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Clustering inconsistency for Pitman-Yor mixture models with a prior on the precision but fixed discount parameter

Bayesian nonparametric (BNP) mixture models such as Dirichlet process (DP) and Pitman-Yor process (PY) mixture models are popular for modeling complex data. Their posterior distributions exhibit nice theoretical properties, converging at the optimal minimax rate to the true data-generating distribution, and extensive research has been devoted to developing this theory. However, consistency of the posterior distribution does not imply consistency of the number of clusters, and asymptotic guarantees for the posterior number of clusters of these BNP mixture models have been lacking until recently. Recent research has shown that these models can be inconsistent for the number of clusters. In the case of DP mixture models, this problem can be avoided when a prior is put on the model's concentration hyperparameter α, as is common practice. In this work, we prove that PY mixture models remain inconsistent for the number of clusters when a prior is put on α, in the special case where the true number of components in the data generating mechanism is equal to 1 and the discount parameter σ ∈ (0, 1) is a fixed constant.

Introduction

Mixture models, popular for their flexibility and simplicity, are commonly used in the statistical analysis of heterogeneous data where observations are assumed to come from an unknown number of different populations. Since in a mixture, each observation is assumed to come from one population, such models naturally induce a clustering: two data points belong to the same cluster if they come from the same population. We focus on the problem of inferring the number of clusters in the data.

One solution is to fit mixture models with an increasing number of components and select the best model using the Akaike information criterion (AIC), the Bayes information criterion (BIC), etc. This method, however, may be computationally expensive since many models must be fitted. A Bayesian approach could alternatively be taken by putting a parametric prior (such as a Poisson) on the number of components, but inference can be challenging when the dimensionality or the amount of data becomes large (although new strategies have been proposed recently [START_REF] Miller | Mixture models with a prior on the number of components[END_REF].

In this work, we consider infinite mixture models where the mixing measure is modelled with a nonparametric prior. In such models, the number of components possible has no upper bound. Inference may be performed in a unified way without the need for strong assumptions on the number of components and with no need to fit multiple models.

While the most standard nonparametric prior remains the Dirichlet process (DP) introduced by [START_REF] Thomas S Ferguson | A Bayesian analysis of some nonparametric problems[END_REF], many extensions now exist. In this work, we focus on the Pitman-Yor process (PY, [START_REF] Pitman | The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator[END_REF], a natural extension of the DP with an extra parameter increasing model flexibility. Compared with DP mixtures, PY mixtures are better suited when the sizes of clusters are more evenly distributed. Due to the interpretability of their hyperparameters, ease of implementation, and nice mathematical properties, DP and PY priors are widely used in practice, and in the last two decades a huge amount of research has focused on their properties (see for example [START_REF] Ghosal | Fundamentals of nonparametric inference[END_REF][START_REF] Müller | Nonparametric Bayesian inference in applications[END_REF]. The use of the DP as a mixing measure was first introduced by [START_REF] Albert | On a class of Bayesian nonparametric estimates: I. density estimates[END_REF]. Thanks to the wide variety of efficient computational methods which have been introduced for their inference (Escobar and [START_REF] Michael | Computing nonparametric hierarchical models[END_REF][START_REF] Steven | Estimating mixture of Dirichlet process models[END_REF][START_REF] Radford | Markov chain sampling methods for Dirichlet process mixture models[END_REF][START_REF] David | Variational inference for Dirichlet process mixtures[END_REF], nonparametric mixture models have become common in a wide range of modeling applications.

In the context of density estimation, under certain conditions the posterior distribution of DP mixture models concentrates at the true data-generating density at the minimaxoptimal rate [START_REF] Ghosal | Fundamentals of nonparametric inference[END_REF][START_REF] Ghosal | Posterior consistency of Dirichlet mixtures in density estimation[END_REF]. This holds for other types of Bayesian nonparametric priors, such as PY priors [START_REF] Lijoi | On consistency of nonparametric normal mixtures for Bayesian density estimation[END_REF]. Nguyen (2013) further proved posterior consistency of the mixing distribution in the Wasserstein metric DP and PY mixture models.

It is important to realize that consistency of the posterior distribution for the datagenerating density and even for the mixing measure does not imply consistency of the inferred number of clusters. Empirically, many researchers have observed that DP mixture posteriors tend to overestimate the number of clusters [START_REF] West | Hierarchical priors and mixture models, with application in regression and density estimation[END_REF][START_REF] Lartillot | A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process[END_REF][START_REF] Onogi | Characterization of a Bayesian genetic clustering algorithm based on a Dirichlet process prior and comparison among Bayesian clustering methods[END_REF]. More recently, Miller andHarrison (2013, 2014) proved non-consistency for the number of components in DP and PY mixtures. [START_REF] Alamichel | Bayesian mixture models (in)consistency for the number of clusters[END_REF] extended this result to the case of Gibbs-type processes and finite-dimensional representations of BNP priors. A possible explanation for this inconsistency result can be found in a result proved by [START_REF] Rousseau | Asymptotic behaviour of the posterior distribution in overfitted mixture models[END_REF], that in overfitted finite or infinite mixture models, the weight attributed to extra cluster goes to zero as the number of observations grows. Provided that the weights for the extra components are infinitesimally small, any mixture can be approximated arbitrarily well by a mixture with a larger number of components.

Despite the above inconsistency results, it can be possible to achieve posterior consistency for the number of clusters in the mixture models we consider. [START_REF] Guha | On posterior contraction of parameters and interpretability in Bayesian mixture modeling[END_REF] introduce a fast and simple post-processing procedure for DP mixtures which provides clustering consistency. [START_REF] Alamichel | Bayesian mixture models (in)consistency for the number of clusters[END_REF] extend this result to PY mixtures. [START_REF] Zeng | Consistent Model-based Clustering using the Quasi-Bernoulli Stick-breaking Process[END_REF] introduce a quasi-Bernoulli stick-breaking process and prove posterior consistency for the number of clusters in the associated mixture model. Consistency in this class of BNP priors requires the prior to be calibrated based on the sample size, hence the model is no longer projective. [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF] show that posterior consistency for the number of clusters can be achieved for a projective model by putting a prior on the DP concentration parameter α. DP mixtures modeled in this way can be considered as mixtures of DP mixtures [START_REF] Charles E Antoniak | Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems[END_REF] and are commonly used in practice.

We show that [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF]'s result cannot be directly extended to PY mixtures: we prove clustering inconsistency for Pitman-Yor process mixture models with a prior on the concentration parameter, when the true number of clusters in the data generating mechanism, t, is equal to one, and when the discount parameter σ ∈ (0, 1) is a fixed constant.

Preliminaries

We assume that data X 1:n ∈ X n is generated by a mechanism of the following form:

X i iid ∼ P = t j=1 p j k(•|θ ⋆ j ), (1) 
where the p j are probability weights in (0, 1) summing to one, and where the k(•|θ ⋆ j ) are probability kernels, each depending on some parameter θ ⋆ j . The above may alternatively be expressed as a convolution of the component-specific kernel k(•|θ) with the discrete mixing measure G = t j=1 p j δ θ ⋆ j : P (x) = k(x|θ)G(dθ). We consider the well-specified case where the kernel density k(•|θ) is known, but where the integer t, the weights p j , and the latent variables θ ⋆ j in Equation ( 1) are all unknown. To allow for an unbounded number of components t in the mixture, we consider nonparametric mixture models with nonparametric priors on the mixing measure G.

Ascolani et al. ( 2022) consider Dirichlet process mixture models with a prior on the concentration parameter α:

X i |θ i ind ∼ k(•|θ i ), θ i | P iid ∼ P P |α ∼ DP(α, Q 0 ), α ∼ π 1 , (2) 
where π 1 is a prior distribution on α, and Q 0 is the DP base measure.

We consider an extension of [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF]'s model, which are Pitman-Yor mixture models with a prior on the concentration parameter α > 0 and with a fixed discount parameter σ ∈ (0, 1):

X i |θ i ind ∼ k(•|θ i ), θ i | P iid ∼ P P |α, σ ∼ PY(α, σ, Q 0 ), α ∼ π 1 . (3) 
Following the notation of [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF], for every pair of numbers (n, s) ∈ N 2 with s ≤ n, we let τ s (n) denote the set of partitions of {1, . . . , n} into s non empty subsets. Conditional on parameters α and σ, a Pitman-Yor mixture model induces the following prior distribution on the space of partitions on n, for any n ∈ N, and any

A = {A 1 , . . . , A s } ∈ τ s (n), s ≤ n, p(A|α, σ) = σ s-1 (1 + α σ ) (s-1) (1 + α) (n-1) s j=1 (1 -σ) (a j -1) , (4) 
where

α (n) = α • • • (α + n -1)
is the ascending factorial and a j = |A j | stands for the cardinality of the set A j . Conditionally on the partition A, the probability distributions of the data X 1:n = (X 1 , . . . , X n ) and of the cluster-specific parameters θ1:s = ( θ1 , . . . , θs ) are

p(X 1:n | θ1:s , A) = s j=1 i∈A j k(X i | θj ), p( θ1:s |A, θ) = p( θ1:s |A) = s j=1
q 0 ( θj ).

We use the standard notation K n to denote the number of clusters in a sample of size n. The concentration parameter α essentially controls the prior mean of K n , while the discount parameter σ has more impact on the variance [START_REF] Bystrova | Approximating the clusters' prior distribution in Bayesian nonparametric models[END_REF]. More specifically, the prior number of clusters is known to grow asymptotically with n as a power-law, e.g. in expectation we have EK n ∼ Γ(α+1) σΓ(α+σ) n σ when n → ∞ (see Section 3.3 of [START_REF] Pitman | Combinatorial stochastic processes[END_REF]. Under our model (3), K n has the following prior distribution

p(K n = s|σ) = A∈τs(n) p(A|α, σ)π 1 (dα)
where p(A|α, σ) is as above.

To study the asymptotic behavior of the number of clusters, we consider p(K n = s|X 1:n , σ). We start with the joint distribution (X 1:n , K n |σ) which, for every x 1:n = (x 1 , . . . , x n ) ∈ X n , is given by:

p(X 1:n = x 1:n , K n = s|σ) = A∈τs(n) p(A|σ) s j=1 m(x A j )
where p(A|σ) = p(A|α, σ)π 1 (dα) and m(x A j ) = i∈A j k(x i |θ)q 0 (θ)dθ is the marginal likelihood for the subset of observations identified by A j , given that they are clustered together.

Theoretical result

Throughout, we make the same assumptions as [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF] (see also Appendix A). The first set of assumptions A1, A2, and A3, regard the prior π 1 for the precision parameter α: it is assumed to be absolutely continuous with respect to the Lebesgue measure, to have a polynomial behaviour around the origin, and to have subfactorial moments. [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF] prove in their Lemma 1 that common families of prior satisfy these assumptions (e.g. distributions with bounded support, the gamma distribution, etc.). The second set of assumptions regards the type of mixture kernels k(•|•) considered: attention is restricted to location families, where the kernel is of the form k(x|θ) = g(x -θ) for some density function g on R. More specifically, assumptions B1 and B2 of [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF] require that g be strictly positive and differentiable with bounded derivative on some interval and zero elsewhere. Finally, assumption B3 requires that the BNP process base measure Q 0 be absolutely continuous with respect to the Lebesgue measure, with bounded density q 0 . Theorem 1 Suppose that the prior π 1 over the concentration parameter α, the kernel k, and density q 0 satisfy assumptions of [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF] recalled above. For every P as in (1), for t = 1, we have

p(K n = 1|X 1:n ) ̸ → 1 as n → ∞.
The proof of Theorem 1 rests on analysing the ratio p(Kn=s|X 1:n ) p(Kn=1|X 1:n ) , as consistency cannot hold if it does not converge to 0 as n → ∞. Following the strategy of [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF], this ratio can be split into the product of two quantities, one capturing the impact of the prior distribution on the concentration parameter α, and the other independent of the prior on α. In the Dirichlet process case with a prior on α, the first quantity goes to 0 and the second remains bounded. We show that in the Pitman-Yor case, the σ parameter enters the first quantity and prevents it from vanishing as n → ∞, destroying consistency and highlighting a fundamental difference between the DP and PY processes.

Simulation study

We illustrate our results through a simulation study. Data is generated using a Gaussian location mixture with t = 3 components:

P (x) = 3 i=1 p i N (x|µ i , Σ),
where p = (p 1 , p 2 , p 3 ) = (0.5, 0.3, 0.2) and N (x|µ i , Σ) is a multivariate Gaussian with mean µ i and covariance matrix Σ with µ 1 = (0.8, 0.8), µ 2 = (0.8, -0.8), µ 3 = (-0.8, 0.8) and Σ = 0.05 I 2 . We adapt the Importance Conditional Sampler for PY mixtures of [START_REF] Canale | Importance conditional sampling for Pitman-Yor mixtures[END_REF], with the following prior specification:

P ∼ PY(α, σ, Q 0 ), µ i ∼ N (b 0 , B 0 ), i = 1, . . . , t, Σ -1 ∼ W(c 0 , C 0 ), C 0 ∼ W(g 0 , G 0 ).
The Wishart prior on Σ -1 and the prior on µ i are the same as in [START_REF] Malsiner-Walli | Model-based clustering based on sparse finite Gaussian mixtures[END_REF].

Figure 1 (a) illustrates the inconsistency of Pitman-Yor mixture models for the number of clusters proved in [START_REF] Jeffrey | Inconsistency of Pitman-Yor process mixtures for the number of components[END_REF] when the parameters α and σ of PY are fixed. The result proved in this paper stated that PY mixture models are also inconsistent for the number of clusters if σ is fixed and there is a prior on α when t = 1, Figure 1 (b) illustrates that this is also the case for the more realistic case of t = 3: the number of clusters does not converge around the true number of components t = 3 (the case t = 1 is in Appendix C). Figure 1 (c) and (d) illustrate cases not covered by current theoretical results, in which a hyperprior is placed on σ and α is either fixed or random. When α is fixed and there is a hyperprior on σ, the model seems to recover the true number of components consistently. In the second scenario, the simulations appear to show inconsistency for the model. Both cases constitute interesting future research topics.

Discussion

We have proved inconsistency for the number of clusters when fitting single-component mixtures with Pitman-Yor mixture models with a prior on the concentration parameter α and fixed discount parameter σ. Our result holds when the true number of clusters in the data-generating mechanism is one. While hinting at what to expect, further study would be needed to fully understand clustering consistency for a data-generating mechanism with an arbitrary number of components.

While our result is limited to the setting where the discount parameter σ is kept fixed, it is common in practice to put a prior on both PY parameters α and σ in PY mixture models. The simulation study suggests inconsistency in this case, but consistency when keeping α fixed and putting a prior on σ. Both situations are the subject of current investigations.

process model, and we will use the subscript PY to indicate that a quantity is related to the Pitman-Yor model, whenever there is ambiguity. Under our Pitman-Yor mixture model, by applying Equation (4), we have

p PY (K n = 2|X 1:n ) p PY (K n = 1|X 1:n ) = σ 1 + α σ π 1 (α) (1+α) (n-1) dα π 1 (α) (1+α) (n-1) dα A∈τ 2 (n) 2 j=1 (1 -σ) (a j -1) m(X A j ) (1 -σ) (n-1) m(X 1:n ) = C PY (n, 1, 2)R PY (n, 1, 2)
where 

C PY (n, 1, 2) = σ 1 + α σ π 1 (α) (1+α) (n-1) dα π 1 (α) (1+α) (n-1)
Now, since our expression R PY (n, 1, 2) above does not depend on α, it is identical to the corresponding expression in the setup of [START_REF] Jeffrey | Inconsistency of Pitman-Yor process mixtures for the number of components[END_REF], who prove that it does not converge to zero as n → ∞. What is left to show is that our expression C PY (n, 1, 2) above does not converge to zero as n → ∞.

We then have,

C PY (n, 1, 2) = σ 1 + α σ π 1 (α) (1+α) (n-1) dα π 1 (α) (1+α) (n-1) dα = σ + α π 1 (α) (1+α) (n-1) dα π 1 (α) (1+α) (n-1) dα = σ + α 2 π 1 (α) (α) (n) dα α π 1 (α) (α) (n) dα = σ + C DP (n, 1, 2) → σ as n → ∞,
where the final line above comes from the special case of Equation ( 5) where t = 1 and s = 2.
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 1 Figure 1: Posterior distribution of the number of clusters K n under a Pitman-Yor process mixture for various choices of n and with (a) fixed parameters α and σ; (b) α ∼ Gamma(200, 20) and fixed σ; (c) fixed α and σ ∼ Unif(0, 1); and (d) α ∼Gamma(200, 20) and σ ∼ Unif(0, 1).

  -σ) (a j -1) m(X A j ) (1 -σ) (n-1) m(X 1:n ) .Similarly, under the Dirichlet process mixture model of[START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF], one getsp(K n = s|X 1:n ) DP p(K n = t|X 1:n ) DP = C DP (n, t, s)R DP (n, s, t),where C DP (n, t, s) is an integral in α over all of the terms involving α, and R DP (n, t, s) contains all of the remaining factors:C DP (n, t, s) := [α s π 1 (α)/α (n) ]dα [α t π 1 (α)/α (n) ]dα and R DP (n, t, s) j -1)! t j=1 m(X B j ).Ascolani et al. (2022) prove thatC DP (n, t, s) → 0 as n → ∞ ∀0 < t < s.
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Appendix A. Assumptions

Our theoretical result relies on the following three assumptions on the prior π 1 of α.

Assumption 1:

The prior π 1 is absolutely continuous with respect to the Lebesgue measure. Its density is denoted by π 1 .

Assumption 2: There exist ϵ, δ, β such that, for all α ∈ (0, ϵ) it holds that α β δ ≤ π 1 (α) ≤ δα β .

Assumption 3: There exist D, ν, ρ > 0 such that α s π(α)dα < Dρ -s Γ(ν + s + 1) for every s ≥ 1.

We assume kernels of the form

Our results rely on the following assumptions on the function g and the base measure Q 0 of the PYP.

Assumption 4:

Function g is strictly positive on some interval [a, b] and 0 elsewhere.

Assumption 5:

Function g is differentiable with bounded derivative in (a, b).

Assumption 6:

The base measure Q 0 is absolutely continuous with respect to the Lebesgue measure, and its density q 0 is bounded.

Appendix B. Proof of results

The proof of our result relies on the following simple lemma, used by and proved by [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF]. It justifies working with ratios, which allows us to avoid calculations of marginal likelihoods of the observed data.

Proof of Theorem 1. By Lemma 2, it will be sufficient to prove that p(Kn=s|X 1:n ) p(Kn=1|X 1:n ) ̸ → 0 as n → ∞, for some s > 1. We will prove this using s = 2.

In order to prove our result, we make use of results of the asymptotic behavior of certain quantities under the Dirichlet process mixture model of [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF]. Throughout this proof will thus use the subscript DP to indicate that a quantity is related to the Dirichlet The model and the algorithms used are similar as in Section 4. We choose the hyperparameters of the priors on σ and α such that the mean of these distributions correspond to the fixed values chosen for α and σ. The prior on α also satisfies the conditions introduced in [START_REF] Ascolani | Clustering consistency with Dirichlet process mixtures[END_REF].

It can be noted that we need a larger number of iterations to achieve MCMC convergence when we put a prior on σ.

As we choose here a unique component the results are less graphic than in Section 4. Still, we can observe that in Figure 2 (b), the model seems to overestimate K n as the size increase. Hence, Figure 2 (b) illustrates the theoretical result in Section 3.

Also, the distribution in Figure 2 (c) seems to slowly concentrate on the left, but concentration of the posterior on a single component is probably slower than on three components and it would be necessary to use simulated data with a larger sample size to obtain more striking figures. Gamma(200,20) and σ ∼ Unif(0, 1).