
HAL Id: hal-04426128
https://hal.science/hal-04426128v1

Submitted on 30 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability Analysis of Neural Networks with
Uncertain Parameters

Pierre-Jean Meyer

To cite this version:
Pierre-Jean Meyer. Reachability Analysis of Neural Networks with Uncertain Parameters. IFAC
World Congress, Jul 2023, Yokohama, Japan. �10.1016/j.ifacol.2023.10.1249�. �hal-04426128�

https://hal.science/hal-04426128v1
https://hal.archives-ouvertes.fr


Reachability Analysis of Neural Networks
with Uncertain Parameters

Pierre-Jean Meyer ∗

∗Univ Gustave Eiffel, COSYS-ESTAS, F-59666 Villeneuve d’Ascq,
France (e-mail: pierre-jean.meyer@univ-eiffel.fr)

Abstract: The literature on reachability analysis methods for neural networks currently only
focuses on uncertainties on the network’s inputs. In this paper, we introduce two new approaches
for the reachability analysis of neural networks with additional uncertainties on their internal
parameters (weight matrices and bias vectors of each layer), which may open the field of
formal methods on neural networks to new topics, such as safe training or network repair.
The first and main method that we propose relies on existing reachability analysis approach
based on mixed monotonicity (initially introduced for dynamical systems). The second proposed
approach extends the ESIP (Error-based Symbolic Interval Propagation) approach which was
first implemented in the verification tool Neurify, and first mentioned in the publication of the
tool VeriNet. Although the ESIP approach has been shown to often outperform the mixed-
monotonicity reachability analysis in the classical case with uncertainties only on the network’s
inputs, we show in this paper through numerical simulations that the situation is greatly reversed
(in terms of precision, computation time, memory usage, and broader applicability) when dealing
with uncertainties on the weights and biases.

Keywords: Uncertain systems, reachability analysis, neural network.

1. INTRODUCTION

In the recent years, artificial intelligence methods have
grown very rapidly and spread to numerous application
fields. Although such approaches often work well in prac-
tice, the usual statistical testing of their behavior (Kim
et al., 2020) becomes insufficient when dealing with safety-
critical applications such as autonomous vehicles (Xiang
et al., 2018). In such application fields, we instead need
to develop formal verification approaches to guarantee
the desired safe behavior of the system. In the case of
neural networks, most formal verification tools rely on
reachability analysis methods or on solving optimization
problems (Liu et al., 2021), and they aim to verify safety
specifications in the form of input-output conditions: check
if, given a set of allowed input values, the set of all outputs
reachable by the network (or an over-approximation of this
set) remains within safe bounds (Bak et al., 2021).

Note however that all the tools mentioned in Liu et al.
(2021); Bak et al. (2021) focus on the safety verification of
pre-trained neural networks, i.e. the network parameters
(weight matrices, bias vectors) are assumed to be fixed and
known, and they only consider uncertainties on the net-
work’s input (from the safety specification to be checked).
In contrast, in this paper we are interested in expending
the reachability-based verification methods to a whole set
of neural networks, or equivalently to a neural network
with additional uncertainties on all its internal parameters
(weight matrices and bias vectors). Such methods would
in turn allow us to connect this field of neural network
verification to new topics and offer new ways to approach
problems such as safe training (ensuring during training
that the trained network satisfies the desired properties,

see e.g. Gowal et al. (2018); Mirman et al. (2018)) and
network repair (finding the smallest changes to apply to an
unsafe network in order to ensure its safety, see e.g. Majd
et al. (2021); Yang et al. (2022)). This paper thus intro-
duces the first necessary step in the development of such
verification tools: creating new methods for the reacha-
bility analysis of neural networks with bounded inputs,
weights and biases.

Contributions We propose two new methods to compute
interval over-approximations of the output set of a neural
network with bounded uncertainties on its inputs, weight
matrices and bias vectors. The first approach and main
contribution is based on mixed-monotonicity reachability
analysis (initially introduced for the analysis of dynamical
systems (Meyer et al., 2021)). One of the main strength
of this approach is its generality since it is applicable
to neural networks with any Lipschitz-continuous acti-
vation functions, unlike most other approaches in the
literature which are limited to piecewise-affine (Wang
et al., 2018a; Katz et al., 2019; Botoeva et al., 2020; Xu
et al., 2021), sigmoid-shaped (Henriksen and Lomuscio,
2020; Tran et al., 2020; Müller, 2022) or monotone in-
creasing functions (Dvijotham et al., 2018; Raghunathan
et al., 2018). The proposed algorithm applies mixed-
monotonicity reachability analysis to each partial network
within the main neural network, and then intersects their
results to obtain tighter over-approximations than if the
reachability analysis was applied only once to the whole
network directly.

Since, to the best of our knowledge, other approaches
solving the considered problem have not yet been pro-



posed in the literature, we introduce a second method
to offer some elements of comparison with the above
mixed-monotonicity approach. This second algorithm ex-
tends to uncertain neural networks the ESIP (Error-
based Symbolic Interval Propagation) method described
in Henriksen and Lomuscio (2020). Although this ESIP
approach is more limited in terms of activation functions
(only piecewise-affine and sigmoid-shaped functions), this
method was chosen here because it was shown in Meyer
(2022) to be very computationally efficient in the par-
ticular case of uncertainties only on the network’s in-
put. However in this paper, numerical simulations show
that with additional uncertainties on the network param-
eters, the mixed-monotonicity approach outperforms the
ESIP algorithm on all relevant criteria: tightness of over-
approximations, computation time and memory usage.

Related work Both methods proposed in this paper to
tackle the reachability analysis problem on an uncertain
neural network are generalizations of the methods pre-
sented in the particular case without uncertainties on the
weights and biases of the network in Meyer (2022) for
the mixed-monotonicity approach, and in Henriksen and
Lomuscio (2020) for the ESIP approach. To the best of
our knowledge, the only other publication attempting to
consider a similar problem in the literature is Zuo et al.
(2014). On the other hand, while the authors of this work
indeed consider reachability analysis of uncertain neural
networks, they do it in a very different setting of neural
ordinary differential equations which does not allow us
to provide any theoretical or numerical comparison with
our approach on discrete models of feedfoward neural
networks. As mentioned above, many existing works on
safety verification of neural networks also rely on various
algorithms and set representations for reachability analysis
(see e.g. those listed in the survey paper Liu et al. (2021)
or the neural network verification competition Bak et al.
(2021)). However, all these works currently only apply
their reachability methods to pre-trained neural networks,
and thus without any uncertainty on the weight matrices
and bias vectors as we consider in this paper.

This paper is organized as follows. Section 2 introduces the
considered neural network model and defines the reachabil-
ity analysis problem. Section 3 describe the first and main
contribution of this paper, solving the considered problem
with mixed-monotonicity reachability analysis. The second
approach based on ESIP (Error-based Symbolic Interval
Propagation) is introduced in 4. Finally, Section 5 provides
numerical simulations to compare both algorithms and
to highlight the advantages of the mixed-monotonicity
approach.

2. PROBLEM DEFINITION

Given x, x ∈ Rn with x ≤ x, the interval [x, x] ⊆ Rn is the
set {x ∈ Rn | ∀i ∈ {1, . . . , n}, xi ≤ xi ≤ xi}.
We consider an L-layer feedforward neural network defined
as

xl = Φ(W lxl−1 + bl), ∀l ∈ {1, . . . , L} (1)

with uncertain input vector x0 ∈ [x0, x0] ⊆ Rn0 , and

uncertain weight matrix W l ∈ [W l,W l] ⊆ Rnl×nl−1

and bias vector bl ∈ [bl, bl] ⊆ Rnl for each layer l ∈
{1, . . . , L}. The function Φ is defined as the componentwise
application of a scalar and Lipschitz-continuous activation
function. For simplicity of presentation, the activation
function Φ is assumed to be identical for all layers.

In this paper, we are interested in the robustness of the
neural network with respect to the uncertainties on its
input x0, weights W l and biases bl. Since the output
set of the network cannot be computed exactly due to
the nonlinearities in the activation function Φ, we use a
simpler set representation (mutli-dimensional interval) to
over-approximate this output set. Relying on such over-
approximations ensures that any safety property satisfied
on the computed interval is guaranteed to also be satisfied
on the real output set of the neural network. This reacha-
bility analysis problem is formalized as follows.

Problem 1. Given the L-layer neural network (1) and the

uncertainty sets [x0, x0] ⊆ Rn0 , [W l,W l] ⊆ Rnl×nl−1

and [bl, bl] ⊆ Rnl for all l ∈ {1, . . . , L}, find an interval

[xL, xL] ⊆ RnL over-approximating the output set of (1):{
xL in (1)

∣∣∣∣x0 ∈ [x0, x0],W l ∈ [W l,W l],

bl ∈ [bl, bl],∀l ∈ {1, . . . , L}

}
⊆ [xL, xL].

The secondary goal is to find over-approximations that
are as close to the real output set as possible. In this
paper, we introduce two new approaches addressing this
reachability analysis problem of neural networks with
uncertain parameters, which has not been explored in the
literature yet. The first and main contribution in Section 3
is based on mixed-monotonicity reachability analysis. The
second proposed approach in Section 4 relies on Error-
based Symbolic Interval Propagation (ESIP).

3. MIXED MONOTONICITY

3.1 Mixed-monotonicity reachability analysis

We first introduce the reachability analysis method for
a general static function y = f(x), which will then be
applied multiple times to the various partial networks
within (1) in the following sections. This result is a
straightforward generalization to static functions y = f(x)
of the reachability analysis approach for discrete-time
system x+ = f(x) proposed in Meyer et al. (2021). It
relies on the boundedness assumption of the derivative
(also called Jacobian matrix in the paper) of function f ,
which is satisfied by any Lipschitz-continuous function.

Proposition 1. Consider the function y = f(x) with out-
put y ∈ Rny and bounded input x ∈ [x, x] ⊆ Rnx .
Assume that its derivative f ′ is bounded: for all x ∈ [x, x],
f ′(x) ∈ [J, J ] ⊆ Rny×nx ; and denote as J∗ the center
of these derivative bounds. For each output dimension
i ∈ {1, . . . , ny}, define input vectors ξi, ξi ∈ Rnx and row

vector αi ∈ R1×nx such that for all j ∈ {1, . . . , nx},

(ξi
j
, ξij , α

i
j) =

{
(xj , xj ,max(0, J ij)) if J∗ij < 0,

(xj , xj ,min(0, J ij)) if J∗ij ≥ 0.

Then for all x ∈ [x, x] and i ∈ {1, . . . , ny}, we have:

fi(x) ∈
[
fi(ξ

i)− αi(ξi − ξi), fi(ξi) + αi(ξi − ξi)
]
.



Intuitively, the output bounds are obtained by computing
for each output dimension the images for two diagonally
opposite vertices of the input interval, then expanding
these bounds with an error term when the bounds on
the derivative f ′ spans both negative and positive val-
ues. Proposition 1 can thus provide an interval over-
approximation of the output set of any function as long
as bounds on the derivative f ′ are known. Obtaining such
bounds for a neural network is made possible by computing
local bounds on the derivative of its activation functions,
as detailed in Section 3.2.

3.2 Local bounds of activation functions

Proposition 1 and the main algorithm in Section 3.3 are ap-
plicable to neural networks with any Lipschitz-continuous
activation function Φ. This is indeed a sufficient condition
for the derivative of the whole network description (1)
to be bounded. On the other hand, knowing the values
of these derivative bounds is required to apply Proposi-
tion 1 to the neural network. To avoid asking users of this
method to compute themselves the derivative bounds of
their neural network, we restrict our framework to a subset
of Lipschitz-continuous activation functions for which we
provide a method to automatically define local bounding
functions for the derivative of a given activation function.

Assumption 1. Let R∞ = R ∪ {−∞,+∞} and consider a
scalar activation function Φ whose derivative is defined
as Φ′ : R∞ → R∞, and where Φ′(x) ∈ {−∞,+∞}
only if x ∈ {−∞,+∞}. The global arg min and arg max
z, z ∈ R∞ of Φ′ are known, and Φ′ is a 3-piece piecewise-
monotone function as follows:

• non-increasing on (−∞, z] until reaching its global
minimum minx∈R∞ Φ′(x) = Φ′(z);
• non-decreasing on [z, z] until reaching its global max-

imum maxx∈R∞ Φ′(x) = Φ′(z);
• and non-increasing on [z,+∞).

When z = −∞ (resp. z = +∞), the first (resp. last)
monotone segment is squeezed into a singleton at infinity
and can thus be ignored.

While the formulation of this assumption may seem re-
strictive (compared to the initial assumption of taking
any Lipschitz-continuous activation function), it should
be noted that the large majority of activation functions
in the literature indeed have a derivative as described
in Assumption 1, including all the less common non-
monotone activation functions reviewed or introduced
in Zhu et al. (2021). 1 Therefore, the mixed-monotonicity
approach proposed in Section 3.3 has a much broader
applicability than most neural network verification tools in
the literature, which are most often restricted to ReLU and
piecewise-affine activation functions (Wang et al., 2018a;
Katz et al., 2019; Botoeva et al., 2020; Xu et al., 2021), oc-
casionally able to consider sigmoid-shaped functions (Hen-
riksen and Lomuscio, 2020; Tran et al., 2020; Müller,
2022), and very rarely dealing with general monotone
activation functions (Dvijotham et al., 2018; Raghunathan
et al., 2018).

1 More details and examples on activation functions satisfying
Assumption 1 are available in Meyer (2022) where this assumption
was first introduced.

−∞ z z +∞

Φ′(z)

Φ′(z)

Φ′(z)

Φ′(z) x x

x xz Φ′(x) Φ′(x)

Fig. 1. Top: General shape for the activation function
derivative according to Assumption 1. Bottom: Two
examples for the computation of the local lower bound
of Φ′ depending on whether its global arg min z is
contained in the input interval [x, x] (in red) or not
(in blue).

Proposition 2. Given an activation function Φ satisfying
Assumption 1 and a bounded input domain [x, x] ∈ R, the
local bounds of the derivative Φ′ on [x, x] are given by:

min
x∈[x,x]

Φ′(x) =

{
Φ′(z) if z ∈ [x, x],

min(Φ′(x),Φ′(x)) otherwise,

max
x∈[x,x]

Φ′(x) =

{
Φ′(z) if z ∈ [x, x],

max(Φ′(x),Φ′(x)) otherwise.

In short, as long as the user provides Φ′ and its global
arg min and arg max (z and z), Proposition 2 returns a
local bounding function of Φ′. An illustration of Assump-
tion 1 and Proposition 2 (for the lower bound of Φ′) is pro-
vided in Fig. 1. The local bounding of Φ′ in Proposition 2
is used in Section 3.3 for the computation of bounds on the
Jacobian matrix of the neural network, which is required
to apply the mixed-monotonicity reachability result from
Proposition 1.

3.3 Main algorithm

In this section, we propose an approach using both Propo-
sitions 1 and 2 to solve Problem 1 and obtain the tightest
possible interval over-approximation of the neural network
output set that can be computed when applying mixed-
monotonicity reachability analysis to (1). The proposed al-
gorithm is inspired by the one introduced in Meyer (2022)
in the particular case of a pre-trained neural network with
only uncertainties on its input vector x0.

Although Proposition 1 can be applied to any partial net-
work (described as a subset of consecutive layers of (1)), we
do not know in advance which decomposition into partial
networks yields the best results. Algorithm 1 thus proposes
an efficient way to apply this mixed-monotonicity reach-
ability analysis on all possible network decompositions,
while avoiding any redundant computation. To achieve
this, we explore the layers of (1) iteratively, and apply
Proposition 1 to each partial network ending at the current



layer. All the obtained interval over-approximations of
this layer’s output set are then intersected to obtain a
significantly tighter over-approximation, which will then
be used in the computations of the next layers.

These main steps are summarized in Algorithm 1 and
described below. The algorithm takes as input the neu-
ral network description (1) with an activation function
Φ satisfying Assumption 1, as well as all the intervals
bounding the network’s uncertainties: network input x0

and the weight matrices W l and bias vectors bl for each
layer l ∈ {1, . . . , L}. For a partial network considering only
layers k to l (with k ≤ l) of (1) and denoted as NN(k, l),
we use the notations: u(k, l) for the concatenated vector of
all its uncertainties (the partial network’s input xk−1, and
the elements of all W i and bi for i ∈ {k, . . . , l}); J(k, l) for
the derivative (or Jacobian matrix) of this partial network
with respect to u(k, l); and x(k, l) for the output of this
partial network that we want to over-approximate.

Since the Jacobian bounds are defined iteratively using
products, they are initialized in line 1 as identity matrices.
Then, for each layer l (lines 2 to 7), we first use Proposi-
tion 2 to compute local bounds on the activation function
derivative Φ′ when the pre-activation variable is the result
of the affine transformation of layer l (line 3, using interval

arithmetic operators): [W l,W l] ∗ [xl−1, xl−1] + [bl, bl].

Next, we consider independently each partial network
covering from some previous layer k ∈ {1, . . . , l} to the
current layer l (lines 4 to 6). The first step in line 5 is to
compute bounds on the Jacobian matrix of partial network
NN(k, l). Using the chain rule, we know that bounds on the
derivative of NN(k, l) with respect to all uncertainties in
u(k, l) are given by the product:

[J(k, l), J(k, l)] = [Φ′,Φ′] ∗ [G(k, l), G(k, l)], (2)

where G(k, l) is the derivative of NN(k, l) without the last
activation function. The bounds on G(k, l) are defined as
the horizontal concatenation of:

[W l,W l] ∗ [J(k, l − 1), J(k, l − 1)]

representing the derivative with respect to all uncertainties
in NN(k, l − 1);

[xl−11, x
l−1

1] ∗ Inl
, . . . , [xl−1nl−1

, xl−1nl−1
] ∗ Inl

representing the derivative with respect to the weight ma-
trixW l of the last layer; and Inl

representing the derivative
with respect to the bias vector bl of the last layer. Using
the computed Jacobian bounds [J(k, l), J(k, l)] along with

the known uncertainty bounds [u(k, l), u(k, l)], we can then

apply Proposition 1 to the partial network NN(k, l) in line 6

to obtain an interval over-approximation [x(k, l), x(k, l)] of

the output set of NN(k, l).

The last step of the algorithm, in line 7, is to take the
intersection of the interval over-approximations obtained
for each partial neural network ending at layer l. Algo-

rithm 1 then returns the interval [xL, xL] computed at the
last layer L of the network.

Theorem 1. The interval [xL, xL] returned by Algorithm 1
is a solution to Problem 1.

Proof. Proposition 1 is guaranteed in Meyer et al. (2021)
to return an interval over-approximation for the output

Input: L-layer network (1) with activation function
Φ satisfying Assumption 1, uncertainties

[x0, x0] ⊆ Rn0 , [W l,W l] ⊆ Rnl×nl−1 and

[bl, bl] ⊆ Rnl for all l ∈ {1, . . . , L}
1 ∀k, l ∈ {0, . . . , L}, J(k, l)← I, J(k, l)← I

2 for l ∈ {1, . . . , L} do
3 [Φ′,Φ′]← Prop2(Φ′, [W l,W l]∗ [xl−1, xl−1]+[bl, bl])
4 for k ∈ {1, . . . , l} do
5 Compute [J(k, l), J(k, l)] as in (2)

6 [x(k, l), x(k, l)]←
Prop1(NN(k, l), [u(k, l), u(k, l)], [J(k, l), J(k, l)])

7 [xl, xl]← [x(1, l), x(1, l)] ∩ · · · ∩ [x(l, l), x(l, l)]

Output: Over-approximation [xL, xL] of the network
output

Algorithm 1: Mixed-monotonicity reachability anal-
ysis of an uncertain feedforward neural network.

set of the considered system. The theorem statement can
then be proved by induction. For layer 1, Algorithm 1
computes [x1, x1] = [x(1, 1), x(1, 1)], which is indeed an
over-approximation of the output set of layer 1 under
all uncertainties on x0, W 1 and b1. Next, assuming that

intervals [x1, x1], . . . , [xl−1, xl−1] over-approximate the
output sets of layers 1 to l − 1 respectively, then accord-
ing to Proposition 1 each interval [x(k, l), x(k, l)] over-
approximates the output set of layer l. If the true output
set of layer l is included in each of these intervals, it is then

included in their intersection [xl, xl]. �

The proof of Theorem 1 thus primarily relies on the fact
that the intersection operator preserves the soundness of
over-approximations. Another benefit of the use of inter-
sections comes into play in the fact that Algorithm 1
proposes an exhaustive exploration of all possible decom-
position of (1) into partial networks. Indeed, this ensures
that the final result of Algorithm 1 is at least as tight as the
one that would be obtained from using Proposition 1 on
any specific decomposition into partial networks. And in
practice, the result of Algorithm 1 is often strictly tighter
than any other result from specific decomposition, due to
the fact that the intersection of multiple intervals is strictly
smaller than each individual interval in most cases (except
in the case where one is included in all others, in which
case the intersection is equal to this smallest interval).

4. ERROR-BASED SYMBOLIC INTERVAL
PROPAGATION

Although the primary contribution of this paper is the
mixed-monotonicity approach presented in Section 3, nu-
merically evaluating its performances is of great impor-
tance as for any computational method on neural net-
works. Since we were not able to find any relevant and
comparable approaches in the literature, we developed a
second method solving Problem 1, to be able to provide
numerical comparisons between them in Section 5.

The approach proposed in this section relies on symbolic
interval propagation, which has been used in several neural
network verification tools such as ReluVal (Wang et al.,



2018b), Neurify (Wang et al., 2018a) and VeriNet (Henrik-
sen and Lomuscio, 2020). The core idea is to create bound-
ing functions depending linearly in the network input,
and propagating these linear functions iteratively through
the layers of the network (i.e. through both the layer’s
affine transformation, and the linear relaxations of the
nonlinear activation functions (Salman et al., 2019)). This
ensures that the dependency to the network’s input is pre-
served during the propagation of these bounding functions
through the network, which results in significantly tighter
reachable set over-approximations compared to naive in-
terval bound propagation approaches (see e.g. Xiang et al.
(2020)) where this input dependency is lost at each layer.

In this paper, we are interested in a particular variation
called ESIP (Error-based Symbolic Interval Propagation),
which was first introduced (but not published) in the im-
plementation of the tool Neurify (Wang et al., 2018a) and
first published in the paper of the tool VeriNet (Henriksen
and Lomuscio, 2020). Unlike the classical approach design-
ing and propagating two linear functions (for the lower and
upper bounds, respectively), ESIP relies on a single linear
function alongside an error matrix. The symbolic equation
represents the behavior of the network if the nonlinear
activation function of each node is replaced by its lower
linear relaxation. The error matrix accounts for deviations
from this symbolic equation induced by nodes operating
at the upper linear relaxation of their activation function.
This particular approach is chosen here because it was
shown in Meyer (2022) to be very computationally effi-
cient, with a low and constant computation time per node
in the network, while other methods had a computation
time per node that grew with the size of the network.

Compared to the ESIP implementation in Henriksen and
Lomuscio (2020) in the case where the neural network
only has uncertainties on its input, we propose here an
extension of this approach to also handle uncertainties
on the weight matrices and bias vectors and thus to be
able to solve Problem 1. This extension is summarized in
Algorithm 2 and detailed below. Due to space limitations
and since this new approach is primarily introduced for
comparison with our main contribution in Section 3, the
formal proof that Algorithm 2 solves Problem 1 is left
for future work. We refer the reader to Henriksen and
Lomuscio (2020) for more theoretical details in the case
of uncertainties only on the network input x0.

In line 1, we initialize the uncertainty vector u0 to the
input x0, the symbolic equation S0 to the identity func-
tion, and the error [E,E] to and empty interval matrix.
Then, for each layer l we first propagate these variables
through the affine transformation x → W l ∗ x + bl, by
appending all elements of W l and bl at the end of the
previous uncertainty vector ul−1 (line 3), updating the
symbolic equation with respect to the new uncertainties
W l and bl introduced in this layer (line 4), and multiplying
the error by the bounds on W l (line 5).

Next, propagating through the layer’s activation function
is done individually for each node i of the layer (line 6).
We first compute concrete bounds of the pre-activation
variable (line 7) by evaluating the symbolic equation Sl

i on

the current uncertainty bounds [ul, ul], and then adding all
negative error terms to the lower bound and all positive

errors to the upper bound. These pre-activation bounds
can then be used in line 8 to compute a linear relaxation
of the activation function, i.e. two linear functions r
and r such that r(x) ≤ Φ(x) ≤ r(x) for all x ∈
[xli, x

l
i]. More details on how to compute such linear

relaxations can be found e.g. in Xu et al. (2021) for
ReLU functions and in Henriksen and Lomuscio (2020) for
sigmoid-shaped functions. We then propagate the symbolic
equation through the lower relaxation r (line 9) and
compute the maximal error between the relaxation bounds

over the pre-activation range [xli, x
l
i] (line 10). These new

error terms are appended at the end of both bounds of the
error (line 11).

For the final layer L, the propagation of the symbolic
equation and error through the activation function (lines 8-
11) can be skipped since the interval over-approximation of
the output set can be simply computed by propagating the
pre-activation bounds (from line 7) through the activation
function. Note that in line 12, we obtain these bounds by
applying Φ directly to the lower and upper bounds because
this class of approaches relying on linear relaxations are
currently limited in the literature (either in their theory or
their implementation) to monotone increasing activation
functions (Wang et al., 2018a; Henriksen and Lomuscio,
2020; Zhang et al., 2018).

Input: L-layer network (1), uncertainties

[x0, x0] ⊆ Rn0 , [W l,W l] ⊆ Rnl×nl−1 and

[bl, bl] ⊆ Rnl for all l ∈ {1, . . . , L}
1 u0 ← x0, S0(u0)← x0, E ← [], E ← []
2 for l ∈ {1, . . . , L} do

/* Affine transformation */

3 ul ← [ul−1;W l(:); bl]

4 Sl(ul)←W l ∗ Sl−1(ul−1) + bl

5 [E,E]← [W l,W l] ∗ [E,E]
6 for i ∈ {1, . . . , nl} do

/* Pre-activation bounds */

7 [xli, x
l
i]← Sl

i([u
l, ul]) +

[
∑

j|E(i,j)<0E(i, j),
∑

j|E(i,j)>0E(i, j)]

/* Activation function */

8 find r, r | r(x) ≤ Φ(x) ≤ r(x),∀x ∈ [xli, x
l
i]

9 Sl
i(u

l)← r(Sl
i(u

l))

10 ei ← max(r(xli)− r(xli), r(xli)− r(xli))
11 E ← [E, diag(e)], E ← [E, diag(e)]

12 [xL, xL]← [Φ(xL),Φ(xL)]

Output: Over-approximation [xL, xL] of the network
output

Algorithm 2: ESIP reachability analysis of an uncer-
tain feedforward neural network.

Algorithm 2 is very similar to the ESIP approach described
in Henriksen and Lomuscio (2020) in the particular case
without weight and bias uncertainty. The main differences
are that in our Algorithm 2, the dimension of uncertainty
vector ul grows at each layer, and the error needs to be
described as an interval matrix (due to the product with
uncertain weight W l in line 5) instead of a simple matrix
in Henriksen and Lomuscio (2020).



In terms of implementation of the algorithm however,
there is a much more significant difference with Henriksen
and Lomuscio (2020): the symbolic equation which was
a linear function in the network intput x0 in Henriksen
and Lomuscio (2020) is now a multi-linear function in
the uncertainty vector ul. This introduces a significantly
higher complexity in terms of implementation and memory
usage. Indeed, in Henriksen and Lomuscio (2020) the
symbolic equation of layer l could be simply defined as
an nl × (n0 + 1) matrix, where for each of the nl output
nodes of this layer we only need to store n0 values for the
factors multiplying the terms of x0, and the final value
for the constant term of the linear equation. On the other
hand, for the multi-linear function Sl in Algorithm 2, we
would similarly need to store one factor for each multi-
linear term appearing in the equation. The creation of
such huge matrices thus limits the application of this ESIP
approach to very shallow and narrow neural networks, as
illustrated in Example 1 below.

Example 1. The initial symbolic equation S0 has dimen-
sions nS0 = n0 × (n0 + 1). Next if Sl−1 is stored as an
nl−1×nSl−1 matrix, then the affine transformation at layer
l (Sl(ul) = W l ∗ Sl−1(ul−1) + bl), implies that the new
symbolic equation Sl has nl ∗nl−1 ∗nSl−1 columns for the
multi-linear and linear terms in W l ∗ Sl−1(ul−1), followed
by nl columns for the linear terms in bl, and a final column
for the constant of the symbolic equation (which becomes
a non-zero value only after its propagation through the
activation function). Therefore, Sl is stored as an nl×nSl

matrix, with nSl = nl ∗ nl−1 ∗ nSl−1 + nl + 1.

For simplicity, assume that all layers have the same width:
∃n ∈ N | ∀l ∈ {0, . . . , L}, nl = n. Then we can prove by
induction that the width of the matrix for Sl is nSl =∑2l+1

i=0 ni. We can thus conclude that the final symbolic
equation SL is of dimensions:

n×
(

1− n2L+2

1− n

)
.

Therefore, the complexity of Algorithm 2 is exponential in
the depth L of the network, and polynomial in its width
n.

In Matlab, matrices cannot contain more than 248 − 1 ≈
2.8 ∗ 1014 elements. To illustrate the high memory usage
of this approach, we show in Table 1 the maximum width
n of an L-layer network for the symbolic equation SL to
remain within this Matlab constraint.

Depth L 1 2 3 4 5 6

Max allowed width n 4095 255 63 27 15 10

Table 1. Maximum width n of the network for
the symbolic equation SL to be storable in

Matlab.

Note however that this constraint on the matrix dimension
is never actually reached in practice, since we would first
reach another limitation related to the actual weight of
this matrix compared to the available RAM. Taking the
same conditions that will be considered in the numerical
example of Section 5 with a network of depth L = 3 and
width n = 20, the matrix storing the symbolic equation
would weigh up to 215 GB (counting 8 bytes per element in
the matrix). This is significantly higher than the available

RAM on most computers, which will result in a crash of
Matlab when attempting to create such matrix. N

5. NUMERICAL EXAMPLES

In this section, we provide a numerical comparison of
Algorithms 1 and 2 on a set of randomly generated
neural networks with various dimensions and activation
functions, and we highlight the better performances of
the mixed-monotonicity approach from Section 3 with
respect to most criteria (generality, tightness, computation
time, memory usage). Both algorithms are implemented in
Matlab 2021b and run on a laptop with 1.80GHz processor
and 16GB of RAM.

In our first numerical experiment, we consider neural net-
works as in (1) with increasing depth L and a fixed uniform
width n for all input, hidden and output layers (i.e. nl = n
for all l ∈ {0, . . . , L}). Since we already know from Exam-
ple 1 that the ESIP approach will struggle in terms of
complexity and memory usage, we focus this comparison
on narrow networks with n = 20 nodes per layer. All
uncertainty variables (input, weight matrices, bias vectors)
are assigned randomly generated bounds within [−1, 1].
The simulation are run a total of N = 10 times, each with
different random uncertainty bounds, and the obtained re-
sults in terms of width of the interval over-approximation,
computation time and memory usage are averaged over
this number of runs. Since the original ESIP implementa-
tion in VeriNet (Henriksen and Lomuscio, 2020) is limited
to piecewise-affine or sigmoid-shaped activation functions,
we focus this first comparison on the most popular activa-
tion function: Rectified Linear Unit (ReLU), which is the
piecewise-affine function Φ(x) = max(0, x).

In Table 2 are summarized the obtained results for both
Algorithm 1 using mixed-monotonicity and Algorithm 2
using the ESIP approach. In terms of the width of the
computed interval over-approximations, we first notice
that both algorithms return identical results for shallow
networks (L = 1), but that the mixed-monotonicity
approach always generates tighter intervals for networks
with hidden layers. In terms of complexity, the superiority
of the mixed-monotonicity approach is striking, since the
computation times are on average 12 times faster than
ESIP with one layer, and up to 7000 times faster with
two layers. Similarly the memory usage is on average 1.4
times smaller than ESIP with one layer, and 176 times
smaller with two layers. As predicted in Example 1, as
soon as we add a third layer, the ESIP approach attempts
to create a matrix much larger than the available 16 GB
of RAM (even despite the use of sparse matrices), which
causes Matlab to crash. On the other hand, we can see that
the mixed-monotonicity approach from Algorithm 1 still
behaves well in terms of complexity (time and memory)
for deeper networks, although the conservativeness of the
over-approximation naturally increases with the size of the
network.

The second set of numerical experiments is run only by
the mixed-monotonicity approach in Algorithm 1 and fo-
cuses on its performances while dealing with the main
two limitations of the ESIP approach that we could not
explore in the comparison of Table 2: larger networks and



Mixed-monotonicity ESIP

L = 1
Width 21.2 21.2
Time (s) 0.067 0.79

Memory (MB) 0.16 0.22

L = 2
Width 201 263
Time (s) 0.25 368

Memory (MB) 0.46 81

L = 3
Width 2144 −
Time (s) 0.64 −

Memory (MB) 0.90 > 16000

L = 4
Width 21796 −
Time (s) 1.4 −

Memory (MB) 1.5 −

L = 5
Width 284625 −
Time (s) 2.5 −

Memory (MB) 2.2 −

L = 6
Width 2866970 −
Time (s) 4.2 −

Memory (MB) 3.1 −

L = 10
Width 44421135944 −
Time (s) 18 −

Memory (MB) 7.9 −

Table 2. Average width ‖xL−xL‖2 of the inter-
val over-approximation, computation time (in
seconds) and memory usage (in megabytes) for

both algorithms over 10 ReLU networks.

more uncommon activation functions. Indeed, the ESIP
approach is not only limited by its complexity, but as men-
tioned in Section 4, Algorithm 2 and its original version
in VeriNet (Henriksen and Lomuscio, 2020) also cannot
handle non-monotone activation functions. Here, we thus
consider neural networks with the Sigmoid Linear Unit
(SiLU) activation function, which is the non-monotone
function Φ(x) = x/(1+e−x) introduced in Ramachandran
et al. (2017). This SiLU activation function satisfies As-
sumption 1 (with global arg min and arg max of its deriva-
tive defined as z = −2.3994 and z = 2.3994, respectively),
and it is thus natively handled by the mixed-monotonicity
approach in Algorithm 1.

Tables 3 and 4 report the average (over N = 10 randomly
generated uncertainty bounds as in the previous test)
computation time and memory usage, respectively, when
the depth L of the neural network goes from 1 to 10
and its width n from 20 to 100. Although both these
quantities naturally increase with the size (L or n) of
the network, we can observe that Algorithm 1 could solve
Problem 1 on all neural networks of up to 10 layers and
100 neurons per layer, in less than an hour and using
less than 1 GB of RAM. This is a significant advantage
compared to Algorithm 2 which took over 6 minutes per
network for a 2-layer 20-width network, and over hundreds
of GB for a 3-layer network. After plotting the obtained
results from Tables 3 and 4 using log and various n-th
roots to identify the growth rates, we have identified that
the mixed-monotonicity approach in Algorithm 1 has a
polynomial complexity in O(n3 ∗ L3) for the computation
time and O(n3 ∗ L2) for the memory.

6. CONCLUSIONS

In this paper, we consider the reachability analysis prob-
lem for neural networks with uncertainties not only on
their inputs, but also on all their weight matrices and

n = 20 n = 40 n = 60 n = 80 n = 100

L = 1 0.068 0.40 1.4 3.6 7.7
L = 2 0.24 2.0 7.2 18 38
L = 3 0.66 5.6 21 51 108
L = 4 1.4 12 43 108 225
L = 5 2.6 21 76 191 402
L = 6 4.1 34 124 312 665
L = 7 6.2 54 191 486 1028
L = 8 9.0 77 276 705 1499
L = 9 13 109 389 990 2109
L = 10 17 146 526 1333 2844

Table 3. Average computation time (in sec-
onds) of Algorithm 1 over 10 SiLU networks.

n = 20 n = 40 n = 60 n = 80 n = 100

L = 1 0.16 1.1 3.7 8.6 17
L = 2 0.46 3.3 11 26 50
L = 3 0.89 6.6 22 51 99
L = 4 1.5 11 36 85 164
L = 5 2.2 16 54 127 246
L = 6 3.0 23 76 178 345
L = 7 4.1 31 101 237 459
L = 8 5.2 39 130 304 590
L = 9 6.5 49 162 380 737
L = 10 7.9 60 198 464 901

Table 4. Average memory usage (in
megabytes) of Algorithm 1 over 10 SiLU

networks.

bias vectors. To the best of our knowledge, this problem
has not yet been addressed in the literature. We propose
two approaches to tackle this problem. The first one and
our main contribution relies on a repeated call of mixed-
monotonicity reachability analysis on each partial network
within the main neural network. The second approach,
primarily provided to offer some elements of comparison
with our first approach in this yet unexplored topic, ex-
tends to uncertain networks the ESIP (Error-based Sym-
bolic Interval Propagation) approach from Henriksen and
Lomuscio (2020). In both the theoretical sections and
the numerical simulations, we highlight the superiority
of the mixed-monotonicity approach with respect to all
criteria relevant to solving the considered problem. Indeed,
the algorithm is widely applicable to networks with any
Lipschitz-continuous activation function, while the ESIP
approach is limited to piecewise-affine and sigmoid-shaped
functions. In terms of computation time and memory us-
age, the mixed-monotonicity approach has only a poly-
nomial complexity in both the depth and width of the
network, while the ESIP complexity is exponential in the
network’s depth which limits it to only shallow networks.
Finally, on all networks where the ESIP algorithm could
be run, the mixed-monotonicity approach returns tighter
interval over-approximation of the output set (or equal to
ESIP in the case of a single-layer network).

While most verification tools in the neural network litera-
ture currently focus on verifying a single pre-trained neural
network, the work presented in this paper instead analyzes
a whole family of neural networks for any weight matrices
and bias vectors in their respective bounds. This opens the
door to new topics such as safe training (finding the subset
of weight and bias values such that the resulting networks
satisfy a given property) or network repair (finding the
minimal changes to apply to a given network in order to



make it satisfy a given property), which will be the main
focus of our future work.

REFERENCES

Bak, S., Liu, C., and Johnson, T. (2021). The second
international verification of neural networks competi-
tion (VNN-COMP 2021): Summary and results. arXiv
preprint arXiv:2109.00498.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A.,
and Misener, R. (2020). Efficient verification of relu-
based neural networks via dependency analysis. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 34, 3291–3299.

Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., and
Kohli, P. (2018). A dual approach to scalable verification
of deep networks. In UAI, 550–559.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T., and Kohli, P.
(2018). On the effectiveness of interval bound propaga-
tion for training verifiably robust models. arXiv preprint
arXiv:1810.12715.

Henriksen, P. and Lomuscio, A. (2020). Efficient neural
network verification via adaptive refinement and adver-
sarial search. In ECAI 2020, 2513–2520. IOS Press.

Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus,
C., Lim, R., Shah, P., Thakoor, S., Wu, H., Zeljić, A.,
et al. (2019). The marabou framework for verification
and analysis of deep neural networks. In International
Conference on Computer Aided Verification, 443–452.

Kim, E., Gopinath, D., Pasareanu, C., and Seshia, S.A.
(2020). A programmatic and semantic approach to
explaining and debugging neural network based object
detectors. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 11128–
11137.

Liu, C., Arnon, T., Lazarus, C., Barrett, C., and Kochen-
derfer, M.J. (2021). Algorithms for verifying deep neural
networks. Foundation and Trend in Optimization, 4(3-
4), 244–404.

Majd, K., Zhou, S., Amor, H.B., Fainekos, G., and
Sankaranarayanan, S. (2021). Local repair of neu-
ral networks using optimization. arXiv preprint
arXiv:2109.14041.

Meyer, P.J. (2022). Reachability analysis of neural net-
works using mixed monotonicity. IEEE Control Systems
Letters, 6, 3068–3073.

Meyer, P.J., Devonport, A., and Arcak, M. (2021). Interval
Reachability Analysis: Bounding Trajectories of Uncer-
tain Systems with Boxes for Control and Verification.
Springer.

Mirman, M., Gehr, T., and Vechev, M. (2018). Differen-
tiable abstract interpretation for provably robust neu-
ral networks. In International Conference on Machine
Learning, 3578–3586. PMLR.

Müller, M.N. (2022). ERAN: ETH robust-
ness analyzer for neural networks. URL
https://github.com/eth-sri/eran.

Raghunathan, A., Steinhardt, J., and Liang, P. (2018).
Certified defenses against adversarial examples. In
International Conference on Learning Representations.

Ramachandran, P., Zoph, B., and Le, Q.V. (2017).
Searching for activation functions. arXiv preprint
arXiv:1710.05941.

Salman, H., Yang, G., Zhang, H., Hsieh, C.J., and Zhang,
P. (2019). A convex relaxation barrier to tight ro-
bustness verification of neural networks. arXiv preprint
arXiv:1902.08722.

Tran, H.D., Yang, X., Lopez, D.M., Musau, P., Nguyen,
L.V., Xiang, W., Bak, S., and Johnson, T.T. (2020).
NNV: The neural network verification tool for deep
neural networks and learning-enabled cyber-physical
systems. In International Conference on Computer
Aided Verification, 3–17. Springer.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana,
S. (2018a). Efficient formal safety analysis of neural
networks. In 32nd Conference on Neural Information
Processing Systems.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
(2018b). Formal security analysis of neural networks
using symbolic intervals. In 27th USENIX Security
Symposium.

Xiang, W., Musau, P., Wild, A.A., Lopez, D.M., Hamilton,
N., Yang, X., Rosenfeld, J., and Johnson, T.T. (2018).
Verification for machine learning, autonomy, and neural
networks survey. arXiv preprint arXiv:1810.01989.

Xiang, W., Tran, H.D., Yang, X., and Johnson, T.T.
(2020). Reachable set estimation for neural network
control systems: A simulation-guided approach. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 32(5), 1821–1830.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X.,
and Hsieh, C.J. (2021). Fast and Complete: Enabling
complete neural network verification with rapid and
massively parallel incomplete verifiers. In International
Conference on Learning Representations.

Yang, X., Yamaguchi, T., Tran, H.D., Hoxha, B., Johnson,
T.T., and Prokhorov, D. (2022). Neural network repair
with reachability analysis. In International Conference
on Formal Modeling and Analysis of Timed Systems,
221–236. Springer.

Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., and
Daniel, L. (2018). Efficient neural network robustness
certification with general activation functions. Advances
in Neural Information Processing Systems, 31, 4939–
4948.

Zhu, M., Min, W., Wang, Q., Zou, S., and Chen, X.
(2021). PFLU and FPFLU: Two novel non-monotonic
activation functions in convolutional neural networks.
Neurocomputing, 429, 110–117.

Zuo, Z., Wang, Z., Chen, Y., and Wang, Y. (2014). A non-
ellipsoidal reachable set estimation for uncertain neural
networks with time-varying delay. Communications
in Nonlinear Science and Numerical Simulation, 19(4),
1097–1106.


