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Robust Formation Control of Robot Manipulators
with Inter-agent Constraints over Undirected

Signed Networks
Pelin Şekercioğlu Bayu Jayawardhana Ioannis Sarras Antonio Lorı́a Julien Marzat

Abstract— We address the problem of distributed con-
trol of a network of cooperative and competitive robot
manipulators in end-effector coordinates. We propose a
distributed bipartite formation controller that guarantees
collision avoidance. In the considered setting two groups
are formed and reach inter-group bipartite consensus or
disagreement. On the other hand, the end-effectors achieve
intra-group formation. To ensure that the end-effectors do
not collide, we design gradient-based control laws using
barrier-Lyapunov functions. In addition, the proposed con-
troller ensures that the closed-loop system is robust to
external disturbances. The latter are assumed to be gen-
erated by an exosystem, so they are effectively rejected
by an internal-model-based compensator. More precisely,
we establish asymptotic stability of the bipartite formation
manifold. Finally, we illustrate our theoretical results via
numerical simulations.

Index Terms— Formation consensus, signed networks,
robotic manipulators, barrier-Lyapunov functions

I. INTRODUCTION

Formation control consists, roughly speaking, in making
a group of physical systems adopt a formation and remain
stable at an equilibrium, or move along a path, describing a
common trajectory. This problem has been extensively studied,
often relying on the bulk of literature on consensus control.
However, the greater part of the literature considers only
cooperative agents (in which case these form a network that
can be modeled by a graph containing only links with positive
weights) or considers linear models. Yet, robot manipulators
are inherently nonlinear and there are many scenarios in which
some agents may be competitive, so their interactions carry
negative weights. Beyond applications involving robot ma-
nipulators, other scenarii that pertain to coopetitive networks
include herding control [1], [2]; social-networks theory [3],
and aerospace applications [4].

The cooperative vs competitive nature of the links may be
analyzed using the formalism of signed networks [3], in which
the edges have both positive and negative weights. For some

P. Şekercioğlu, I. Sarras, and J. Marzat are with DTIS, ONERA, Univ
Paris-Saclay, F-91123 Palaiseau, France. E-mail: {pelin.sekercioglu,
ioannis.sarras, julien.marzat}@onera.fr. B. Jayawardhana is with En-
gineering and Technology Institute Groningen, Faculty of Science and
Engineering, Univ of Groningen, Groningen 9747 AG, The Netherlands.
E-mail: b.jayawardhana@rug.nl. A. Lorı́a is with L2S, CNRS, 91192 Gif-
sur-Yvette, France. E-mail: antonio.loria@cnrs.fr. P. Şekercioğlu is also
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of such networks, called structurally balanced1, the achievable
goal is bipartite consensus [3], in which all the agents converge
to the same state in modulus but opposite in signs. See, e.g.,
[3], [5], [6], and [7].

In all of the previous references, however, generic first,
second or higher-order linear models are used. These are less
suitable for robot manipulators, which are most commonly
modeled by the Euler-Lagrange equations. In that regard, the
literature on control of multi-agent Euler-Lagrange systems is
also rich, but most often only cooperative networks are consid-
ered. For instance, in [8], [9] the tracking-consensus problem
for mobile robots with nonholonomic constraints is addressed,
in [10] the formation control of flying spacecrafts, in [11] the
synchronization of multi-Lagrangian systems, and in [12]–[15]
the synchronization of multiple robot manipulators. Now in all
of these references, the synchronization problem is studied in
joint coordinates. Formation of manipulators in end-effector
coordinates is considered in [16]–[18]. Nonetheless, in all of
the previously cited references only networks of cooperative
agents are considered. For signed networks, the bipartite
consensus of networked robot manipulators is addressed, e.g.,
in [19]–[23], while the leader-follower bipartite consensus
is studied in [24]–[27] (in the latter parametric uncertainty
is also considered). In end-effectors coordinates the bipartite
formation-control problem is considered in [28].

Now, besides the two aspects previously described, which
relate to the network and systems’ model (i.e., the sign of the
interconnections and the agents’ dynamics), there are others
that must be taken into account in the control of multi-agent
robot systems. Two of these are the existence of constraints
and the effect of external disturbances. Considering that a
disturbance may be modeled by a multi-periodic signal [18]
an effective method to compensate for its effect is the internal-
model-based approach. See, e.g., [15], [18], [29]–[31] for
works on consensus among cooperative robots, and [22]–
[24] and [28] for works on coopetitive networks of robot
manipulators. Yet, none of the references cited above considers
the presence of constraints.

In this paper, we are interested in the bipartite formation-
control problem of end-effectors while ensuring inter-agent
collision avoidance and maintenance of information exchange.

1A signed network is structurally balanced if all the nodes may be split
into two disjoint subsets, where agents cooperative with each other are in the
same subset and agents competitive with each other are in different ones [3].
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These objectives are typically expressed as inter-agent con-
straints and are commonly addressed using artificial potential
functions—see e.g., [32]–[34]. Now, several articles address
constrained consensus problems [35]–[37], but only a few
works focus on constrained control problems for networks
containing competitive interactions. For instance, in [1] the
authors study connectivity-constrained multi-swarm herding,
in [2] non-cooperative herding with connectivity maintenance
is achieved, and the authors in [38] achieve bipartite flocking
with collision avoidance and connectivity maintenance, us-
ing artificial potential functions. A barrier-Lyapunov-function-
based controller is proposed in [39], which is a preliminary
version of this paper, devoted to the the constrained leaderless
bipartite formation problem over undirected signed networks
of simple integrators. As a matter of fact, all the references
mentioned above consider only first and second-order integra-
tors.

In this paper, we consider the distributed bipartite formation-
control problem of robot manipulators’ end-effectors under rel-
ative distance constraints and in the presence of disturbances.
We consider a networked system of cooperative-competitive
robot manipulators modeled by the Euler-Lagrange equations
and interconnected over a structurally balanced undirected
signed graph [3]. The desired formation goal is imposed on the
manipulators’ end effectors. Such scenarios are motivated, for
example, by applications in industrial robotics’ where robots
share the same workspace but are assigned symmetric tasks
by the team. Ideally, the robot manipulators should occupy
the minimum space while evolving with guaranteed safety and
increased reactivity.

Relative to [16]–[18], our results apply to networks having
both cooperative and competitive interactions. Contrary to
[19]–[28], in which the bipartite consensus problem of robot
manipulators over signed networks is studied, we address the
problem under inter-agent constraints. We consider inter-agent
distance constraints on the end effectors, such as collision
avoidance and connectivity maintenance. Relative to [1], [2],
in which the control strategies rely on optimization techniques
and to [38], in which artificial potential functions are used,
we base our controller on the gradient of a barrier-Lyapunov
function. In contrast to [1], [2], our controller applies to signed
networks and in contrary to [38], a minimal safety distance
between agents is ensured. Relative to [39], we consider Euler-
Lagrange systems, not simple integrators, and we establish
robustness with respect to external perturbations. To that end,
we follow the frameworks of [15], [18], [29], to use an
internal model to reject the disturbances, but contrary to these
references, our work considers signed networks. Relative to
[22]–[24] and [28], in which the presence of disturbances is
considered, we also address collision avoidance and connec-
tivity maintenance constraints. Our control design and analysis
rely on the edge-based formulation for signed networks [40],
which allows to recast the problem into one of stabilization
of the origin in error coordinates. We establish asymptotic
stability of the bipartite formation manifold using Lyapunov’s
direct method.

Thus, relative to the existing literature, we contribute with a

robust bipartite formation control law that ensures that the ma-
nipulator’s end effectors achieve the desired formation while
avoiding inter-agent collisions and staying in their sensors’
range. To the best of our knowledge, similar results are not
available in the literature for robot manipulators containing
competitive interactions.

II. MODEL AND PROBLEM FORMULATION

We describe in detail every aspect of the problem of
bipartite formation of end-effectors with constraints and under
perturbations, and present the models that we use.

A. Agents’ dynamics

Consider a network of N n-degrees-of-freedom robot ma-
nipulators modeled by the Euler-Lagrange equations.

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +
∂

∂qi
Ui(qi) = τi + di, i ≤ N, (1)

where qi, q̇i, q̈i ∈ Rn are the generalized joint position,
velocity, and acceleration respectively, Mi(qi) ∈ Rn×n is the
inertia matrix, U : Rn → R is the potential energy function,
τi ∈ Rp is the control input and di ∈ Rn is an external
disturbance generated by an exosystem. As it is customary,
we assume the following.

Assumption 1: The following properties hold.

1. There exist ci and c̄i > 0 such that, ciI ≤Mi(qi) ≤ c̄iI
for all qi ∈ Rn.

2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

3. The Coriolis matrix Ci(qi, q̇i) is uniformly bounded in
qi. Moreover |Ci(qi, q̇i)q̇i| ≤ kci |q̇i|2 for kci > 0.

As in [15] and [18], we consider that the external distur-
bances are modeled by

di = dM,i + Ji(qi)
>dE,i, (2)

where dM,i ∈ Rn , dE,i ∈ Rp and Ji(qi) ∈ Rn×p is
the Jacobian matrix. The disturbance di is generated by an
exosystem of the form

ẇM,i = SM,iwM,i, dM,i = CM,iwM,i, (3a)
ẇE,i = SE,iwE,i, dE,i = CE,iwE,i, i ≤ N (3b)

where wM,i, wE,i ∈ Rli , SM,i, SE,i ∈ Rli×li and
CM,i, CE,i ∈ Rn×li . As in [29], we assume the following.

Assumption 2: The exosystems SM,i and SE,i are assumed
to be neutrally stable, that is, all the eigenvalues of SM,i and
SE,i are different and lie on the imaginary axis, and they are
nonsingular. Moreover, they are assumed to be known.
Such an assumption is realistic for various human-robot-
environment interactions because the disturbance is expressed
as a sum of sinusoidals—cf. [29], which is a truncated finite
Fourier approximation of general external bounded distur-
bances.
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B. Problem statement

We define now the problem of bipartite formation of manip-
ulators’ end-effectors. Let xi ∈ Rp be the position of the ith
manipulator’s end-effector in the task space. The end-effector’s
position xi can be mapped to its generalized joint coordinates
via a nonlinear forward kinematics mapping [41]

xi = xi0 + hi(qi), (4)

where xi0 is the position of the manipulator’s base and
hi : Rn → Rp is the mapping from joint-space to the task
space. Differentiating (4) with respect to time, we obtain the
relation between the task-space velocity and joint velocity [41]

ẋi = Ji(qi)q̇i, Ji(qi) :=
∂hi(qi)

∂qi
q̇i, (5)

with Ji(qi) ∈ Rn×p the Jacobian matrix of the forward
kinematics.

The bipartite formation control problem consists in the
end-effectors’ positions of the cooperative agents reaching a
desired geometric shape around a consensus value, while the
end-effectors’ positions of non-cooperative agents converge
to another spatial configuration. The characteristics of the
formation shape are defined through the relative biases bi and
bj with respect to the consensus points. Formally, we can thus
define the bipartite formation control objective as

lim
t→∞

x̄i(t)− sgn(aij)x̄j(t)→ 0, i, j ≤ N, (6)

where

x̄i := xi − bi, (7)

and aij ∈ R is the adjacency weight between the two agents.
In an all-cooperative-agents setting, consensus means that

all x̄i converge to the same value, but in this case, since some
robot manipulators are cooperative and others are competitive,
all end-effectors reach two symmetrical consensus values. For
the purpose of control design and analysis, this boils down
to making some synchronization errors to converge to zero.
These errors correspond to the edges on the graph and are
defined as

ēk := x̄i − sgn(aij)x̄j , k ≤M, (8)

where x̄i is defined in (7) and k denotes the index of the
interconnection between the ith and jth end-effectors. Since
aij is either positive or negative, the resulting network is
modeled by a signed graph [3].

Assumption 3: The systems described in (1), which are
interconnected via inputs τi, form a structurally balanced (see
below), undirected, and connected signed graph.

Remark 1: Recall that a signed graph is structurally bal-
anced if it may be split into two disjoint sets of vertices
V1 and V2, where V1 ∪ V2 = V , V1 ∩ V2 = ∅ such that for
every i, j ∈ Vp, p ∈ {1, 2}, if aij ≥ 0, while for every
i ∈ Vp, j ∈ Vq , with p, q ∈ {1, 2}, p 6= q, if aij ≤ 0.
Otherwise, it is structurally unbalanced [3]. •

In addition, it is imposed that the controller τi must ensure
that the end-effectors do not collide and remain within their

sensing ranges. This comes to ensuring that for any pair of
communicating nodes νi and νj ∈ V , let δk := xi − xj , let
Rk > 0 and ∆k > 0 be defined with k ≤ M , the following
sets are invariant.

Ir := {δk ∈ Rn : |δk| < Rk, ∀i, j ∈ Vl, l ∈ {1, 2}} (9a)
Ic := {δk ∈ Rn : |δk| > ∆k ∀k ≤M}, (9b)

where Ir is the set of proximity constraints and Ic is the set
of collision-avoidance constraints. Under these conditions, it
is required to design a distributed bipartite formation control
law of the form

χ̇i = f1(ēk, qi, q̇i, χi)

τi = f2(ēk, qi, q̇i, χi),

where χi is the disturbance compensator to be designed later,
to achieve bipartite formation of end-effectors, such that,

lim
t→∞

ēk(t) = 0, lim
t→∞

q̇i(t) = 0, k ≤M, i ≤ N, (10)

and the manipulators’ end-effector’s trajectories satisfy
the proximity and collision-avoidance constraints, that is,
δi(t) ∈ I for all t ≥ 0, with I := Ir ∩ Ic.

III. CONTROL DESIGN

The control approach is the following. We deal with the
considered problem as the stabilization of the origin in edge
coordinates [40], [42], which correspond exactly to the syn-
chronization errors in (8). Then, in order to respect the inter-
agent constraints, the control input is designed as the gradient
of a so-called barrier-Lyapunov function—cf. [34], [42], [43].
Finally, in order to cope with disturbance, we use an internal
model approach, similar to [15], [18], [29]. Next, we discuss
in more detail each aspect of the control design.

A. Control in the absence of disturbance

A barrier-Lyapunov function (BLF) is defined in the
following—cf. [34], [42], [43].

Definition 1: Consider the system ẋ = f(x) and let I
be an open set containing the origin. A BLF is a positive
definite C1 function W : I → R≥0, x 7→ W (x), satisfies
∇W (x)f(x) ≤ 0, where ∇W (x) := ∂V/∂x, and has the
property that W (x)→∞, and ∇W (x)→∞ as x→ ∂I.

We proceed to introduce a barrier-Lyapunov function ex-
pressed in terms of the synchronization errors ēk for the
purposes of this paper. To that end, we remark that ēk in (8)
can also be expressed as

ēk = x̄i − x̄j = δk − b̄k, i, j ∈ Vp, (11)

for a couple of cooperative agents and as

ēk = x̄i + x̄j = δk − b̄k + 2xj , i ∈ Vp, j ∈ Vq, (12)

for a couple competitive agents, where p, q ∈ {1, 2}, p 6= q and
b̄k = bi− sgn(aij)bj . Then, from (11) and (12), the constraint
sets in (9) can be restated as follows

Ir = {ēk ∈ Rn : |ēxk
+ αk| < Rk, ∀k ∈ Em}, (13a)
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Ic = {ēk ∈ Rn : ∆k < |ēxk
+ αk|, ∀k ≤M}, (13b)

where αk is defined as

αk := δk − ēk, k ≤M. (14)

Here, Em comprises the indices of m cooperative edges, where
m < M , which are the edges with strictly positive weights.
Now, we define the BLF Wk : R→ R≥0 for each k ≤M ,

Wk(ēk) =
1

2
[|ēk|2 +Bk(ēk)], (15)

where Bk(ēk)2 is the sum of two functions satisfying Def-
inition 1, each of them encoding the constraints in (13),
respectively, Bk(ēk) = 1

2 (1 + σk)Brk(ēk) + Bck(ēk), where
Bck(ēk)→∞ as |ēk| → ∆k and Brk(ēk)→∞ as |ēk| → Rk
for all k. In the latter, σk = 1 if k ∈ Em, i.e., if the interaction
is cooperative, and σk = −1 otherwise. Furthermore, Bk(ēk)
is non-negative and satisfies Bk(0) = 0. Additionally, it tends
to infinity as |ēk| → ∆k for all edges and as |ēk| → Rk
for k ∈ Em. However, considering the constraints defined in
(13), the barrier function has to be adjusted to ensure that
the solution lies within the interior of the constraint sets in
(13) and to guarantee the system’s convergence to the desired
point. To achieve this, we employ the concept of the gradient
recentered barrier function [44]. Let Ŵk : Ic ×R→ R≥0 for
competitive interactions and Ŵk : Ic ∩ Ir × R → R≥0 for
cooperative ones be defined as

Ŵk(αk, ēk) := Wk(ēk + αk)−Wk(αk)− ∂Wk

∂s
(αk)ēk,

(16)

which satisfies Ŵk(αk, 0) = 0, ∇ēkŴk(αk, 0) = 0, where
∇ēkŴk = ∂Ŵk

∂ēk
, and Ŵk(αk, ēk)→∞ as |δk| → ∆k for

k ≤ M , and as |δk| → Rk for all k ∈ Em. Moreover,
Ŵk(αk, ēk) satisfies κ1

2 ē
2
k ≤ Ŵk(αk, ēk) ≤ κ2[∇ēkŴk]2.

Then, we introduce the BLF-gradient-based bipartite forma-
tion control law given by

τ∗i =− k1i
Ji(qi)

>

[
M∑
k=1

[Es]ik∇ēkŴk +

M∑
k=1

[E]ik∇αk
Ŵ

]

− k2i
q̇i +

∂

∂qi
Ui(qi), (17)

where k1i > 0, k2i > 0 for all i ≤ N ,

E = E − Es, (18)

E is the incidence matrix of the cooperative version of the
considered network3, and Es the incidence matrix of the
considered signed network. We recall that Es describes the
interaction topology of the network and is defined as follows

2A particular choice for Bk(ēk) is given in Section V.
3A structurally balanced graph may be transformed into a traditional

cooperative one using the gauge transformation—see [3], [40].

for a structurally balanced signed network.

[Es]ik :=



+1, if vi is the initial node of the edge εk;
−1, if vi, vj are cooperative such that

vi, vj ∈ Vl, l ∈ {1, 2} and vi is the
terminal node of the edge εk;

+1, if vi, vj are competitive such that
vi ∈ Vp, vj ∈ Vq, p, q ∈ {1, 2}, p 6= q and
vi is the terminal node of the edge εk;

0, otherwise,

where εk = {vi, vj}, k ≤ M, i, j ≤ N are arbitrarily
oriented edges and V1 and V2 are the two disjoint sets of
vertices. The first two terms in the control law in (17) are
needed to ensure the bipartite formation of end-effectors while
respecting the inter-agent constraints imposed on the task
space. The second term is needed specifically because of the
use of the gradient recentered barrier function and the presence
of competitive interactions between agents. The third term is
needed to control the joint velocity. It consists of a damping
term to stabilize the joint velocity at zero. The last term is to
compensate for the gravitational force.

B. Robust control redesign

In order to deal with the disturbances modeled by (2) and
(3), we design an estimator of di. For that, we use an internal
model-based approach [15], [18], [29]. Let

χ̇1i
= AM,iχ1i

−BM,iui, (19a)
χ̇2i

= AE,iχ2i
−BE,iJi(qi)ui, (19b)

where χ1i
∈ Rli , χ2i

∈ Rli , AM,i ∈ Rli×li , AE,i ∈
Rli×li , BM,i ∈ Rli×n, BE,i ∈ Rli×n, ui ∈ Rn is the
input to the internal model dynamics, which is defined later,
AM,i+A

>
M,i = 0, AE,i+A>E,i = 0 and the pairs (AM,i, BM,i)

and (AE,i, BE,i) are observable. We also assume, as in [15]
and [18] that the eigenvalues of the matrix SM,i in (3) and
AM,i and the eigenvalues of SE,i in (3) and AE,i are identical.
In this case, there exist transformation matrices TM,i ∈ Rli×pi
and TE,i ∈ Rli×pi , such that

TM,iSM,i = AM,iTM,i, B>M,iTM,i + CM,i = 0 (20a)

TE,iSE,i = AE,iTE,i, B>E,iTE,i + CE,i = 0. (20b)

Then, we can rewrite (19) in the compact form as

χ̇i = Aiχi −Bi(qi)ui, (21)

where χi =
[
χ1i

χ2i

]>
, Ai =

[
AM,i 0

0 AE,i

]
and

Bi(qi) =
[
BM,i Ji(qi)

>BE,i
]
.

Next, the control law is redesigned using χi, and the input
ui will be defined later, using the internal model. Then, we
define the following estimation error coordinates: χ̃i, for the
estimate of the disturbance, and d̃i, for the disturbance.

χ̃i = χi − Tiwi (22a)

d̃i = B>i (qi)χi + di, (22b)
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where Ti =
[
TM,i TE,i

]
and wi =

[
wM,i wE,i

]>
. Taking

the derivative of (22a) and using (3) for (22b), we obtain

˙̃χi = χ̇i − Tiẇi
d̃i = Bi(qi)

>χi + Ciwi.

Replacing (21) and (3) then using (22a) in the first equation
and using (20) and (22a) in the second equation, we obtain
the following error dynamics.

˙̃χi = Aiχi −Bi(qi)ui − TiSiwi
= Aiχ̃i −Bi(qi)ui (23a)

d̃i = Bi(qi)
>χi −Bi(qi)>Tiwi

= Bi(qi)
>(χi − Tiwi) = Bi(qi)

>χ̃i. (23b)

The equations in (23) are important because they define a
passive map from ui to d̃i. To see that, consider the storage
function Hi(χ̃i) = 1

2 |χ̃i|
2. Its derivative gives

Ḣi(χ̃i) = χ̃>i ˙̃χi =
1

2
χ̃>i (Ai +A>i )χ̃i − χ̃>i Bi(qi)ui

= −χ̃>i Bi(qi)ui,

since Ai +A>i = 0. Thus, the system in (23) is lossless from
the input ui to the output d̃i = B>i χ̃i. We use this observation
in the control analysis.

Now, to robustify the controller, we add a term to com-
pensate for the disturbances. Then, the control law in (17) is
redesigned into

τi = τ∗i +B>i (qi)χi, (24)

where the last term counteracts the effect of external distur-
bances.

IV. STABILITY ANALYSIS

A. Asymptotic stability in the absence of disturbance

We analyze the stability of the bipartite formation manifold
for the closed-loop system (1) interconnected by the control
law (17). To that end, using the definition of the incidence
matrix, we represent the synchronization errors in (8) and αk
defined in (14), in vector form

ē = E>s x̄, (25a)

α = E>x− E>s x̄. (25b)

Then, after (16), we define

W̄ (α, ē) =

M∑
k=1

Ŵk(αk, ēk), (26)

to write the closed-loop system (1)–(17) in the compact form

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Es ⊗ In]∇ēW̄ (α, ē)

+K1J(q)>[E⊗ In]∇αW̄ (α, ē) + [K2 ⊗ In]q̇
]
, (27)

where q = [qi], M(q) = blkdiag[Mi(qi)], C(q, q̇) =
blkdiag[Ci(qi, q̇i)], K1 = diag(k1i

), K2 = diag(k2i
) and

J(q)> = blkdiag[Ji(qi)
>], ∀i ≤ N .

Proposition 1: Consider N robot manipulators modeled by
(1), with di = 0 and satisfying the Assumptions 1 and 3, in
closed-loop with the distributed control law (17), with k1i,
k2i > 0, for all i ≤ N . Then, for any given formation shape
reachable by the end-effectors, the set {(ē, q̇) = (0, 0)} is
asymptotically stable for any initial conditions such that, for
any k ≤ M , δk ∈ I = Ir ∩ Ic—see (9)—and |αk(0)| > ∆k.
In addition, the set I is forward invariant, i.e., the constraints
hold for all t ≥ 0. �

Proof: After Assumption 3, the considered graph is undi-
rected and connected, so it contains a spanning tree. Then,
as for the more ordinary scenario of consensus, the result
may be assessed by analyzing the dynamics of the agents that
belong to the spanning-tree—see [40], [42], [43]. To obtain the
closed-loop equations in spanning-tree coordinates, following
the latter, we first recall that

Es = [Ets Ecs ], (28)

where Ets ∈ RN×N−1 is the incidence matrix representing
the edges of the spanning tree, corresponding to the spanning-
tree graph Gt, and Ecs ∈ RN×M−(N−1) is the incidence
matrix representing the remaining edges, corresponding to
Gc := G\Gt. Consequently, after (25a) and (28), the errors
can be expressed as ē = [(E>ts x̄)> (E>cs x̄)>]>, which gives
ē := [ē>t ē>c ]>. Furthermore, for a structurally balanced
signed graph, there exists a matrix Rs such that

Es = EtsRs, (29)

where Rs := [IN−1 Ts] and Ts := (E>tsEts)−1E>tsEcs—
see Proposition 1 in [39]. Notably, the following relationship
between the synchronization errors ē and the spanning-tree
errors ēt holds:

ē = (EtsRs)
>x̄ = R>s ēt, (30)

so the bipartite formation objective (10) is achieved if ēt → 0
and q̇ → 0. On the other hand, a similar relation holds for α
defined in (25b):

α = E>x+ E>s b, (31)

where E is defined in (18). The matrix E corresponds only
to competitive edges. Thus, akin to (28), we can write
E = [Et Ec] and α = [α>t α>c ]>. Thus,

E = EtRs (32)

and

α = R>s [E>t x+ E>tsb] = R>s αt. (33)

Next, to express the control law in spanning-tree coordi-
nates, we introduce

W̃ (αt, ēt) := W̄ (R>s αt, R
>
s ēt).

That is, in view of (30) and (33), W̃ (αt, ēt) denotes the same
quantity as the right-hand-side of (26), but in spanning-tree
coordinates, so W̃ maps Ict ∩ Irt × RN → R≥0, where

Irt := {ētk ∈ Rn : |r>sk [ētk + αtk ]| < Rk, ∀k ∈ Em}, (34)

Ict := {ētk ∈ Rn : ∆k < |r>sk [ētk + αtk ]|, ∀k ≤M}, (35)
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and rsk is the kth column of Rs. These sets define the
constraints in spanning-tree coordinates.

Thus, the gradient-based control terms now read

∇ētW̃ ≡
∂W̄ (α, ē)>

∂ē

∂ē

∂ēt
= ∇ēW̄>R>s ,

∇αtW̃ ≡
∂W̄ (α, ē)>

∂α

∂α

∂αt
= ∇αW̄>R>s (36)

and, in spanning-tree edge coordinates, Eq. (27) becomes

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ētW̃ (αt, ēt)

+ K1J(q)>[Et ⊗ In]∇αt
W̃ (αt, ēt) + [K2 ⊗ In]q̇

]
.

(37)

The rest of the proof consists in establishing asymptotic
stability of the origin {(ēt, q̇) = (0, 0)} and forward invariance
of the set It := Ict ∩ Irt , for the trajectories of (37). First,
consider the Lyapunov function candidate

V (αt, ēt, q̇) = W̃ (αt, ēt) +
1

2
q̇>M(q)q̇, (38)

where M(q) = M(q)>. The derivative of (38) satisfies

V̇ =∇ētW̃>[Ets ⊗ In]>Jq̇ +∇αt
W̃>[Et ⊗ In]>Jq̇

+
1

2
q̇>Ṁ q̇ − q̇>C(q, q̇)q̇ − q̇>[K ⊗ In]q̇

− q̇>J(q)>[Ets ⊗ In]∇ētW̃ − q̇>J(q)>[Et ⊗ In]∇αt
W̃

=− 1

2
q̇>
[
Ṁ − 2C(q, q̇)

]
q̇ − q̇>[K ⊗ In]q̇.

But since Ṁ − 2C(q, q̇) is skew-symmetric, we obtain

V̇ (αt, ēt, q̇) =− q̇>[K ⊗ In]q̇ ≤ 0. (39)

Next, we use Barbashin-Krasovskii’s theorem [45], [46].
Hence, we note that on the set {q̇ ∈ RnN : V̇ = 0}, we
have q̇ = 0, also q̈ = 0. In view of (5), it follows that ẋ = 0
because ẋ = J(q)q̇. In turn, since all the functions on the
right-hand-side of (37) are continuous, we have

J(q)>[Ets ⊗ In]∇ētW̃ + J(q)>[Et ⊗ In]∇αt
W̃ = 0. (40)

On the one hand, after (16), we have

∇αt
W̃ = ∇ētW̃ −

∂

∂αt

{
∂W

∂αt
(αt)

}
ēt. (41)

On the other hand, because α = E>x − E>s x̄, then α̇ =
[E ⊗ In]>ẋ and α̇t = [Et ⊗ In]>ẋ. Thus, α̇t = 0, which
is equivalent to αt ≡ const on {V̇ = 0}. In turn, the last
term of the right-hand-side of (41) equals to zero. Then, from
(40) and using (18), J(q)>[(Ets + Et − Ets) ⊗ In]∇ētW̃ =
J(q)>[Et⊗In]∇ētW̃ = 0. Now, since Et is full rank (because
it corresponds to the incidence matrix of a spanning tree) it
follows that ∇ētW̃ = 0. We conclude that the only solution
that remains in {(ē, q̇) : V̇ = 0} for all t ≥ 0, is the origin,
i.e. ē = x̄i − sgn(aij)x̄j = 0 and q̇ = 0. Asymptotic stability
follows.

Next, we demonstrate inter-agent collision avoidance and
connectivity maintenance between agents. From (34), we
remark that ēt ∈ It implies ē ∈ I, where I = Ir ∩ Ic so we

must show that It = Irt∩Ict is forward invariant. To that end,
we proceed by contradiction. Assume that there exists a T > 0
such that ēt(T ) /∈ It. It means that |ētk +αtk | → ∆k, k ≤M
or |ētk + αtk | → Rk, k ∈ Em for at least one k ≤M , which
makes W̃k(αtk , ētk) → ∞, so V (αt, ēt, q̇) → ∞ as t → T .
However, the latter contradicts the fact that V̇ (αt, ēt, q̇) ≤ 0.
Inter-agent collision avoidance and connectivity maintenance
follow.

We now show that the set I corresponds to the domain
of attraction for the closed-loop system (37) by showing
that all the solutions starting in It converge to the origin.
For any ε1 ∈ (0, Rk) and ε2 ∈ (0,∆k), consider subsets
Iεrt ⊂ Irt and Iεct ⊂ Ict defined as Iεrt := {ēt ∈ R :
|ētk + αtk | < Rk − ε1, ∀k ∈ Em} and Iεct := {ēt ∈ R :
∆k + ε2 < |ētk + αtk |, ∀k ≤ M} with Iεrt ∩ Iεct = Iεt .
From the definition of W̃ (αt, ēt), V (αt, ēt, q̇) is positive
definite on Iεt for all ētk ∈ Iεt and q̇ ∈ R and satisfies
a|ēt|2 + b|q̇|2 ≤ V (αt, ēt, q̇) ≤ h(|ēt|) + c|q̇|2 with a, b, c > 0
and h(ēt) := κ2[∇ētW̃k]2 is a strictly increasing function
everywhere in Iεt . This means V (αt, ēt, q̇)→ 0 as ēt → 0 and
q̇ → 0 uniformly in αt. Therefore, the origin is asymptotically
stable for all the trajectories for the closed-loop system starting
in Iεt . As ε1 and ε2 are arbitrarily small, taking ε1 → 0 and
ε2 → 0, we establish asymptotic stability of the origin of (37)
for all the trajectories starting in It. Asymptotic stability in the
large, on the domain of definition of V , follows. Thus, bipartite
formation consensus is achieved with inter-agent collision
avoidance and connectivity. �

B. Asymptotic stability in the presence of disturbance

Now we analyze the system (1) in the presence of distur-
bances and driven by the control law (24), where χi is defined
by (21), with ui = q̇i. We have the following.

Proposition 2: Consider N robot manipulators modeled by
(1) and satisfying the Assumptions 1 and 3 in closed-loop
with the distributed controller defined by (24), (17), and (21),
with ui = q̇i and k1i, k2i > 0, for all i ≤ N . Then, for
any given formation shape reachable by the end-effectors, the
set {(ē, q̇) = (0, 0)} is asymptotically stable for any initial
conditions such that, for any k ≤ M , δk ∈ I = Ir ∩ Ic—
see (9)—and |αk(0)| > ∆k. In addition, the set I is forward
invariant, i.e., the constraints hold for all t ≥ 0. �

Proof: As for Proposition 1 the statement follows if we
establish asymptotic stability of the origin in spanning-tree
coordinates and forward invariance of It.

First, proceeding as in Section IV-A, we obtain that the
closed-loop equations now read

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ētW̃ (αt, ēt)

+K1J(q)>[Et ⊗ In]∇αt
W̃ (αt, ēt) + [K2 ⊗ In]q̇

−[B(q)⊗ In]>χ− d
]
, (42)

where d := col[di], i ≤ N .
Next, we consider the Lyapunov function candidate

V (αt, ēt, q̇, χ̃) = W̃ (αt, ēt) +
1

2

[
q̇>M(q)q̇ + χ̃>χ̃

]
. (43)



7

The derivative of (43) gives

V̇ =∇ētW̃>[Ets ⊗ In]>J(q)q̇ +∇αt
W̃>[Et ⊗ In]>J(q)q̇

+
1

2
q̇>Ṁ q̇ − q̇>C(q, q̇)q̇ − q̇>[K ⊗ In]q̇

− q̇>J(q)>
[
[Ets ⊗ In]∇ētW̃ + [Et ⊗ In]∇αt

W̃
]

− χ̃>[B(q)⊗ In]u+ q̇>[B(q)⊗ In]>χ+ q̇>d, (44)

where we used (22) to obtain

V̇ =− χ̃>[B(q)⊗ In]u+
1

2
q̇>
[
Ṁ − 2C(q, q̇)

]
q̇

+ q̇>[B(q)⊗ In]>χ− q̇>[K ⊗ In]q̇

+ q̇>
[
d̃− [B(q)⊗ In]>χ

]
=− q̇>[K ⊗ In]q̇ ≤ 0,

for which we used the skew symmetry of Ṁ − 2C(q, q̇) and
u = q̇. Next, we use Barbashin-Krasovskii’s theorem [45],
[46]. We note that on the set {q̇ ∈ RnN : V̇ = 0}, we have
q̇ = 0 and q̈ = 0. In turn, after (42), we have

K1J(q)>[Ets ⊗ In]∇ētW̃ +K1J(q)>[Et ⊗ In]∇αt
W̃

−[B(q)⊗ In]>χ− d = 0. (45)

As in the Proof of Proposition 1, we have ẋ = 0 and α̇t = 0
on {V̇ = 0}. Consequently, αt is constant. Then, from (45)
and using (18), we obtain K1J(q)>[Et⊗In]∇ētW̃ − [B(q)⊗
In]>χ− d = 0. Replacing the estimation error coordinates in
(22b) in the latter equation, we obtain

K1J(q)>[Et ⊗ In]∇ētW̃ − [B(q)⊗ In]>χ

−
[
d̃− [B(q)⊗ In]>χ

]
= 0.

so K1J(q)>[Et ⊗ In]∇ētW̃ − d̃ = 0. Then, replacing (23b)
in the previous equation, we obtain

K1J(q)>[Et ⊗ In]∇ētW̃ = [B(q)⊗ In]>χ̃. (46)

Differentiating on both sides of the latter, we obtain

K1J(q)>[Et ⊗ In]
∂2W

∂ē2
t

˙̄et +K1J̇(q)>[Et ⊗ In]∇ētW̃

= [B(q)⊗ In]> ˙̃χ+ [Ḃ(q)⊗ In]>χ̃.

As ˙̄et = E>tsJq̇ = 0, J̇(q) = ∂J(q)
∂q q̇ = 0 and

Ḃ(q) = ∂B(q)
∂q q̇ = 0, we have [B(q) ⊗ In]> ˙̃χ = 0.

Then, replacing (21) in the latter, we obtain [B(q) ⊗
In]> [[A⊗ In]χ̃− [B(q)⊗ In]u] =

[
[B(q)>A]⊗ In

]
χ̃ = 0,

since u = q̇ = 0. Differentiating the latter again, we have

[
[B(q)>A]⊗ In

]
˙̃χ =

[
[B(q)>A2]⊗ In

]
χ̃ = 0[

[B(q)>A2]⊗ In
]

˙̃χ =
[
[B(q)>A3]⊗ In

]
χ̃ = 0

...[
[B(q)>Ali−1]⊗ In

]
˙̃χ =

[
[B(q)>Ali ]⊗ In

]
χ̃ = 0.

(47)

Next, let

p(λ) = λli + cli−1
λli−1 + · · ·+ c1λ+ c0 (48)

denote the characteristic polynomial of A. On the one hand,
after the Cayley-Hamilton Theorem p(A) = 0. Therefore,
1
c0
B(q)>[p(A)⊗ In]χ̃ = 0, that is,

1

c0

[
B(q)>

(
Ali + cli−1A

li−1 + · · ·+ c1A
)
⊗ In

]
χ̃

+
1

c0
B(q)>[c0 ⊗ In]χ̃ = 0,

− 1

c0

[
B(q)>

[
Ali + cli−1A

li−1 + · · ·+ c1A
]
⊗ In

]
χ̃

= [B(q)⊗ In]>χ̃ = 0. (49)

On the other hand, the equations in (47) continue to hold if
the left-hand sides are multiplied by the coefficients cp with
p ≤ li and remark that cli = 1. Therefore,[
B(q)>

[
Ali + cli−1A

li−1 + · · ·+ c2A
2 + c1A

]
⊗ In

]
χ̃ = 0.

From the latter and (49), we conclude that [B(q)⊗ In]>χ̃ =
0. In turn, from (46) we have J(q)>[Et ⊗ In]∇ētW̃ = 0.
Since Et is full rank (because it corresponds to the incidence
matrix of a spanning tree), ∇ētW̃ vanishes only at ēt = 0. We
conclude that the only solution that remains in {(ēt, q̇) : V̇ =
0} for all t ≥ 0, is the origin, i.e., ē = x̄i − sgn(aij)x̄j = 0
and q̇ = 0. Asymptotic stability follows.

Next, we prove inter-agent collision avoidance and connec-
tivity maintenance or equivalently forward invariance of the set
I. From (34), we remark that ēt ∈ It implies ē ∈ I, where
I = Ir ∩ Ic. Then, we proceed by contradiction to show that
It is forward invariant. Assume that there exist a T > 0 such
that ēt(T ) /∈ It. It means that |ētk + αtk | → ∆k, k ≤ M
or |ētk + αtk | → Rk, k ∈ Em for at least one k ≤ M ,
which makes W̃k(αtk , ētk) → ∞, so V (αt, ēt, q̇, χ̃) → ∞
as t → T . However, the latter contradicts the fact that
V̇ (αt, ēt, q̇, χ̃) ≤ 0. Inter-agent collision avoidance and con-
nectivity maintenance follow.

We now show that the set I corresponds to the domain
of attraction for the closed-loop system (37) by showing
that all the solutions starting in It converge to the origin.
For any ε1 ∈ (0, Rk) and ε2 ∈ (0,∆k), consider subsets
Iεrt ⊂ Irt and Iεct ⊂ Ict defined as Iεrt := {ēt ∈ R :
|ētk + αtk | < Rk − ε1, ∀k ∈ Em} and Iεct := {ētk ∈ R :
∆k+ε2 < |ētk +αtk |, ∀k ≤M} with Iεrt ∩Iεct = Iεt . From
the definition of the W̃ (αtk , ētk), V (αt, ēt, q̇, χ̃) is positive
definite for all ētk ∈ Iεt , q̇ ∈ R and χ̃ ∈ R and satisfies
a|ēt|2+b|q̇|2+c|χ̃|2 ≤ V (αt, ēt, q̇, χ̃) ≤ h(|ēt|)+d|q̇|2+e|χ̃|2
with a, b, c, d, e > 0 and h(ēt) := κ2[∇ētW̃k]2 is strictly
increasing everywhere in Iεt . This means V (αt, ēt, q̇, χ̃)→ 0
as ēt → 0 and q̇ → 0 uniformly in αt. Therefore, the origin
is asymptotically stable for all the trajectories for the closed-
loop system starting in Iεt . As ε1 and ε2 are arbitrarily small,
taking ε1 → 0 and ε2 → 0, we establish asymptotic stability
of the origin of (37) for all the trajectories starting in It.
Asymptotic stability in the large, on the domain of definition
of V , follows. Thus, bipartite formation consensus is achieved
with inter-agent collision avoidance and connectivity. �
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V. SIMULATION RESULTS

ν1 ν2

ν3

ν4

ν5

ν6
e1

e2

e3

e4

e5

e6 e7

Fig. 1. An undirected signed network of 6 robot manipulators. The black
lines represent cooperative edges, and the red line is the competitive
edge.

We provide a numerical example to show the performance
of our control laws, first the one in (17) in the absence
of disturbance and then the one in (24) in the presence of
disturbance. For that, we consider a system of N = 6 two-link
robot manipulators interconnected over a structurally balanced
undirected signed network, modeled by a graph as the one
depicted in Figure 1. For the corresponding graph, we define
the orientation of the seven edges as e1 = ν1+ν2, e2 = ν1−ν3,
e3 = ν1 − ν4, e4 = ν2 − ν5, e5 = ν2 − ν6, e6 = ν3 − ν4,
and e7 = ν5 − ν6. The set of nodes may be split into two
disjoint subgroups as V1 = {ν1, ν3, ν4} and V2 = {ν2, ν5, ν6},
so the network is structurally balanced. From (28), the edges
ei, i ≤ 5 correspond to the edges of the spanning tree, and
the remaining edges, e6 and e7, correspond to the cycles. The
corresponding incidence matrix is given by

Es =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 −1 0
0 0 0 −1 0 0 1
0 0 0 0 −1 0 −1

 .
Each manipulator is modeled by the Euler-Lagrange equations
in (1), with inertia and Coriolis matrices given by

Mi(qi) =

[
αi + 2βi cos(q2i) δi + βi cos(q2i)
δi + βi cos(q2i) δi

]
,

Ci(qi, q̇i) = δi

[
− sin(q2i)q̇2i − sin(q2i)(q̇1i + q̇2i)
− sin(q2i)q̇1i 0

]
,

where αi = l22i
m2i +l21i

(m1i +m2i), βi = l1i l2im2i and δi =
l22i
m2i

with l1i
, l2i

and m1i
,m2i

are the length and the mass
of links 1 and 2. The physical parameters are m1 = 1.2kg,
m2 = 1kg, and l1 = l2 = 1m for all i ≤ N . The kinematic
model for each manipulator is given by

xi =

[
l1 cos(qi1) + l2 cos(q1i + q2i)
l1 sin(qi1) + l2 sin(q1i + q2i)

]
+ xi0 ,

and the Jacobian matrix

Ji(qi) =

[
−l1 sin(qi1)− l2 sin(q1i + q2i) −l2 sin(q1i + q2i)
l1 cos(qi1) + l2 cos(q1i + q2i) l2 cos(q1i + q2i)

]
.

First, consider the system (1), where di = 0 for all i ≤ N ,
with the bipartite formation control law (17), where k1i

= 15,
k2i = 10 for all i ≤ N and the barrier-Lyapunov function in
(16), with Brk(s) = ln

(
R2

k

R2
k−|s|2

)
, Bck(s) = ln

(
|s|2

|s|2−∆2
k

)
.

The bases of six robot manipulators are located at x10
=

[1, 0.5]>, x20
= [2, −0.5]>, x30

= [−0.5, −1]>, x40
=

[−3, 0.5]>, x50 = [−1, −2]>, x60 = [2, −1]>. The initial
conditions for each agent are q1(0) = [π, π/3]>, q2(0) =
[2π/3, π/3]>, q3(0) = [π, π/3]>, q4(0) = [0, π/2]>,
q5(0) = [π, π/3]>, q6(0) = [0, −π/3]>, q̇1(0) = q̇2(0) =

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

0 5 10 15 20 25 30 35 40 45 50
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2

Fig. 2. Bipartite formation of system (1) with control input (17) on joint
trajectories.
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0 1 2 3 4 5 6 7 8 9 10

-5

0
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Fig. 3. Bipartite formation of system (1) with control input (17) on joint
velocities.

q̇3(0) = q̇4(0) = q̇5(0) = q̇6(0) = [0, 0]>, with q = [q1, q2]>

and q̇ = [q̇1, q̇2]> and the relative displacements of the end-
effectors are b1 = [0, 0.3]>, b2 = [−0.3, 0]>, b3 = [0.3, 0]>,
b4 = [−0.3, 0]>, b5 = [0, −0.3]>, b6 = [0.3, 0]>, with
b = [bx, by]>. The constraint sets are ∆k = 0.1 for all k ≤M
and Rk = 7 for all k ∈ Em.
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Fig. 4. Evolution of the manipulators’ end-effector from the initial
positions (o) to the final positions (*). Each group of end-effectors forms
a triangle around the symmetric consensus points.

The joint positions and velocities are depicted in Figures
2 and 3, respectively, and all velocities converge to zero.
The paths of each end-effector up to bipartite formation
are depicted in Figure 4, and their final configuration is
depicted in Figure 64. Moreover, it is clear from Figure 5
that collision avoidance and connectivity maintenance among
the manipulators’ end-effectors are both guaranteed.

4A video of the simulation is available at: http://tinyurl.com/
simulationRM.

news.google.com
http://tinyurl.com/simulationRM
news.google.com
http://tinyurl.com/simulationRM
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Fig. 5. Trajectories of the norm of inter-agent distances with control
input (17). The black dashed line is the minimum distance constraint,
and the red dashed line is the maximum distance constraint for end-
effectors.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Fig. 6. Final positions of the manipulators and their end-effector.

In a second run of simulations, we consider the system (1),
where di 6= 0 and with the robust bipartite formation control
law in (24). We take the same initial conditions as before. Let
k1i

= 200 and k2i
= 300 for all i ≤ N . The matrices in (3)

of the exosystem generating the disturbance are given as

SMi = SEi =

[
0 1
−1 0

]
, CMi = CEi =

[
1 0
0 1

]
.

The matrices of the internal model in (21) are given as

AMi =

[
0 1
−1 0

]
, AEi =

[
0 π/2
−π/2 0

]
,

BMi
=

[
1 0
0 1

]
, BEi

=

[
1 0
0 1

]
.
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Fig. 7. Bipartite formation of system (1) with control input (24) on joint
trajectories.

The joint positions and velocities are depicted in Figures
7 and 8, respectively, and all velocities converge to zero.
The paths of each end-effector up to bipartite formation are
depicted in Figure 9. Their final configuration is the same as
in Figure 6. Moreover, it is clear from Figure 10 that collision
avoidance and connectivity maintenance are guaranteed among
the manipulators’ end-effectors.
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Fig. 8. Bipartite formation of system (1) with control input (24) on joint
velocities.
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Fig. 9. Evolution of the manipulators’ end-effector from the initial
positions (o) to the final positions (*). Each group of end-effectors forms
a triangle around the symmetric consensus points.
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Fig. 10. Trajectories of the norm of inter-agent distances with control
input (24). The black dashed line is the minimum distance constraint,
and the red dashed line is the maximum distance constraint for end-
effectors.

VI. CONCLUSIONS

We addressed the problem of constrained bipartite formation
of cooperative-competitive robot manipulators’ end-effectors,
modeled by Euler-Lagrange equations. We considered a struc-
turally balanced and undirected signed graph. First, we pre-
sented a bipartite formation control law based on the gradi-
ent of a barrier-Lyapunov function that guarantees that end-
effectors do not collide and stay within their sensing regions.
Then, in order to deal with perturbed robot manipulators,
we robustified our controller with an internal model-based
approach to reject disturbances. We established the asymptotic
stability of the bipartite formation manifold both in the absence
and the presence of disturbance. Further research aims to
extend these results to directed signed networks.
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