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Abstract. A still open question is how to design smart and autonomous 
mechanical structures able to perform online monitoring of their integrity and 
take anticipated actions during service before downtime of failure occur. To 
address this question, we present in this Chapter some innovative physics-guided 
numerical techniques for effective data assimilation and control. These 
techniques are integrated into a global feedback loop where the mechanical 
structure in service continuously and dynamically interacts with a digital twin 
which is updated and enriched on-the-fly for further command synthesis, as per 
the Dynamic Data Driven Applications Systems (DDDAS) paradigm. The 
overall strategy is unified around the concept of modified Constitutive Relation 
Error (mCRE) for enhanced robustness. The strategy also involves 
multidisciplinary numerical tools, such as Kalman filtering, adaptive modeling, 
deep learning, or Model Predictive Control, in order to accommodate real-time, 
accuracy, and portability constraints. The interest of the DDDAS approach is 
illustrated on several applications with evolutive mechanical systems, and with 
various sources of data obtained with advanced experimental devices. 

Keywords: Structural Health Monitoring, Data Assimilation, Constitutive 
Relation Error, Model Predictive Control, Physics-Augmented Machine 
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1. Introduction 

 
1.1 Basics on structural health monitoring 

 



The detection, analysis, and monitoring of damage in mechanical engineering 
structures are perpetual and critical engineering issues to ensure durability and safety. 
Structural damage, initiated locally and at small scale due to manufacturing defects, 
impacts, excessive loading, or other unexpected events, may indeed be precursor of an 
overall structural performance decrease (e.g., through ageing or cyclic loading) and lead 
to failure with dramatic consequences. It is thus of paramount interest to make early 
and regular diagnosis on the internal state of materials of various critical operating 
structures employed in activites such as energy (wind turbines, nuclear power plants) 
and transport (aircrafts, bridges) to control damage evolution and increase structural 
life. This is the context of Structural Health Monitoring (SHM), which is both an active 
research topic and a major industrial challenge [1, 2, 3]. 

Nowadays, beyond well-trained but limited engineering visual inspection, effective 
damage tracking on engineering structures (subject to various operational conditions) 
is made possible with cutting edge developments on non-destructive evaluation (NDE) 
sensing techniques, which permit to inform on the internal material state [4]. The most 
advanced NDE sensing techniques allow for high accuracy and spatial resolution on 
structures in service, such as optic fiber sensors [5, 6, 7, 8] which are becoming more 
and more popular for in situ SHM applications and will be discussed later. Such sensing 
devices have a rapid deployment, and they are progressively playing an active role by 
permitting health recovery for large-scale structures in operational conditions, with 
report on any change in material properties before the structure potentially develops 
into a critical issue. In addition, the rich experimental information can be used to feed 
and complement elaborated computational damage models, which may be physics-
based (white-box) models inheriting from a rich history of engineering sciences and 
computational mechanics [9], or data-based (black-box) models obtained from learning 
algorithms,  e.g. Machine Learning and Neural Networks [10, 11]. The link between 
sensing and modeling permits to interpret data for damage diagnosis,  assess the current 
structural behavior and stiffness, e.g. though inverse analysis and parameter 
identification [12, 13], perform simulation-based prediction of damage initiation and 
growth by exploiting all available knowledge, and eventually make appropriate 
decision. The DDDAS-based methods discussed here will advance over such 
approaches through continuous feedback control between sensing and an executing 
model representing the damage in the system as discussed next. 
 

1.2 DDDAS paradigm for the design of smart structures 
 
The synergy between experimental and modeling information can be pushed forward 
with the Dynamic Data-Driven Applications Systems (DDDAS) paradigm. In this 
context, the coordination between numerics and measurements is exploited by means 
of a continuous connection between on-board sensing devices and a customized high-
fidelity simulator (virtual twin), for: 

- on-the-fly inference of in situ observations, online updates, and ultimately 
enrichment of the digital twin; 

- real-time damage diagnosis and prognosis; 
- safe decision-making, e.g. by adapting the operational plan to prevent the 

structure from operating outside a safety regime and preserve structural 
integrity (for example by decreasing the load or applying dampening forces) 



faced with the presence of stress conditions and the decrease of structure 
capabilities.  

Implementing such a DDDAS process with global feedback loop on real mechanical 
structures in service would constitute a powerful SHM technology leading to modern 
self-aware engineering systems (see Figure 1). Such an approach would exploit and 
benefit from all available knowledge stored in data and models.  If it may lead to 
increased foresight, more accurate damage analysis, optimized maintenance, and 
potential continuing operation even in a degraded mode, it would also alleviate the 
shortcomings of data science alone, by including physics-informed assessment for 
relevant management and interpretation of sensor information. The updated model 
would be used for prediction of the structural behavior involving localized multiscale 
and highly nonlinear damage phenomena, and would alleviate shortcomings of physics-
based simulation alone to enable more dependable prediction within an uncertain and 
changing environment.  
 

 
Fig. 1 Scheme of the targeted DDDAS feedback loop for SHM. 
 
The development of DDDAS architectures for structural damage monitoring has been 
the topic of several research works, e.g. [14, 15, 16, 17, 18] to cite a few. It is also the 
topic of a current European (ERC) project called DREAM-ON (2021-2026) [19], with 
first achievements reported hereafter. Scientific progress in this context is supported by 
the expansion of powerful simulation tools and underlying computational 
infrastructures (e.g., GPUs), but also by the flourishing development of cyber-
technology associated with a new generation of connected and autonomous systems 
fostered by artificial intelligence [20, 21]. These latter use integrated computational and 
physical capabilities provided by micro-sensors, micro-processors, and micro-
controllers.  
  

1.3 Challenges & objectives 
  
Dynamically combining data and models is not a new idea [22, 23], but its practical 
implementation for damage monitoring currently remains limited to experimental 
problems due to several technical difficulties listed below. Consequently, the richness 
of data and models which are now available for real-life structures is still not exploited 
to its full extent for SHM. Indeed, applying the DDDAS paradigm with manageable 
procedures for damage monitoring on large-scale engineering structures entails major 



research challenges to accommodate real-time (for reactivity faced to damage 
evolution, with time scale depending on the application), accuracy and robustness, but 
also portability issues; merely exploiting modern supercomputing facilities, with 
limited accessibility, is not an option. 

First, damage propagation in composite materials (e.g., laminates, concrete) which 
are widely used in high-tech structures is a local evolutive nonlinear phenomenon. Such 
a complex behavior, associated with uncertainties on the operating conditions, induces 
modeling bias which needs to be taken into account (even though unknown a priori) 
for relevant data assimilation and decision-making. Model bias could be addressed by 
using purely data-based approaches (e.g., deep learning) as a substitute to physics-based 
models [24] but these require a huge amount of data in various structural configurations, 
which is hardly feasible in practice, and also inadequate to support dynamically 
changing (structural) conditions for real-time or near real-time decision support. 
Another option, which will be considered in next sections, is to resort to the hybrid twin 
philosophy, also referred to as DDDAS-based Digital Twin or Dynamic Digital Twin 
(e.g., see [25, 26, 27, 28, 29, 30, 31]) which promotes a data-based enrichment of the 
initial knowledge on physics fundamentals, in order to make the virtual representation 
and resulting predictions closer to reality with a limited dataset.   

Second, when associated to large-size structures and multi-query simulations, the 
material complexity may lead to computationally-intensive tasks which are not 
compatible with DDDAS computational or communication requirements, so that 
reduced and adaptive modeling with smart dynamical management of computing 
resources is requested (to compute right at the right cost). 

Third, experimental information often corresponds to local, indirect, and incomplete 
observations on the material state. It is transferred sequentially in time and it is 
inevitably plagued with measurement noise (or even corrupted sensors). The numerical 
processing of a (possibly large) data collection thus needs to be appropriately 
performed, with a fast and robust data assimilation procedure. 

Eventually, feedback control needs to be performed to preserve integrity on systems 
having evolving properties and operational constraints. The controller requires fast 
online command synthesis, with guaranteed command and stability issues. An 
appealing tool in this context is Model Predictive Control (MPC) [32, 33], although it 
requires adaptation to address above-mentioned issues in large state dimension.   
 

The overall objective of the work is to design a light and dedicated computational 
platform, constituting the DDDAS numerical core, that addresses the previously 
described key computational challenges. The solution is made possible by the 
development of innovative and effective numerical approaches, from sensing to 
command, which will be integrated within a unified architecture in this platform. A 
targeted representative and original application (which is the proof-of-concept of the 
DREAM-ON project), used to validate in practice the proposed DDDAS methodology, 
is shown in Figure 2. It consists in the real-time damage monitoring of a composite 
workpiece embedded with optic fiber sensors and submitted to a controlled multi-axial 
loading. High-resolution optic fiber data is acquired by the Luna ODiSI 6108 system 
(see Section 3.1). A Stewart platform (six-actuator parallel-kinematics) is used to 
perform active structural command, applying a multi-axial loading trajectory with 



preserved structural integrity and possible operating range analysis over many instances 
of the initial damage state.   

 

 
Fig. 2 Illustration of the proposed DDDAS methodology on a laboratory proof-of-concept, with 
techniques described hereafter. 

2. A new and enhanced framework for data assimilation 

In the following, the mechanical structure is modeled by an uncertain nonlinear 
dynamical system of the form: 

𝑋 𝑡 = 𝐴 𝑋, 𝑡; 𝑝 + 𝐶 𝑡  
where 𝑋 represents the system state, 𝐴 is the operator describing the system evolution 
(defined by parameter vector	𝑝),  𝑡 is time, and 𝐶 is the control law (set of external 
actions applied to the structure).  
 

2.1 The mCRE concept 
 
A task in DDDAS is model identification or updating, that is the calibration of some of 
the structural parameters 𝑝 (related to material behavior, structural boundary 
conditions, etc.), from noisy and indirect observations. Some of the parameters describe 
the damage state and/or evolution, and they are recovered by solving an inverse 
problem. For this purpose, and among many numerical methods, we resort to the 
flexible modified Constitutive Relation Error (mCRE) framework. It was initially 
developed and analyzed for model updating in vibration problems [34, 35, 36] before 
being extended to a wider scope of structural mechanics problems. The mCRE 
approach is driven by reliability of information, that is the a priori level of knowledge 
on model and measurements, which is a fundamental aspect for addressing inverse 
problems effectively. Parameters are then sought alongside mechanical fields as the 



best trade-off between all available information given by measured data and physics 
knowledge, without any further assumption. 

In practice, information is split between a reliable part (e.g., balance equations) 
which is enforced in the process by means of an admissibility space Α,, and an 
unreliable part (e.g., material constitutive relations correlating applied forces with 
induced strains) which is released and satisfied at best. Considering for instance that 
only measurements (due to experimental noise) and the constitutive relation are 
unreliable, with parametrized potential 𝜓 describing a hyperelastic state law between 
strain 𝜖 and stress 𝜎 (i.e., 𝜎 = 𝜕𝜓/𝜕𝜖), the mCRE procedure thus consists of a 
constrained minimization in the form 

𝑝234 = 𝑎𝑟𝑔𝑚𝑖𝑛3∈<[𝑚𝑖𝑛 >,? ∈@AℇCDEF
G 𝜖, 𝜎; 𝑝 ] 

ℇCDEFG 𝜖, 𝜎; 𝑝 = 𝜓 𝜖; 𝑝 + 𝜓∗ 𝜎; 𝑝 − 𝜎: 𝜖 + 𝛼 Π𝜖 − 𝜖2NO G 

with 𝛼 a scaling factor (automatically tuned using appropriate techniques such as the 
Morozov discrepancy principle [37] linked to the measurement noise level and 
preventing from overfitting), 𝜓∗ the dual potential derived from the Legendre-Fenchel 
transform [38], Π a projector on observed quantities, and .  the Mahalanobis distance. 
The definition of the mCRE functional is flexible and can be extended to other contexts, 
e.g. with uncertain boundary conditions [39, 40] or dissipation laws [41].  

The nested minimization of the mCRE functional is performed in an iterative 
process where each iteration 𝑛 is composed of: 

- A first step performed with fixed parameters 𝑝(R), in which a new admissible 
field couple 𝜖 RTU , 𝜎 RTU  is found to minimize the mCRE; 

- A second step performed with fixed admissible fields 𝜖 RTU , 𝜎 RTU , in which 
parameters are updated with a gradient descent step (with adjoint state method). 

 
The energy-based mCRE functional ℇCDEFG 𝜖, 𝜎; 𝑝  is thus made of a regularizing 

first Constitutive Relation Error (CRE) term which accounts for modeling error, and a 
classical data-to-model distance term. The associated metric thus naturally considers 
and connects all error and uncertainty sources.  The mCRE framework is naturally 
associated with a hybrid twin strategy, as optimal admissible fields are recovered from 
both the a priori physics-based model and data-based information. We add that the 
CRE term and its spatial contributions can be further used to localize and quantify 
modeling bias, to select the appropriate model (see Figure 3) in terms of constitutive 
law structure and complexity (which is a priori set in classical parameter 
identification), and to adapt the parameter space according to experimental information 
[42]; we will come back to this point in Section 3.  A link between mCRE and Bayesian 
inference can also be exhibited [43], showing that mCRE involves a specific 
representation of the modeling bias. 



  

 
 

Fig. 3 Illustration of the adaptive selection of an appropriate constitutive model in the manifold 
ΓℳT2NO through mCRE (left), and distribution of admissible fields and modeling error on a 
specimen with experimental data given by digital image correlation (center & right), from [44]. 
 
Numerous research works on mCRE have been conducted over the years, with several 
applications dealing with vibration dynamics [43, 45, 46, 47, 48], transient dynamics 
[49], nonlinear behaviors [41, 44], or goal-oriented paramer updating [50]. The mCRE 
minimization process was also coupled with reduced order modeling (ROM) to 
decrease the computational cost [43, 51, 52]. The mCRE-based inversion strategy has 
proven robustness to noisy or corrupted measurements [53, 54, 55], yielding higher 
identification performance as compared to some alternative inversion techniques [56, 
57, 58], demonstrating excellent capability for spatial localization, e.g. to detect local 
defects [59, 45, 60], providing tolerance to incompletely specified boundary conditions 
[61], and improving convexity properties and lower sensitivity to initial guess through 
the CRE term [54, 61]; all these features are crucial advantages in the objective of 
addressing the DDDAS process for SHM.  
 

2.2 Sequential data assimilation through enhanced Kalman filtering  
 
In the DDDAS framework, data is acquired sequentially and iteratively in time through 
the executing model control. A dedicated numerical process should thus be used to infer 
noisy sequential measurement streams and recursively recover material state and model 
parameters. For this purpose, a modified version of Kalman filtering has been designed, 
coupling such a filtering with mCRE to gather benefits of both [62, 63]. It is described 
below. 

Basically, Kalman filtering (KF) is a Gaussian recursive state estimate (through 
mean and covariance statistics) based on measurements and a state evolution model. 
The KF acts with a prediction/correction scheme (see Figure 4), new measurements 
being involved in the correction step alone through an innovation term with optimized 
(Kalman) gain (in the sense that it minimizes the trace of the covariance matrix of error 
estimates). Initially introduced for linear models [64], it was later extended to nonlinear 
models, e.g. by means of statistical regularization; the sigma-points Kalman filter [65] 
permits to sample a posteriori statistics on state by propagating a set of well-chosen 
samples (so-called sigma-points) through the nonlinear operators of the filter. A popular 
filter of this kind is the unscented Kalman filter (UKF) based on the eponymous 
transform introduced in [66]. When considering both state and parameter estimation 
[67, 68, 69], dual Kalman filtering combining two Kalman filters is a classical 
approach. In practice, the Kalman filter on mechanical state is hidden within the 
observation update equation of Kalman filter dedicated to parameter estimation. 



 
 

Fig. 4 Sketch of the Kalman filtering recursive scheme (ovale shapes correspond to confidence 
envelops of Gaussian distributions).  
 
For increased robustness with respect to modeling bias and measurement noise, we 
proposed a new version (called Modified Dual Kalman Filter algorithm - MDKF)  of 
the dual Kalman filtering for sequential data assimilation, in which the mCRE is 
integrated as a new observer [62, 63]. Therefore, by enhancing the classical Kalman 
filtering, the correction of model predictions is achieved through the mCRE functional 
itself, corresponding to a change of metric in the observation space compared to 
classical L2-norm metric. The MDKF dynamical system reads: 

𝑝X = 𝑝XYU + 𝑤X 
∇3ℇCDEF 𝑥X; 𝑝X,𝑦X + 𝑣X = 0 

where 𝑥X is the state in terms of admissible mechanical fields, 𝑦X is the set of 
observations, and 𝑤X and 𝑣X are Gaussian noises. The chosen optimality condition with 
mCRE gradient permits to get around the mCRE value that depends on the features of 
the studied problem (size of the domain, energy level, measurement noise, etc.). 
 

There has also been improvements to achieve real-time data assimilation with 
MDKF without loosing accuracy, in particular by performing parallelized mCRE 
computation and sigma-points propagation, using a scaled spherical simplex Kalman 
filter structure [70], much like the randomized UKF (RUKF) [71], and developing of 
CRE-based clustering to restrict the amount of structural parameters to be estimated 
and consequently the number of sigma-points to consider [42]. 
 

2.3 Application on a typical industrial case 
 
This section illustrates the relevance and robustness of the MDKF strategy for 
sequential data assimilation on damageable structural systems [63]. It deals with a 
practical industrial application in the context of earthquake engineering.  

The EMSI laboratory of CEA Saclay (France) is equipped with shaking tables that 
allow to assess the seismic performance of civil engineering constructions by applying 
low-frequency dynamic loadings (Figure 5). Currently, the control laws of the hydraulic 
actuators that drive these shaking tables do not directly integrate the health condition 
of the tested structures, which can suddenly deteriorate and lead to unstable tests. Here, 
by implementing the DDDAS feedback loop shown in Figure 6 as a digital twin, the 
objective is to monitor in real-time and from sparse acceleration measurements the 
changing modal signature of a complex reinforced concrete specimen, placed on the 



shaking table and undergoing nonlinear damage phenomena, for further automated 
command of the shaking table (Figure 6). 
 

 
Fig. 5 Details on the studied shaking table system with concrete building clamped on it.  
 

 
Fig. 6 Envisionned DDDAS feedback loop to monitor the command on the shaking table system. 
 

The experimental database is taken from the SMART2013 test campaign, that 
consisted in a sequence of gradually damaging tests. Data are obtained by some 
accelerometers placed on the structure (see Figure 7) with a high noise level.  
 



 

 

Fig. 7 Finite element model with location of accelerometers on the concrete structure (left), and 
rheologic model of the overall system (table+structure).  
 
From sequential and real-time updating of local material stiffness through MDKF, with 
mCRE written in the frequency domain, eigenfrequencies of the building are effectively 
tracked during the whole duration of the test. A typical result is given in Figure 8, 
showing the predicted evolution of the first eigenfrequency. From Figure 8, one can 
clearly observe the frequency drops due to progressive structural damage during the 
dynamics test. 

 
Fig. 8 Predicted evolution of the first eigenfrequency using MDKF.  

 
The real-time constraint, which is successfully achieved here when using MDKF, 
further enables an appropriate evolving online command on the shaking table, taking 
into account the interaction between actuators, table, and the damaging specimen. The 
dynamic-data-driven and model-based control is here performed by inserting the 
MDKF algorithm within a state feedback control strategy (as a proof-of-concept). The 
control architecture is shown in Figure 9, as well as its interest for stabilizing simulated 
shaking table tests in real-time. 
 



	
	

Fig. 9 Control strategy using MDKF outputs (left), and typical stability result obtained from 
such a control (right). 

3. Ongoing research works 

This section presents some research works in progress as part of the DREAM-ON 
project, utilizing the mCRE/MDKF concepts. They focus on effective data assimilation 
and model selection from distributed optic fiber measurements, on model enrichment 
by means of data-based learning techniques, and on robust and guaranteed online 
command synthesis for control. Considering the DDDAS feedback loop of Figure 1, 
the overall methology which is proposed is detailed in Figure 10. 
 

 
Fig. 10 Description of the numerical methodlogy within the DDDAS feedback loop. 
 
 
 



3.1 MDKF strategy with optic fiber measurements 
 
Distributed Optic Fiber Sensor (DOFS) technologies are increasingly used for SHM in 
composite structures of various engineering fields (e.g., see [72, 73, 74, 75, 76]). A 
classical optic fiber, bonded on the structure or embedded during manufacturing, can 
indeed be used as a sensing element and provide for in situ experimental information, 
which then acts as both transducer and transmitter. In addition to unique sensing 
capabilities in terms of measurement density and rate to capture localized phenomena 
as damage, DOFS offers many other inherent advantages compared to alternative 
sensing technologies [77]; we may list the flexibility in installation and use (portable, 
electrically passive, remote sensing), the large range of applications with capability to 
operate in harsh (radiative, corrosive) environments and immunity of the signal to 
electromagnetic interference, or the large spatial extension of the monitored area. A 
recent review on the various DOFS technologies can be found in [8].    

In the DREAM-ON project, we focus on DOFS sensors based on elastic Rayleigh 
backscattering (caused by interaction of light with natural density fluctuations within 
fibers, see Figure 11) analyzed in the frequency domain (optical frequency-domain 
reflectometer (OFDR) technique), which permits to recover local and high-resolution 
material strain information [78, 79]. Indeed, local modifications of fiber features lead 
to variations in the magnitude of the backscattered multi-frequency signal analyzed 
with Fast Fourier Transform FFT; an accurate measurement of longitudinal strain along 
a network of optic fibers, with sub-millimiter resolution and high-frequency scan, can 
then be obtained before being converted into a map of damage over the entire structure. 
Consequently, DOFS is a technology of choice when tracking early damage in 
mechanical structures. 

The sensing equipment is made of an active opto-electronic unit or interrogator 
(including laser and interferometer) that sends light signal into one or several fibers 
then collects and processes the backscattered signal to retrieve measurement 
information. For the purpose of the DREAM-ON project, a Luna ODiSI 6108 
equipment has been purchased and is extensively used. 

 

 
Fig. 11 Illustration of the equipment and backscattering phenomenon used for sensing with optic 
fibers, from [80]. 



 
A mCRE-based inversion method was first applied with DOFS measurements in [58]. 
Here, the method is enhanced by using the MDKF strategy with such high-resolution 
measurements in the context of SHM [81, 82]. Let us recall that MDKF, which is a 
modified version of Kalman filtering, only requires to store current data in the 
sequential process, avoiding keeping in memory the whole history of measurements. 
We report below a typical application, in which experimental data is collected from an 
optic fiber embedded inside a cement-based mortar beam undergoing a quasi-static 4-
point bending test with increasing loading until failure (see Figures 12 and 13). 
Additional image-based data (from digital image correlation-DIC) is also recorded on 
a local area of the beam surface for validation purposes. Such data is then analyzed to 
identify parameters of an isotropic material model and detect damaged zones along the 
mechanical test.  

 
Fig. 12 Considered configuration for the bending test on a concrete beam.  
 

  
  

	  
Fig. 13 Experimental setting (top) and additional local DIC measurements (bottom). 



 
Results in terms of distribution of damage inside the beam, at various instants of the 
test, are shown in Figure 14. 
 

	 	 	
Fig. 14 Distribution of damage inside the beam at three instants of the bending test. 
 
Currently, several research works on iterative (dynamic) data assimilation with DOFS 
are being investigated. The first one deals with dynamical model selection, as here again 
the CRE part of the mCRE functional can be analyzed to detect zones with large 
modeling error and adapt both the model and the parametric space accordingly (i.e., 
enriching the material behavior representation in local regions where damage occurs, 
that is multi-fidelity modeling). Second, an interesting aspect when dealing with DOFS 
is experimental design in terms of constrained optimal fiber placement. For this 
purpose, and following the strategy developed in [83] for the case of sparse sensors, a 
strategy mixing mCRE and information entropy has been designed for the constrained 
placement of fibers parametrized by means of B-splines [84]. Third, the interest of 
using sparse regularization [85, 86, 87] as a complementary term in the mCRE 
functional to tailor the approach to the context of localized damage is being analyzed. 
Eventually, including the dissipative part of the constitutive model (i.e., evolution laws) 
in the mCRE and MDKF strategies is for sure an important step forward.  
 

3.2 Constitutive model enrichment with physics-augmented learning 
 
As indicated before, the mCRE approach assesses the relevance of the employed 
mathematical model, and in particular the structure of the constitutive law. The 
constitutive law is usually chosen empirically, and supposed to fit within a given 
parametric representation, for direct physical interpretability. Yet, the interpretability 
comes at the price of model bias, while an accurate constitutive model is crucial for 
easier interpretation and more reliable prediction of the structural behavior in SHM. In 
order to build such an accurate constitutive model (which may be complex), and 
therefore correct model bias, machine learning (ML) and data science can be of high 
interest. 
 

The idea to represent the constitutive relation by a neural network (NN) was  
proposed in the past (e.g., [88]), with a purely data-driven approach. More 
recently, techniques coupling deep learning (DL) and physics knowledge 
helped alleviate frequent concerns in the NN, such as the lack of physical 
consistency, the lack of generalization, and the difficulty to train (quantity of 
data, hyperparameters tuning) [89, 90]. A first approach referred to as 
“physics-informed” or “physics-enhanced” is to include physical knowledge 



in the loss function used to train the NN, usually by means of a penalization 
term [89, 91, 92]. A second approach, referred to as “physics-augmented”, is 
to enforce the physical knowledge (e.g., thermodynamics laws) in the NN 
architecture [93, 94, 95, 96]. These latter techniques are based on imposing 
convexity by means of an input-convex neural network (ICNN) introduced in 
[97]. A third approach, often referred to as transfer learning (TL) through 
domain adaptation, consists of informing prior knowledge in the network 
initialization; out of decreasing the quantity of data used for training, this 
reduces the sensitivity of a random initialization on the training result. 

In addition, when dealing with learning constitutive laws, NNs  may be trained using 
a supervised procedure with a strain-stress database (or strain-free energy) generated 
from a known constitutive model [94, 98, 96, 99, 100, 101, 93]. In [102, 95], 
unsupervised training was considered by using full-field observations as input of the 
NN (with a loss function that penalizes the non-satisfaction of balance equations). 
 

In this context, and still relying on the mCRE framework, we recently developed 
the NN-mCRE approach for unsupervised learning of (nonlinear) state laws with a NN 
[103, 104]. This approach naturally focuses the strategy on what needs to be learnt, that 
is the constitutive relation, and permits a data-based enrichment of an a priori 
constitutive model. NN-mCRE integrates all the recent trends described above on 
learning (physics-informed, physics-augmented, transfer learning), by the specific 
definition of the loss function, the chosen architecture of the NN, and the physics-
guided initialization. It also requires only partial observations on displacement or strain, 
such as the case with optic fiber measurement. 

The NN is trained thanks to a procedure in which the mCRE functional (defined in 
Section 2.1) is used as loss function and minimized. This NN aims at defining the 
potential 𝜓 (free energy) involved in this functional, taking the strain tensor 𝜖 as input 
and recovering the stress tensor 𝜎 with automatic differentiation. The iterative 
minimization procedure is then similar to the one described in Section 2.1; each 
iteration consists of two steps that read: 

𝜖 RTU , 𝜎 RTU = 𝑎𝑟𝑔𝑚𝑖𝑛 >,? ∈@AℇCDEF
G (𝜖, 𝜎; 𝑝(R)) 

𝑝(RTU) = 𝑝(R) − 𝑙a∇3ℇCDEFG (𝜖(RTU), 𝜎(RTU); 𝑝(R)) 
where the parameter set 𝑝 now denotes weights of the NN describing 𝜓. With its rich 
physical sense, the mCRE informs on modeling error continuously defined over the 
structure (through its CRE term), and it can be used as a quality indicator and a relevant 
stopping criterion in the inference phase. 
 

In the process, thermodynamics consistency is enforced through the specific NN 
architecture. The free energy 𝜓 is indeed made convex by using a ICNN architecture 
(Figure 15), and enforcing zero stress when there is zero strain. In such a ICNN 
architecture, weights between intermediate layers are positive and activation functions 
are convex and non-decreasing. Additional classes of symmetry may also be added in 
the network architecture.  
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15 ICNN architecture of the neural network used. 
 
As typical DDDAS-based SHM applications require that the NN be trained online, an 
important focus was given on automatic and adaptive tuning of sensitive 
hyperparameters of the NN-mCRE approach that are the learning rate 𝑙a, the weighting 
between losses (which is here natural compared to alternatives of the literature [105]), 
the number of epochs, the batch size, and the network initialization (see [104]). In 
particular, the network is initialized by means of a first training with an a priori 
constitutive model; it is performed in a classical supervised way with the Adam 
(Adaptive Moment estimation) optimizer and a mean square error loss. 

We showed that when the training database is rich enough with respect to the 
loading case, the proposed method achieves remarkable performance regarding quality 
of the learned constitutive model, noise robustness (up to 40% noise!!), and low 
sensitivity to user-defined hyperparameters.  
 

We illustrate here the method with a reference non-quadratic potential in the small 
strain regime and with synthetic optic fiber measurements inside a beam structure (see 
Figure 16). The chosen non-quadratic potential to be learnt distinguishes behaviors in 
traction and compression along the longitudinal axis of the beam; it reads: 

𝜓 𝜖 =
1
2
𝐸T 𝜖UU T

G +
1
2
𝐸Y 𝜖UU Y

G +
1
2
𝐸𝜖GGG + 𝐺𝜖UGG  

where . T and . Y denote positive and negative parts, respectively. The network is 
initialized with a linear elasticity model (quadratic potential). The database includes ten 
different loading cases with a combination of pure bending, traction and compression, 
and additional Gaussian noise. 

 
Fig. 16 Configuration of the studied beam with embedded optic fiber sensor. 
 



Some results are shown in Figures 17 and 18. We observe in Figure 18 that with the 
proposed strategy, the convergence rate of the training is no longer sensitive to user-
defined hyperparameters. 

 
Fig. 17 Convergence of the mCRE-based loss function along the learning process. 
 

 

	 	
Fig. 18 Initial and final potentials defined by the neural network (left), and convergence of the 
error for various learning rates (right). 
 
Works in progress on this topic deal with the learning of evolution laws by including 
dissipation potentials in the mCRE loss function, and the optimized constitutive model 
learning using  sparsity of the NN architecture and the sensitivity of the CRE modeling 
error term. 
 

3.3 Online synthesis of control laws 
  
Implementing an effective DDDAS feedback loop for SHM requires to address the 
definition of a suitable computational framework for online guaranteed command 



synthesis on evolving systems. Such a command aims at driving the structural loading 
to limit damage evolution and make the structure avoid critical zones at any time 
(operation at performance limits). To achieve this goal, Model Predictive Control 
(MPC) appears as an advanced and convenient strategy of optimal control theory [32, 
106, 107, 108, 89, 109]; it will be used in the targeted DDDAS feedback loop (see 
Figure 19). 
 

 
Fig. 19 Use of the MPC strategy in the DDDAS feedback loop for SHM. 
 
MPC has two special features: 1) the use of a computational dynamical model of the 
controlled process for online prediction of future states; and 2) the use of an 
optimization procedure to find online the best control depending on state measurements 
which incorporate feedback. An advantage of MPC over other predictive strategies is 
that it replans a new control trajectory from the measured data and updated model at 
each time step; the controller is thus robust by design, being able to account for 
unexpected disturbances by dynamically calculating paths to return to the desired states. 
MPC may also account for state and control constraints, such as those associated with 
controller capabilities and confinement in a safety region, leading to the solution of 
constrained optimization problem. MPC methods are increasingly popular in fast on-
board systems such as autonomous driving systems. Typically, the system behavior is 
predicted over a shifted time zone (so-called prediction horizon) made of several time 
steps in time-discretized MPC, with recurrent online use of the underlying dynamical 
model.  Of course, due to modeling error propagation, inaccuracy is likely to be larger 
for longer horizons, so that a high-fidelity computational model is requested. The 
overall architecture of MPC is given in Figure 20. 
 



 
 
Fig. 20 General scheme of MPC. 
 
However, when a complex nonlinear dynamical model in large state dimension is used 
for prediction in MPC, a nonlinear optimization problem must be solved online at each 
sampling time (unless a linearized model is used). Iterative sampling results in two 
main difficulties which are the intensive use of computing resources (usually leading 
to large computation times that are not compatible with implementation on-board fast 
micro-controllers), and the multi-modal and non-convex features of the cost function 
to be minimized (so that shallow local minima may be found rather than a global 
solution).  
 

In order to circumvent the sampling challenges, fully or partially input convex 
neural networks (ICNN) may again be used with MPC [110, 111, 112, 113, 114]. Such 
ICNN networks are convex in one-step-ahead prediction, and a procedure can be 
employed to make a multiple-step-ahead prediction. An application of such a strategy 
on a representative problem is shown below; it involves a nonlinear Van der Pol 
oscillator, with constraints on command and state [115]. The considered control 
architecture is a one-step ahead predictive controller, and the used ICNN has 4 inputs 
and 10 neurons as shown in Figure 21. 

 
Fig. 21 Architecture used for the neural network performing MPC (𝑥U is the position, 𝑥G the 
speed, 𝜀 the error, and 𝑢 the command). 
 



For the training, synthetic data are obtained from a simple MPC simulation using 
various references, and constraints on the output are satisfied using an activation 
function. A set of 2160 training data are then used, with 5000 epochs. For comparison, 
classical MPC is designed with a time step of 0.5 s and a prediction horizon of 𝑁 = 5. 
Results are shown in Figure 22; the mean squared error is 0.27 for the NN and 0.22 for 
MPC, while the CPU time is 0.008 ms for the NN and 2.178 ms for MPC. This shows 
the potential of ICNN to reach a good rapidity/accuracy compromise in MPC-based 
control. 

 
Fig. 22 Comparison between classical MPC and neural network for control. 
 
The next step will be to deal with damage problems (using MPC-based neural networks 
to find an optimal loading path given various initial damage conditions to reach a 
desired structure configuration), and to integrate the mCRE/MDKF framework into 
MPC, i.e. using both the updated model and the optimal admissible fields that are 
outputs of the mCRE minimization in order to define the current structural state and 
next command to apply. An online adaptive control synthesis will thus be derived [116], 
for damageable systems here. Another task will be to implement the proposed MPC 
strategy on the Stewart platform actuator which is an element of the DDDAS proof-of-
concept of Figure 2. Such a multi-axial actuator has already been used in several 
research works to drive mechanical tests [117, 118, 119, 120], but the various 
difficulties of the DDDAS application (complex nonlinear structural behavior, real-
time command synthesis, etc.)  entail new challenges to tackle in terms of stability and 
certification of the command with regards to uncertainty sources [121]. As an 
alternative to usual symbolic methods [122] which do not scale high dimensions, one 
option would be to resort to correct-by-design and set-based methods [123, 124] which 
are compatible with safety constraints even though the optimality of the command is 
not ensured. 

4. Summary 

We presented innovative and effective numerical approaches to implement a DDDAS 
framework in practical SHM applications. The proposed multidisciplinary 



methodology has the potential to make the DDDAS framework applicable to real-life 
damageable structures, in order to go from smart materials to smart structures. It 
represents a key enabler for the next generation of integrated SHM technologies, 
envisioning the design of smart autonomous engineering structures with integrated 
monitoring capabilities, enhanced damage tolerance, timely optimized (reduced and 
condition-based) maintenance with extended operational efficiency and better 
coherence with sustainable protecting policies, and thus increased reliability and 
performance and competitiveness. It is thus expected to lead to significant scientific, 
technological, and societal outcomes in all industrial activities where large critical 
engineering structures are employed and where damage fault-tolerance is of paramount 
importance. We note that eventually the approach is of interest for other applications 
(including those where DDDAS has been applied), such as the design of numerically-
assisted experimental tests on materials [125], the optimization of manufacturing 
processes [126, 127, 128, 129], or the development of computer-assisted medical 
surgery with potentially damaging tissues [130, 131]. 
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