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G W N e

Abstract: DEXTER (detection of explosives and firearms to counter terrorism) is a project funded
by NATO's Science for Peace and Security (SPS) program with the goal of developing an integrated
system capable of remotely and accurately detecting explosives and firearms in public places without
impeding the flow of pedestrians. While body scanner systems in secure areas of public places
are becoming more and more efficient, the attack at Brussels airport on 22 March 2016, upstream
of these systems, in the middle of the crowd of passengers, demonstrated the lack of discreet and
real-time security against threats of mass terrorism. The NATO-SPS international and multi-year
DEXTER project aims to provide new technical and strategic solutions to fill this gap. This project
is based on multi-sensor coordination and fusion, from hyperspectral remote laser to smart glasses,
artificial algorithms, and suspect identification and tracking. One of these sensors is dedicated to
threat detection (large weapon or explosive belt) using the clothing of pedestrians by means of
an active microwave component. This project is referred to as MIC (Microwave Imaging Curtain),
also supported by the French SGDSN (General Secretariat of Defense and National Security), and
utilizes a radar system capable of generating 3D images in real-time to address non-checkpoint
detection of explosives and firearms. The project, led by ONERA (France), is based on a radar
imaging system developed by the Fraunhofer FHR institute, using a MIMO architecture with an
Ultra-Wide Band waveform. Although high-resolution 3D microwave imaging is already being used
in expensive body scanners to detect firearms concealed under clothing, MIC’s innovative approach
lies in utilizing a high-resolution 3D imaging device that can detect larger dangerous objects carried
by moving individuals at a longer range, in addition to providing discrete detection in pedestrian
flow. Automatic detection and classification of these dangerous objects is carried out on 3D radar
images using a deep-learning network. This paper will outline the project’s objectives and constraints,
as well as the design, architecture, and performance of the final system. Additionally, it will present
real-time imaging results obtained during a live demonstration in a relevant environment.

Keywords: ultra-wide band radar; artificial intelligence; 3D radar; MIMO radar; counter-terrorism

1. Introduction

Securing passengers and revealing risks have become a growing challenge in the face
of increasing populations and varying threats. There is, therefore, an increasing demand
for detection systems that can reveal risks to the public.

A great deal of progress has indeed been made in developing body scanners and
material detectors for security checkpoints in airports and entrances to public places. These
devices are able to detect small hidden objects due to their very high resolution but require
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the cooperation of the suspect and lengthy scanning, and they are not discreet. These
disadvantages slow down traffic, are sometimes intrusive, and generate a vulnerable queue
ahead of the control.

The Brussels airport terrorist attack on 22 March 2016 took advantage of these short-
comings by massively attacking the public gathered ahead of the checkpoints.

Regarding this, there is a need for discreet devices that can reveal the risk while
individuals walk in a continuous flow.

Although this need is evident, numerous research studies, both in the microwave [1-4]
and millimeter-wave [5,6] regions, have focused on stationary scenarios where an individ-
ual must remain stationary and be illuminated for several seconds. In the coming years,
due to the growing number of passengers, such solutions will not be sufficient to cope with
the anticipated growth within a reasonable timeframe.

The objective of the MIC (Microwave Imaging Curtain) is to serve as a proof-of-concept
prototype for the automatic standoff detection of firearms and explosive belts hidden
beneath the clothing of individuals walking in a continuous flow. Microwave signals
possess the capability to penetrate non-metallic materials, and millimeter wavelength
sensors are already in use for passenger inspections prior to aircraft boarding [4]. However,
the individual under inspection must remain stationary at the center of the scanner, being
illuminated for several seconds (Figure 1 left). These detection systems have numerous
drawbacks, including their lack of discretion and the creation of a crowd of vulnerable
people ahead of the checkpoint.

Figure 1. Objective to evolve from short-range detection at checkpoints to automatic discreet detection
in the passenger flow.

MIC seeks to complement this detection principle by automating the inspection of
a continuous flow of individuals in a much larger search volume and on a much smaller
timescale. This challenge could be met by considering larger objects to be detected than
in aircraft boarding scenarios (e.g., automatic rifles instead of small ceramic knives). The
scientific and technical challenges relate to real-time and large observable volume perfor-
mances, with the possibility of reducing the resolution constraint necessary to detect and
identify the targeted threats (Figure 1 right).

The MIC project aims to design, develop, and test a radar-based imaging device in a
representative environment that addresses non-checkpoint firearms detection issues, which
are increasingly challenging for operators of mass transportation systems and organizers
of large public events. In accordance with current regulations regarding the impact of
radiation on human health and privacy protection, the project integrates off-the-shelf high-
performance microwave modules and develops specific signal processing algorithms to
reconstruct 3D images of objects carried by moving individuals in the field of view of
transmitting modules and scattered-wave-receiving modules. Post-processing of such
images will perform automatic detection of dangerous objects.

2. Description of the Imaging System Hardware
2.1. System Modular Structure

The system is based on a modular structure. Each module (being a COTS, commercial
off-the-shelf device, produced by the Vayyar company [7]) in Figure 2 consists of 20 trans-
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mitter (Tx) and 20 receiver (Rx) elements that are distributed along a quadratic perimeter.
The array size is 20 cm in both x-y-axes. The module operates at 8.5 GHz central frequency
with 4 GHz bandwidth (3.53 cm central wavelength). The transmitted radar waveform is a
classic Step-Frequency Continuous Wave (SECW). The 3 dB antenna aperture is about 100°.

20 cm

Figure 2. COTS module with transmitter and receiver antenna array.

The complete imager is composed of two independent sub-systems: a top one (TOP)
and a bottom one (BOT), mounted in a stack on the vertical axis. Each sub-system is built
in a tree structure that combines 12 MIMO (Multiple Input Multiple Output) modules
(Figure 3). This MIMO technique enables the creation of a large and high-resolution
virtual antenna [8]. Each sub-system operates completely coherently since, instead of using
different Tx/Rx modules for each antenna (which could introduce a slight difference in
the transmitted signals), the RF signal for each transmitter element is generated by a single
source placed on a central Master Board. The generated signal is then distributed through
passive and active signal splitters to every module (Figure 3).

EEE* E & ol LLTH
EREF * sman

yseouy SRIGOVL TOP System

eVB: generating high frequency signal

------------- :* PS: passive splitter
Tx-out AS: active splitter
BOT system i Master Board: Hub for low frequency
eVB:228%
Boa j

L= -]

Figure 3. Tree structure assembly of the 24 COTS transmit and receive modules in two sub-systems
(TOP and BOT).

Tx-OUT
—_—

It should be noted that four of the antennas are operational as both transmitter and
receiver elements on the module (Figure 2). Thus, despite having 40 antennas, there are
22 Tx and 22 Rx antennas on each module. The whole system, including the TOP and BOT
sub-systems, consists of 24 modules with 528 transmitter and 528 receiver antennas. In
order to reduce the total measurement time, the transmitter antennas that are located on the
external modules are turned off. Even though this approach generates a reduced resolution
in the x-axis, the radar system is still able to provide a horizontal resolution of about a
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centimeter. A total of 352 transmitter antennas are then in use while all receiver antennas are
employed in both sub-systems. Each sub-system works independently, meaning that the Rx
antennas on one sub-system only receive signals from the Tx antennas of this sub-system.
This approach reduces the total number of antenna pairs to 92,928, half of which come from
the TOP sub-system and the rest from the BOT sub-system. The conceived design then
results in reducing the complexity of the final imaging system and the computational cost
of the radar imaging. Moreover, this strategy reduces the total transmitted energy but it is
still sufficient with respect to the expected range.
The system hardware parameters are summarized in Table 1.

Table 1. System hardware parameters.

Parameters
Module—Frequency Range 6.5 GHz-10.5 GHz
Module—Number of Frequencies 81 points
Total number of transmitter antennas 352
Total number of receiver antennas 528
Total number of modules 24

2.2. The MIC System Configuration

The flexible tree structure allows for many antenna array configurations. After studies
and simulations, as a compromise between cross-range resolutions, system discretion, and
control of the trajectory of the persons to be imaged, a door configuration was selected with
a width of 87 cm between each panel, which is typical of a standard office door. Passengers
walk through the MIC sensor, one by one. Wider passages could be useful, particularly
for improving the passenger flow, but could lead to artefacts in radar images and loss of
detection performance. This point is discussed in Section 4.

A total of 24 panel sub-systems are assembled one on top of the other to image a
volume from 0.8 to 2 m above ground on the y-axis, and from —0.5 to 0.5 m on the x-axis
(Figure 4). The 81 frequency points and 4 GHz bandwidth indicated in Table 1 allow for
non-ambiguous image formation at up to 3 m depth on the z-axis. Panels are oriented to
focus energy from 0.5 to 2.5 m from the door threshold on the z-axis.

t
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1T T I * Rx
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; :
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—50 1007
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Figure 4. MIC door configuration based on 24 COTS transmit and receive modules organized in two
sub-systems (TOP and BOT). The 87 cm-wide door is indicated as a green dotted line.

2.3. The MIC System Connection to Workstations

The imaging system with connections to the corresponding workstations is shown
in Figure 5. The first workstation is the master, connected to the TOP sub-system, and
the second is the slave, connected to the BOT sub-system. Each sub-system has two USB
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connections for radar data recording. Both workstations are equipped with two GPUs for
real-time image processing. Therefore, a total of four GPUs process four radar images. The
slave workstation sends the results to the master workstation to centralize all the data.
Finally, the master workstation uses its CPU to compute the final image from the four radar
images and sends it via a 10 Gbit connection to a computer performing the Automated
Target Detection (ATD).

Master computer m

including 2 GPUs

10 Gbit connection, = i
Final image is = =
transmitted to a = ] i

e &
computer for ATD ’::J\ )¢ Iz
calculation

10 Gbit connection for radar image l

transmission to the master computer

Slave computer '

including 2 GPUs

Final image is calculated
in CPU by using 4 radar
images obtained

from 4 GPUs.

Figure 5. Overall system with 2 workstations including 4 GPUs.

Once the measurements and processing are completed, only the final image, a 3D
matrix of complex data, is saved.

2.4. The Imaging System Algorithm
2.4.1. Imaging Algorithm

The algorithm utilized by the imaging system is a critical aspect of the radar im-
age, as it incorporates numerous signal-processing functions that ultimately reveal the
focused targets.

Prior to addressing the imaging algorithm, since some of the applied filters in the
imaging algorithm are closely related to the position of virtual elements, a brief explanation
regarding a virtual array formed from the proposed MIMO system design is necessary. As
explained in Section 2.1, the MIMO system comprises 352 transmitters and 528 receivers
divided into two sub-systems. For each sub-system, 46,464 signals can then be extracted,
which means that each sub-system can be seen as a 46,464-element virtual antenna array. As
shown in Figure 6, green and magenta-colored virtual elements are formed from transmitter
and receiver antennas, both on the negative or positive x-axis, respectively, and distributed
over a 2D plane. Blue-colored virtual elements are formed from transmitter and receiver
antennas, placed at different sides of the x-axis, and distributed within the 3D spatial
domain. Even though the virtual array provides uniform distribution over the x-y-axes,
their co-locations and distributions within the 3D spatial domain result in degraded image
quality. The imaging algorithm, therefore, also removes these degrading features.

Figure 7 summarizes the procedures of the imaging system algorithm. Two sub-
systems (TOP and BOT) in the radar imaging system illuminate the region of interest with
SFCW and save the scattering parameters in complex format within the frequency band for
every transmit/receive pair. Calibration coefficients are then applied to the measurement
data using the active calibration method. A Hamming filter is applied to the data along the
frequency range for every transmit/receive pair to suppress the range side lobes. A Kaiser
filter is subsequently applied to the measurement data to suppress the lateral side lobes.
Afterwards, a 3D multiplicity filter is employed to obtain more homogenous illumination
over the 2D array aperture. A velocity compensation filter is applied to compensate for the
phase difference due to the person’s movement. This is followed by inverse fast Fourier
transform (IFFT), which is used to obtain the signal in the spatial domain. A back-projection
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(BP) algorithm is applied to focus the data for a complex 3D image. Finally, the 3D complex
radar image in the BOT sub-system is first transferred to the master workstation, and then
a coherent summation is performed to obtain the final 3D complex radar image by using
two 3D complex radar images from the TOP and BOT sub-systems.

lingte

5 N 5
i 5 —25
> —50 .
zaxis[om] g5 100 ~7° x-axis [cm]

Figure 6. Virtual elements formed from the proposed MIMO array design. Green and magenta-
colored virtual elements are formed from transmitter and receiver antennas, both on the negative
or positive x-axis. Blue-colored virtual elements are formed from transmitter and receiver antennas,
placed at different sides of the x-axis.

TOP system BOT system

1
[Measurement] | [ Measurement]
5T0P (Fnpy Ty fi) ] 1 1BOT(Bnps Fimgo fic)
[ Calibration ] [ Calibration ]
Starget—meas, BOT(rnTxﬂ l'me, fk)

Starget—meas, TOP (rn-rx » Pmgyr fk)l
[ Hamming filter ]

[ Hamming filter ]

Kaiser filter [ Kaiser filter

Isxr-Bot (Fnpy Tmg,r fic)
[ 3D Redundancy filter ]

SKE-TOP (Fnpyer P f))
S(fk) [ 3D Redundancy filter ]
[ Velocity estimation algorithm]- SRF—TOP(rnTx' r,me' fk)

I
I
I
I
I
I
SHF-TOP Ty Fmpo i)} 1 | SHF-BOT (Tngy Timgo fi)
I
I
I
I
I
I

SRF-BOT (Fnpy Fmgy i)
- Obtain Range-Velocity map ey e R e e e
- Calculate object velocity v,

Velocity Compensation
Filter

D |

o Velocity Compensation
Filter

lSVCF—BOT (T Tmgyer f10)

Focusing Algorithm ]

SvcF-ToP (g Tmgyr fic)

Focusing Algorithm
- Taking IFFT

- Back-projection

- Taking IFFT
- Back-projection
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Figure 7. Imaging algorithm with functions.

The following is a concise exposition describing the processing and evaluation of
scattering parameters from two distinct sub-systems, ultimately yielding a comprehensive
3D complex radar image.

e Calibration: Signal processing errors emerge on a radar image as a high background
level, indicating a noise level. To reduce the noise level, a calibration procedure based
on [9] is developed. The calibration procedure involves the first filter in the imaging
algorithm and determines the quality of the radar image by compensating channel
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responses. If the calibration is not rigorously performed, the quality of the radar image
can distinctly degrade. More details are provided in Section 2.4.2.

e Hamming Filter: The Hamming filter is a well-known and frequently employed filter
in radar image applications [10]. In this application, the 1D Hamming filter is used to
suppress the range side lobes that lead to degradation in the quality of the radar image.

e  Kaiser Filter: Virtual elements overlay the virtual aperture of the MIMO array. The
abrupt end of virtual elements at the end of the virtual aperture can also degrade
image quality, and so further smoothing might be required. The exact choice of the
window coefficient will, of course, influence the lateral focusing quality of the array.
This includes the side-lobe level as well as the resolution of the image. A suitable
coefficient for the Kaiser filter is determined after the visibility comparison of the
object, which is reconstructed for different coefficient values [11]. A coefficient of 4
has been chosen (Figure 8).

50 |
= 2.
ikl
50 :
| il ,
\ ///,,ﬁf.///////////// - L 10
'97,& e - ) 25
006%75@/,, 1 , _1'00_75 —50 _f(?;)xis [cm]

Figure 8. Kaiser filter with a coefficient of 4 over the virtual array aperture.

Once the virtual elements are placed at a spatial domain closer to the edges of the
virtual aperture, their corresponding complex data within the frequency range are multi-
plied with a value closer to zero. If virtual elements are formed at a narrower virtual array
aperture, the corresponding complex data are multiplied by one.

e  Virtual Element Redundancy Filter: The illumination of the virtual array aperture
is generally not flat and hence can include abrupt changes. Its smoothing is thus
necessary to avoid abrupt illumination changes and preserve the image quality. The
flattening of the aperture is thus performed by normalizing the scattering coefficient
values by means of a number of antenna pairs whose virtual elements form at the
same spatial position within the virtual array aperture.

The filter first determines all the combinations of transmitter and receiver antenna
pairs that contribute to the same spatial position over the x-y-axes within the virtual array
aperture. Next, the determined antenna pairs count CF(ry, ;) is used to normalize the
corresponding Kaiser-filter-applied scattering coefficients srp(tuy,, Iy, fk), as given in
Equation (1). This calculation is processed within the virtual array aperture:

SKF (T, x’r X'fk
SRF (Fnps Tingys fic) = é;Ern :R) | ' v
JMVE

where 1y, _is the position of the n-th transmitter antenna, 1, is the position of the m-th
receiver antenna, 1 iy = (Tup, +, Tmg, ) /2, and fy is the frequency value.
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Figure 9 represents the redundancy filter coefficient map, CF (), in Equation (1).
This map reveals the co-located virtual elements’ count over the virtual array aperture on
the x-y-axes.

—100 —75 —b0 —25 0 25 50 75 100
x-axis [cm]

Figure 9. Redundancy filter coefficients represent how many virtual elements are co-located at the
same spatial domain over the x-y virtual array aperture.

e  Velocity Estimation and Compensation: During the acquisition, the illuminated per-
son is in motion. Although a single transmission time is below a millisecond, the
total measurement time is 70 ms due to the time-division multiplexing mode of 176
transmitter antennas for each sub-system. This movement finally results in a shift in
the spatial domain and needs to be compensated using a velocity compensation filter.

The Velocity estimation algorithm calculates the velocity of a walking person based
on an additional single-channel radar sensor operating at 80 GHz. First, static clutter
is removed from the data measured by the speed measurement system. Then, 2D fast
Fourier transform (FFT) of up and down chirp data is taken to obtain range-velocity maps.
Afterwards, these two maps are pointwise multiplied with each other to enhance the
dynamic range. The center of gravity of the spectrum is calculated to obtain the velocity of
the person. Finally, the object’s velocity v, is conveyed to the velocity compensation filter,
as shown in Figure 7.

Regarding Velocity compensation algorithm, in the filter, the transmission 6, T and
reception 6,, rx angles, as shown in Figure 10, have to be first calculated for every transmitter
and receiver antenna between the z-axis and line segments from the center of the region of
interest to the corresponding transmitter and receiver antennas, respectively.

For each transmitter/receiver pair, the total range displacement is calculated as follows:

Agotal = D1x + ARy, )

where range displacements Aty and Agy for transmitter and receiver antennas, respectively
can be obtained as follows:

Arx = Uo'(n - 1)'tSingleTime'COS Gn,Tx ’ (3)
ARx = UO'(m - 1)'tSingleTime'COS Gm,Rx ’

where tSingleTime 1S the transmission time for a single transmitter antenna, and n and m are
the transmitter and receiver antenna indexes, respectively. Finally, velocity compensation
coefficients can be calculated as follows:

CPVelComp(n, m, k) = e_2i'At0tal'7T'fk/C , (4)
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where c is the speed of the electromagnetic wave in free space. Velocity compensation
coefficients of Equation (4) are finally multiplied by the redundancy-applied signal of
Equation (1).

Figure 10. Transmission 6,, T« and reception 6, R« angles in the measurement scene.

2.4.2. Calibration Procedure

For a reliable reconstruction of the reflectivity map, cross-coupling and channel re-
sponse effects in the measured signal need to be compensated. The cross-coupling r.c
influences phase and amplitude in the measured signal, thereby deteriorating the radar
image. Aside from the cross-coupling, the effect of channel responses for all transmitter
and receiver antennas belonging to the MIMO imaging system is also prominent in the
measurement signal. To achieve the reliable reconstruction of the reflectivity map with min-
imal noise, it is crucial to minimize cross-coupling and channel responses in the measured
signal. The proposed calibration method succeeds in two steps. First, a channel response
of an active calibration unit (ACU) is obtained. This ACU is an equivalent board that
composes the imaging system (Figure 12) but is used with only one transmitter and one
receiver channel. This first step involves a metal plate measurement and subsequently the
calculation of the channel response, based on these measured scattering coefficients. After
this, channel responses belonging to the MIMO imaging system are obtained by performing
first a transmission measurement between the ACU and the MIMO imaging system and
then calculating these channel responses in consideration of the channel response of the
ACU and this transmission scattering coefficient.

As shown in Figure 11, the measurement Smeas (¥, Tmg,., fx) and background
Sbg (7., Ty, fr) Signals can be represented as follows:

Smeas (rnTX/ Tinry s fk) = Starget—meas (rnTxr Tipyr fk) 'HnTX 'HmRX + Scc (rnTX/ Tinpyr fk) 'H}’ITX 'HmRX ’ ®)
Sbg(rnTx’ rme’fk) = Scc (rnTx’ rmRX’ fk) .HVITX 'Hme 4 (6)
where
_Z.Zﬂfkrcc
Scc(l'nTX/ rme/fk) = ACC(rTlTXI rmerfk)'e <, (7)

and where Starget—meas (r”Tx’rme’ fi) is the back-reflected target response; Hy,, , Hyy, are
the channel responses for n-th transmitter and m-th receiver antennas, respectively; and
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Sce (g, s Tmg,., fr) is the cross-coupling signal introduced with an amplitude of Acc ¥y, g, s fi)-
The background signals only consist of the cross-coupling signals for every transmit-
ter/receiver pair due to measurements performed in an empty space. The cross-coupling
signal with its components is minimized by considering the background signal in one
direction. To isolate the channel responses H;,;. , Hyp,, , @ well-known scene has to be chosen
which can be modeled without numerical effort. For the given configuration, a reflective
setup is not capable of covering the different orientation angles of the modules. Therefore,
an active calibration method, based on an external “repeater”, was used to act as an artificial
point scatterer.

Radar
backend

Figure 11. The measured signal consists of channel responses of transmitter and receiver antennas,
coupling effect (dotted red arrow), and target reflection (solid line red arrow).

With the proposed calibration method, an external transceiver, namely the active
calibration unit (ACU), is used as shown in Figure 12a. A pair of transmitter Tx-ACU and
receiver Rx-ACU antennas is assigned as an active calibration pair on the ACU. In the active
calibration method, channel responses Hryx—acu, Hrx—acu for transmitter Tx-ACU and
receiver Rx-ACU antennas, respectively, should first be obtained. To improve SNR in the
calibration signal, 10 sequential measurements with a metal plate, positioned 100 cm away
from the ACU as shown in Figure 12b, are performed and then averaged. To minimize
the cross-coupling, 10 sequentially measured and subsequently averaged background
scattering coefficients are subtracted from the metal plate measurements. The measured
signal on the ACU can be expressed by the following:

Smeas—ACU (fk) = HTfoCU'HRfoCU'AmeaszCU ’ (8)

where Ameas—acu is the propagation path between the metal plate and the active calibration
pair on the ACU. The channel response of the ACU can be calculated as follows:

Hry_Acu Hrx—ACU* Ameas—ACU
Agim—ACU

Hacu = = Hrx—acu-Hrx-acu , )
where Agim—_acu is the simulated propagation path between the active calibration pair and
the metal plate, and can be described as follows:

Agim_ACU = e_i@(‘rmp_rTx—ACU‘_lrmp_rRx—ACU‘) , (10)
where rmp is the metal plate position, rry_acu and rry—acu are positions of the transmitter
Tx-ACU and receiver Rx-ACU antennas, respectively.

The next step is transmission measurement, as shown in Figure 12c. Here, the center
of the ACU is positioned 200 cm away from the center of the array aperture. The Tx-ACU
illuminates all the receiver antennas r,,; on the imaging system, whereas the Rx-ACU
receives from transmitter antennas r,,; on the imaging system. Because there is a distance
of 200 cm between the imaging system and the ACU, the transmission scattering parameters
are free of the cross-coupling influence.
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Figure 12. Active calibration method. (a) An active calibration pair is employed on the ACU; (b) metal
plate measurement to obtain a channel response of this active calibration pair; (c) transmission
measurement between the active calibration pair and the proposed imaging system.

The transmission scattering parameters, measured between r,,; and Rx-ACU, and
Iy, and Tx-ACU, respectively, can be represented as follows:

Smeas—Tx&Rx—ACU (MTx) = Hup - HRx—ACU " Ameas—Tx&Rx—ACU (Tx) , 1)
Smeas—Rx&Tx—ACU (MRx) = Hing, - HTx— ACU* Ameas—Rx&Tx—ACU (MRx) ,

where Apmeas—Txa&Rx—ACU (MTx) and Ameas—Rxa&Tx—ACU (MRx) are the propagation paths from
the n-th transmitter antenna on the imaging system to the Rx-ACU, and from the Tx-ACU to
the m-th receiver antenna on the imaging system, respectively. In consideration of antenna
positions on the imaging system and ACU in the measurement scene, channel responses
belonging to these transmission measurements can be calculated by considering simulation
propagation paths as follows:

Hyp, -Hrx— ACU* Ameas—Tx&Rx—ACU (7Tx)

Hyp sRx—acu(n1x) = = Hyp -Hry—acu ,

Asim—Tx&Rx—ACU (17x) (12)
H (m ) _ Hme 'HTX—ACU'Ameas—Rx&Tx—ACU(me) = H ‘H
mRx&Tx—ACU MRx A Rx&eTx—ACU (1Ry) mgy " 11Tx—ACU »
where the simulation propagation paths can be described as follows:
_i%k _
Asim—Tx&Rx—acu (nTx> =e '"c (‘rnT" fRx-acul) ’ 13
27 fy ( )

—i
Asim—Rx&Tx—acu(me) =e ¢

(|tmgy —Trx-acul)
R s

Channel responses of the imaging system for every antenna pair can be finally calcu-
lated as follows:

Hy, &Rx—ACU - Hing &Tx—ACU
Hacu

HTX&RX(”/ m) - - HnTX'HmRX . (14)

To avoid numerical artefacts from the direct division of noisy measured target signal
and channel responses, calibration coefficients are obtained as follows:

(Hrxerx (1, m))
| Hryerx (11, m)|? + factor

2
smoothing

CPTX&RX(nrm) = < ) 'faCtoramplitude . (15)

The component factorsmooth,-Jng is added to avoid overweighting of small amplitudes
arising from the division by a measured quantity, whereas factoramplitude helps with tuning
amplitude values of the radar imaging system into the necessary range for the ATD algorithm.
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Finally, the pure object signal is obtained for every transmitter /receiver pair as follows:

Starget—meas (rnTxr Yrgy s fk) = [Smeas (rnTX/ gy fk) — Sbg (rnTX/ gy s fk)} -CFx&Rx (1’1, m) . (16)

2.5. Imaging System Characterization

Enhancing the imaging performance of a radar system is an imperative necessity,
which is closely linked to the system’s attributes, including the level of illuminated
power density, the signal-to-noise ratio (SNR) of the transmitted signal, and the point
spread function.

2.5.1. Point Spread Function Characterization

Since measured scattering parameters were not obtained during the system devel-
opment, the PSF characteristics are studied using simulation data. To investigate the PSF
quality, a point-like target is placed at the center of the coordinate system and the proposed
MIMO array is positioned 150 cm away from the focal point as given in Figure 4. Data
collected in the simulation is then focused using the imaging algorithm stated in Section 2.6.

We note in Figure 13a that pedestal side lobes form in the horizontal and vertical direc-
tions where the shadowing effect is the strongest within the virtual array. The maximum
side-lobe levels are about —18.6 and —15.1 dB along the x-y-axes, respectively, which are
low enough to obtain a high-contrast radar image. It is clear that the ultra-wide frequency
band helps squeeze the PSF around the main beam residing by virtue of strong interference
of transmitted waves. This strong interference lessens at the larger x-y-axes in Figure 13b.
The simulated resolutions of the system shown in Figure 13 are 1.4 cm and 2.2 cm.

30 dB
20
10

0

y [cm]

—10

-20

0
—30 —20 —-10 0O 1020 30
x [em]

~10
—20
—30
—40
—30 —20 ~10 0 10 20 30
(b)

Figure 13. (a) Normalized 2D PSF on x-y-axes; (b) normalized 1D PSF along with x- and y-axis.
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2.5.2. Signal-to-Noise Ratio Measurement

Signal-to-Noise-Ratio (SNR) is defined as the ratio of the power of the desired signal
to the power of the random noise component. In a static radar measurement, the measured
complex value at each range bin should be constant with time. Assuming the white
Gaussian receiver noise, the noise power can be calculated using the variance of the
complex measured signal at the range bin under test over time. A sequence of calibration
measurements in a static environment can therefore be used to calculate the SNR of every
transmitter and receiver as the ratio of the square of the mean value at the range bin under
test and the corresponding variance:

2
SNRy, = 10-log, ZZT) dB,

Tx

(17)

2
SNRyg,, = 10-logyy ( 552 ) dB,

MRx

where 1« and pry are the signal means for the n-th transmitter and for the m-th re-
ceiver, respectively, 0,y and o, rx are the standard deviations of the noise over time for
corresponding transmit (respectively receive) antennaUsing the same measurement setup
in Figure 12¢c, the sequential 10 transmission measurements are performed between the
transmitter antenna on the system and ACU receiver antenna, and the receiver antenna
on the system and ACU transmitter antenna. In total, 880 transmission measurements are
obtained from 528 receiver and 352 transmitter antennas. Subsequently, the inverse Fourier
transform of these measurements generates a range distribution in the spatial domain.

Figure 14 represents the SNR values obtained for every antenna. Most of the antennas
are operational with SNR values greater than 15 dB. Nevertheless, there are 1 Rx and 9 Tx
antennas with SNR values below 10 dB.

35/

30

Rx antennasl X antennasl

Y ]
100 200 300 400 500 600 700 800 900
antenna index

Figure 14. SNR values for transmitter and receiver antennas.

2.5.3. Radiation Power

The power density transmitted by security scanners is addressed in a report [12],
which indicates that, for frequencies between 2 and 300 GHz, millimeter-wave security
scanners would be used, and the maximum power density level recommended is 10 W/m?
for members of the public and 50 W/m? for exposed workers.

The frequency range transmitted from the microwave imaging system will be within
6.5 to 10.5 GHz. The regulations make it necessary to determine whether the transmitted
power density is below the maximum threshold.

The measurement is performed at three different ranges, such as 1 m, 2 m, and
3 m (Figure 15). One transmitter antenna is activated and continuously illuminates the
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measurement scene including the double ridge horn antenna. The polarizations of the
double ridge horn antenna and Tx antenna on the imaging system are deliberately matched.

Figure 15. Signal measurements at 3 m.

Received powers on the spectrum analyzer at 8.5 GHz at 1 m, 2 m, and 3 m are —66.4,
—71.1, and —82.2 dBm, respectively. After considering the losses and receiver antenna
gain, the power density S can be calculated for these three different ranges, resulting in
6.2897.10~7 W/m?, 2.1313.10~7 W/m?, and 0.1652.10~7 W/m?, respectively.

The power densities obtained are dramatically lower than the power density level
limit of 10 W/m? for members of the public [12], which means that the MIC system is
compliant with European regulations and can be used in public locations.

Since the imaging system is thoroughly characterized and compliant with require-
ments, the next step is to perform the ATD based on an Artificial Intelligence (Al) algorithm.

2.6. Artificial Intelligence Algorithm for Automatic Detection on Radar Imagery

Data are the central elements of Al methods. Having large quantities of uality data is
crucial to allow the convergence of learning and the correct measurement of performance
during tests. As MIC is a prototype developed in a time-constrained project, only a few
training data set measurement campaigns have been conducted. An operational system
would require much more data.

All available, non-empty, and exploitable voxels (i.e., 3D pixels of the MIC image)
have been processed and transformed into a common compressed 2D format with two
channels. Each "voxel cut" has a size of (120, 100, 2). One channel represents the amplitude,
whereas the other represents the relative distance of the brightest pixel (i.e., the closest
in range). The format compresses each 3D voxel into a simpler individual 2-channel 2D
image at the estimated center position of the subject. The compression results in virtually
no information loss since most of the 3D voxel space comprises pure noise. The voxel
cuts are used for training and testing the CNN-based classifier, which is discussed in the
next section.

A total of 15,251 usable voxel cuts with 83 different subjects were produced during
the training phases. A Convolutional Neural Network (CNN)-based classifier was trained
with four selected threats (AK47, middle-sized automatic rifle, small gun, and explosive
belt mock-up), with confusers (umbrella, smartphone, metallic bottle, among other things),
and without any object.

2.6.1. MIC Convolutional Neural Network Classifier and Explainable Artificial
Intelligence Description

e  Convolutional Neural Network
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A convolutional neural network (CNN, or ConvNet) is a class of artificial neural
networks, most commonly applied to analyzing imagery [13,14]. CNNs are regularized
versions of multilayer perceptrons, and use several convolution layers piled on top of each
other (leading to the expression “deep learning”). CNNs use relatively little pre-processing
compared to other image classification algorithms. This means that the network learns to
optimize the filters (or kernels) using automated learning, whereas in traditional algorithms
these filters are hand-engineered. This independence from prior knowledge and human
intervention in feature extraction is a major advantage.

In a CNN, the input is a tensor with a shape: (number of inputs or batch size) x (input
height) x (input width) x (input channels). After passing through a convolutional layer,
the image becomes abstracted to a feature map, also called an activation map, with the
following shape: (number of inputs) x (feature map height) x (feature map width) x
(feature map channels). Convolutional layers convolve the input and pass its result to the
next layer. They are ideal for data with a grid-like topology (such as images) as spatial
relations between separate features that are taken into account during convolution and/or
pooling. Among successive convolutional layers, the filters focus on very simple features,
such as outlines, and grow in complexity and granularity on features that uniquely define
the object.

Like other neural networks, a convolutional neural network is composed of an input
layer, an output layer, and many hidden layers. These perform operations that modify the
data in order to learn specific characteristics.

The four layers that constitute the most common building blocks of the intermediate
layers of CNNs are a convolution layer, a normalization layer, an activation layer, and
a reduction layer (pooling). Each stacking of these elementary layers is often called a
“down-sampling layer”. A deep CNN network then comprises the sequence of several of
these stages.

To perform a classification function, the network ends with one or more linear layers
intended to distribute the learned patterns into different probabilities belonging to each
of the output classes. The last layer of the architecture uses a classification layer such
as softmax to generate the classification output. Classification is, therefore, carried out
on a low-dimensional so-called “latent” space, which is found at the output of the last
convolutional neuronal layer (output of down-sampling blocks).

For the MIC project, a fairly “classic” CNN deep learning architecture was chosen
using five down-sampling blocks: convolution, normalization, activation, terminated with
one fully connected layer, and a softmax layer that simply converts output class scores into a
probability distribution of these classes (normalized between 0 and 1). Classic random data
augmentations were applied to reduce overfitting by training the machine learning model
on several slightly modified copies of existing data: x-flip voxels, 20 cm x-translation
(x-centered), £10 cm translation in height, and £4 cm translation in distance (centered).

e  Explainable Artificial Intelligence module

Interpretability is the degree to which machine learning algorithms can be understood
by humans. Machine learning models are often referred to as “black boxes” because
their representations of knowledge are not intuitive and, as a result, it is often difficult
to understand how they work. Interpretability techniques help to reveal how black-box
machine learning models make predictions. In the context of deep neural networks,
interpretability is more often referred to as “Al explainability” [15].

By revealing how various features contribute (or do not contribute) to predictions,
interpretability techniques can help to validate that the model is using appropriate evidence
for predictions.

We have used LIME [16] and Grad-CAM [17] techniques to highlight the regions
of an image that contribute most to the predictions of the image classification network.
An example of a result is shown in Figure 16. These techniques clearly help to interpret
decisions. For instance, it showed that explosive threat detection was mainly determined
based on a deviation of the “natural” belly region signature caused by the dielectric masking
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effect of the explosive belt and the abnormal presence of scattered metal parts. During
Al development, it also helped us to improve the model by recognizing whether the
classifier was trustworthy or not when comparing the highlighted region with the available
ground truth.

Explosive

Figure 16. Explainable Al example on MIC AK47 detection: red spot indicates the main body area
contributing to threat detection by the Al classifier.

2.6.2. MIC Classification Performance Assessment on Static Targets

MIC Classification Performance measurement was conducted with several threats of
interest with different sizes and shapes (Figure 17).

i

Figure 17. Threats used for MIC performance measurement scenarios (small gun, semi-automatic
MP5 also called big gun, AK-47, explosive belt with nuts and bolts).

Before the field trial, a first classification performance analysis was conducted on a
reduced dataset using only static target measurements (20 subjects). A random separation
of 841 train and 192 independent test voxels among all subjects was performed and led to
the confusion matrix shown in Figure 18.

Accuracies (and prediction errors) are presented on the right of the confusion matrix
(mean accuracy = 95.8%). The probabilities of correct (and false) declarations are presented
at the bottom.

The confusion matrix shows an excellent class separation (residual errors due to the
small gun, which is at the limit of target size detection), which confirms the chosen CNN as
a good potential candidate for ATD. However, such a confusion matrix is useful for classi-



Sensors 2023, 23, 9531

17 of 26

True Class

AK47

BigGun

Explosive

NoThreat
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fier architecture selection and optimization but not sufficient to infer a fair performance
evaluation with independent subject separation from train and test measurements.

AK47 100.0%
BigGun 1 1 97.8% [ErRL
Explosive 4 100.0%
@
3
o NoThreat 4 LENE  14.3%
3
E
SmallGun 1 2 46 93.9% AN

97.8% 97.6% 92.3% 92.0%

2.2% 24% 77% 8.0%

AK47 BigGun Explosive NoThreat SmallGun
Predicted Class

Figure 18. Confusion matrix with random separation in static 5 classes classification.

It is important to check that the performance of a network is not biased by the subjec-
tivity of the dataset it is trained on. The best way to ensure this is to separate the subject
selection between the Train and Test subsets. Figure 19 shows the confusion matrices
obtained using two different separations among the 20 available subjects.

21

19

AK47 10 16 1
19.2% BigGun 1 2 2
13 47.2% Explosive 4
»
&
3 40.0% G NoThreat 2 15 7
:
15 26 40.9% = SmallGun 3 1% 1 3

50.0%

30.0%

95.0%

5.0%

93.9% 83.3%

79.2%

52.4% 42.0% 6.1% 16.7% 36.4%

20.8% 62.9%

AK47

BigGun

Explosive

AK47 BigGun  Explosive NoThreat SmallGun

NoThreat ~ SmallGun
Predicted Class

Predicted Class
(a) (b)

Figure 19. 5 classes confusion matrices with: (a) Test subjects #1, #2, #3, and #4 and training on all
other subjects; (b) test subjects #7, #8, #14, and #20 and training on all other subjects.

These two confusion matrices show some similarities (e.g., probabilities of declara-
tion) and major performance discrepancies (i.e., accuracies). In both cases, the overall
performance is rather low (mean accuracy ~65%).

The high error variance is also due to the rather “low” subject cardinality (and the
difference in the cardinality of available threat data between the two tests). However, both
show quite good and consistent results for the “Explosive” declaration (~95%).

The missed alarm on the “NoThreat” declaration is mainly due to small gun targets,
which correspond to the detectable size limit, but this poor performance was expected due
to the rather low signature of such a threat (leading to low confidence in the declaration).
Natural confusion between “BigGun” and “AK47” was also expected as weapons with
similar sizes, which may lead to similar signatures.

The performance may be further studied by reducing the problem to a binary classi-
fication: “big” threat alarm (AK47, BigGun, and Explosive) versus none. Corresponding
confusion matrices are shown in Figure 20. The overall performance is slightly more
consistent with a correct mean accuracy of >90%.
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Figure 20. 2 classes confusion matrices with: (a) Test subjects #1, #2, #3, and #4 and training on all
other subjects; (b) test subjects #7, #8, #14, and #20 and training on all other subjects.

With these static laboratory tests validating the processing chain, the complete system
was transported to Rome, Italy, to be tested at Anagnina metro station (Rome, Italy).

3. Performance Evaluation
3.1. Live Demonstration Setup

The MIC imaging system was integrated within a dedicated area of a public metro
station in Rome as part of the field trial and system demonstration of DEXTER. The
integration phase was conducted in the first week of May 2022, followed by a demonstration
for representatives of political, safety and economic institutions, customers, experts, and
journalists at the end of the month.

The MIC system is built as a walkthrough solution. Passengers, entering the measure-
ment scene as shown in Figure 21, must first pass through the MIC system. The resultant
radar image is processed and potential threats are automatically identified and character-
ized. The DEXTER prototype is subsequently informed about the threat obtained from the
MIC system to automatically initialize other sensor systems. Thus, the MIC system is an
essential component in the DEXTER system prototype.

Figure 21. Layout of the measurement scene in Anagnina metro station. Passengers first have to pass
through the MIC system.

The final appearance of the MIC system is presented in Figure 22.
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Figure 22. MIC implementation in Rome Anagnina metro station without and with advertising
panels hiding antennas.

The MIC imaging system was integrated into the DEXTER prototype via an NTP
server to which two other sensor systems are connected, as shown in Figure 23. It is worth
mentioning that the MIC system is set to be remotely controlled via laptop.

Imaging Stations
o ~ L
MW Sensor T_l g

e 2 4% “goa ="

Detection Station

Remote Control/Debug
Screen for VIP group

Remote Controland VIP

Figure 23. Synchronization of the MIC imaging system is accomplished via an Ethernet connection
to the NTP server (Green arrows are datalink connections, red arrows are electric power ones).

3.2. Field Trial Results

The MIC system performed experiments by discreetly scanning 550 people carrying
different treatment objects under their jackets: 189 volunteers had a threat (weapon or
explosive belt), 203 others had civilian objects (confusers), and 158 had no threat or object.
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These volunteers participated in a blind test scenario covering different cases: either
one by one, or four people walking in a row, or two people side by side. All the volunteers
went through the MIC observed area with a natural walk and trajectory at a typical walking
speed (~2m/s).

The MIC system revealed a success rate of around 95% in these measurements, but
performance can be defined in different ways (depending on the operational concept of
operation):

92.6% of threat detection and identification;

93% of threat detection;

94% of objects concealed under clothes detection;

96% of big concealed object detection (if we do not take into account the small gun
cases that were at the limit of the system in terms of target size).

Table 2 lists the MIC fail cases. We can observe that MIC confuses an explosive belt
with a backpack carried on the front, which could be mitigated by a video camera and/or
security agents. We can also conclude that most of the false positives and negatives concern
small gun scenarios that are the identified limit of the system and objectives (due to threat
size regarding resolution and image quality).

Table 2. MIC fail cases, occurrences appear in parentheses.

Confusions False Positives False Negatives
el ms(t;;ad of blg gun Small gun on woman (2) Big gun on woman (2)
Explosive belt instead of a Explosive belt on woman (1) Small gun on woman (2)

Backpack on the front (3)

AK47 instead of a big Metallic =~ AK47 on woman with arms

Bottle on the front (1) crossed (1) Small gun on man (3)

Small gun on “phone texting”
)
Big gun on “phone texting” (1) Explosive belt on man (2)

Explosive belt on woman (1)

Umbrella confused with small

gun (1) AK47 in wrong position

We were able to simulate performances that could be obtained with a higher acquisition
frame rate by combining several paths of the same subject carrying the same threat. The
positive effect brought on by cumulating the individual detections is Figures 24 and 25.

These results confirm the utility of increasing the image frame rate for a future opera-
tional system.

Field trial results must be weighted as the tests carried out did not present a complete
separation of the subjects between the test and learning space due to the relatively limited
number of volunteers. To mitigate this issue, we undertook post-trial data reprocessing
with a careful check of the subjects’ identity according to the available ground truth.

We then retrained and tested the Al on fully independent datasets. We also added
two classes with threats only available in laboratory experiments (big gun and small gun
other than Beretta). We obtain the confusion matrix shown in Figure 26 (decision on two
successive frames).

Overall performance increases in line with the number of training subjects and number
of cumulated detections, and confirms the announced ~95% accuracy for major threat
detection (decision on two successive detections).

Moreover, this reprocessing enables us to artificially simulate an increase in the system
frame rate by combining several passages of the same subject (with of course the same
threat conditions). The positive impact of doubling the frame rate is clearly shown in the
confusion matrix of Figure 27.
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Figure 24. Post-field trial confusion matrices on field trail data, using simulated accumulation of 1 to

10 detections.
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Figure 25. Post-field trial mean accuracy versus simulated detection accumulation.

1 3 16.0%
SigGun

Sxplosive 17
(3
f_% (ES 1
o
§ NoThres 1
=

SmallGun

AX47 DBerema SigGun Soplosive MP5  NoThrex SmallGun

& Class

Figure 26. Post-field trial confusion matrix on independent subject selection (decision made on two

successive detections).

MP5 1"

True Class
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Figure 27. Post-field trial confusion matrix on independent subject selection (decision made on four

simulated successive detections).

4. Perspectives for Operational Sensors: Wider Door and Wall Configuration

The MIC prototype exhibits the ability to automatically detect threats concealed under
the clothing of pedestrians in motion, without interrupting their movement. This is accom-
plished using COTS low-cost components that comply with EU regulations concerning
civilian health in the presence of electromagnetic sources.
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However, certain aspects require improvement before transferring the prototype to
a higher maturity level and proposing a COTS solution to end-users. One such aspect
pertains to discretion, particularly, since MIC is built as a walkthrough solution, with
respect to the space between the right and the left panels. While an 87 cm passage is typical
of a standard office door, it may prove too narrow for individuals carrying large wheeled
suitcases or for those with disabilities, such as those using wheelchairs. Widening the
passage may be possible, but it could potentially lead to a loss in performance.

Simulations of possible artefacts encountered when widening this door passage, with
a similar system configuration to the one used for the field trial in Rome, are presented
in Figure 28 for three door widths: 1 m, 1.2 m, and 1.5 m. Figure 29 shows the maximum
intensity in the azimuth/elevation plane obtained for a point-like target located 1.5 m from
the door passage.
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Figure 28. Sensor antenna array and corresponding phase center array in the azimuth/elevation
plane for different spacing between MIC left and right panels: (a) 1 m; (b) 1.2 m; (c) 1.5 m in door
configuration.

When increasing the width of the gap between the left and right panels, the antenna
dimension in the azimuth axis is increased as well. We can then observe an improvement
in the resolution in the azimuth direction. However, gaps appear in the phase center array;,
which leads to a rise of the side lobes level in the azimuth direction.

Inevitably, this will lead to a degradation of image quality. However, the impact on
the performance of the ATD is yet to be assessed. Since it is based on a CNN algorithm,
learning on a degraded image base may still produce an acceptable threat detection rate. It
would be interesting to investigate this point in future work.

It would be of significant interest to analyze the performance of the ATD algorithm when
the system is configured in the "wall" layout. This particular configuration is characterized
by a higher level of discretion compared to the door configuration and does not impose any
constraints on the flow of passengers. However, one significant drawback of this configuration
is that people would be required to turn a corner located in front of the system (as illustrated
in Figure 30), which may result in a loss of weapon visibility and detection. It is worth noting,
however, that this configuration can also provide an opportunity for people to be viewed
from the side or the back, particularly when two wall sensors are installed in a corner.

The results of applying the back-projection algorithm in the wall layout are presented
in Figure 31 for a point-like target. Notably, the virtual antenna array displays a full array
without any gaps in comparison to the door configurations illustrated in Figure 29. Hence,
it would be worthwhile to evaluate the performance of a newly trained ATD algorithm
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on this particular sensor configuration, similar to the approach taken with large distances
between panels in the door configuration.
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Figure 29. Maximum intensity in the azimuth/elevation plane and cuts in azimuth and elevation
direction in dB (normalized) for different spacing between MIC left and right panels: (a) 1 m; (b) 1.2 m;
(c) 1.5 m in door configuration.
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Figure 30. Two different configurations for MIC: (left) wall and (right) door.
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Figure 31. Wall configuration with (a) Sensor antenna array in the azimuth/elevation plane for wall
configuration. (b) Corresponding phase center array. (¢) Maximum intensity in the azimuth/elevation
plane in dB (normalized). (d) Maximum intensity levels in the azimuth or elevation direction in

dB (normalized).
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5. Conclusions

To our knowledge, the MIC system represents a breakthrough in the world of MIMO
radar imaging, as it is the first-of-its-kind low-cost system for imaging walking persons
using COTS elements. The system boasts a transmission time of 70 ms and a total mea-
surement time of approximately 165 ms, allowing for quasi-real-time measurements of
walking persons.

The MIC system has been installed and actively employed in the DEXTER system
prototype, a multi-sensor detection system, at the Anagnina metro station in Rome, Italy.
The system has successfully performed discreet experiments by scanning over 550 people
carrying different objects, achieving a success rate of 95% in these measurements.

The MIC system can provide 2-cm resolutions at a distance of 150 cm from the array
aperture. The system’s power consumption is 72 W/h, and it illuminates using a power
density significantly lower than the required power density level of 10 W/m? for members
of the public.

The MIC system is currently operational, producing 2.8 frames per second of 3D radar
images. Once the image reconstruction time (currently about 350 ms) is reduced in the
future, the system will be able to produce 3D radar images at 6 fps. The reconstructed
range is currently within 50 cm to 250 cm with 100 points. The reconstructed number of
voxels in the z-axis can be reduced by considering the range position of a walking person
to reduce the reconstruction time.

Lastly, antenna configuration and discretion could be improved by enlarging the door
width or moving to a fully discreet wall configuration. However, these tasks represent
significant scientific challenges that will require further research.
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