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ABSTRACT
Low Power Wide Area Networks (LPWAN) are very promising
for a variety of IoT applications, but they face two major chal-
lenges: energy consumption of the wireless nodes and congestion
of the networks due to the huge number of nodes involved. LPWAN
transmission parameters can be optimised, e.g. using artificial in-
telligence algorithms, but the performance estimation made during
simulations is often higher than what it is in reality. In this paper,
we propose a new LoRa network simulator, J-LoRaNeS. Based on
the Julia programming language, it allows fast prototyping and is
therefore suited to the study of different adaptive LoRa mechanisms.
We used our novel simulator to clearly show the benefits of using
multi-arm bandits for adaptation, but we also show that the benefits
reported in the literature are not attainable when realistic network
conditions are simulated.

CCS CONCEPTS
• Computing methodologies→ Simulation tools; Reinforce-
ment learning.
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1 INTRODUCTION
Several long-range wireless technologies, grouped under the term
LPWAN (Low-Power Wide Area Network), have appeared in recent
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years, with the aim to fill the growing need to gather information
from various connected objects. The Long Range (LoRa) [19] tech-
nology, supported by Semtech and the LoRa alliance, offers a very
good trade-off between range, data rate and energy consumption.
It allows a throughput ranging from 0.3 kbps to 50 kbps in the
433 MHz, 868 MHz or 915 MHz Industrial, Scientific and Medical
(ISM) bands using the principle of chirp spread spectrum. The main
parameters of the communication are the Spreading Factor (𝑆𝐹 ),
Transmit Power (𝑇𝑃 ), bandwidth and coding rate. The through-
put, energy consumption and transmission performance thus vary
according to the choice of these parameters [7].

To cope with a possible huge number of nodes and ensure the
reception of transmitted data over varying propagation channels,
a mechanism for adapting the communication parameters called
Adaptive Data Rate (ADR) is used [3]. This algorithm suffers from
several problems [12], in particular a long convergence time, leading
to a significant increase of power consumption at network start-up
and topology changes. Proposals have been made in the literature
to improve the performance of the ADR, some of them [23, 24]
using Multi-Arm Bandit (MAB), a reinforcement learning technique.
Those algorithms assume full and perfect feedback, where duty
cycle constraints are not taken into account, which leads to an
overestimation of the performance gain.

A network simulator is very useful before deployment to test
multiple available configurations, e.g. which ADR suits best your
network needs. Several LoRa network simulators have arisen in
recent years [2, 4, 13, 14, 21, 25]. But none of them can fully claim
that it provides rapid simulation and user-friendly customization.
Recently developed by the MIT, Julia [1] represents a good trade-off
between low or intermediate level languages such as C/C++ and
high-level languages such as Matlab or Python. The contributions
of the present paper are:

• The design of a new simulator based on Julia, the exploration
of its architecture and the proposed metrics.
• The comparison of MAB-based ADR to LoRaWAN ADR with
and without perfect feedback.

The paper is organized as follows: Section 2 presents the state of
the art on LoRa network simulators, as well as the architecture of
J-LoRaNeS. Section 3 gives details on the different ADR that will
be studied in this paper, especially those based on MAB. Finally
Section 4 presents simulations results and comparisons of ideal and
realistic schemes in terms of packet delivery ratio and energy, while
conclusions are drawn in Section 5.
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Table 1: Comparison of LoRa networks simulators.

Simulator name ISFO Energy ADR Smart node
COOJA [17] × ✓ ✓ ✓
TOSSIM [11] × ✓ ✓ ✓

CupCarbon [5, 15] × ✓ ✓ ✓
LoRaWANSim [14] ✓ ✓ Static ×
LoRaSim (Java) [25] × ✓ ✓ ×
LoRaSim (Python) [4] × ✓ × ×

LoRa-MAB [23] ✓ ✓ Custom ✓
LoRaFREE [2] ✓ ✓ Custom ×
FLoRa [21] × ✓ ✓ ×

LoRaWAN ns-3 [13] ✓ ✓ ✓ ×
J-LoRaNeS ✓ ✓ ✓ ✓

"Static": The ADR algorithm is used once and not re-applied.
"Smart node": The simulator can run machine learning algorithm.

2 J-LORANES: A JULIA BASED LORA
NETWORK SIMULATOR

2.1 Why a new simulator?
A network simulator can be very useful to test a network con-
figuration, e.g. compare different ADR algorithms before in-field
deployment, and potentially save significant resources by revealing
poor performance at simulation. Several simulators have been pro-
posed in scientific literature using different languages and offering
different abilities and results. Most of them are listed in Table 1,
comparing their respective pros and cons. Four simulation capabili-
ties are particularly considered, i.e., the imperfect 𝑆𝐹 Orthogonality
(ISFO), energy consumed, ADR nature and smart node. ISFO pre-
vents two packets emitted simultaneously, with different 𝑆𝐹 , to
be received. Thus not considering ISFO in simulation leads to an
overestimation of the network performance (one should note that
under certain conditions one of the packets can be received thanks
to the capture effect). ADR nature refers to the kind of ADR mecha-
nism used in each simulator, either LoRaWAN ADR, MAB-based or
custom ADR. The smart node capability corresponds to the capacity
of making a simulation with reinforcement learning based ADR on
nodes.

One of the first LoRa network simulator proposal was LoRaSim
(Python) [4], a discrete event simulator based on SymPy. It was
designed to study LoRa scalability with network energy consump-
tion and performance monitoring, but is limited since it does not
take into account the ISFO, downlink traffic and ADR mechanism.
Since it is an open-source simulator, it has been extended to add
many missing features while testing new mechanisms to enhance
the performance of the ADR algorithm [2, 8].
LoRa-MAB [23] is also based on SymPy and was developed to study
the performance of a rate adaptation mechanism based on MAB.
This simulator takes into account ISFO, but the ADR of LoRaWAN
is not available. Another simulator called LoRaSim [25] was de-
veloped using the Java language. It aims to simulate LoRaWAN
networks in the US 915MHz band, and is more complete than the
LoRaSim (Python) simulator, but ISFO is still missing.
COOJA [17], TOSSIM [11] and CupCarbon [5, 15] are simulators
dedicated to LPWAN technologies and not specifically to LoRa.
COOJA and TOSSIM are able to emulate code that will be deployed
on End-Devices (ED), while CupCarbon needs the ED behavior to
be described in SenScript.
LoRaWANSim [14] is a simulator based on Matlab. The goal of this
simulator is to provide a tool as accurate as possible for LoRaWAN

Figure 1: Simulator configuration and results.

network, thus ISFO and ADR are available. However, the ADR algo-
rithm used in this simulator is static: for each pair of gateway (GW)
and ED, 20 SNR levels are randomly generated with respect to the
propagation model. Subsequently, a value of 𝑆𝐹 and 𝑇𝑃 is assigned
to each ED thanks to the ADR algorithm presented in section 3.1.
This 𝑆𝐹 and𝑇𝑃 value selection is made only once during the whole
simulation.
FLoRa [21] and LoRaWAN ns-3 [13] are coded with the C++ pro-
gramming language, they need OMNeT++ and ns-3 respectively,
which can make them hard to use for non-Linux users. Both of the
simulators feature the ADR algorithm, but only LoRaWAN ns-3
takes into account ISFO.
Our simulator, J-LoRaNeS, is based on the Julia programming lan-
guage, which is a compiled language, yet allowing high-level syntax,
offering a good trade-off between ease of development and fast ex-
ecution time. Moreover, it has been developed to be as accurate as
possible, therefore ISFO, bidirectional traffic and dynamic ADR are
implemented. Thanks to the multiple-dispatch feature of Julia, it is
straightforward to replace several parts of the simulator, such as the
ADR algorithm, without affecting the core algorithm of J-LoRaNeS.

2.2 J-LoRaNeS architecture
Figure 1 presents an overview of J-LoRaNeS. First the user has to
describe the topology of the network, the application requirements
(packet rate, payload size, preamble size...), the hardware config-
uration (sensitivity, antenna gain, energy consumption model,...)
and the channel used for the simulation. The simulation takes place
in the processing step: the packet schedule is generated, collisions
between packets are detected, reception of packets is checked and
the ADR is updated. When the processing step is complete, data
are saved for post-processing. After the saving step, the user can
apply different built-in metrics to monitor the performance of the
network, e.g. Packet Delivery Rate (PDR) or energy consumption.

2.2.1 Packet scheduler. The aim of the scheduler is to decide when
to transmit the different packets while respecting the Duty Cycle
(DC) and packet rate constraints. There are two types of packet to
manage: the uplink (UL) packet from the ED and the downlink (DL)
one from the GW.
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Table 2: SNRmin value in dB used to compute sensitivity
threshold [20]

𝑆𝐹 7 8 9 10 11 12
SNRmin -7.5 -10 -12.5 -15 -17.5 -20

Table 3: Collision threshold in dB to exceed in order to receive
one of the colliding packets thanks to capture effect [9]

𝑆𝐹7 𝑆𝐹8 𝑆𝐹9 𝑆𝐹10 𝑆𝐹11 𝑆𝐹12
𝑆𝐹7 6 -16 -18 -19 -19 -20
𝑆𝐹8 -24 6 -20 -22 -22 -22
𝑆𝐹9 -27 -27 6 -23 -23 -25
𝑆𝐹10 -30 -30 -30 6 -26 -28
𝑆𝐹11 -33 -33 -33 -33 6 -29
𝑆𝐹12 -36 -36 -36 -36 -36 6

DL packets are scheduled after an UL is received. There are two
possible windows to schedule them: RX1 or RX2. Those windows
have different parameters (𝑆𝐹 , frequency, DC). On RX1, a DL packet
uses the same parameters as the corresponding UL packet, whereas
on RX2 it uses a predefined set of parameters, usually 𝑆𝐹 = 12, with
maximum 𝑇𝑃 , but with different central frequency from the UL.
An example of frame scheduling is given on Figure 2. If multiple
GWs are available in the network (i.e. multiple GW have available
DC), the one that received the UL packet with the highest Received
Signal Strength Indicator (RSSI) will be selected to send the DL
packet.

UL packets are dynamically scheduled based on the ALOHA
protocol and the average packet periodicity of the node with respect
to the duty cycle. During the initialization of the simulation, only
one UL packet is scheduled for each node. The others are scheduled
after the reception of an UL packet, if it has not generated any DL
packets, or after the processing of the scheduled DL packet.

2.2.2 Packet reception.

Channel effect. To be successfully decoded, a packet must be
received with an RSSI greater than a sensitivity value depending on
the 𝑆𝐹 value of the packet [20]. The channel model is described in
the channel configuration file, and can be easily modified (with dis-
tance or random variables). The sensitivity threshold 𝑆 is computed
as follows:

𝑆 = −174 + 10 log10 (𝐵𝑊 ) + 𝑁𝐹 + 𝑆𝑁𝑅min, (1)

where the first term corresponds to the thermal noise, 𝑁𝐹 is the
noise factor of the radio which is hardware dependent, and 𝑆𝑁𝑅min
is the minimum 𝑆𝑁𝑅 required to receive a packet at a given 𝑆𝐹 , the
values of 𝑆𝑁𝑅min are given in Table 2 for each 𝑆𝐹 .

Interference effect. Due to the ISFO of LoRa, packets sent on
different 𝑆𝐹 might interfere between them, but one of the packet
might be retrieved thanks to the capture effect. Indeed, if the Signal
to Interference plus Noise Ratio (SINR) is higher than a threshold,
given in Table 3, the packet can be decoded [9].

2.2.3 Customising the ADR algorithm. To test or customize the
ADR in the simulator, one must describe several functions: reward,

Algorithm 1 J-LoRaNES algorithm
1: EDs, GWs← DevicePositioning(NED, NGW)
2: channelEffects← ComputeChannel(EDs, GWs, CModel)
3: packetList← ScheduleULpackets(EDs, timeOffset)
4: packetKey← GenerateKey(packetList)
5: m← 1
6: while m < size(packetKey) do
7: packet← GetPacket(packetList, packetKey[m])
8: rssiLvl← RSSI(packet, channelEffect)
9: receivedNoInterference← rssiLvl > Sensitivity
10: interfererList← FindInterferer(packet, packetList)
11: if Isempty(interfererList) then
12: received← receivedNoInterference
13: else
14: received← CompareRSSI(packet, interfererList) and re-

ceivedNoInterference
15: end if
16: dlScheduled← ScheduleDL(packet, rssiLvl, packetKey, pack-

etList) {MD}
17: UpdateADRpolicy(packet, received, rssiLvl) {MD}
18: SelectDR(packet, received, dlScheduled){MD}
19: ScheduleUL(packet, received, dlScheduled, packetKey, pack-

etList){MD}
20: m← m + 1
21: end while

"MD": The function uses multiple-dispatch

updateADRpolicy and selectDR. The reward function will output
the parameters needed for the ADR update, e.g. the reward for
MAB-based ADR or the RSSI for the server-side algorithm of the
LoRaWAN ADR. The updateADRpolicy function defines how the
ADR policy is updated and selectDR selects the new communi-
cation parameters according to the updated policy. The last two
functions profit from the multiple dispatch of Julia, i.e. each func-
tion is defined multiple times to yield a specific behavior according
to the type of the packet. A packet can be of types UL, DLRX1 or
DLRX2, which correspond to packets sent as UL, DL on RX1 win-
dow and DL on RX2 window, respectively. If a packet of type UL
is processed the updateADRpolicy function will need to update
the policy on the server side. Whereas, for DLRX1 or DLRX2 it needs
to update the policy on the ED side. The dispatch is the same for
the function selectDR, i.e., the communications parameters will
be selected according to the policy and method of the server if an
UL packet is received, and according to the ED policy and method
for types DLRX1 or DLRX2.

2.2.4 Core of the simulator. Algorithm 1 presents the simulator
algorithm, and how the elements presented above are organized.
The network is first initialized according to the inputs given by
the user, including the propagation model and device positioning.
Then, the simulator schedules one UL for each ED and generates
the variable vector packetKey, which allows the identification of
a packet. Once the initialization step is complete, the algorithm
performs, for each packet key, the following operations: i) Find the
packet associated to the key; ii) Check if the packet RSSI is above
or below the sensitivity threshold for reception; iii) Find all packets
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Figure 2: Frames in time and frequency: cases with no and interference.

that interfere with the one being processed and compare the SINR
to a threshold value defined by Table 3 to decide if the packet is
delivered or not.

Functions ScheduleDL and ScheduleUL are used to schedule DL
and UL respectively. Both of them are using multiple-dispatch, and
it is made on the type of the packet. If the packet is of type UL, the
scheduling is made as described in paragraph 2.2.1. Whereas, for
DLRX1 and DLRX2 packet, the ScheduleDL function will do nothing,
and an UL will be scheduled by the ScheduleUL function.

This solution offers the possibility to easily add new node profiles
or change some algorithms without changing the core algorithms
of J-LoRaNeS. For example, if the processed packet is a correctly
received UL and considering the LoRaWAN ADR described in 3.1,
then a DL packet is scheduled on RX1 or RX2 according to the
availability of the GW, and ADR is updated. For each received UL
packet, the corresponding SNR value is computed and stored for
later use. In case of no scheduled DL packet or unsuccessful DL
transmission, the failed transmission counter is increased on node
side of the ADR. The ADR chooses a new data rate, according to the
selectedmethod, in this example the LoRaWANADR.When the new
communication parameters have been chosen, an UL is scheduled
for the device. This new packet is added to the packetList variable,
if the end of the transmission does not exceed the simulation time.
A new UL packet is scheduled if the processed packet is a DL, or
dlScheduled is false for UL packet.

3 ENHANCING THE ADRWITH MAB
To demonstrate the capabilities of J-LoRaNeS, we propose a study
of the ADR proposed for LoRa network. As explained in Section 1,
the LoRaWAN ADR [3] suffers from a long convergence time, and
several propositions of improvement have been made in the litera-
ture. Some of the solutions [23, 24] are based on MAB techniques,
which need feedback to work properly. In those solutions it is as-
sumed that the feedback is made through DL packets, and happens
after each received UL packet. However, when transmitting on ISM
bands, LoRa equipment must respect a duty cycle (DC) of 1 or 10%
depending on the regions and bands used. Thus in high density
networks, GWs will not be able to send a DL for each received UL,
leading to an imperfect feedback. The question our study aims to
answer is: what happens to the performance of MAB-based
ADR algorithms when the DC is properly respected?

3.1 LoRaWAN ADR
The LoRaWAN ADR is described in the LoRaWAN v1.1 specifica-
tion [3]. This algorithm adapts LoRa parameters to the observed
channel properties, by dynamically changing 𝑆𝐹 and 𝑇𝑃 values.
This algorithm is split into two parts. On every node, it evaluates
the wireless communication quality by counting the received ac-
knowledgement packets (ACK) from the GW. If the number of
missing ACKs is too high, the node increases first the 𝑇𝑃 and next
the 𝑆𝐹 in order to enhance the radio link. The second part of this
mechanism is centralised on the network server, trying to make
communication more energy efficient. To do this, it records the SNR
of several (usually 20) UL packets and then computes the margin on
SNR, which is used to determine how 𝑇𝑃 and 𝑆𝐹 can be modified
to reduce the power consumption of the transmission, while still
receiving the UL.

3.2 MAB-based ADR
With a MAB approach, the mechanism is decentralised, there is
no part of the mechanism running on the network server. Figure 3
shows the basic operation of MAB algorithms applied to LoRa. First,
the agent chooses an arm, i.e. a combination of 𝑆𝐹 and 𝑇𝑃 parame-
ters for the next communication, then performs the transmission
with the chosen parameters. The reception of this communication
by the network will lead to the transmission of a DL packet. The
reception of this DL packet by the ED leads to the reward computa-
tion, at instant 𝑡𝑖 : 𝑟 [𝑡𝑖 ] = 1 if the DL is received, 𝑟 [𝑡𝑖 ] = 0 otherwise.
The next steps are updating the policy of the algorithm, i.e. the way
the arm are chosen, then choosing the communication parameters.
Those steps are performed differently depending on the nature
of the algorithm used. The MAB algorithms used in this article
for parameters selection and policy update are 𝜖−Greedy [22] and
Thomson-Sampling (TS) [18].

3.2.1 𝜖−Greedy. For each arm 𝑘 , a value 𝜃𝑘 is associated, which
corresponds to the average reward received by the arm when it
was chosen. The update of the policy thus consists in computing

Figure 3: MAB principle applied to LoRa channel adaptation
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𝜃𝑘 for the arm used once the reward has been received. For the arm
selection step, the algorithm must choose between exploiting or
exploring. If it chooses to exploit, then the arm with the largest 𝜃𝑘
value will be selected. In case of exploration, an arm is drawn at
random. The choice between exploration or exploitation is made
randomly, the algorithm will explore with probability 𝜖 ∈]0; 1]. In
this article we have chosen 𝜖 [𝑡𝑖 ] = 𝑁𝑏

𝑁𝑏+
∑

𝑘 𝑛𝑘 [𝑡𝑖 ]
, with 𝑁𝑏 the total

number of arms and 𝑛𝑘 [𝑡𝑖 ], the number of transmissions made
with the parameters of arm 𝑘 . This choice of a decreasing value in
time for 𝜖 allows a strong exploration at deployment, then a strong
exploitation after a certain time, thus ensuring a use of parameters
bringing a high reward.

3.2.2 Thomson-Sampling. Each arm 𝑘 is associated with a random
variable following a beta distribution of parameters (𝛼𝑘 , 𝛽𝑘 ) with
𝛼𝑘 ≥ 1 and 𝛽𝑘 ≥ 1. The mean value of that distribution is 𝜃𝑘 =

𝛼𝑘
𝛼𝑘+𝛽𝑘 . At initialization, the parameters of the beta law have the
following values: 𝛼𝑘 = 𝛽𝑘 = 1. The update of the policy consists in
changing the parameters of the distribution: (𝛼𝑘 [𝑡𝑖+1], 𝛽𝑘 [𝑡𝑖+1]) =
(𝛼𝑘 [𝑡𝑖 ], 𝛽𝑘 [𝑡𝑖 ]) + (𝑟 [𝑡𝑖 ], 1 − 𝑟 [𝑡𝑖 ]), if the arm 𝑘 has been chosen,
otherwise the parameters remain unchanged. To choose the arm
that will be used for the next transmission, the algorithm makes a
random draw for each arm according to each beta distribution, and
chooses the arm with the highest value.

Figure 4 presents an example with 3 arms, with different Beta
distributions. In this example the arm 3 has the lowest average,
moreover its variance is also low, thus it is not worth considering
using this arm, because the received reward will most likely be
lower than others arms. On the contrary the arm 1 has the highest
average and also has a rather low variance, thus the reward will
most likely be high. Yet, it is still worth to explore the arm 2 due to
its high variance and average close to the one of arm 1, thus the
probability to get a higher reward than arm 1 is significant.

Figure 4: Probability density function of a Beta distribution
in 3 different configurations

4 SIMULATIONS SETUP AND RESULTS
To estimate the real contribution of the algorithms presented above
compared to the classical ADR, we use the simulator presented

in Section 2. The simulated configuration is a network with one
GW, 500 EDs uniformly distributed in a square of dimension 20
km, sending one packet every 10 minutes on average. The channel
model used in the simulations is the Okumura-Hata [10] model for
small and medium-size cities.

The different ADR mechanism presented is this paper have been
implemented, and thanks to the the multiple-dispatch, it is only
needed to change the type of the ADR in the initialization of the
network, e.g., using the keyword Greedy instead of LoRaWAN if you
want to use an 𝜖−Greedy algorithm instead of the LoRaWAN ADR.
The reward for the LoraWAN algorithm is the tuple (received,
RSSI).

The adaptation mechanisms that will be compared are: the Lo-
RaWAN ADR, an ADR using the 𝜖−Greedy MAB algorithm [22],
and another using the TS algorithm [18]. The arm combinations
used for MAB algorithms are identical to the possible combinations
for LoRaWAN ADR, i.e. for 𝑆𝐹 = 7 the possible 𝑇𝑃s range from 2
dBm to 14 dBm in 3 dB steps, and for 𝑆𝐹 s ranging from 8 to 12, only
the 14 dBm 𝑇𝑃 can be selected.

In the case of the MAB ADRs, we will compare the oracle cases
with the DC-constrained cases. The oracle case assumes the GW
sends an ACK for each of the received UL packets, thus not respect-
ing the DC. Note that this is the assumption made in the scientific
literature [23, 24]. In the DC-constrained case the GW respects the
DC of 1 or 10% imposed by regulation, in this case any UL packet
received is not necessarily followed by an ACK, resulting in a bad
reward computation by MAB algorithms.

4.1 Temporal variation of the Packet Delivery
Ratio

Figure 5 shows the evolution of the PDR for the ADRs. The PDR is
computed over a sliding window of one hour. In this figure, we can
see that the MAB algorithms have a much lower convergence time
than the LoRaWAN ADR. On one hand, the PDR obtained after
convergence is better than the LoRaWAN ADR in both Oracle and
DC-constrained versions. Unfortunately, it turns out that in the

Figure 5: Packet delivery rate for 𝜖−Greedy and TS algorithm,
in both DC-constrained and oracle cases, compared with Lo-
RaWAN ADR.
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Figure 6: Energy consumption model used in the simulator

DC-constrained case, the MAB algorithms are less efficient than
in the oracle cases. Indeed, in the oracle cases, both algorithms
perform well, with a PDR around 85% at the end of the simulation,
whereas the performance in the DC-constrained case is around 70%
for the Greedy algorithm, and seems to continue to increase for the
TS one. For the LoRaWAN ADR, the PDR does not go above 65%.
Moreover, the convergence time is about 40h while it needs 24h
for the Greedy algorithm and 48h for the TS algorithm, but the TS
algorithm always has better performance than the LoRaWAN one.

This performance degradation in the DC-constrained case is
due to the poor reward calculation caused by the absence of ACK,
despite the reception of the UL packet, thus underestimating the
performance of the arms with good performance, whereas the arms
with bad performance are less impacted. We notice a decrease
in the performance of the 𝜖−Greedy case due to the choice of 𝜖 ,
the exploration probability. Indeed, the algorithm will be stuck
on a non-optimal arm, due to the low value 𝜖 after 30 hours of
simulation. This behaviour continues until the average value of this
arm falls below that of another arm. This problem could be solved
by using a fixed value for 𝜖 , but to avoid to dramatically degrade the
performance of the algorithm, the value of 𝜖 must be small, leading
to a long convergence time. In the TS case the learning is much
slower because the variance decay is also slower due to the reward
miscalculation, but this allows the algorithm to be more resilient to
reward miscalculations compared to the 𝜖−Greedy algorithm.

4.2 Topological comparisons after convergence
Our new simulator is capable of providing a wide variety of results.
For example, Figure 7 shows the PDR averaged over the last two
hours of simulation for each network node under DC-constrained
conditions for the 𝜖−Greedy, TS and LoRaWAN ADR algorithms.
We employed a Voronoi tessellation, which facilitates the visual-
isation of the map and its interpretation. On these maps, it can
be seen that the best performing nodes are those closest to the
GW, as expected. On the other hand, this representation allows a
further investigation, showing that the closest nodes to the GW
have acceptable performance (PDR ≥ 80%) within a radius of 4 to 5
km for the TS algorithm, against 3 km for the LoRaWAN ADR. It is
therefore the nodes at the edge of the network that suffer from a
degradation of their performance due to the lack of ACK induced
by to the respect of the DC.

Figure 8 presents the most used 𝑆𝐹 over the last two hours of sim-
ulation for each network node under DC-constrained conditions
for the 𝜖−Greedy, TS and LoRaWAN ADR algorithms. By corre-
lating this map with Figure 7, we see that the poor performance
of the MAB algorithm is due to bad arm selection. Indeed, for the
𝜖−Greedy algorithm, the parameter selection seems completely
random.

The TS algorithm is doing better since it selects the lower 𝑆𝐹
for node close to the GW, with few exceptions. Moreover, it is able
to use low SF values on far nodes, which is not the case for the
LoRaWAN ADR. Figure 9 presents the energy consumption for
each ED in the network for the MAB-based ADR algorithms in the
DC-constrained case and the LoRaWAN ADR. The energy model
used is the one presented on Figure 6 with the following parameters
values [6, 16] 𝐼𝑠𝑙𝑒𝑒𝑝 = 1.6 𝜇𝐴, 𝐼𝑤𝑎𝑖𝑡 = 27𝑚𝐴, 𝐼𝑙𝑖𝑠𝑡𝑒𝑛 = 38𝑚𝐴, and
𝐼𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 ranging from 22.3𝑚𝐴 to 38𝑚𝐴 depending on the value
of 𝑇𝑃 . As it can be seen, the results are very similar to the 𝑆𝐹 map
of Figure 8, which expected. Indeed, increasing the 𝑆𝐹 value by one
doubles the time on air of the transmission, thus increasing the
energy consumption of the communications. Moreover, the arm
configuration used in this article implies a 𝑇𝑃 of 14 dBm when the
𝑆𝐹 value is not 7.

5 CONCLUSIONS AND PERSPECTIVES
In this paper we present a new LoRa network simulator based on
Julia, simultaneously bringing flexibility and efficient simulation
time. To demonstrate the potential of our simulator, we propose a
case study on communication parameters adaptation of LoRa net-
works. We use our simulator to compare MAB-based ADR working
with and without respecting the DC, in a network with high node
density. The results show a strong degradation of the performance
of the MAB algorithms in the DC-constrained case. Although the
very good results presented in the literature for MAB algorithms
are not achievable in practice, they are still very promising and
should enhance network performance compare to LoRaWAN ADR.
It is now necessary to think about a solution that could work in
cases with high density of EDs in the network, especially for those
further from the GW. Another important aspect that has not been
addressed in this paper is the optimisation of energy consumption
of the nodes. Managed in the LoRaWAN algorithm, the question
of energy optimization could also be implemented by the MAB
algorithms by adding a component taking into account the energy
consumption in the reward calculation. The weight of this compo-
nent would be more important in cases of low energy consumption,
thus favouring low energy consumption arms in case of similar PDR
between several arms. As demonstrated in this article, J-LoRaNeS
can definitely be considered as a valuable tool to study LoRa net-
works performance in different situations. As an example, instead
of the Gaussian environment considered in this paper, it is planned
to add impulsive noise to simulate communications in industrial
environment.
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(a) DC-constrained 𝜖−Greedy (b) DC-constrained TS (c) LoRaWAN ADR

Figure 7: Averaged PDR on every ED of the network at the end of the simulation

(a) DC-constrained 𝜖−Greedy (b) DC-constrained TS (c) LoRaWAN ADR

Figure 8: Most used 𝑆𝐹 for every ED of the network at the end of the simulation

(a) DC-constrained 𝜖−Greedy (b) DC-constrained TS (c) LoRaWAN ADR

Figure 9: Averaged energy consumption for each ED of the network
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