed for smart cities. Our
approach prioritizes the placement of intelligence as close as
possible to data sources, and leverages an “opportunistic” inter-
pretation of DT (ODT), resulting in a novel and interdisciplinary
strategy to re-engineering large-scale distributed smart systems.
The preliminary results of the proposed system have shown
that moving computation to the edge of the network provides
several benefits, including (i) enhanced inference performance, (ii)
reduced bandwidth and power consumption, (iii) and decreased
latencies with respect to the classic cloud-centric approach.

Index Terms—Digital Twins, Edge Intelligence, Internet of
Things, Synthetic Sensing

I. INTRODUCTION

The United Nations’ “The World’s Cities in 2018” booklet
predicts that by 2030, nearly 28% of the world’s population
will reside in cities with at least 1 million inhabitants, and
8.8% will live in megacities with over 10 million residents [1],
with relevant social and economic consequences. Therefore,
motivated also by the urgent global issue of climate change,
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researchers have started seeking sustainable solutions for urban
activities that have a significant impact on air pollution, such
as the growing problem of traffic congestion [2]. Addressing
this issue is critical, as traffic bottlenecks not only result in
higher carbon emissions, but also have a detrimental effect on
the quality of life of urban residents.

In recent years, there has been a growing trend of utilizing
the Internet of Things (IoT) [3] in conjunction with wireless
sensor networks (WSNs) [4] to develop sustainable solutions
for complex systems, such as smart cities. One particular
area where these technologies have demonstrated significant
promise is in traffic monitoring and control applications. By
deploying a network of sensors and actuators, these systems
can collect and analyze accurate real-time data, which can
aid in managing traffic flow and reducing congestion in urban
areas [5]. Additionally, monitoring environmental parameters
such as air quality and noise levels in real-time can enable
authorities to make informed decisions about managing traf-
fic and reducing negative environmental impacts. However,
implementing IoT and WSNs necessitates an efficient and
distributed software infrastructure capable of managing the
enormous amounts of data generated and the Digital Twin
(DT) [6] represents a suitable enabling paradigm.

By collecting and analyzing real-time data from sensors
placed on physical objects (POs), DTs create virtual coun-
terparts known as logical objects (LOs), which allow for more
efficient decision-making and resource management. With its
ability to monitor object life cycles, simulate behavior, and
optimize performance, DTs have paved the way for real-time
monitoring and optimization of various infrastructures and
services through virtualization. Recent advances in distributed
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services through virtualization. Recent advances in distributed
edge intelligence (EI) [7] have unlocked the full potential of
DTs. This emerging paradigm, resulting from the convergence
of edge computing and artificial intelligence (AI), equips
edge devices with lightweight AI techniques. As a result,
the DT concept becomes a promising platform not only for
data collection, but also for infusing intelligence into intricate
operating systems.

On this basis, within this paper, we propose a novel
approach to develop large-scale distributed smart systems
through the use of an EI-based Traffic Monitoring System
(TMS) and the concept of the Opportunistic Digital Twin
(ODT). In detail, in Section II, we provide a literature analysis
on the current state-of-the-art of TMS with respect to related
technology like cloud and edge computing and DT. In Section
III, we present our proposal for an EI-based TMS, including
its architecture, hardware, and software components. We also
evaluate some preliminary results showing the benefits of
using an EI-based approach rather than a cloud-centric solution
in Section IV. Finally, in Section V, we conclude the paper
by summarizing our findings and discussing some future
implications.

II. RELATED WORK

DT, AI, and edge computing have never been simultane-
ously exploited in the context of a TMS. For instance, the use
of DT technology is still in its initial phases and its precise
role has yet to be defined, it is rapidly gaining popularity as
a powerful tool for transportation management and planning.
Andrey Rudskoy et al. [8], analyze the implementation of an
Intelligent Transport System (ITS) by providing a reference
model of services which exploit machine learning techniques
along with the new concept of DT. The goal was to reduce the
human error inside traffic control centers by favoring operators
activities automation. The proposed model shows that DTs
could guarantee accurate representation of the real transport
and road network for simulation purposes, to test several
approaches based on predictive analytics and perform some
calculation which aim to improve the whole transport system.
Kumar et al. [9] proposed a novel DT-centric approach for re-
ducing traffic congestion by predicting driver intentions. Their
method involved gathering real-time data from cameras and
sensors along roads and bridges, using this data to construct
virtual vehicle (VV) models as the DT of physical vehicles.
The VVs, combined with historical driver data, were then used
as inputs for machine learning and deep learning techniques
to predict driver intentions. This approach also allowed VVs
to interact with each other to predict other drivers’ intentions,
thereby paving the way for autonomous vehicles with path
planning capabilities. Despite being novel and innovative, the
aforementioned systems do not fully utilize the potential of
IoT technology. Instead, they rely on expensive, specialized
sensing and computing infrastructure because most of the
machine learning solutions are executed in the distant servers
and not in proximity of the data sources. Moreover, they
consider DT to be only a high-fidelity modeling and simulation

environment for real-world entities. While this statement is
somewhat accurate, it is only a partial representation of the
full scope of DT. In fact, Wang et al. argue in their recent
publication [10] that DT encompasses much more than just
modeling and simulation. It also includes aspects such as
physical sampling and actuation, as well as storage, model-
ing, learning, simulation, and prediction in the digital space.
The authors’ work introduces a novel Mobility DT (MDT)
framework that employs AI to create a data-driven cloud-edge-
device architecture for mobility services. The MDT framework
is specifically designed to connect different mobility entities,
with three physical building blocks: Human, Vehicle, and
Traffic, each with an associated DT in the digital space. The
authors emphasize the proposed hybrid architecture, as they
understand that it is not always feasible to reach the cloud
for executing complex machine learning tasks, particularly
for autonomous vehicles that often lack internet connectivity.
To address this challenge, they include (i) an edge layer
capable of performing communication, caching, and heavy
computing tasks offloaded by devices such as vehicles, and (ii)
a device layer responsible for data acquisition, forwarding, and
actuation processing. To demonstrate the feasibility of their
proposed framework, the authors built an example cloud-edge
architecture utilizing Amazon Web Services (AWS). This ar-
chitecture accommodates the MDT framework and enables its
digital functionalities of storage, modeling, learning, simula-
tion, and prediction. The authors conducted a case study of the
personalized adaptive cruise control (P-ACC) system, which
integrates the key microservices of all three digital building
blocks of the MDT framework. Nevertheless, the suggested
use case remains highly dependent on cloud computing, with
an edge layer able to carry out essential computing tasks,
including raw data filtering and pre-processing.

It is worth noting that currently, intelligence mostly resides
on cloud instances rather than being located as close as
possible to data sources. Although the cloud is essential for
large distributed systems, with several benefits like scalability
and accessibility, relocating computation closer to data sources
could have a significant impact on system performance. By
doing so, organizations can reduce latency, enhance data
security, and increase processing speeds, ultimately leading
to more efficient and effective systems.

III. PROPOSED TRAFFIC MONITORING SYSTEM

We propose an innovative TMS that leverages the EI
paradigm and the concept of the ODT, which provides an
efficient and effective structure for gathering and locally
processing data generated by the sensors deployed along the
target area. In particular, such sensory data from multiple
sources are first stored within an ODT signature repository
[11] and later, through AI techniques, “opportunistically”
selected and post-processed to generate new knowledge (e.g.,
estimate the traffic level by processing data about pollution
and noise) which can be exploited by the TMS. With respect
to conventional DT approach, the ODT improves modeling,
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reflection and entanglement between a tangible object and its
digital counterpart.

To support the novel ODT approach, the proposed TMS
incorporates the following features:

• EI-based technology [7]: involves efficiently process
data and executes AI algorithms such as vehicle detection
and counting at the “edge” of the network. This approach
significantly reduces processing times and minimizes the
amount of data that needs to be transmitted over the
network, resulting in increased efficiency and improved
overall performance of the system. See Section IV for
details on the performance gains achieved with this
technology.

• Synthetic sensing over General-purpose devices [12]:
this approach involves using a single board to collect gen-
eral measures related to both environmental and pollution
data, and leveraging AI algorithms to generate additional
insights (known as synthetic data) that traditional sensors
cannot observe directly. By using this approach, we are
able to monitor phenomena that would otherwise be
impossible to observe with traditional sensors. This not
only increases the system’s capabilities, but also reduces
deployment and maintenance costs, while making it more
flexible and adaptable to different environments.

• Data-driven and Bottom-up methodology [13]: our
approach prioritizes the use of data to inform key deci-
sions and system design. Rather than relying on abstract
models or assumptions as in the traditional top-down
approach, we begin with specific sensory data and grad-
ually construct a larger virtual structure. This approach
enables us to monitor phenomena with greater accuracy
and responsiveness.

Our chosen service deployment architecture is a hybrid-fog
model, which involves distributing modules across multiple
nodes throughout the network. Specifically, the edge layer
encompasses all edge devices responsible for data gathering
and real-time inference. Meanwhile, the fog layer houses
dispatching and backend services, and the cloud layer con-
tains servers for DT management, data persistence, and data
visualization. The classic cloud-centric approach lends itself
poorly to low throughput, high reliability connections. Using
a fog architecture allows moving computation all over the
network, (i) reducing communication latency and bandwidth
consumption; (ii) improving the overall speed of the system. In
the future, the proposed system will be tasked with analyzing a
vast volume of data, including telemetries and video streams.
Therefore, it is essential to design an architecture that can
optimize data processing and display, as this will be crucial



for the successful deployment of the final system.

A. Use Case: Early Implementation

To showcase the effectiveness of our approach, we started
implementing the TMS subsystem aimed to collect real-
time data on traffic, pollution, and meteorological conditions
from the environment, process it using advanced deep learn-
ing techniques and low-latency, cost-effective communication
technology, and store relevant information in a database for
future analysis. Several hardware components are employed
to achieve such a specific objective. The first component
is a general-purpose board, which is the Google Coral Dev
Board. It comes with a Tensor Processing Unit (TPU) capable
of executing up to four trillion operations per second [14],
making it ideal for implementing advanced EI techniques
directly on-device. Two sensor boards, the Gravity MEMS Gas
Sensor Board, and the Google Environmental Sensor Board,
collect data on pollutants and environmental telemetry. The
camera module, either the Google Coral Camera or a USB
camera, captures real-time video streams of vehicles on the
monitored road. Finally, the microcontroller unit (MCU), the
ESP32 WROOM 32D Board, interfaces with the Gas Sensor
Board.

TABLE I
BREAKDOWN OF IMPLEMENTATION TECHNOLOGIES BY FIELD OF

APPLICATION.

Purpose Technology Layer
EI Framework Tensorflow Lite1 Edge

Communication MQTT2 Edge/Fog
Dispatching Node-RED3 Fog

Telemetries Data Storage InfluxDB4 Cloud
Data Visualization Grafana5 Cloud

Virtualization through DT Eclipse Ditto6 Cloud

The proposed TMS employs a network of distributed soft-
ware modules that operate across the system architecture,
as detailed in Table I. To adhere to EI principles, deep
learning algorithms are deployed in proximity to data sources.
Additionally, the USB or Coral Camera, Environmental Sensor
Board, Gas Sensor Board, and ESP32 must be located at the
network edge to obtain real-time telemetry directly from the
field. Once the data has been collected and processed, it is
transmitted to the core module of the system via an MQTT
Broker, which was implemented using Eclipse Mosquitto. The
Node-RED platform was utilized to manage the backend logic
of the system, including the creation of a wiring connection
between hardware devices and software modules (dispatching
function), as well as the establishment of rules, thresholds,
and conditions. The Node-RED module has the capability to

1https://www.tensorflow.org/lite
2https://mqtt.org/
3https://nodered.org/
4https://www.influxdata.com/
5https://grafana.com/
6https://www.eclipse.org/ditto/

(i) retrieve or update DTs’ status information via the REST
API of Eclipse Ditto; (ii) maintain data persistence using
two NoSQL databases, namely MongoDB for DTs status and
InfluxDB for telemetries; and (iii) facilitate data visualization
through the use of Grafana’s dashboards. Both MQTT Broker
and the Node-RED application module resides on the fog
layer, while Eclipse Ditto, MongoDB, InfluxDB and Grafana
services, can be hosted on a cloud instance.

IV. PRELIMINARY RESULTS AND FUTURE DEVELOPMENT

By harnessing the concepts expounded in the preceding
sections, it is theoretically apparent that implementing EI con-
fers several advantages over cloud-based alternatives. These
benefits encompass reduced latency, lower bandwidth con-
sumption, improved energy efficiency, and heightened privacy.
Our approach centers on integrating EI technology, allowing
us to process data locally and in proximity to its origin.
This eliminates the requirement to transfer sensitive data to
remote servers, ensuring its security. To quantify the efficacy
of our approach, we conducted a comparative analysis of our
TMS performance using two different configurations (shown
in Table II) for the vehicle detection task:

• The EI-based solution, which we propose, involves
carrying out the vehicle detection on the Google Coral
Dev Board equipped with the Google Edge TPU. The
inferences’ output is then transmitted to other nodes in
the system’s architecture.

• The Cloud-centric solution involves capturing real-time
video frames of the road at the edge and transmitting them
to a standard cloud instance, such as the Intel® Core™
i7-6820HQ, 2.70GHz x 8 for the vehicle detection task.
After processing, the inference results are then transmit-
ted back to other nodes in the system’s architecture.

TABLE II
HARDWARE CONFIGURATION: EDGE- VS CLOUD-BASED DEPLOYMENT

Edge Cloud
Processor Google Edge TPU Intel® Core™ i7-6820HQ,

coprocessor 2.70GHz x 8
Memory (RAM) 4 GB LPDDR4 32 GB

Graphics Integrated GC7000 AMD® Bonaire/ Mesa
Lite Graphics Intel® HD Graphics 530

We have conducted a comprehensive evaluation encompass-
ing a range of deep learning models and system configurations,
while giving due consideration to key performance metrics
such as model accuracy, inference latency, and generated
data traffic. Initially, we assessed several models designed for
vehicle detection, with a focus on their compatibility with an
environment based on Edge TPU, thereby harnessing the capa-
bilities of this hardware platform. Our evaluation encompassed
a total of five models, comprising three pre-trained models
(namely, SSD MobileNet V1, SSD MobileNet V2, and SS-
DLite MobileDet) sourced from Google Coral Documentation,
as well as two models trained using the Transfer Learning
technique on the EfficientDet architecture. Specifically, these



two models are referred to as the MTD Model, trained on
the Mini Traffic Detection (MTD) dataset, and the TI Model,
trained on the Traffic Images (TI) dataset. To evaluate the
performance of each model, the mean average precision (mAP)
was measured, which is the primary metric used in Common
Object in COntext (COCO) evaluation metrics.

Fig. 2. Pre-trained and Re-trained models: latency per inference

Figure 2 and Figure 3 demonstrate that the pre-trained
models perform exceptionally well in terms of latency per
inference, with none of the three exceeding 30ms per frame.
Among the tested models, the fastest one is the SSD Mo-
bileNet V1, with a latency of just 12.6ms, as confirmed by
our tests. However, while these models excel in latency, they
fall short in accuracy, struggling to detect certain classes of
objects and occasionally failing to detect objects even when
they are present in the frame. Differently, the re-trained MTD
Model and TI Model offer higher precision at the cost of
lower responsiveness, with both models displaying a latency
of around 70ms per frame, which is more than twice as long
as the lowest performing pre-trained model. Despite this, the
MTD model achieves the highest accuracy among the tested
models, with a mAP score of 85.8%. Based on our evaluation,
we have chosen to use the MTD model in our proposed EI-
based TMS. This decision was driven by the MTD model’s
good accuracy and its reasonable latency per inference, which
strike an ideal balance for our application’s requirements. The
Edge TPU’s faster processing time offers several advantages,
including lower power consumption and memory savings.
Slower models typically require more power to complete tasks,
but the Edge TPU’s optimized architecture reduces processing
time and thus power consumption.

Having identified a suitable model for the vehicle detection
task, we started evaluating the edge- and cloud-based deploy-
ments for our TMS. With respect to generated data traffic,
at the edge, the camera module captures video frames using a
Python algorithm, with each frame having a file size of around
1,936 Mb. This results in significant data traffic that can cause
network latency of up to 43ms per frame, even when using

Fig. 3. Pre-trained and Re-trained models: mean average precision

the Coral Dev Board’s 802.11ac interface at 2.4GHz for wider
coverage and a realistic speed of up to 450Mbps. Furthermore,
this approach increases power dissipation in the edge device
and has a significant impact on bandwidth consumption. In our
experiments, we found that a one-day interaction between the
edge device and cloud server, with a 20fps (frames per second)
bit rate, resulted in the transmission of 1,729,000 frames. This
equates to 3.34Tb of data moving over the network per day.
However, processing the frame locally and transmitting only
the inference results to a remote server requires an MQTT
message of 67 bytes, which includes the ID of the packet, the
payload, and the header for control purposes. This approach
results in a reduction of data traffic by a factor of 10,000 (only
0.872Gb) compared to the previous case.

A. Future Developments

Our current solution primarily addresses the EI aspects
of a TMS, specifically the vehicle detection task. However,
leveraging on the potentials of ODT and on Eclipse Ditto
(provides excellent support for DT technology, enabling us to
manage and update DT data), we plan to enhance the synthetic
sensing capabilities of our TMS to better detect and respond
to emergent situations. This includes developing models that,
exploiting the existing general-purpose devices, can identify
unusual patterns in traffic flow or environmental conditions,
such as sudden changes in temperature or humidity, which
could indicate an emerging situation. In addition to this, we
aim to develop other event-based rules that can help automate
responses to different scenarios. For instance, we plan to
implement a system that sends alarms to city governance
if pollution levels exceed a certain threshold, triggering an
emergency response plan. We also plan to improve the noise
sensors to detect the presence of noisy vehicles, which can help
regulate traffic lights in the noisy lanes and could be useful in
identifying emergency vehicles. Finally, we aim to enhance our
analysis by leveraging real-world data to evaluate the effective-
ness of our TMS. This evaluation will enable the identification



of areas for improvement, including unanticipated situations
such as adverse weather conditions. Factors like fog or strong
winds can profoundly influence vehicle detection and pollutant
collection. By taking these unexpected scenarios into account,
we can fine-tune our system accordingly, ensuring its optimal
performance.

V. CONCLUSION

The digitalization process has revolutionized the way cities
operate by enhancing data ubiquity and automation. The
synergy of EI, novel sensing techniques and DT has the
potential to enhance the overall efficiency of cities, creating
smarter and more sustainable solutions. With this aim in
mind, we outlined an innovative TMS for smart cities which
leverages, exactly, on EI and ODT for data gathering and local
processing. Our system architecture consists of hardware and
software components optimized for the efficient collection,
processing, and utilization of data. Additionally, real-time
inference information and the current counter are sent to
the fog node, which runs the backend logic and updates
the DT information. By adopting an EI-based approach and
pushing intelligence as close as possible to data sources, we
can reduce inference latencies by 40%, eliminating network
latency for the vehicle detection task, and decreasing data
traffic by a factor of 10,000 per day compared to the cloud-
centric approach. The strategy implemented in our proposal
holds huge potential to revolutionize how we sense and equip
our cities, presenting an efficient and cost-effective means of
gathering valuable data where cutting-edge technologies work
together towards creating a smarter, greener, and more livable
city. We strongly believe that the ODT approach offers a
notable opportunity for improving the performance of large-
scale living systems, extending beyond the scope of smart
cities. These systems can include, but are not limited to,
areas such as smart agriculture (which can benefit from im-
proved harvest quality), energy management (where efficiency
and sustainability can be enhanced), building automation (by
improving occupant comfort), manufacturing (for especially
for predictive maintenance), and environmental monitoring (to
facilitate the tracking and prediction of changes in natural
systems such as weather patterns and water quality).
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