Jules Courjault
email: jules.courjault@irisa.fr

Baptiste Vrigneau
email: baptiste.vrigneau@irisa.fr

Olivier Berder
email: olivier.berder@irisa.fr

Yvon Legoff
email: yvon.legoff@cgwi.fr

Claude Guichaoua
email: claude.guichaoua@cgwi.fr

Catching the LoRa ADR Bandit with a New Sheriff: J-LoRaNeS

Keywords: CCS CONCEPTS, Computing methodologies → Simulation tools; Reinforcement learning Reinforcement Learning, Multi-Armed Bandit, Network Simulator, LoRa

come

years, with the aim to fill the growing need to gather information from various connected objects. The Long Range (LoRa) [START_REF] Seller | Low power long range transmitter[END_REF] technology, supported by Semtech and the LoRa alliance, offers a very good trade-off between range, data rate and energy consumption. It allows a throughput ranging from 0.3 kbps to 50 kbps in the 433 MHz, 868 MHz or 915 MHz Industrial, Scientific and Medical (ISM) bands using the principle of chirp spread spectrum. The main parameters of the communication are the Spreading Factor (𝑆𝐹), Transmit Power (𝑇 𝑃), bandwidth and coding rate. The throughput, energy consumption and transmission performance thus vary according to the choice of these parameters [START_REF] Courjault | A computable form for lora performance estimation: Application to Ricean and Nakagami fading[END_REF].

To cope with a possible huge number of nodes and ensure the reception of transmitted data over varying propagation channels, a mechanism for adapting the communication parameters called Adaptive Data Rate (ADR) is used [START_REF] Alliance | LoRaWAN 1.1 specifications[END_REF]. This algorithm suffers from several problems [START_REF] Li | How agile is the adaptive data rate mechanism of LoRaWAN[END_REF], in particular a long convergence time, leading to a significant increase of power consumption at network start-up and topology changes. Proposals have been made in the literature to improve the performance of the ADR, some of them [START_REF] Ta | LoRa-MAB: A flexible simulator for decentralized learning resource allocation in IoT networks[END_REF][START_REF] Teymuri | LP-MAB: Improving the Energy Efficiency of LoRaWAN Using a Reinforcement-Learning-Based Adaptive Configuration Algorithm[END_REF] using Multi-Arm Bandit (MAB), a reinforcement learning technique. Those algorithms assume full and perfect feedback, where duty cycle constraints are not taken into account, which leads to an overestimation of the performance gain.

A network simulator is very useful before deployment to test multiple available configurations, e.g. which ADR suits best your network needs. Several LoRa network simulators have arisen in recent years [START_REF] Abdelfadeel | 𝐹 𝑅𝐸𝐸 -fine-grained scheduling for reliable and energy-efficient data collection in LoRaWAN[END_REF][START_REF] Bor | Do LoRa low-power wide-area networks scale[END_REF][START_REF] Magrin | Network level performances of a LoRa system[END_REF][START_REF] Marini | LoRaWANSim: A flexible simulator for lorawan networks[END_REF][START_REF] Slabicki | Adaptive configuration of LoRa networks for dense IoT deployments[END_REF][START_REF] Yousuf | Throughput, coverage and scalability of LoRa LPWAN for internet of things[END_REF]. But none of them can fully claim that it provides rapid simulation and user-friendly customization. Recently developed by the MIT, Julia [START_REF]Julia language[END_REF] represents a good trade-off between low or intermediate level languages such as C/C++ and high-level languages such as Matlab or Python. The contributions of the present paper are:

• The design of a new simulator based on Julia, the exploration of its architecture and the proposed metrics. • The comparison of MAB-based ADR to LoRaWAN ADR with and without perfect feedback.

The paper is organized as follows: Section 2 presents the state of the art on LoRa network simulators, as well as the architecture of J-LoRaNeS. Section 3 gives details on the different ADR that will be studied in this paper, especially those based on MAB. Finally Section 4 presents simulations results and comparisons of ideal and realistic schemes in terms of packet delivery ratio and energy, while conclusions are drawn in Section 5.

✓ ✓ ✓ TOSSIM [11] × ✓ ✓ ✓ CupCarbon [5, 15] × ✓ ✓ ✓ LoRaWANSim [14] ✓ ✓ Static × LoRaSim (Java) [25] × ✓ ✓ × LoRaSim (Python) [4] × ✓ × × LoRa-MAB [23] ✓ ✓ Custom ✓ LoRaFREE [2] ✓ ✓ Custom × FLoRa [21] × ✓ ✓ × LoRaWAN ns-3 [13] ✓ ✓ ✓ × J-LoRaNeS ✓ ✓ ✓ ✓ "Static":
The ADR algorithm is used once and not re-applied. "Smart node": The simulator can run machine learning algorithm.

J-LORANES: A JULIA BASED LORA NETWORK SIMULATOR 2.1 Why a new simulator?

A network simulator can be very useful to test a network configuration, e.g. compare different ADR algorithms before in-field deployment, and potentially save significant resources by revealing poor performance at simulation. Several simulators have been proposed in scientific literature using different languages and offering different abilities and results. Most of them are listed in Table 1, comparing their respective pros and cons. Four simulation capabilities are particularly considered, i.e., the imperfect 𝑆𝐹 Orthogonality (ISFO), energy consumed, ADR nature and smart node. ISFO prevents two packets emitted simultaneously, with different 𝑆𝐹 , to be received. Thus not considering ISFO in simulation leads to an overestimation of the network performance (one should note that under certain conditions one of the packets can be received thanks to the capture effect). ADR nature refers to the kind of ADR mechanism used in each simulator, either LoRaWAN ADR, MAB-based or custom ADR. The smart node capability corresponds to the capacity of making a simulation with reinforcement learning based ADR on nodes.

One of the first LoRa network simulator proposal was LoRaSim (Python) [START_REF] Bor | Do LoRa low-power wide-area networks scale[END_REF], a discrete event simulator based on SymPy. It was designed to study LoRa scalability with network energy consumption and performance monitoring, but is limited since it does not take into account the ISFO, downlink traffic and ADR mechanism. Since it is an open-source simulator, it has been extended to add many missing features while testing new mechanisms to enhance the performance of the ADR algorithm [START_REF] Abdelfadeel | 𝐹 𝑅𝐸𝐸 -fine-grained scheduling for reliable and energy-efficient data collection in LoRaWAN[END_REF][START_REF] Cuomo | EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations[END_REF]. LoRa-MAB [START_REF] Ta | LoRa-MAB: A flexible simulator for decentralized learning resource allocation in IoT networks[END_REF] is also based on SymPy and was developed to study the performance of a rate adaptation mechanism based on MAB. This simulator takes into account ISFO, but the ADR of LoRaWAN is not available. Another simulator called LoRaSim [START_REF] Yousuf | Throughput, coverage and scalability of LoRa LPWAN for internet of things[END_REF] was developed using the Java language. It aims to simulate LoRaWAN networks in the US 915MHz band, and is more complete than the LoRaSim (Python) simulator, but ISFO is still missing. COOJA [START_REF] Osterlind | Cross-level sensor network simulation with cooja[END_REF], TOSSIM [START_REF] Levis | TOSSIM: Accurate and scalable simulation of entire TinyOS applications[END_REF] and CupCarbon [START_REF] Bounceur | CupCarbon: a new platform for the design, simulation and 2d/3d visualization of radio propagation and interferences in IoT networks[END_REF][START_REF] Mehdi | Cupcarbon: A multi-agent and discrete event wireless sensor network design and simulation tool[END_REF] are simulators dedicated to LPWAN technologies and not specifically to LoRa. COOJA and TOSSIM are able to emulate code that will be deployed on End-Devices (ED), while CupCarbon needs the ED behavior to be described in SenScript. LoRaWANSim [START_REF] Marini | LoRaWANSim: A flexible simulator for lorawan networks[END_REF] is a simulator based on Matlab. The goal of this simulator is to provide a tool as accurate as possible for LoRaWAN network, thus ISFO and ADR are available. However, the ADR algorithm used in this simulator is static: for each pair of gateway (GW) and ED, 20 SNR levels are randomly generated with respect to the propagation model. Subsequently, a value of 𝑆𝐹 and 𝑇 𝑃 is assigned to each ED thanks to the ADR algorithm presented in section 3.1. This 𝑆𝐹 and 𝑇 𝑃 value selection is made only once during the whole simulation. FLoRa [START_REF] Slabicki | Adaptive configuration of LoRa networks for dense IoT deployments[END_REF] and LoRaWAN ns-3 [START_REF] Magrin | Network level performances of a LoRa system[END_REF] are coded with the C++ programming language, they need OMNeT++ and ns-3 respectively, which can make them hard to use for non-Linux users. Both of the simulators feature the ADR algorithm, but only LoRaWAN ns-3 takes into account ISFO. Our simulator, J-LoRaNeS, is based on the Julia programming language, which is a compiled language, yet allowing high-level syntax, offering a good trade-off between ease of development and fast execution time. Moreover, it has been developed to be as accurate as possible, therefore ISFO, bidirectional traffic and dynamic ADR are implemented. Thanks to the multiple-dispatch feature of Julia, it is straightforward to replace several parts of the simulator, such as the ADR algorithm, without affecting the core algorithm of J-LoRaNeS.

J-LoRaNeS architecture

Figure 1 presents an overview of J-LoRaNeS. First the user has to describe the topology of the network, the application requirements (packet rate, payload size, preamble size...), the hardware configuration (sensitivity, antenna gain, energy consumption model,...) and the channel used for the simulation. The simulation takes place in the processing step: the packet schedule is generated, collisions between packets are detected, reception of packets is checked and the ADR is updated. When the processing step is complete, data are saved for post-processing. After the saving step, the user can apply different built-in metrics to monitor the performance of the network, e.g. Packet Delivery Rate (PDR) or energy consumption.

Packet scheduler.

The aim of the scheduler is to decide when to transmit the different packets while respecting the Duty Cycle (DC) and packet rate constraints. There are two types of packet to manage: the uplink (UL) packet from the ED and the downlink (DL) one from the GW. DL packets are scheduled after an UL is received. There are two possible windows to schedule them: RX1 or RX2. Those windows have different parameters (𝑆𝐹 , frequency, DC). On RX1, a DL packet uses the same parameters as the corresponding UL packet, whereas on RX2 it uses a predefined set of parameters, usually 𝑆𝐹 = 12, with maximum 𝑇 𝑃, but with different central frequency from the UL. An example of frame scheduling is given on Figure 2. If multiple GWs are available in the network (i.e. multiple GW have available DC), the one that received the UL packet with the highest Received Signal Strength Indicator (RSSI) will be selected to send the DL packet.

UL packets are dynamically scheduled based on the ALOHA protocol and the average packet periodicity of the node with respect to the duty cycle. During the initialization of the simulation, only one UL packet is scheduled for each node. The others are scheduled after the reception of an UL packet, if it has not generated any DL packets, or after the processing of the scheduled DL packet.

Packet reception.

Channel effect. To be successfully decoded, a packet must be received with an RSSI greater than a sensitivity value depending on the 𝑆𝐹 value of the packet [20]. The channel model is described in the channel configuration file, and can be easily modified (with distance or random variables). The sensitivity threshold 𝑆 is computed as follows:

𝑆 = -174 + 10 log 10 (𝐵𝑊) + 𝑁 𝐹 + 𝑆𝑁 𝑅 min , (1)
where the first term corresponds to the thermal noise, 𝑁 𝐹 is the noise factor of the radio which is hardware dependent, and 𝑆𝑁 𝑅 min is the minimum 𝑆𝑁 𝑅 required to receive a packet at a given 𝑆𝐹 , the values of 𝑆𝑁 𝑅 min are given in Table 2 for each 𝑆𝐹 .

Interference effect. Due to the ISFO of LoRa, packets sent on different 𝑆𝐹 might interfere between them, but one of the packet might be retrieved thanks to the capture effect. Indeed, if the Signal to Interference plus Noise Ratio (SINR) is higher than a threshold, given in Table 3, the packet can be decoded [START_REF] Goursaud | Dedicated networks for IoT : PHY / MAC state of the art and challenges[END_REF]. m ← m + 1 21: end while "MD": The function uses multiple-dispatch updateADRpolicy and selectDR. The reward function will output the parameters needed for the ADR update, e.g. the reward for MAB-based ADR or the RSSI for the server-side algorithm of the LoRaWAN ADR. The updateADRpolicy function defines how the ADR policy is updated and selectDR selects the new communication parameters according to the updated policy. The last two functions profit from the multiple dispatch of Julia, i.e. each function is defined multiple times to yield a specific behavior according to the type of the packet. A packet can be of types UL, DLRX1 or DLRX2, which correspond to packets sent as UL, DL on RX1 window and DL on RX2 window, respectively. If a packet of type UL is processed the updateADRpolicy function will need to update the policy on the server side. Whereas, for DLRX1 or DLRX2 it needs to update the policy on the ED side. The dispatch is the same for the function selectDR, i.e., the communications parameters will be selected according to the policy and method of the server if an UL packet is received, and according to the ED policy and method for types DLRX1 or DLRX2.

Customising the ADR algorithm.

2.2.4

Core of the simulator. Algorithm 1 presents the simulator algorithm, and how the elements presented above are organized. The network is first initialized according to the inputs given by the user, including the propagation model and device positioning. Then, the simulator schedules one UL for each ED and generates the variable vector packetKey, which allows the identification of a packet. Once the initialization step is complete, the algorithm performs, for each packet key, the following operations: i) Find the packet associated to the key; ii) Check if the packet RSSI is above or below the sensitivity threshold for reception; iii) Find all packets that interfere with the one being processed and compare the SINR to a threshold value defined by Table 3 to decide if the packet is delivered or not.

Functions ScheduleDL and ScheduleUL are used to schedule DL and UL respectively. Both of them are using multiple-dispatch, and it is made on the type of the packet. If the packet is of type UL, the scheduling is made as described in paragraph 2.2.1. Whereas, for DLRX1 and DLRX2 packet, the ScheduleDL function will do nothing, and an UL will be scheduled by the ScheduleUL function.

This solution offers the possibility to easily add new node profiles or change some algorithms without changing the core algorithms of J-LoRaNeS. For example, if the processed packet is a correctly received UL and considering the LoRaWAN ADR described in 3.1, then a DL packet is scheduled on RX1 or RX2 according to the availability of the GW, and ADR is updated. For each received UL packet, the corresponding SNR value is computed and stored for later use. In case of no scheduled DL packet or unsuccessful DL transmission, the failed transmission counter is increased on node side of the ADR. The ADR chooses a new data rate, according to the selected method, in this example the LoRaWAN ADR. When the new communication parameters have been chosen, an UL is scheduled for the device. This new packet is added to the packetList variable, if the end of the transmission does not exceed the simulation time. A new UL packet is scheduled if the processed packet is a DL, or dlScheduled is false for UL packet.

ENHANCING THE ADR WITH MAB

To demonstrate the capabilities of J-LoRaNeS, we propose a study of the ADR proposed for LoRa network. As explained in Section 1, the LoRaWAN ADR [START_REF] Alliance | LoRaWAN 1.1 specifications[END_REF] suffers from a long convergence time, and several propositions of improvement have been made in the literature. Some of the solutions [START_REF] Ta | LoRa-MAB: A flexible simulator for decentralized learning resource allocation in IoT networks[END_REF][START_REF] Teymuri | LP-MAB: Improving the Energy Efficiency of LoRaWAN Using a Reinforcement-Learning-Based Adaptive Configuration Algorithm[END_REF] are based on MAB techniques, which need feedback to work properly. In those solutions it is assumed that the feedback is made through DL packets, and happens after each received UL packet. However, when transmitting on ISM bands, LoRa equipment must respect a duty cycle (DC) of 1 or 10% depending on the regions and bands used. Thus in high density networks, GWs will not be able to send a DL for each received UL, leading to an imperfect feedback. The question our study aims to answer is: what happens to the performance of MAB-based ADR algorithms when the DC is properly respected?

LoRaWAN ADR

The LoRaWAN ADR is described in the LoRaWAN v1.1 specification [START_REF] Alliance | LoRaWAN 1.1 specifications[END_REF]. This algorithm adapts LoRa parameters to the observed channel properties, by dynamically changing 𝑆𝐹 and 𝑇 𝑃 values. This algorithm is split into two parts. On every node, it evaluates the wireless communication quality by counting the received acknowledgement packets (ACK) from the GW. If the number of missing ACKs is too high, the node increases first the 𝑇 𝑃 and next the 𝑆𝐹 in order to enhance the radio link. The second part of this mechanism is centralised on the network server, trying to make communication more energy efficient. To do this, it records the SNR of several (usually 20) UL packets and then computes the margin on SNR, which is used to determine how 𝑇 𝑃 and 𝑆𝐹 can be modified to reduce the power consumption of the transmission, while still receiving the UL.

MAB-based ADR

With a MAB approach, the mechanism is decentralised, there is no part of the mechanism running on the network server. Figure 3 shows the basic operation of MAB algorithms applied to LoRa. First, the agent chooses an arm, i.e. a combination of 𝑆𝐹 and 𝑇 𝑃 parameters for the next communication, then performs the transmission with the chosen parameters. The reception of this communication by the network will lead to the transmission of a DL packet. The reception of this DL packet by the ED leads to the reward computation, at instant 𝑡 𝑖 : 𝑟 [𝑡 𝑖] = 1 if the DL is received, 𝑟 [𝑡 𝑖] = 0 otherwise. The next steps are updating the policy of the algorithm, i.e. the way the arm are chosen, then choosing the communication parameters. Those steps are performed differently depending on the nature of the algorithm used. The MAB algorithms used in this article for parameters selection and policy update are 𝜖-Greedy [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] and Thomson-Sampling (TS) [START_REF] Russo | A tutorial on Thompson sampling[END_REF].

𝜖-Greedy.

For each arm 𝑘, a value θ𝑘 is associated, which corresponds to the average reward received by the arm when it was chosen. The update of the policy thus consists in computing Figure 3: MAB principle applied to LoRa channel adaptation θ𝑘 for the arm used once the reward has been received. For the arm selection step, the algorithm must choose between exploiting or exploring. If it chooses to exploit, then the arm with the largest θ𝑘 value will be selected. In case of exploration, an arm is drawn at random. The choice between exploration or exploitation is made randomly, the algorithm will explore with probability 𝜖 ∈]0; 1]. In this article we have chosen 𝜖 [𝑡 𝑖] = 𝑁 𝑏 𝑁 𝑏 + 𝑘 𝑛 𝑘 [𝑡 𝑖] , with 𝑁 𝑏 the total number of arms and 𝑛 𝑘 [𝑡 𝑖], the number of transmissions made with the parameters of arm 𝑘. This choice of a decreasing value in time for 𝜖 allows a strong exploration at deployment, then a strong exploitation after a certain time, thus ensuring a use of parameters bringing a high reward.

Thomson-Sampling.

Each arm 𝑘 is associated with a random variable following a beta distribution of parameters (𝛼 𝑘 , 𝛽 𝑘) with 𝛼 𝑘 ≥ 1 and 𝛽 𝑘 ≥ 1. The mean value of that distribution is θ𝑘 = 𝛼 𝑘 𝛼 𝑘 +𝛽 𝑘 . At initialization, the parameters of the beta law have the following values: 𝛼 𝑘 = 𝛽 𝑘 = 1. The update of the policy consists in changing the parameters of the distribution:

(𝛼 𝑘 [𝑡 𝑖+1], 𝛽 𝑘 [𝑡 𝑖+1]) = (𝛼 𝑘 [𝑡 𝑖], 𝛽 𝑘 [𝑡 𝑖]) + (𝑟 [𝑡 𝑖], 1 -𝑟 [𝑡 𝑖]
), if the arm 𝑘 has been chosen, otherwise the parameters remain unchanged. To choose the arm that will be used for the next transmission, the algorithm makes a random draw for each arm according to each beta distribution, and chooses the arm with the highest value. Figure 4 presents an example with 3 arms, with different Beta distributions. In this example the arm 3 has the lowest average, moreover its variance is also low, thus it is not worth considering using this arm, because the received reward will most likely be lower than others arms. On the contrary the arm 1 has the highest average and also has a rather low variance, thus the reward will most likely be high. Yet, it is still worth to explore the arm 2 due to its high variance and average close to the one of arm 1, thus the probability to get a higher reward than arm 1 is significant.

SIMULATIONS SETUP AND RESULTS

To estimate the real contribution of the algorithms presented above compared to the classical ADR, we use the simulator presented in Section 2. The simulated configuration is a network with one GW, 500 EDs uniformly distributed in a square of dimension 20 km, sending one packet every 10 minutes on average. The channel model used in the simulations is the Okumura-Hata [START_REF] Harinda | Comparative performance analysis of empirical propagation models for lorawan 868MHz in an urban scenario[END_REF] model for small and medium-size cities.

The different ADR mechanism presented is this paper have been implemented, and thanks to the the multiple-dispatch, it is only needed to change the type of the ADR in the initialization of the network, e.g., using the keyword Greedy instead of LoRaWAN if you want to use an 𝜖-Greedy algorithm instead of the LoRaWAN ADR. The reward for the LoraWAN algorithm is the tuple (received, RSSI).

The adaptation mechanisms that will be compared are: the Lo-RaWAN ADR, an ADR using the 𝜖-Greedy MAB algorithm [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], and another using the TS algorithm [START_REF] Russo | A tutorial on Thompson sampling[END_REF]. The arm combinations used for MAB algorithms are identical to the possible combinations for LoRaWAN ADR, i.e. for 𝑆𝐹 = 7 the possible 𝑇 𝑃s range from 2 dBm to 14 dBm in 3 dB steps, and for 𝑆𝐹 s ranging from 8 to 12, only the 14 dBm 𝑇 𝑃 can be selected.

In the case of the MAB ADRs, we will compare the oracle cases with the DC-constrained cases. The oracle case assumes the GW sends an ACK for each of the received UL packets, thus not respecting the DC. Note that this is the assumption made in the scientific literature [START_REF] Ta | LoRa-MAB: A flexible simulator for decentralized learning resource allocation in IoT networks[END_REF][START_REF] Teymuri | LP-MAB: Improving the Energy Efficiency of LoRaWAN Using a Reinforcement-Learning-Based Adaptive Configuration Algorithm[END_REF]. In the DC-constrained case the GW respects the DC of 1 or 10% imposed by regulation, in this case any UL packet received is not necessarily followed by an ACK, resulting in a bad reward computation by MAB algorithms.

Temporal variation of the Packet Delivery Ratio

Figure 5 shows the evolution of the PDR for the ADRs. The PDR is computed over a sliding window of one hour. In this figure, we can see that the MAB algorithms have a much lower convergence time than the LoRaWAN ADR. On one hand, the PDR obtained after convergence is better than the LoRaWAN ADR in both Oracle and DC-constrained versions. Unfortunately, it turns out that in the DC-constrained case, the MAB algorithms are less efficient than in the oracle cases. Indeed, in the oracle cases, both algorithms perform well, with a PDR around 85% at the end of the simulation, whereas the performance in the DC-constrained case is around 70% for the Greedy algorithm, and seems to continue to increase for the TS one. For the LoRaWAN ADR, the PDR does not go above 65%. Moreover, the convergence time is about 40h while it needs 24h for the Greedy algorithm and 48h for the TS algorithm, but the TS algorithm always has better performance than the LoRaWAN one. This performance degradation in the DC-constrained case is due to the poor reward calculation caused by the absence of ACK, despite the reception of the UL packet, thus underestimating the performance of the arms with good performance, whereas the arms with bad performance are less impacted. We notice a decrease in the performance of the 𝜖-Greedy case due to the choice of 𝜖, the exploration probability. Indeed, the algorithm will be stuck on a non-optimal arm, due to the low value 𝜖 after 30 hours of simulation. This behaviour continues until the average value of this arm falls below that of another arm. This problem could be solved by using a fixed value for 𝜖, but to avoid to dramatically degrade the performance of the algorithm, the value of 𝜖 must be small, leading to a long convergence time. In the TS case the learning is much slower because the variance decay is also slower due to the reward miscalculation, but this allows the algorithm to be more resilient to reward miscalculations compared to the 𝜖-Greedy algorithm.

Topological comparisons after convergence

Our new simulator is capable of providing a wide variety of results. For example, Figure 7 shows the PDR averaged over the last two hours of simulation for each network node under DC-constrained conditions for the 𝜖-Greedy, TS and LoRaWAN ADR algorithms. We employed a Voronoi tessellation, which facilitates the visualisation of the map and its interpretation. On these maps, it can be seen that the best performing nodes are those closest to the GW, as expected. On the other hand, this representation allows a further investigation, showing that the closest nodes to the GW have acceptable performance (PDR ≥ 80%) within a radius of 4 to 5 km for the TS algorithm, against 3 km for the LoRaWAN ADR. It is therefore the nodes at the edge of the network that suffer from a degradation of their performance due to the lack of ACK induced by to the respect of the DC. Figure 8 presents the most used 𝑆𝐹 over the last two hours of simulation for each network node under DC-constrained conditions for the 𝜖-Greedy, TS and LoRaWAN ADR algorithms. By correlating this map with Figure 7, we see that the poor performance of the MAB algorithm is due to bad arm selection. Indeed, for the 𝜖-Greedy algorithm, the parameter selection seems completely random.

The TS algorithm is doing better since it selects the lower 𝑆𝐹 for node close to the GW, with few exceptions. Moreover, it is able to use low SF values on far nodes, which is not the case for the LoRaWAN ADR. Figure 9 presents the energy consumption for each ED in the network for the MAB-based ADR algorithms in the DC-constrained case and the LoRaWAN ADR. The energy model used is the one presented on Figure 6 with the following parameters values [START_REF] Casals | Modeling the energy performance of LoRaWAN[END_REF][START_REF] Microchip | RN2483: Low-Power Long Range LoRa Technology Transceiver Module -Revision F[END_REF] 𝐼 𝑠𝑙𝑒𝑒𝑝 = 1.6 𝜇𝐴, 𝐼 𝑤𝑎𝑖𝑡 = 27 𝑚𝐴, 𝐼 𝑙𝑖𝑠𝑡𝑒𝑛 = 38 𝑚𝐴, and 𝐼 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 ranging from 22.3 𝑚𝐴 to 38 𝑚𝐴 depending on the value of 𝑇 𝑃. As it can be seen, the results are very similar to the 𝑆𝐹 map of Figure 8, which expected. Indeed, increasing the 𝑆𝐹 value by one doubles the time on air of the transmission, thus increasing the energy consumption of the communications. Moreover, the arm configuration used in this article implies a 𝑇 𝑃 of 14 dBm when the 𝑆𝐹 value is not 7.

CONCLUSIONS AND PERSPECTIVES

In this paper we present a new LoRa network simulator based on Julia, simultaneously bringing flexibility and efficient simulation time. To demonstrate the potential of our simulator, we propose a case study on communication parameters adaptation of LoRa networks. We use our simulator to compare MAB-based ADR working with and without respecting the DC, in a network with high node density. The results show a strong degradation of the performance of the MAB algorithms in the DC-constrained case. Although the very good results presented in the literature for MAB algorithms are not achievable in practice, they are still very promising and should enhance network performance compare to LoRaWAN ADR. It is now necessary to think about a solution that could work in cases with high density of EDs in the network, especially for those further from the GW. Another important aspect that has not been addressed in this paper is the optimisation of energy consumption of the nodes. Managed in the LoRaWAN algorithm, the question of energy optimization could also be implemented by the MAB algorithms by adding a component taking into account the energy consumption in the reward calculation. The weight of this component would be more important in cases of low energy consumption, thus favouring low energy consumption arms in case of similar PDR between several arms. As demonstrated in this article, J-LoRaNeS can definitely be considered as a valuable tool to study LoRa networks performance in different situations. As an example, instead of the Gaussian environment considered in this paper, it is planned to add impulsive noise to simulate communications in industrial environment.

Figure 1 :

 1 Figure 1: Simulator configuration and results.

Figure 2 :

 2 Figure 2: Frames in time and frequency: cases with no and interference.

Figure 4 :

 4 Figure 4: Probability density function of a Beta distribution in 3 different configurations

Figure 5 :Figure 6 :

 56 Figure 5: Packet delivery rate for 𝜖-Greedy and TS algorithm, in both DC-constrained and oracle cases, compared with Lo-RaWAN ADR.

 (a) DC-constrained 𝜖 -Greedy (b) DC-constrained TS (c) LoRaWAN ADR

Figure 7 :Figure 8 :

 78 Figure 7: Averaged PDR on every ED of the network at the end of the simulation

Figure 9 :

 9 Figure 9: Averaged energy consumption for each ED of the network

Table 1 :

 1 Comparison of LoRa networks simulators.

	Simulator name	ISFO Energy	ADR	Smart node
	COOJA [17]	×		

Table 2 :

 2 SNR min value in dB used to compute sensitivity threshold[20]

	𝑆𝐹	7	8	9	10	11	12
	SNR min -7.5 -10 -12.5 -15 -17.5 -20

Table 3 :

 3 Collision threshold in dB to exceed in order to receive one of the colliding packets thanks to capture effect[START_REF] Goursaud | Dedicated networks for IoT : PHY / MAC state of the art and challenges[END_REF] 𝑆𝐹 7 𝑆𝐹 8 𝑆𝐹 9 𝑆𝐹 10 𝑆𝐹 11 𝑆𝐹 12

	𝑆𝐹 7	6	-16 -18 -19	-19	-20
	𝑆𝐹 8	-24 6	-20 -22	-22	-22
	𝑆𝐹 9	-27 -27 6	-23	-23	-25
	𝑆𝐹 10 -30 -30 -30 6	-26	-28
	𝑆𝐹 11 -33 -33 -33 -33	6	-29
	𝑆𝐹 12 -36 -36 -36 -36	-36	6

 To test or customize the ADR in the simulator, one must describe several functions: reward,

	Algorithm 1 J-LoRaNES algorithm
	1: EDs, GWs ← DevicePositioning(NED, NGW)
	2: channelEffects ← ComputeChannel(EDs, GWs, CModel)
	3: packetList ← ScheduleULpackets(EDs, timeOffset)
	4: packetKey ← GenerateKey(packetList)
	5: m ← 1
	6: while m < size(packetKey) do
	7:	packet ← GetPacket(packetList, packetKey[m])
	8:	rssiLvl ← RSSI(packet, channelEffect)
	9:	receivedNoInterference ← rssiLvl > Sensitivity
	10:	interfererList ← FindInterferer(packet, packetList)
	11:	if Isempty(interfererList) then
	12:	received ← receivedNoInterference
	13:	else
	14:	received ← CompareRSSI(packet, interfererList) and re-
		ceivedNoInterference
	15:	end if
	16:	dlScheduled ← ScheduleDL(packet, rssiLvl, packetKey, pack-
		etList) {MD}
	17:	UpdateADRpolicy(packet, received, rssiLvl) {MD}
	18:	SelectDR(packet, received, dlScheduled){MD}
	19:	ScheduleUL(packet, received, dlScheduled, packetKey, pack-
		etList){MD}
	20: