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The goal of this article is to investigate the dynamics of semi-relativistic or nonrelativistic charged particles in interaction with a scalar meson field. Our main contribution is the derivation of the classical dynamics of a particle-field system as an effective equation of the quantum microscopic Nelson model, in the classical limit where the value of the Planck constant approaches zero (ℏ → 0). Thus, we prove the validity of Bohr's correspondence principle, that is to establish the transition from quantum to classical dynamics. We use a Wigner measure approach to study such transition. Then, as a consequence of this interplay between classical and quantum dynamics, we establish the global well-posedness of the classical particle-field interacting system, despite the low regularity of the related vector field, which prevents the use of a fixed point argument.

Introduction

Classical and quantum mechanics may initially appear to be fundamentally different, as classical mechanics deals with the trajectories of particles while quantum mechanics focuses on wave functions evolution. Furthermore, quantum mechanics are successful in describing microscopic objects, whereas macroscopic systems are better described by classical theories like classical mechanics and classical electrodynamics. The point at which quantum and classical physics are in accordance is known as the correspondence limit, or the classical limit. The Correspondence Principle has been introduced to quantum theory in 1920 by Niels Bohr. Such principle emphasizes the importance of understanding the relationship between the two theories and how they converge in specific scaling limits. Bohr proposed that as the quantum numbers increase, the system behaves more classically and the predictions of quantum mechanics align with those of classical mechanics. In the mathematical physics literature, the Bohr's principle is discussed in different frameworks (quantum mechanics, many-body theory, quantum field theory); and rigorously proved using mainly the Hepp's method [START_REF] Hepp | The classical limit for quantum mechanical correlation functions[END_REF]. However, this method applies only to a specific selection of density matrices, namely coherent states. In this article, we explore this principle by studying the convergence from quantum to classical dynamics in a particle-field interaction model as the value of the Planck constant, denoted by ℏ, approaches zero (see also [START_REF] Falconi | Classical limit of the nelson model with cutoff[END_REF][START_REF] Ginibre | Partially classical limit of the nelson model[END_REF]).

On the other hand, the interaction between matter and fields has been a subject of great interest in recent decades. Here, the focus is on exploring the dynamics of charged particles and a scalar meson field interacting according to the Yukawa theory. Recall that the Yukawa theory models the strong nuclear force as an interaction between nucleons (non-relativistic or semi-relativistic particles) and mesons (fields). It is known that, despite the ability of classical mechanics in resolving many physical problems, there are still some phenomena that can not be explained by classical laws alone. Here, the low regularity of the vector field associated to the interacting system makes it difficult to construct global solutions using standard arguments. To overcome this issue, we use the quantum-classical transition of the Yukawa theory. Then, by employing transition, it becomes possible to construct global solutions for the classical interacting system. Another recent study [START_REF] Ammari | Towards a derivation of classical electrodynamics of charges and fields from qed[END_REF] has also explored this type of convergence for non-relativistic particles interacting with the electro-magnetic field, considering the Pauli-Fierz Hamiltonian which converges to the Newton-Maxwell equation.

From a classical standpoint, in our case the dynamics are governed by a particle-field equation (1.1), also known as Newton-Klein-Gordon equation, which is a nonlinear system of coupled PDE-ODEs. Previous studies have examined this type of equation, as demonstrated in the articles [START_REF] Komech | Effective Dynamics for a Mechanical Particle Coupled to a Wave Field[END_REF][START_REF] Komech | Soliton-like asymptotics for a classical particle interacting with a scalar wave field[END_REF][START_REF] Komech | Long-time asymptotics for a classical particle interacting with a scalar wave field[END_REF]. These works focus on analyzing the long-term behavior of the solutions to a particle-field equation. Specifically, the authors of these articles introduce a form factor within the interacting system to ensure that the Hamiltonian remains bounded from below, and they assume that this form factor is compactly supported. In our investigation, we adopt a more general framework by imposing less restrictions on this form factor.

From a quantum standpoint, the time evolution is generated by the so-called Nelson Hamiltonian (1.5). The Nelson model was first introduced by Edward Nelson in [START_REF] Nelson | Interaction of Nonrelativistic Particles with a Quantized Scalar Field[END_REF][START_REF] Nelson | Schrödinger Particles Interacting with a Quantized Scalar Field[END_REF] to describe the interaction between particles (nucleons) and meson field (strong nuclear force). The Nelson model has been widely studied by many researchers, and a selection of relevant articles includes [START_REF] Abdesselam | Analyticity of the ground state energy for massless nelson models[END_REF][START_REF] Albeverio | Scattering theory in a model of quantum fields[END_REF][START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic hamiltonian in quantum field theory: The nelson model[END_REF][START_REF] Arai | Ground State of the Massless Nelson Model Without Infrared Cutoff in a Non-Fock Representation[END_REF][START_REF] Bach | Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field[END_REF][START_REF] Chen | Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti[END_REF][START_REF] Chen | Higher order energy conservation and global well-posedness of solutions for Gross-Pitaevskii hierarchies[END_REF][START_REF] Froehlich | Asymptotic electromagnetic fields in models of quantummechanical matter interacting with the quantized radiation field[END_REF][START_REF] Gerard | On the Scattering Theory of Massless Nelson Models[END_REF][START_REF] Gérard | Infrared problem for the nelson model on static spacetimes[END_REF][START_REF] Hiroshima | Diamagnetic inequalities for systems of nonrelativistic particles with a quantized field[END_REF][START_REF] Høegh-Krohn | Asymptotic Fields in Some Models of Quantum Field Theory[END_REF][START_REF] Teufel | Effective n-body dynamics for the massless nelson model and adiabatic decoupling without spectral gap[END_REF].

Our objectives are then:

-Proving the validity of Bohr's correspondence principle. More precisely, we want to establish a relationship between quantum and classical dynamics by showing that Nelson model reduces to the classical particle-field equation in the classical limit ℏ → 0; -Establishing the global well-posedness of a particle-field equation under weak assumptions on the form factor χ (see (1.6)) and on the potential V (see (1.7)).

The quantum dynamics have a well-defined global behavior. Our method involves transferring certain quantum regularization effects to the classical dynamics. This leads to the derivation of the classical dynamics of the particle-field system as an effective equation of a quantum microscopic dynamical system in the limit ℏ → 0.

To achieve this scenario, we investigate the transition using Wigner measures approach in infinite dimensional bosonic quantum field theory. In recent years, this Wigner measure method have been used in many-body theory [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF] and in quantum field theory [START_REF] Ammari | Bohr's correspondence principle for the renormalized nelson model[END_REF] with an a priori knowledge of global well-posedness (GWP) for effective equations. Whereas in this work, our strategy furnishes global well-posedness and convergence at the same time. Usually, this convergence is non-trivial, and there is no prior guarantee of obtaining unique limits. However, we overcome this difficulty by relying on our assumptions.

The main results are the classical limit (Theorem 1.1) and the global well-posedness of a particle field equation (Theorem 1.3). To prove these outcomes, our strategy is summarized in the steps below:

• We first extract the quantum dynamical system using the family of density matrices (ϱ ℏ ) ℏ satisfying (1.8) and (1.9); • Then, after proving the propagation (uniformly in any compact time interval) of the two uniform estimates (1.8) and (1.9), we take the limit to obtain the classical dynamics on the inverse Fourier transform of the Wigner measure. This results in a specific classical equation which is equivalent to a statistical Liouville equation, thanks to the regularities associated with the Wigner measure and vector field in this context; • We employ then measure-theoretical methods [START_REF] Ammari | On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs[END_REF][START_REF] Ammari | On well-posedness and uniqueness for general hierarchy equations of gross-pitaevskii and hartree type[END_REF][START_REF] Ammari | Towards a derivation of classical electrodynamics of charges and fields from qed[END_REF]] which provides us with the almost sure existence of global solutions. This requires us to prove the uniqueness of the solutions to a particle-field equation by using classical tools; • Finally, we extend the existence result to all initial data. It is important to note, however, that the associated flow is Borel measurable with respect to initial data and may not be continuous.

1.1. General framework. This section provides a concrete mathematical description of the previous introduction. From a classical perspective, the dynamics are governed by a particlefield equation, as detailed in Paragraph 1.1.1. From a quantum perspective, the dynamics are governed by the Nelson Hamiltonian, which is explained in Paragraph 1.1.2.

1.1.1. The particle-field equation. Consider n fixed number of classical particles in the configuration space R d with d ∈ N * , interacting with field. Let M j be the mass of the j th particle. The dynamic of the particles is characterized by their momenta p j ∈ R d and their positions q j ∈ R d . Whereas, the field is described by α :

R d → C. Let p = (p 1 , • • • , p n ), q = (q 1 , • • • , q n )
and f j : R d -→ R, the Hamiltonian of the particle-field system is

H(p, q, α) = n j=1 f j (p j ) + V (q 1 , • • • , q n ) + R d α(k) ω(k) α(k) dk + n j=1 R d χ(k) ω(k) α(k)e 2πik•q j + α(k)e -2πik•q j dk.
We consider two cases:

-Choosing f j (p j ) = p 2 j + M 2 j corresponds to the semi-relativistic case. -Choosing f j (p j ) = p 2 j /2M j corresponds to the non-relativistic case. The parameter ω represents the dispersion relation defined by

ω(k) = k 2 + m f 2 ≥ m f > 0,
where m f is the mass of the meson field. The function V : R dn → R represents the external potential and χ : R d → R is the form factor. The equation of motion for the particle-field system is given by

                   ∂ t p j = - ∂H ∂q j = -∇ q j V (q) - R d 2πik χ(k) ω(k) α(k)e 2πik•q j -α(k)e -2πik•q j dk; ∂ t q j = ∂H ∂p j = ∇f j (p j ); i∂ t α = ∂H ∂α = ω(k) α(k) + n j=1 χ(k) ω(k) e -2πik•q j . (1.1)
To clarify, the interaction term between particles and the scalar field has a specific form which is: linear in the field (for both semi and non-relativistic case); and in the momentum (only in the non-relativistic case). The solution u = (p, q, α) to (1.1) belongs to the following classical space

X σ := R dn × R dn × G σ
, where G σ with σ ≥ 0 is the weighted L 2 lebesgue space endowed with the following norm

∥α∥ 2 G σ := ⟨α, ω(•) 2σ α⟩ L 2 = R d ω(k) 2σ |α(k)| 2 dk = ∥ω σ α∥ 2 L 2 .
We have then for u = (p, q, α) ∈ X σ the following norm

∥u∥ 2 X σ := n j=1 (|q j | 2 + |p j | 2 ) + ∥α∥ 2 G σ .
The form factor serves as a way to term the interaction between particles and the field, by smoothing out the Hamiltonian and ensuring that it is bounded from below under certain assumptions. The magnitude of the coupling between the particles and the field is controlled by the form factor. We consider the energy space where the Hamiltonian is well-defined, namely X 1/2 , but our main results are stated in the spaces X σ with σ ∈ [ 1 2 , 1]. 1.1.2. The Nelson model. The particle-field equation can be formally quantized to obtain the Nelson model. The Hilbert space of the quantized particle-field system is

H := L 2 (R dn x , C) ⊗ Γ s (L 2 (R d k , C)) , where Γ s (L 2 (R d k , C
)) is the symmetric Fock space which could be identified with

Γ s (L 2 (R d k , C)) := +∞ m=0 L 2 (R d , C) s m ≃ +∞ m=0 L 2 s (R dm , C).
We denote by

F m := L 2 s (R dm , C) the symmteric L 2 space over R dm . Let X n = (x 1 , • • • , x n ), dX n = dx 1 • • • dx n , K m = (k 1 , • • • , k m ), dK m = dk 1 • • • dk m . (1.2)
Then, the Hilbert space H is endowed with the following norm for all ψ = {ψ m } m≥0

∥ψ∥ H := ∞ m=0 R dn R dm |ψ m (X n , K m )| 2 dX n dK m 1/2
.

Let pj and qj be the quantized momentum and position operators such that for all j ∈ {1, • • • , n}

pj = -iℏ∇ x j , qj = x j .
The ℏ scaled creation-annihilation operators for the field are defined on Γ s for any

f ∈ L 2 (R d , C) as âℏ (f ) = R d f (k) âℏ (k) dk, â * ℏ (f ) = R d f (k) â * ℏ (k) dk ,
where âℏ (k) and â * ℏ (k) are the creation-annihilation operator-valued distributions defined as follows

[â ℏ (k) ψ] m (k 1 , • • • , k m ) = ℏ(m + 1) ψ m+1 (k, k 1 , • • • , k m ) ; [â * ℏ (k) ψ] m (k 1 , • • • , k m ) = √ ℏ √ m m j=1 δ(k -k j ) ψ m-1 (k 1 , • • • , kj , • • • , k m ).
In our case, we will work with the generalized ℏ scaled creation-annihilation operators. The two operators â♯ ℏ (G) : H → H are defined for

G : L 2 (R dn x , C) -→ L 2 (R dn x , C) ⊗ L 2 (R d k , C) ψ -→ G ψ. with (G ψ)(X n , k) = n j=1 χ(k) ω(k) e -2πik•q j ψ(X n ).
In general, we have

[â ℏ (G) ψ(X n )] m (K m ) = ℏ(m + 1) n j=1 R d χ(k) ω(k) e 2πik•q j ψ m+1 (X n ; K m , k) dk ; (1.3) [â * ℏ (G) ψ(X n )] m (K m ) = √ ℏ √ m m j=1 n ℓ=1 χ(k j ) ω(k j ) e -2πik j •q ℓ ψ m-1 (X n ; k 1 , • • • , kj , • • • , k m ). (1.4)
Introduce the second quantization dΓ(A) : H → H for the self-adjoint operator A with dΓ(A) ψ = {[dΓ(A) ψ] m } m>0 and where

[dΓ(A) ψ] m = ℏ m j=1 ψ ⊗ • • • ⊗ Aψ j th position ⊗ • • • ⊗ ψ.
The ℏ scaled number operator Nℏ = dΓ(Id) and the number operator N are defined as follows

[ Nℏ ψ] m = ℏ m ψ m , [ N ψ] m = m ψ m .
The free field Hamiltonian dΓ(ω) : H → H is defined as follows

[dΓ(ω) ψ(X n )] m = ℏ m j=1 ω(k j ) ψ m (X n ; K m ).
Formally, one can express this as:

dΓ(ω) = R d â * ℏ (k) ω(k) âℏ (k) dk.
The non-interacting Hamiltonian is defined as follows Ĥ0 := Ĥ01 + Ĥ02 , where we have introduced the two terms Ĥ01 and Ĥ02 as follows

Ĥ01 = n j=1 f j (p j ), Ĥ02 = dΓ(ω).
The interaction Hamiltonian Ĥ1 : H → H is defined in terms of âℏ , â * ℏ as in (1.3)-(1.4) as follows Ĥ1 = âℏ (G) + â * ℏ (G). The Nelson-Hamiltonian takes then the following form Ĥℏ ≡ Ĥ = Ĥ0 + V (q) + Ĥ1 .

(1.5)

The inclusion of a form factor χ in the interaction term of the particle-field equation ensures the well-definedness of the corresponding quantum dynamics and leads to a self-adjoint Nelson Hamiltonian. It has been demonstrated that, under certain mild assumptions on χ and the potential V , the unbounded operator Ĥℏ is indeed self-adjoint (as discussed in [START_REF] Ammari | Bohr's correspondence principle for the renormalized nelson model[END_REF] and references therein). In the following, we aim to identify the minimal conditions on χ and V that enable further analysis.

1.2. Assumptions and main results. We have to impose the following assumptions on the external potential V : R dn -→ R and the form factor χ : R d -→ R with σ ≥ 0:

V ∈ C 2 b (R dn ; R), (1.6 
)

ω(•) 3 2 -σ χ(•) ∈ L 2 (R d ; R). (1.7)
Note that the following identities hold true:

• If ω(•) 3 2 -σ χ(•) ∈ L 2 (R d ; R) then χ(•) ∈ L 2 (R d ; R); • If χ(•) ∈ L 2 (R d ; R) then for any γ > 0, we have ω(•) -γ χ(•) ∈ L 2 (R d ; R).
Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices on H of the particle-field quantum system. The main assumptions on the family of states (ϱ ℏ ) ℏ∈(0,1) are:

∃C 0 > 0, ∀ℏ ∈ (0, 1), Tr[ϱ ℏ dΓ(ω 2σ )] ≤ C 0 , (1.8 
)

∃C 1 > 0, ∀ℏ ∈ (0, 1), Tr[ϱ ℏ (q 2 + p2 )] ≤ C 1 .
(1.9)

Remark that the following identities hold true:

• If Tr[ϱ ℏ dΓ(ω 2σ )] ≤ c 0 , then Tr[ϱ ℏ dΓ(ω)] ≤ c ′ 0 for some c 0 , c ′ 0 ∈ R * + ; • If Tr[ϱ ℏ dΓ(ω)] ≤ c 1 , then Tr[ϱ ℏ Nℏ ] ≤ c ′ 1 for some c 1 , c ′ 1 ∈ R * + ; • If Tr[ϱ ℏ (q 2 + p2 )] ≤ c 2 , then Tr[ϱ ℏ ( Ĥ0 + 1)] ≤ c ′ 2 for some c 2 , c ′ 2 ∈ R * + .
The first result presented in this section concerns the flow of the particle-field equation. 

(•) ∈ C(R, X σ ) ∩ C 1 (R, X σ-1
) of the particle-field equation (1.1). Moreover, the global flow map u 0 → Φ t (u 0 ) = u(t) associated to the particle-field equation (1.1) is Borel measurable.

The above global flow is not constructed from a fixed point argument, whereas it is constructed by means of statistical arguments. More precisely, we use measure theoritical techniques to construct this flow. And thus, it is only Borel measurble and not necessarily continuous. Denote by P(X 0 ) the set of all Borel probability measure over the space X 0 . Definition 1.2 (Wigner measures). A Borel probability measure µ ∈ P(X 0 ) is a Wigner measure of a family of density matrices (ϱ ℏ ) ℏ∈(0,1) on the Hilbert space H if and only if there exists a countable subset A ⊂ (0, 1) with 0 ∈ A such that for any ξ = (p 0 , q 0 , α 0 ) ∈ X 0 :

lim ℏ→0,ℏ∈A Tr W(2πq 0 , -2πp 0 , √ 2πα 0 )ϱ h = X 0 e 2πiℜe⟨ξ,u⟩ X 0 dµ(u).
The next result concerns the classical limit which relies on the construction of a Wigner measure in the context of infinite-dimensional bosonic quantum field theory. This allows us to establish convergence from the quantum to the classical dynamics. Denote by

M(ϱ ℏ , ℏ ∈ A),
the set of all Wigner measure associated to the density matrices (ϱ ℏ ) ℏ∈A .

Theorem 1.3 (Validity of Bohr's correspondence principle). Let σ ∈ [ 1 2 , 1] and assume (1.6) and (1.7) hold true. Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices on H satisfying (1.8) and (1.9). Let (ℏ n ) n∈N ⊂ (0, 1) such that ℏ n -→ 0 n→∞ and assume that M(ϱ ℏn , n ∈ N) = {µ 0 }. Then for all times t ∈ R, there exists a subsequence (ℏ ℓ ) ℓ∈N and a family of Borel probability measure (µ t ) t∈R such that M(e

-i t ℏ ℓ Ĥ ϱ ℏ ℓ e i t ℏ ℓ Ĥ , ℓ ∈ N) = {µ t }, where µ t ∈ P(X 0 ) satisfying (i) µ t is concentrated on X σ i.e. µ t (X σ ) = 1; (ii) µ t = (Φ t ) ♯ µ 0 , where u 0 -→ Φ t (u 0 ) = u(t)
is the Borel measurable global flow of the particle-field equation (1.1).

The result above indicates that when ϱ ℏ are density matrices on H that approach the Wigner probability measure µ 0 as ℏ approaches zero, the evolved density matrices ϱ ℏ (t) will converge to µ t = (Φ t ) ♯ µ 0 for all times t. Here, Φ t is the flow that solves (1.1).

To demonstrate the aforementioned results, we adopt the following approach: Firstly, we employ classical techniques to establish the uniqueness property of the particle-field solutions. Subsequently, we establish crucial uniform propagation estimates on the quantum dynamics. Then, we present a probabilistic representation of measure-valued solutions for the Liouville's equation (see [START_REF] Ammari | On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs[END_REF][START_REF] Ammari | On well-posedness and uniqueness for general hierarchy equations of gross-pitaevskii and hartree type[END_REF]). This representation is used to construct a generalized global flow for a particle-field equation. As a conclusion, we establish by means of Wigner measures the global well-posedness for the particle-field equation and the Bohr's correspondence principle for the Nelson model.

The classical system

This section is dedicated to examining various classical properties of the particle-field equation. Firstly, in Subsection 2.1, we introduce the particle-field equation as a semi-linear partial differential equation and establish its interaction representation. In Subsection 2.2, we prove the uniqueness of the particle-field equation using this representation. 

u(0) = u 0 ∈ X σ , (PFE) 
where t → u(t) = (p(t), q(t), α(t)) is a solution, L(u) = (0, 0, -iωα) is a linear operator such that L : X σ -→ X σ-1 and N is the nonlinearity given by (N (u)) p j := -∇ q j V (q) -∇ q j I j (q, α),

(N (u)) q j := ∇f j (p j ), (N (u)) α (k) := -i n j=1 χ(k) ω(k) e -2πik•q j , (2.1) 
where we have introduced

I j : R dn × L 2 (R d , C) → R I j (q, α) := R d χ(k) ω(k) α(k)e 2πik•q j + α(k)e -2πik•q j dk (2.2) with ∇ q j I j (q, α) = R d 2πik χ(k) ω(k) α(k)e 2πik•q j -α(k)e -2πik•q j dk. (2.3)
We consider now the particle-field equation as a non-autonomous initial value problem over the Hilbert space

X σ with    du(t) dt = v(t, u(t)), u(0) = u 0 ∈ X σ .
(IVP)

The non-autonomous vector field v is defined in terms of the non-linearity N : X σ -→ X σ of the particle-field equation as well as the free field flow Φ f t : X σ -→ X σ as follows:

v(t, u) = Φ f -t • N • Φ f t (u), (2.4) 
where we have introduced the free field flow Φ f t as follows Φ f t (p, q, α) = (p, q, e -itω(k) α).

(2.5)

Lemma 2.1 (Explicit expression for the vector field v). The vector field v : R × X σ → X σ takes the following explicit form:

(v(t, u)) p j = N • Φ f t (u) p j , (v(t, u)) q j = N • Φ f t (u) q j , (v(t, u)) α (k) = e itω(k) N • Φ f t (u) α (k), (2.6 
)

where v(t, u) = t (v(t, u)) p 1 , • • • , (v(t, u)) pn , (v(t, u)) q 1 , • • • , (v(t, u)) qn , v(t, u) α .
Proof. The result follows from direct computations of v using the relation (2.4). □ Proposition 2.2 (Equivalence between (PFE) and (IVP)). Assume (1.6) and (1.7) are satisfied.

Let I be a bounded open interval containing the origin. Then, the statments below are equivalent:

(1) u(•) ∈ C 1 (I, X σ ) is a strong solution of (IVP);

(2) u(•) ∈ C(I, X σ ) solves the following Duhamel formula

u(t) = u 0 + t 0 v(s, u(u)) ds, ∀t ∈ I.
(3) The curve t -→ Φ f t (u(t)) ∈ C(I, X σ )∩C 1 (I, X σ-1 ) is a strong solution to the particle-field equation (1.1).

Proof. The first two assertions can be proved easily since v is continuous vector field (by Lemma 2.5). Let us now prove the equivalence between (1) and [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. Suppose that u(t) = (p(t), q(t), α(t)) is a solution to (IVP). Require to prove that ũ(t) = (p(t), q(t), α(t)) = Φ f t (u(t)) = (p(t), q(t), e -itω(k) α(t)), is a solution to (PFE). The first term

∂ t pj = ∂ t p j = (v(t, u)) p j = N • Φ f t (u) p j = (w(ũ)) p j .
The second term

∂ t qj = ∂ t q j = ∇f j (p j ) = (w(ũ)) q j .
The third term

∂ t α = -iω(k) e -itω(k) α(k) + e -itω(k) ∂ t α = -iω(k) α(k) + e -itω(k) e itω(k) N • Φ f t (u) α (k) = -iω(k) α(k) + (N (ũ)) α (k) = (w(ũ)) α (k).
We conclude that ũ is a solution to (PFE). Similarly, we can prove the reverse sense. □

Let I be an open interval containing the origin. We are interested in strong solution to the particle-field equation (PFE) such that

u(•) ∈ C(I, X σ ) ∩ C 1 (I, X σ-1 ),
and (PFE) is satisfied for all t ∈ I. In particular, from the second assertion of Proposition 2.2, these solutions satisfy the following Duhamel formula for all t ∈ I u

(t) = Φ f t (u(0)) + t 0 Φ f t-s • N (u(s)) ds, (2.7) 
where Φ f t (•) is the free field flow defined above in (2.5).

2.2. Properties of the particle-field equation. In this section, we establish various properties related to the particle-field equation and its time interaction representation. Of most significance is the recovery of the uniqueness property of solutions to the particle-field equation (PFE) on the energy space X σ . Our approach starts with deriving estimates for ∇ q j I j (•).

Lemma 2.3 (Estimates for ∇ q j I j ). We have the following two estimates.

(i) Assume ω 1/2 χ ∈ L 2 (R d , dk). Then, for all (q, α) ∈ R dn × L 2 (R d , C
), for all j ∈ {1, • • • , n}, we have the following estimate

|∇ q j I j (q, α)| ≤ 4π ∥ω 1/2 χ∥ L 2 ∥α∥ L 2 .
(2.8)

(ii) Assume (1.7) is satisfied.
Then, for all j ∈ {1, • • • , n}, for all q 1 , q 2 ∈ R dn with q 1 = (q 1j ) j and q 2 = (q 2j ) j , for all α 1 , α 2 ∈ G σ , we have

|∇ q j I j (q 1 , α 1 ) -∇ q j I j (q 2 , α 2 )| ≤ 4π ∥ω 1/2 χ∥ L 2 ∥α 1 -α 2 ∥ L 2 + 8 √ 2π 2 ∥ω 3 2 -σ χ∥ L 2 |q 1j -q 2j | ∥α 2 ∥ G σ .
Proof. For (i), by Cauchy-Schwatrz inequality, we have

∀(q, α) ∈ R dn × L 2 (R d , C) |∇ q j I j (q, α)| = R d χ(k) ω(k) 2πik α(k)e 2πik•q j -α(k)e -2πik•q j dk ≤ 4π R d χ(k) ω(k) ω(k) |α(k)| dk ≤ c-s 4π ∥ω 1/2 χ∥ L 2 ∥α∥ L 2 .
For (ii), by Cauchy-Schwartz inequality and using the estimate

|e iy -1| ≤ √ 2 |y|, we have ∀(q 1 , α 1 ), (q 2 , α 2 ) ∈ R dn × G σ , ∀j ∈ {1, • • • , n} the following estimates |∇ q j I j (q 1 , α 1 ) -∇ q j I j (q 2 , α 2 )| = R d χ(k) ω(k) 2πik α 1 (k)e 2πik•q 1j -α 1 (k)e -2πik•q 1j -α 2 (k)e 2πik•q 2j + α 2 (k)e -2πik•q 2j dk = R d χ(k) ω(k) 2πik (α 1 (k) -α 2 (k))e 2πik•q 1j + α 2 (k) e 2πik•q 1j -e 2πik•q 2j + (α 2 (k) -α 1 (k))e -2πik•q 1j + α 2 (k) e -2πik•q 2j -e -2πik•q 1j ≤ 4π R d χ(k) ω(k) ω(k) |α 1 (k) -α 2 (k)| + α 2 (k) e 2πik•(q 1j -q 2j ) -1 ≤ 4π R d ω(k) χ(k) |α 1 (k) -α 2 (k)| + α 2 (k) √ 2 2πk • (q 1j -q 2j ) ≤ 4π R d ω(k) χ(k) |α 1 (k) -α 2 (k)| + 2 √ 2 π α 2 (k)| ω(k) |q 1j -q 2j | ≤ c-s 4π ∥ω 1/2 χ∥ L 2 ∥α 1 -α 2 ∥ L 2 + 8 √ 2π 2 ∥ω 3 2 -σ χ∥ L 2 |q 1j -q 2j | ∥α 2 ∥ G σ .

□

The vector field N , which characterizes the nonlinearity of the particle-field equation, possesses the following properties.

Proposition 2.4 (Continuity and boundedness of N ). Assume (1.6) and (1.7) are satisfied. Then, the nonlinearity N : X σ → X σ is a continuous, and bounded on bounded sets, vector field.

Proof. Let us prove first that N : X σ → X σ is bounded on bounded sets. Let u ∈ X σ be a bounded such that ∥u∥ X σ ≤ c 0 , for some c 0 > 0. Require to prove ∥N (u)∥ 2 X σ ≤ c 1 for some c 1 > 0. We have first with some c 2 > 0

N (u) p j = -∇ q j V (q) -∇ q j I j (q, α) ≤ ∇ q j V (q) + ∇ q j I j (q, α) ≤ Lemma 2.3-(i) ∇ q j V L ∞ + 4π ∥ω 1/2 χ∥ L 2 ∥α∥ L 2 ≤ n sup j=1 ∇ q j V L ∞ + 4π m f σ ∥ω 1/2 χ∥ L 2 ∥α∥ G σ ≤ n sup j=1 ∇ q j V L ∞ + 4π m f σ ∥ω 1/2 χ∥ L 2 c 0 := c 2 .
We also have with some c 3 , c 4 > 0

N (u) q j = ∇f j (p j ) ≤ c 3 |p j | ≤ c 3 c 0 := c 4 .
Finally, we have with some c 5 > 0

∥ N (u) α ∥ 2 G σ = ∥ω σ N (u) α ∥ 2 L 2 = R d -i n j=1 ω σ (k) χ(k) ω(k) e -2πik•q j 2 dk ≲ n 2 ∥ω σ-1 2 χ∥ 2 L 2 := c 5 ,
where

∥ω σ-1 2 χ∥ L 2 is finite since σ -1 2 < 3 2 -σ for σ ∈ [ 1 2 , 1]
. This implies that there exists

c 1 > 0 such that ∥N (u)∥ 2 X σ ≤ n (c 2 2 + c 2 4 ) + c 5 := c 1 .
It remains to prove the continuity of the nonlinear term N : X σ → X σ . Suppose that

u ℓ = (p ℓ , q ℓ , α ℓ ) -→ ℓ→+∞ u = (p, q, α), in X σ i.e. ∥u ℓ -u∥ X σ -→ 0 ℓ→+∞ . Require to prove N (u ℓ ) -→ ℓ→+∞ N (u) in X σ i.e. ∥N (u ℓ ) -N (u)∥ X σ -→ 0 ℓ→+∞ .
Indeed, we have

∥N (u ℓ )-N (u)∥ 2 X σ = n j=1 N (u ℓ ) -N (u) p j 2 + N (u ℓ ) -N (u) q j 2 +∥ N (u ℓ )-N (u) α ∥ 2 G σ .
By Lemma 2.3-(ii), we can assert that

N (u ℓ ) -N (u) p j ≤ ∇ q j V (q ℓ ) -∇ q j V (q) + 4π m f σ ∥ω 1/2 χ∥ L 2 ∥α ℓ -α∥ G σ + 8 √ 2π 2 ∥ω 3 2 -σ χ∥ L 2 |q ℓj -q j | ∥α∥ G σ ≤ n j ′ =1 ∥∇ q j ′ ∇ q j V ∥ L ∞ |q ℓj ′ -q j ′ | + 4π m f σ ∥ω 1/2 χ∥ L 2 ∥α ℓ -α∥ G σ + 8 √ 2π 2 ∥ω 3 2 -σ χ∥ L 2 |q ℓj -q j | ∥α∥ G σ ≤ n n sup j ′ ,j=1 ∥∇ q j ′ ∇ q j V ∥ L ∞ + 4π m f σ ∥ω 1/2 χ∥ L 2 + 8 √ 2π 2 ∥ω 3 2 -σ χ∥ L 2 ∥α∥ G σ ∥u ℓ -u∥ X σ -→ 0 ℓ→+∞ . N (u ℓ ) -N (u) q j ≤ c |p ℓj -p j | ≤ c ∥u ℓ -u∥ X σ -→ 0 ℓ→+∞ .
For the last term we have

∥ N (u ℓ ) -N (u) α ∥ 2 G σ = R d -i n j=1 ω σ (k) χ(k) ω(k) e -2πik•q ℓj -e -2πik•q j 2 dk = R d -i n j=1 ω σ-1 2 (k) χ(k) e -2πik•q ℓj -e -2πik•q j 2 dk,
where we have

• R d -i n j=1 ω σ-1 2 (k) χ(k) e -2πik•q ℓj -e -2πik•q j 2 dk ≤ 4n 2 ∥ω σ-1 2 χ∥ 2 L 2 < +∞; • e -2πik•q ℓj -e -2πik•q j -→ 0 ℓ→+∞ .
Hence by Lebesgue dominated convergence theorem, we get

∥ N (u ℓ ) -N (u) α ∥ 2 G σ -→ 0 ℓ→+∞ . And thus, ∥N (u ℓ ) -N (u)∥ 2 X σ -→ 0 ℓ→+∞ .

□

The above theorem implies the following results on the vector field v.

Lemma 2.5 (Continuity and boundedness properties of the vector field v). Assume (1.6) and (1.7) are satisfied. Then, the vector field v : R × X σ -→ X σ is continuous and bounded on bounded subsets of R × X σ .

Proof. This is a consequence of the continuity and boundedness properties of the nonlinear term N :

X σ → X σ in Proposition 2.4. □
As a consequence of the above properties, we have the following uniqueness property. 

(0) = u 2 (0). Then u 1 (t) = u 2 (t) for all t ∈ I.
Proof. Note first that using Duhamel formula (2.7) as well as u 1 (0) = u 2 (0), we have for all t ≥ 0

∥u 1 (t) -u 2 (t)∥ X 0 ≤ t 0 ∥N (u 1 (s)) -N (u 2 (s))∥ X 0 ds.
We claim that for all s ∈ [0, t], there exists C > 0 such that

∥N (u 1 (s)) -N (u 2 (s))∥ X 0 ≤ C ∥u 1 (s) -u 2 (s)∥ X 0 .
Indeed, by using the Mean Value Theorem for multivariate vector-valued function ∇ q j V , the first component yields to

N (u 1 (s)) -N (u 2 (s)) p j ≤ ∇ q j V (q 1 (s)) -∇ q j V (q 2 (s)) + |∇ q j I j (q 1 (s), α 1 (s)) -∇ q j I j (q 2 (s), α 2 (s))| ≲ Lemma 2.3-(ii) ∥∇ q ∇ q j V ∥ L ∞ |q 1 (s) -q 2 (s)| + ∥α 1 (s) -α 2 (s)∥ L 2 + ∥α 2 (s)∥ G σ |q 1 (s) -q 2 (s)| ≲ ∥u 1 (s) -u 2 (s)∥ X 0
, where we have used for some bounded interval

J ⊂ I ∥α 2 (s)∥ G σ ≤ sup s∈J ∥u 2 (s)∥ X σ < +∞.
The second component yields to

N (u 1 (s)) -N (u 2 (s)) q j ≲ |p 1 (s) -p 2 (s)| ≲ ∥u 1 (s) -u 2 (s)∥ X 0 .
The third component yields to

∥ N (u 1 (s)) -N (u 2 (s)) α ∥ L 2 ≲ |q 1 (s) -q 2 (s)| ≲ ∥u 1 (s) -u 2 (s)∥ X 0 .
Therefore, we get by combining the above three components the following estimate

∥u 1 (t) -u 2 (t)∥ X 0 ≤ t 0 ∥N (u 1 (s)) -N (u 2 (s))∥ X 0 ds ≤ C t 0 ∥u 1 (s) -u 2 (s)∥ X 0 ds.
Then, by Gronwall's Lemma, we get ∥u 1 (t) -u 2 (t)∥ X 0 = 0. Thus, we get the desired result. □ Remark 2.7 (Local well-posendness in X 1/2 ). Under assumptions (1.6) and (1.7), for all initial data u 0 ∈ X 1/2 , one can prove the existence of a unique local solution u(•) ∈ C([0, T ]; X 1/2 ) to (1.1), where T ∈ R + * is small enough. This can be proved by means of standard fixed point argument.

Remark 2.8 (Global well-posendness in X σ ). In line with the above remark, one could also prove the global well-posedness in X σ by using Granwall arguemnts and the conservation of Hamiltonian.

The quantum system

In Subsection 3.1, we prove some quantum estimates, which we then apply in Subsection 3.2 to establish the self-adjointness of the Nelson Hamiltonian using the Kato-Rellich theorem. Lastly, in Subsection 3.3, we discuss the dynamical equation for the quantum system.

3.1. Quantum estimates. Our initial focus here is on providing the reader with estimates that are necessary to establish the self-adjointness of the Nelson Hamiltonian. Denote by L(H) the set of all bounded operator and by L 1 (H) the set of trace-class operators on H.

Lemma 3.1 (Creation-Annihilation estimates). Let F ∈ L L 2 (R dn , dX n ), L 2 (R dn , dX n ) ⊗ L 2 (R d , dk) . (i) For every ψ ∈ D( N 1/2 ℏ ), we have ∥â ℏ (F )ψ∥ H ≤ ∥ N 1/2 ℏ ψ∥ H ∥F ∥ L(L 2 ,L 2 ⊗L 2 ) ; (3.1) ∥â * ℏ (F )ψ∥ H ≤ ∥( Nℏ + 1) 1/2 ψ∥ H ∥F ∥ L(L 2 ,L 2 ⊗L 2 ) . (3.2) 
(ii) For all ψ ∈ D(( Ĥ02 ) 1/2 ), we have

∥â ℏ (F )ψ∥ H ≤ F √ ω L ∥( Ĥ02 + 1) 1/2 ψ∥ H ; (3.3) ∥â * ℏ (F )ψ∥ 2 H ≤ F √ ω 2 L ∥( Ĥ02 + 1) 1/2 ψ∥ 2 H + ℏ ∥F ∥ 2 L ∥ψ∥ 2 . (3.4)
Proof. Let K m and X n as indicated in (1.2). For (i)-(3.1), we have with

∥ • ∥ L ≡ ∥ • ∥ L(L 2 ,L 2 ⊗L 2 ) ∥â ℏ (F )ψ∥ 2 H = m≥0 R dn R dm âℏ (F )ψ m (X n , K m ) 2 dX n dK m = m≥0 R dn R dm R d ℏ(m + 1) F (k) ψ m+1 (X n , K m , k)dk 2 dX n dK m ≤ c-s ∥F ∥ 2 L m≥0 R dn R dm R d ℏ(m + 1) ψ m+1 (X n , K m , k) 2 dk dX n dK m ≤ ∥F ∥ 2 L m≥0 R dn R d(m+1) ℏ(m + 1) ψ m+1 (X n , K m+1 ) 2 dX n dK m+1 ≤ ∥F ∥ 2 L ∥ N 1/2 ℏ ψ∥ 2 H . For (i)-(3.
2), we have

∥â * ℏ (F )ψ∥ 2 H = ⟨ψ, âℏ (F )â * ℏ (F )ψ⟩ = ⟨ψ, [â ℏ (F ), â * ℏ (F )] + â * ℏ (F )â ℏ (F ) ψ⟩ ≤ ℏ ∥F ∥ 2 L ∥ψ∥ 2 + ∥â ℏ (F )ψ∥ 2 ≲ ∥F ∥ 2 L ∥( Nℏ + 1) 1/2 ψ∥ 2 .
For (ii)-(3.3), we have

∥â ℏ (F ) ψ∥ 2 H = m≥0 R dn R dm âℏ (F ) ψ m (X n , K m ) 2 dK m dX n = m≥0 R dn R dm R d ℏ(m + 1) F (k) ψ m+1 (X n , K m , k)dk 2 dK m dX n = m≥0 R dn R dm R d ℏ(m + 1) F (k) ω(k) ω(k) ψ m+1 (X n , K m , k) dk 2 dK m dX n ≤ c-s F √ ω 2 L m≥0 R dm R d ℏ(m + 1) ω(k) ψ m+1 (X n , K m , k) 2 dk dk dK m dX n ≤ F √ ω 2 L m≥0 R dm R d ℏ(m + 1) ω(k) ψ m+1 (X n , K m , k) 2 dk dK m dX n ≤ F √ ω 2 L ∥( Ĥ02 ) 1/2 ψ∥ 2 H .
Similar discussion as for (i)-(3.2) works perfectly to prove (ii)- (3.4). □ Lemma 3.2 (Field and number estimates). For all ψ ∈ D( Ĥ02 ), we have

(1) ∥ Ĥ02 ψ∥ H ≥ m f ∥ Nℏ ψ∥ H ; (2) ∥( Nℏ + 1) 1/2 ψ∥ H ≤ ε ∥ Nℏ ψ∥ H + b(ε) ∥ψ∥ H for some ε < 1 and b(ε) < +∞.
Proof. For (1), we have

∥ Ĥ02 ψ∥ 2 H = m≥0 R dn R dm Ĥ02 ψ m (X n , k 1 , • • • , k m ) 2 dX n dk 1 • • • dk m = m≥0 R dn R dm ℏ m l=1 w(k l ) ≥ m f ψ m (X n , k 1 , • • • , k m ) 2 dX n dk 1 • • • dk m ≥ m≥0 R dn R dm ℏ m m f ψ m (X n , k 1 , • • • , k m ) 2 dX n dk 1 • • • dk m ≥ m f 2 m≥0 R dn R dm ℏ 2 m 2 ψ m (X n , k 1 , • • • , k m ) 2 dX n dk 1 • • • dk m ≥ m f 2 ∥ Nℏ ψ∥ 2 H . For (2), we have ∥( Nℏ + 1) 1/2 ψ∥ 2 H = ⟨ψ, ( Nℏ + 1)ψ⟩ = ⟨ψ, Nℏ ψ⟩ + ∥ψ∥ 2 H ≤ ∥ψ∥ H ∥ Nℏ ψ∥ H + ∥ψ∥ 2 H ≤ ε 2 ∥ Nℏ ψ∥ 2 H + (1 + 1 2ε ) ∥ψ∥ 2 H .
This implies that, by choosing appropriate ε, there exists ε < 1 and b(ε) < +∞ such that

∥( Nℏ + 1) 1/2 ψ∥ H ≤ ε ∥ Nℏ ψ∥ H + b(ε) ∥ψ∥ H .
□ Below, we give an important inequality between Ĥ and Ĥ0 which is useful for the coming discussions. Suppose Ĥ + a > 0 and Ĥ0 + b > 0 with some a, b ∈ R. Lemma 3.3 (Equivalence between Ĥ and Ĥ0 ). Assume (1.6) and ω -1 2 χ ∈ L 2 (R d , dk) are satisfied. Then there exists c, C > 0 independent of ℏ such that for all ℏ ∈ (0, 1) and for all ψ ∈ D( Ĥ0 ) c ⟨ψ, ( Ĥ + a) ψ⟩ ≤ ⟨ψ, ( Ĥ0 + b) ψ⟩ ≤ C ⟨ψ, ( Ĥ + a) ψ⟩.

(3.5)

In particular, for all ψ ∈ D(( Ĥ0 ) 1/2 ), we have

c ∥( Ĥ + a) 1/2 ψ∥ ≤ ∥( Ĥ0 + b) 1/2 ψ∥ ≤ C ∥( Ĥ + a) 1/2 ψ∥. (3.6) 
Proof. Note that first we have the following estimates on V below

-∥V ∥ L ∞ ≤ V ≤ ∥V ∥ L ∞ ⇒ ∥V ∥ L ∞ + V ≥ 0.
We have

⟨ψ, ( Ĥ + a) ψ⟩ = ⟨ψ, Ĥ0 ψ⟩ + ⟨ψ, V ψ⟩ + ⟨ψ, Ĥ1 ψ⟩ + ⟨ψ, a ψ⟩ ≤ ⟨ψ, Ĥ0 ψ⟩ + ∥V ∥ L ∞ ⟨ψ, ψ⟩ + ∥ψ∥ ∥ Ĥ1 ψ∥ + ⟨ψ, a ψ⟩ ≤ ⟨ψ, Ĥ0 ψ⟩ + ∥V ∥ L ∞ ⟨ψ, ψ⟩ + 2∥ω -1/2 χ∥ L 2 ∥ψ∥ ∥( Ĥ0 + 1) 1/2 ψ∥ + ⟨ψ, a ψ⟩ ≤ ⟨ψ, Ĥ0 ψ⟩ + ∥V ∥ L ∞ ⟨ψ, ψ⟩ + ∥ω -1/2 χ∥ 2 L 2 ∥ψ∥ 2 + ∥( Ĥ0 + 1) 1/2 ψ∥ 2 + ⟨ψ, a ψ⟩ ≤ ⟨ψ, 2 Ĥ0 + ∥V ∥ L ∞ + ∥ω -1/2 χ∥ 2 L 2 + 1 + a ψ⟩ ≤ c ⟨ψ, ( Ĥ0 + b) ψ⟩, where c ∈ R + * depends on ∥V ∥ L ∞ , ∥ω -1/2 χ∥ 2 L 2
and independent on ℏ.

On the reverse side, we have

⟨ψ, Ĥ0 ψ⟩ = ⟨ψ, Ĥ01 ψ⟩ + ⟨ψ, Ĥ02 ψ⟩ ≤ ⟨ψ, ( Ĥ01 + V + ∥V ∥ L ∞ ) ψ⟩ + ⟨ψ, Ĥ02 ψ⟩.
Then by using Lemma 3.1, we can also assert that for ε > 0, there exists c ε > 0 (depends on the norm ∥ω

-1 χ∥ L 2 ) such that |⟨ψ, Ĥ1 ψ⟩| ≤ ∥ω -1 χ∥ L 2 1 ε ⟨ψ, ψ⟩ + ε⟨ψ, ( Ĥ02 + 1) ψ⟩ .
This means as quadratic form there exists a constant

c ε ∈ R * + which depends on ε such that Ĥ02 + Ĥ1 = (1 -ε) Ĥ02 + ε Ĥ02 + Ĥ1 ≥ (1 -ε) Ĥ02 -c ε 1 This implies Ĥ02 ≤ 1 1 -ε Ĥ02 + Ĥ1 + c ε .
We conclude that there exists C > 0 such that

⟨ψ, ( Ĥ0 + b) ψ⟩ ≤ ⟨ψ, ( Ĥ01 + V + ∥V ∥ L ∞ ) ψ⟩ + ⟨ψ, 1 1 -ε Ĥ02 + Ĥ1 + c ε ψ⟩ ≤ C ⟨ψ, ( Ĥ + a) ψ⟩. □ 3.2.
Self-adjointness of Nelson Hamiltonian. We prove here the self-adjointness of the Nelson Hamiltonian using the estimates provided in the previous section.

Proposition 3.4 (Self-adjointness of the Nelson Hamiltonian). Assume (1.6) and ω -1 2 χ ∈ L 2 (R d , dk). Then, the operator Ĥ : H → H is self-adjoint operator on D( Ĥ0 ) = D( Ĥ).

Proof. We have first with some

C ε ∈ R * + ∥ Ĥ1 ψ∥ H = ∥â ℏ (G)ψ + â * ℏ (G)ψ∥ H ≤ ∥â ℏ (G)ψ∥ H + ∥â * ℏ (G)ψ∥ H ≤ 2∥G∥ ∥( Nℏ + 1) 1/2 ψ∥ H ≤ 2n χ √ ω L 2 ε∥ Nℏ ψ∥ H + b(ε)∥ψ∥ H ≤ 2n m f χ √ ω L 2 ε ∥ Ĥ02 ψ∥ H + C ε ∥ψ∥ H ,
where we have used the estimates in Lemmas 3.1 and 3.2. Choose ε small enough such that 2n χ/ √ ω L 2 ε < m f . We conclude that there exists ε < 1 and

C ε ∈ R * + such that ∥ Ĥ1 ψ∥ H ≤ ε ∥ Ĥ02 ψ∥ H + C ε ∥ψ∥ H .
The operator Ĥ02 is self-adjoint operator and Ĥ1 is symmteric operator. Thus by Kato-Rellich theorem, Ĥ02 + Ĥ1 is self-adjoint on D( Ĥ02 ). Remark also that by (1.6), we have

∥V ψ∥ L 2 ≤ ε′∥ Ĥ01 ψ∥ L 2 + b ∥ψ∥ L 2 .
Then, again by Kato-Rellich theorem, Ĥ01 + V is self-adjoint on D( Ĥ01 ) ⊆ D(V ). We also have as a consequence of Kato-Rellich theorem that Ĥ01 + V ≥ -c1. This means Ĥ01 + V + c1 ≥ 0.

This gives

∥ Ĥ02 ψ∥ 2 H = ⟨ψ, Ĥ2 02 ψ⟩ ≤ ⟨ψ, Ĥ02 + Ĥ01 + V + c1 2 ψ⟩ ≤ ∥ Ĥ02 + Ĥ01 + V + c1 ψ∥ 2 H . We conclude ∥ Ĥ1 ψ∥ H ≤ ε ∥ Ĥ02 + Ĥ01 + V + c1 ψ∥ H + C(ε) ∥ψ∥ H .
Remark that Ĥ01 + V + c1 commutes with Ĥ02 . This means Ĥ01 + 

V + c1 + Ĥ02 is self adjoint in D( Ĥ01 + V + c1 + Ĥ02 ) = D( Ĥ01 + Ĥ02 ). By Kato-Rellich theorem, Ĥ is self adjoint on D( Ĥ0 ) = D( Ĥ01 + Ĥ02 ) = D( Ĥ01 ) ∩ D( Ĥ02 ). □ 3.3.
H = L 2 (R dn , C) ⊗ Γ s (G 0 ), as the following map ξ = (z, α) ∈ X 0 ≡ C dn ⊕ G 0 -→ W(ξ) ≡ W(z, α) := W 1 (z) ⊗ W 2 (α) (3.7) 
where we have introduced with ℑm⟨z,

z ′ ⟩ = q • p ′ -p • q ′ , ∀(p, q), (p ′ , q ′ ) ∈ R dn × R dn :
-the Weyl operator on the particle variable which is defined, for all (p, q) ∈ R dn × R dn and for z = q + ip ∈ C dn , as follows:

W 1 (z) = e i ℑm⟨q+ip,z⟩ = e i(p•q-q•p) ; (3.8)

-the Weyl operator on the Fock space Γ s (L 2 (R d , C)) which is defined for any α ∈ L 2 (R d , C) as follows:

W 2 (α) = e i √ 2
(â ℏ (α)+â * ℏ (α)) .

(3.9)

The above operators satisfy the following commutation relations

W 1 (z)W 1 (z ′ ) = e -i ℏ 2 ℑm⟨z,z ′ ⟩ W 1 (z + z ′ ), ∀z, z ′ ∈ C dn , (3.10) 
W 2 (α)W 2 (β) = e -i ℏ 2 ℑm⟨α,β⟩ L 2 W 2 (α + β), ∀α, β ∈ G 0 . (3.11) 
Below, we mention several crucial estimates that are necessary to establish a Duhamel formula for the evolved states of a quantum system. The prove of the following identities requires the estimates derived in Lemma 3.1, we refer the reader to [START_REF] Ammari | Towards a derivation of classical electrodynamics of charges and fields from qed[END_REF] for more details on the proof.

Lemma 3.5 (Weyl Heisenberg estimates).

There exists a constant C > 0 such that for any ℏ ∈ (0, 1) (i) for any α ∈ L 2 (R d , C) and any ψ ∈ D( Nℏ )

∥( Nℏ ) 1/2 W 2 (α) ψ∥ Γs ≤ C ∥( Nℏ + 1) 1/2 ψ∥ Γs ;
(ii) for any α ∈ G 1/2 and any ψ ∈ D( Ĥ0 )

∥( Ĥ0 ) 1/2 W 2 (α) ψ∥ Γs ≤ C ∥( Ĥ0 + 1) 1/2 ψ∥ Γs ;
(iii) for any z ∈ C dn and any ψ ∈ D((p 2 + q2 ) 1/2 )

∥(p 2 + q2 ) 1/2 W 1 (z) ψ∥ L 2 (R dn ) ≤ C ∥(p 2 + q2 + 1) 1/2 ψ∥ L 2 (R dn ) .
The matter here is to understand the propagation of the density matrices ϱ ℏ on the Hilbert space H. To this end, we define

ϱ ℏ (t) = e -i t ℏ Ĥ ϱ ℏ e i t ℏ Ĥ
and ρℏ (t) = e i t ℏ Ĥ02 ϱ ℏ (t) e -i t ℏ Ĥ02 .

(3.12)

In order to prove the main results Theorems 1.1 and 1.3, it is necessary to identify the Wigner measures of the evolved state ϱ ℏ (t). However, the complexity inherited from the interaction between particles and field makes direct identification unfeasible. Instead, we use the interaction representation ρℏ (t), which helps us overcome several nonlinearities that could lead to imprecise formulas. Furthermore, recovering the Wigner measures of ϱ ℏ (t) from those of ρℏ (t) is not difficult. To this end, we start below derivation of the quantum dynamical system.

Proposition 3.6. Assume that (1.6) and ω 1/2 χ ∈ L 2 (R d , dk). Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices satisfying (1.8) and (1.9). Then for all ξ ∈ X 1/2 , for all ℏ ∈ (0, 1) and for all t, t 0 ∈ R, we have

Tr W(ξ)ρ ℏ (t) = Tr W(ξ)ρ ℏ (t 0 ) - i ℏ t t 0 Tr W(ξ), ĤI (s) ρℏ (s) ds, (3.13) 
where ĤI (s) := e i s ℏ Ĥ02 ( Ĥ -Ĥ02 ) e -i s ℏ Ĥ02 .

(3.14)

Proof. By Duhamel's formula, we have

Tr W(ξ)ρ ℏ (t) = Tr W(ξ)ρ ℏ (t 0 ) + t t 0 d ds Tr W(ξ) ρℏ (s) ds.
We have also

d dt Tr W(ξ) ρℏ (t) = lim s→t Tr W(ξ) ρℏ (t) -ρℏ (s) t -s .
Let S = ( Ĥ0 + 1) 1/2 . We start by

Tr W(ξ) ρℏ (t) -ρℏ (s) = Tr W(ξ) e i t ℏ Ĥ02 e -i t ℏ Ĥ ϱ ℏ e i t ℏ Ĥ e -i t ℏ Ĥ02 -e i s ℏ Ĥ02 e -i s ℏ Ĥ ϱ ℏ e i s ℏ Ĥ e -i s ℏ Ĥ02 = Tr W(ξ) e i t ℏ Ĥ02 e -i t ℏ Ĥ -e i s ℏ Ĥ02 e -i s ℏ Ĥ ϱ ℏ e i t ℏ Ĥ e -i t ℏ Ĥ02 + Tr W(ξ) e i s ℏ Ĥ02 e -i s ℏ Ĥ ρℏ e i t ℏ Ĥ e -i t ℏ Ĥ02 -e i s ℏ Ĥ e -i s ℏ Ĥ02 = Tr S -1 W(ξ) S S -1 e i t ℏ Ĥ02 e -i t ℏ Ĥ -e i s ℏ Ĥ02 e -i s ℏ Ĥ ϱ ℏ S S -1 e i t ℏ Ĥ S S -1 e -i t ℏ Ĥ02 S + Tr W(ξ) e i s ℏ Ĥ02 e -i s ℏ Ĥ ρℏ S S -1 e i t ℏ Ĥ e -i t ℏ Ĥ02 -e i s ℏ Ĥ e -i s ℏ Ĥ02
Remark that each step makes sense. Indeed, we have that

W(ξ), e it ℏ Ĥ02 , e it ℏ Ĥ , S -1 e i t ℏ Ĥ S, S -1 e -i t ℏ Ĥ02 S ∈ L(H), ϱ ℏ , ϱ ℏ ( Ĥ0 + 1) ∈ L 1 (H).
We have also

lim s→t S -1 e i t ℏ Ĥ e -i t ℏ Ĥ02 -e i s ℏ Ĥ e -i s ℏ Ĥ02 t -s = i ℏ S -1 e i t ℏ Ĥ ( Ĥ -Ĥ02 ) e -i t ℏ Ĥ02 ; lim s→t S -1 e i t ℏ Ĥ02 e -i t ℏ Ĥ -e i s ℏ Ĥ02 e -i s ℏ Ĥ t -s = - i ℏ S -1 e i t ℏ Ĥ02 ( Ĥ -Ĥ02 ) e -i t ℏ Ĥ .
Plugging these limits in the Duhamel's formula, we get the desired result. □ 3.3.2. The commutator expansion. The aim of this subsection is to expand the commutator W(ξ), ĤI (s) in the above Duhamel formula (3.13) in terms of the parameter ℏ ∈ (0, 1).

Lemma 3.7 (Time evolved equation of ĤI (s)). For any s ∈ R, the time evolved interaction term ĤI (s) takes the following form

ĤI (s) = n j=1 f j (p j ) + V (q) + n j=1 âℏ (g j (s)) + â * ℏ (g j (s)), (3.15) 
where we have introduced

g j (s) ≡ g j (s)(q) := χ(k) ω(k) e -2πik•q j +isω(k) . (3.16) 
Proof. We have

Ĥ -Ĥ02 = n j=1 f j (p j ) + V (q) + n j=1 âℏ (g j ) + â * ℏ (g j ),
where the function g j is given by

g j ≡ g j (q) := χ(k) ω(k) e -2πik•q j . (3.17)
Then, we have with q = (q

1 , • • • , qn ) ĤI (s) = e i s ℏ Ĥ02 n j=1 f j (p j ) + V (q) + n j=1 âℏ (g j ) + â * ℏ (g j ) e -i s ℏ Ĥ02 .
It is sufficient then to look at the following identity Lemma 3.8 (Expression for the commutators). For any s ∈ R and ξ = (p 0 , q 0 , α 0 ) ∈ X 1/2 , the following holds true with q 0 = (q 01 , • • • , q 0n ) and

e i s ℏ Ĥ02 â♯ (g j ) e -i s ℏ Ĥ02 = â♯ (g j (s)). □ Now,
p 0 = (p 01 , • • • , p 0n ) W(ξ) ĤI (s)W(ξ) * = n j=1 f j (p j -ℏp 0j ) + V q -ℏq 0 + n j=1 âℏ (g j (s)) + â * ℏ (g j (s)) + iℏ √ 2 ⟨α 0 , gj (s)⟩ L 2 (R d ,C) -⟨g j (s), α 0 ⟩ L 2 (R d ,C) ,
where we have introduced

gj (s) := χ(k) ω(k) e -2πik•(q j -ℏq 0j )+isω(k) = e 2πik•q 0j ℏ g j (s). (3.19) Proof. Let qj = (q ν j ) ν=1,•••d and pj = (p ν j ) ν=1,•••d .
The results follow from the following identities

W 1 (z 0 ) qν j W 1 (z 0 ) * = qν j -ℏq ν 0j , (3.20) 
W 1 (z 0 ) pν j W 1 (z 0 ) * = pν j -ℏp ν 0j , (3.21) 
W 2 (α 0 ) â * ℏ (f ) W 2 (α) * = â * ℏ (f ) + iℏ √ 2 ⟨α 0 , f ⟩ L 2 , (3.22) 
W 2 (α 0 ) âℏ (f ) W 2 (α) * = âℏ (f ) - iℏ √ 2 ⟨f, α 0 ⟩ L 2 . (3.23)
We start proving the first identity (3.20). Recall from (3.10) that we have

W 1 (z 0 ) = e i(p 0 •q-q 0 •p) , W 1 (z 0 ) * = e -i(p 0 •q-q 0 •p)
Define K(t) := e it(p 0 •q-q 0 •p) qν j e -it(p 0 •q-q 0 •p) Since q and p are self adjoint operators, we claim using Taylor expansions that

K(t) = K(0) + tK ′ (0). (3.24)
Indeed, we have, using the commutation relation [q ν j , pν j ] = iℏ, that

K ′ (0) = d dt K(t)| t=0 = e it(p 0 •q-q 0 •p) i[(p 0 • q -q 0 • p), qν j ] e -it(p 0 •q-q 0 •p) | t=0 = -ℏ q ν 0j .
This implies that K r (0) = 0, for all r ≥ 2. Take t = 1 in (3.24) and since K(0) = qν j , we get (3.20). Similarly, we can prove the identity (3.21). Also the two identities (3.22) and (3.23) can be proved by simiar way using the commutation relations on the Fock space. In particular, the identity (3.20) gives W 1 (z 0 ) g j (s) W 1 (z 0 ) * = gj (s). □ Lemma 3.9 (The expansion of the commutator). For any s ∈ R and ξ = (p 0 , q 0 , α 0 ) ∈ X 1/2 , we have the following expansion of the commutator in terms of the semiclassical parameter ℏ ∈ (0, 1)

1 ℏ W(ξ), ĤI (s) = B 0 (s, ℏ, ξ) + ℏ B 1 (s, ℏ, ξ) W(ξ). (3.25) 
The two terms B 0 and B 1 are identified as follows

B 0 (s, ℏ, ξ) := - n j=1 ∇f j (p j ) • p 0j -∇V (q) • q 0 + n j=1 âℏ gj (s) -g j (s) ℏ + â * ℏ gj (s) -g j (s) ℏ + n j=1 i √ 2 ⟨α 0 , gj (s)⟩ L 2 (R d ,C) -⟨g j (s), α 0 ⟩ L 2 (R d ,C) , (3.26) 
B 1 (s, ℏ, ξ) := Θ 1 (ℏ, ξ) + Θ 2 (ℏ, ξ), (3.27) 
where Θ 1 and Θ 2 are identified below in the proof. Moreover, we have also the following estimates

∥( Ĥ0 + 1) -1/2 B 0 (s, ℏ, ξ)( Ĥ0 + 1) -1/2 ∥ L(H) ≲ ∥χ∥ L 2 + √ ω χ L 2 ∥ξ∥ X 0 , (3.28) 
∥( Ĥ0 + 1) -1/2 B 1 (s, ℏ, ξ)( Ĥ0 + 1) -1/2 ∥ L(H) ≲ ∥ξ∥ 2 X 0 . (3.29)
Proof. Exploiting Lemma 3.7 and Lemma 3.8 inside (3.18), the commutator expansion becomes

1 ℏ W(ξ), ĤI (s) = 1 ℏ n j=1 f j (p j -ℏp 0j ) -f j (p j ) + V q -ℏq 0 -V q + n j=1 âℏ (g j (s) -g j (s)) + â * ℏ (g j (s) -g j (s)) + iℏ √ 2 n j=1 ⟨α 0 , gj (s)⟩ L 2 (R d ,C) -⟨g j (s), α 0 ⟩ L 2 (R d ,C) W(ξ).
(3.30)

We start first by expanding the first line and then proving some estimates for the remaining terms. Let

X ∈ R d and Y = (Y 1 , • • • , Y n ) ∈ R dn .
We apply Taylor series to the two functions

t -→ A(t) := f j (X -t ℏ p 0j ), t -→ B(t) := V (Y -t ℏ q 0 ).
We get

A(t) = A(0) + tA ′ (0) + t 0 A ′′ (s)(t -s) ds, and 
B(t) = B(0) + tB ′ (0) + t 0 B ′′ (s)(t -s) ds.
Let t = 1 in the above formulas and since p and q are self adjoint operators, we get

f j (p j -ℏp 0j ) = f j (p j ) -ℏ∇f j (p j ) • p 0j + ℏ 2 1 0 p T 0j H f j (p j -ℏp 0j s) p 0j (1 -s) ds :=Θ 1 (ℏ,ξ) ; (3.31) V (q -ℏq 0 ) = V (q) -ℏ∇V (q) • q 0 + ℏ 2 1 0 q T 0 H V (q -ℏq 0 s) q 0 (1 -s) ds :=Θ 2 (ℏ,ξ) , (3.32) 
where the notation • T represents the transpose. Moreover, the two terms H f j and H V are respectively the Hessian matrices related to f j and V . This implies

f j (p j -ℏp 0j ) -f j (p j ) = -ℏ∇f j (p j ) • p 0j + ℏ 2 Θ 1 (ℏ, ξ), (3.33) 
V (q -ℏq 0 ) -V (q) = -ℏ∇V (q) • q 0 + ℏ 2 Θ 2 (ℏ, ξ). (3.34) 
And thus, using (3.33)-(3.34), the commutator is expanded as indicated in (3.25). Now, to obtain the two estimates (3.28) and (3.29), we need first to prove that the function

F j (ℏ, s) := (g j (s) -g j (s))/ℏ : L 2 (R d , dx j ) -→ L 2 (R d , dx j ) ⊗ L 2 (R d , dk)
is bounded uniformly in ℏ ∈ (0, 1). Indeed, we have for all ψ ∈ L 2 (R d , dx j )

∥F j (ℏ, s) ψ∥ 2 L 2 x j ⊗L 2 k = R d R d (F j (ℏ, s) ψ)(x j , k) 2 dx j dk = R d R d g j (s) e 2πik•q 0j ℏ -1 ℏ ψ (x j , k) 2 dx j dk = R d R d χ(k) ω(k) e -2πik•q j +isω(k) e 2πik•q 0j ℏ -1 ℏ ψ(x j ) 2 dx j dk.
Now, with the aid of Fubini and the estimate |e iy -1| ≤ √ 2|y|, we find that

∥F j (ℏ, s) ψ∥ 2 L 2 x j ⊗L 2 k ≤ 8π 2 ∥ξ∥ 2 X 0 R d R d ω(k)χ(k) 2 ψ(x j ) 2 dx j dk = 8π 2 ∥χ∥ 2 G 1/2 ∥ξ∥ 2 X 0 ∥ψ∥ 2 L 2 x j
.

We get finally, with some C > 0, that

∥F j (ℏ, s)∥ L(L 2 x j ,L 2 x j ⊗L 2 k ) ≤ C ∥χ∥ G 1/2 ∥ξ∥ X 0 . (3.35)
Now, using the estimates in Lemma 3.1 on the creation-annihilation operators together with the above estimate for F j (ℏ, s), we can easily prove (3.28). It is also not hard to see that (3.29) hold true as a consequence of the fact that the Hessian matrices of f j and V are bounded. □

Our focus is on taking the classical limit ℏ → 0. To accomplish this, it is crucial to establish a uniform bound on the expansion derived in Lemma 3.9, particularly for the remainder term. Let S = ( Ĥ0 + 1) 1/2 , we have

Tr 1 ℏ W(ξ), ĤI (s) ρℏ (s) = Tr S -1 B 0 (s, ℏ, ξ) S -1 ∈L(H) S W(ξ) S -1 ∈L(H) S ρℏ (s) S ∈L 1 (H) + ℏ Tr S -1 B 1 (ℏ, s, ξ) S -1 ∈L(H) S W(ξ) S -1 ∈L(H) S ρℏ (s) S ∈L 1 (H) (3.36) 
◁ Lemma 3.9 assures that the first term in each of the above two lines in (3.36) is bounded. ◁ The Weyl-Heisenberg operator estimates presented in Lemma 3.5 guarantee that the bound of the second term in the above two lines in (3.36) holds. ◁ The bound of the last term in each of the above two lines in (3.36) follows from Assumption (1.8) and (1.9) in conjunction with the equivalent relation between Ĥ and Ĥ0 outlined in Lemma 3.3. Our next step is to take the limit in the Duhamel formula (3.13) as ℏ approaches zero. Using the above arguments, we can disregard the remainder term when passing to the limit ℏ → 0 in the Duhamel formula (3.13). We achieve this in the next section by extracting a subsequence.

Existence of Wigner measure

According to Definition 1.2, the Wigner measures of ρℏ (t) is obtained by taking limits of the following map:

ξ → Tr W(ξ) ρℏ (t) . (4.1) 
Thus, the first task is to verify that the Wigner measure associated to the above map is unique for all times. It is worth noting that, given our assumptions on the initial states (ϱ ℏ ) ℏ∈(0,1) , the associated set of Wigner measures

M(ϱ ℏ , ℏ ∈ (0, 1))
is non-empty. To ensure that the sets of Wigner measures M(ϱ ℏ (t), ℏ ∈ (0, 1)) and M(ρ ℏ (t), ℏ ∈ (0, 1))

are also non-empty, it is crucial to demonstrate that assumptions (1.8) and (1.9) can be uniformly propagated in time by both families of states (ϱ ℏ (t)) ℏ∈(0,1) and (ρ ℏ (t)) ℏ∈(0,1) . This is established in Subsection 4.1. Subsequently, in Subsection 4.2, we prove that the map (4.1) has a unique limit that holds for all times in compact interval.

4.1. Propagation of assumptions. In order to establish the existence of a unique Wigner measure that holds for all times, we demonstrate that if an initial state ϱ ℏ is localized uniformly in ℏ, then it will remain localized uniformly with respect to the semiclassical parameter ℏ ∈ (0, 1) for all times in compact interval. We prove this result separately for particle operators in Paragraph 4.1.1 and for field operators in Paragraph 4.1.2. Finally, in Paragraph 4.1.3, we establish that both families of states (ϱ ℏ (t)) ℏ∈(0,1) and (ρ ℏ (t)) ℏ∈(0,1) uniformly satisfy (1.8) and (1.9) for all times.

4.1.1. Position and Momentum operator estimates. In this part, we prove some uniform estimates (in ℏ) related to the two operators p2 and q2 .

Lemma 4.1 (Position operator's estimate). Assume that (1.6) and ω -1/2 χ ∈ L 2 (R d , dk). Then, there exists constants C 1 , C 2 > 0 such that for all ψ ∈ D( Ĥ1/2 0 ) ∩ D(q), all t ∈ R and all ℏ ∈ (0, 1):

⟨e -i t ℏ Ĥ ψ, q2 e -i t ℏ Ĥ ψ⟩ ≤ C 1 ⟨ψ, ( Ĥ0 + q2 + 1) ψ⟩ e C 2 |t| . (4.2)
Proof. Let Θ 1 (t) := ⟨e -i t ℏ Ĥ ψ, q2 e -i t ℏ Ĥ ψ⟩. We have

Θ 1 (t) = Θ 1 (0) + t 0 Θ1 (s) ds.
Then Stone's Theorem implies that

Θ1 (t) = 1 ℏ e -i t ℏ Ĥ ψ, i[ Ĥ, q2 ] e -i t ℏ Ĥ ψ .
Now, using some commutation relations, we get

i[ Ĥ, q2 ] = i n j=1 [f j (p j ), q2 j ] = ℏ n j=1 ∇f j (p j ) • qj + qj • ∇f j (p j ) .
Define ψ(t) := e -i t ℏ Ĥ ψ. Since qj and ∇f j (p j ) are self-adjoint operators, we have the following estimates

⟨ψ(t), ∇f j (p j ) • qj ψ(t)⟩ ≤ ∥∇f j (p j ) ψ(t)∥ ∥q j ψ(t)∥ ≤ 1 2 ∥∇f j (p j ) ψ(t)∥ 2 + ∥q j ψ(t)∥ 2 = 1 2 ∥∇f j (p j ) ψ(t)∥ 2 + Θ 1 (t) , (4.3 
)

⟨ψ(t), qj • ∇f j (p j ) ψ(t)⟩ ≤ ∥q j ψ(t)∥ ∥∇f j (p j ) ψ(t)∥ ≤ 1 2 ∥∇f j (p j ) ψ(t)∥ 2 + ∥q j ψ(t)∥ 2 = 1 2 ∥∇f j (p j ) ψ(t)∥ 2 + Θ 1 (t) , (4.4) 
where we have used the identity 2a•b ≤ a 2 +b 2 . At this stage, we have to consider separately the two cases: the semi-relativistic and the non-relativistic case since the function ∇f j is bounded in the first case and not in the second one.

For semi-relativistic case:

Note that ∇f j (p j ) is a bounded operator. This implies that for some c 1 > 0, we have

∥∇f j (p j ) ψ(t)∥ 2 ≤ c 1 ∥ψ∥ 2 .
This gives

Θ 1 (t) ≤ Θ 1 (0) + c 1 ⟨ψ, ψ⟩ t + t 0 Θ 1 (s) ds.
Now using Gronwall's lemma and the estimate te t ≤ e ct for some c > 0, we find with some

C 1 , C 2 > 0 Θ 1 (t) ≤ Θ 1 (0) + c 1 ⟨ψ, ψ⟩ t e t ≤ C 1 ⟨ψ, (q 2 + 1) ψ⟩ e C 2 |t| ≤ C 1 ⟨ψ, ( Ĥ0 + q2 + 1) ψ⟩ e C 2 |t| .
For non-relativistic case:

We have ∇f j (p j ) = pj /M j . This implies (4.3) and (4.4) become

⟨ψ(t), ∇f j (p j ) • qj ψ(t)⟩ ≤ 1 2 ⟨ψ(t), p2 j M 2 j ψ(t)⟩ + Θ 1 (t) ≤ 1 M j ⟨ψ(t), Ĥ0 ψ(t)⟩ + 1 2 Θ 1 (t) ⟨ψ(t), qj • ∇f j (p j ) ψ(t)⟩ ≤ 1 2 ⟨ψ(t), p2 j M 2 j ψ(t)⟩ + Θ 1 (t) ≤ 1 M j ⟨ψ(t), Ĥ0 ψ(t)⟩ + 1 2 Θ 1 (t).
By Lemma 3.3, we have ⟨e -i t ℏ Ĥ ψ, Ĥ0 e -i t ℏ Ĥ ψ⟩ ≲ ⟨e -i t ℏ Ĥ ψ, ( Ĥ + 1) e -i t ℏ Ĥ ψ⟩ = ⟨ψ, ( Ĥ + 1) ψ⟩ ≲ ⟨ψ, ( Ĥ0 + 1) ψ⟩. This leads with some c 2 ∈ R * + to the following inequality

Θ 1 (t) ≤ Θ 1 (0) + c 2 ⟨ψ, ( Ĥ0 + 1) ψ⟩ t + t 0 Θ 1 (s) ds.
Now using Gronwall's Lemma and the estimates te ct ≤ e c ′ t , we find with some

C 1 , C 2 > 0 Θ 1 (t) ≤ Θ 1 (0) + c 2 ⟨ψ, ( Ĥ0 + 1) ψ⟩ t e t 0 1 ds ≤ C 1 ⟨ψ, ( Ĥ0 + q2 + 1)ψ⟩ e C 2 |t| ≤ C 1 ⟨ψ, ( Ĥ0 + q2 + 1)ψ⟩ e C 2 |t| .
□ Now, we give some uniform estimates for the momentum operator just in the semi-relativistic case:

f j (p j ) = p2 j + M 2 j .
Lemma 4.2 (Momentum operator's estimate). Assume that (1.6) and ω 1/2 χ ∈ L 2 (R d , dk).

Then, there exists constants C 1 , C 2 > 0 such that for all ψ ∈ D( Ĥ1/2 0 ) ∩ D(p), all t ∈ R and all ℏ ∈ (0, 1):

⟨e -i t ℏ Ĥ ψ, p2 e -i t ℏ Ĥ ψ⟩ ≤ C 1 ⟨ψ, ( Ĥ0 + p2 + 1) ψ⟩ e C 2 |t| . (4.5) Proof. Define Θ 2 (t) := ⟨ ψ(t), p2 ψ(t) ⟩, ψ(t) := e -i t ℏ Ĥ ψ. We have that the map t → Θ 2 (t) is differentiable with Θ2 (t) = i ℏ ⟨ψ(t), [ Ĥ, p2 ] ψ(t)⟩.
Then, Duhamel formula implies that

Θ 2 (t) = Θ 2 (0) + t 0 Θ2 (s) ds.
Let us compute first the explicit expression for the function Θ2 (t). To do that, we need first to deal with the commutator [ Ĥ, p2 ]. Indeed, we have

Ĥ, p2 = [dΓ(ω) + n j=1 p2 j + M 2 j + V (q) + Ĥ1 , p2 ] = [V (q), p] p + p [V (q), p] + [ Ĥ1 , p] p + p [ Ĥ1 , p]. Recall that â♯ ℏ (G) = n j=1 â♯ ℏ (g j (q)), g j (q)(k) := χ(k) ω(k) e -2πik•q j .
We can then assert that

âℏ (G) = n j=1 R d χ(k) ω(k) e 2πik•q j âℏ (k) dk =: n j=1 B j (q j ), â * ℏ (G) = n j=1 R d χ(k) ω(k) e -2πik•q j â * ℏ (k) dk =: n j=1 B * j (q j ),
where q j → B ♯ j (q j ) is analytic function. We know that for any analytic function F

[F (q j ), pj ] = iℏ ∂F (q j ) ∂q j ,

This gives

[V (q), p] p = n j=1 iℏ ∇ q j V (q) • pj , p [V (q), p] = n j=1 iℏ pj • ∇ q j V (q), [â ℏ (G), p] p = n j=1 B j (q j ), p p = n j=1 iℏ ∂B j (q j ) ∂q j • pj = n j=1 iℏ âℏ (g j ) • pj , p [â ℏ (G), p] = n j=1 iℏ pj • âℏ (g j ), [â * ℏ (G), p] p = n j=1 B * j (q j ), p p = n j=1 iℏ ∂B * j (q j ) ∂q j • pj = n j=1 iℏ â * ℏ (g j ) • pj , p [â * ℏ (G), p] = n j=1 iℏ pj • â * ℏ (g j ),
where we have introduced the term gj as follows

gj := -2πik χ(k) ω(k) e -2πik•q j . This implies that Ĥ, p2 = iℏ n j=1 pj • ∇ q j V (q) + âℏ (g j ) + â * ℏ (g j ) + ∇ q j V (q) + âℏ (g j ) + â * ℏ (g j ) • pj .
We conclude that

Θ2 (t) = - n j=1 ⟨ψ(t), pj • ∇ q j V (q) + âℏ (g j ) + â * ℏ (g j ) ψ(t)⟩
+ ⟨ψ(t), ∇ q j V (q) + âℏ (g j ) + â * ℏ (g j ) • pj ψ(t)⟩ . We estimate now each part. Indeed, we have

⟨ψ(t), pj • ∇ q j V (q) ψ(t)⟩ = ⟨p j ψ(t), ∇ q j V (q) ψ(t)⟩ ≤ ∥p j ψ(t)∥ ∥∇ q j V (q) ψ(t)∥ ≤ ∥p j ψ(t)∥ ∥∇ q j V ∥ L ∞ ∥ψ∥ ≤ 1 2 ∥∇ q j V ∥ L ∞ ∥p j ψ(t)∥ 2 + ∥ψ∥ 2 .
Similarly, we have

⟨ψ(t), ∇ q j V (q) • pj ψ(t)⟩ ≤ 1 2 ∥∇ q j V ∥ L ∞ ∥p j ψ(t)∥ 2 + ∥ψ∥ 2 .
We have also using Lemmas 3.1 and 3.3

⟨ψ(t), âℏ (g j ) • pj ψ(t)⟩ = ⟨â * ℏ (g j ) ψ(t), pj ψ(t)⟩ ≤ ∥p j ψ(t)∥ ∥â * ℏ (g j ) ψ(t)∥ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ ∥( Ĥ02 + 1) 1/2 ψ(t)∥ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ ∥( Ĥ0 + 1) 1/2 ψ(t)∥ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ ∥( Ĥ + a) 1/2 ψ(t)∥ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ ∥( Ĥ + a) 1/2 ψ∥ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ ∥( Ĥ0 + 1) 1/2 ψ∥ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ 2 + ∥( Ĥ0 + 1) 1/2 ψ∥ 2 .
Similarly, we have

⟨ψ(t), â * ℏ (g j ) • pj ψ(t)⟩ ≲ ∥χ∥ L 2 ∥p j ψ(t)∥ 2 + ∥( Ĥ0 + 1) 1/2 ψ∥ 2 , ⟨ψ(t), pj • âℏ (g j ) ψ(t)⟩ ≲ ∥χ∥ L 2 ∥p j ψ(t)∥ 2 + ∥( Ĥ0 + 1) 1/2 ψ∥ 2 , ⟨ψ(t), pj • â * ℏ (g j ) ψ(t)⟩ ≲ ∥χ∥ L 2 + ∥ √ ω χ∥ L 2 ∥p j ψ(t)∥ 2 + ∥( Ĥ0 + 1) 1/2 ψ∥ 2 .
We get at the end that there exists some

C ∈ R * + depending on the quantities ∥χ∥ L 2 , ∥ √ ω χ∥ L 2 and ∥∇ q j V ∥ L ∞ such that Θ2 (t) ≤ C ⟨ψ, ( Ĥ0 + 1) ψ⟩ + Θ 2 (t) .
We find then Θ 2 (t) ≤ Θ 2 (0) + C ⟨ψ, ( Ĥ0 + 1) ψ⟩ t + t 0 Θ 2 (s)ds.

This implies using Gronwall's Lemma that there exists C 1 , C 2 > 0 depend on the quantities

∥χ∥ L 2 , ∥ √ ω χ∥ L 2 and ∥∇ q j V ∥ L ∞ such that Θ 2 (t) ≤ C 1 ⟨ψ, ( Ĥ0 + p2 + 1) ψ⟩ e C 2 |t| .
And thus the result follows. □ 4.1.2. Field operator's estimates. Below, we give some estimates for the field operator dΓ(ω 2σ ). Let Γ f in be a dense subspace in the Fock space. Let ψ ∈ D( Ĥ0 ) and define

Θ 3 (t) := ⟨ψ(t), dΓ(ω 2σ ) e -δdΓ(ω 2σ ) ψ(t)⟩, ψ(t) := e -i t ℏ Ĥ ψ.
Note that dΓ(ω 2σ ) e -δdΓ(ω 2σ ) is a bounded and positive approximation of dΓ(ω 2σ ) that strongly converges monotonically to it. The quantity Θ 3 (t) is well-defined for each t ∈ R and δ > 0. In addition, the map t → Θ 3 (t) is differentiable with

Θ3 (t) = i ℏ ⟨ψ(t), [ Ĥ, dΓ(ω 2σ ) e -δdΓ(ω 2σ ) ] ψ(t)⟩. Lemma 4.3. Assume (1.6) and ω σ-1 2 χ ∈ L 2 (R d , dk). For σ ∈ [1/2, 1]
, there exists C > 0 such that for all δ > 0, for all ℏ ∈ (0, 1) and for all ϕ, ψ

∈ C ∞ 0 (R dn ) ⊗ Γ f in : i ℏ ⟨ϕ, [ Ĥ, dΓ(ω 2σ ) e -δdΓ(ω 2σ ) ] ψ⟩ ≤ C ∥ω σ-1 2 χ∥ L 2 ∥ϕ∥ ∥dΓ(ω 2σ ) 1 2 ψ∥ + ∥ψ∥ ∥dΓ(ω 2σ ) 1 2 ϕ∥ .
Proof. Let us deal first with the term

dΓ(ω 2σ ) e -δdΓ(ω 2σ ) , Ĥ = [dΓ(ω 2σ ) e -δdΓ(ω 2σ ) , Ĥ1 ] = [dΓ(ω 2σ ) e -δdΓ(ω 2σ ) , âℏ (G) + â * ℏ (G)] = dΓ(ω 2σ ) [e -δdΓ(ω 2σ ) , âℏ (G)] + [dΓ(ω 2σ ), âℏ (G)] e -δdΓ(ω 2σ ) + dΓ(ω 2σ ) [e -δdΓ(ω 2σ ) , â * ℏ (G)] + [dΓ(ω 2σ ), â * ℏ (G)] e -δdΓ(ω 2σ ) . We also have (i) [dΓ(ω 2σ ), âℏ (G)] = -ℏ âℏ (ω 2σ G), (ii) [dΓ(ω 2σ ), â * ℏ (G)] = ℏ â * ℏ (ω 2σ G), (iii) [e -δdΓ(ω 2σ ) , âℏ (G)] = e -δdΓ(ω 2σ ) âℏ (β G), β = 1 -e -δ ℏ ω 2σ , (iv) [e -δdΓ(ω 2σ ) , â * ℏ (G)] = â * ℏ (-β G) e -δdΓ(ω 2σ ) , β = 1 -e -δ ℏ ω 2σ . Using (i)-(ii)-(iii) and (iv), we get dΓ(ω 2σ ) e -δdΓ(ω 2σ ) , Ĥ = ℏ B 1 + B 2 + B 3 ,
where we have introduced the three terms B 1 , B 2 and B 3 as follows

B 1 := â * ℏ (ω 2σ G) -âℏ (ω 2σ G) e -δdΓ(ω 2σ ) , B 2 := dΓ(ω 2σ ) e -δdΓ(ω 2σ ) âℏ β G ℏ , B 3 := dΓ(ω 2σ ) â * ℏ -β G ℏ e -δdΓ(ω 2σ ) .
We get then

i ℏ ⟨ϕ, [ Ĥ, dΓ(ω 2σ ) e -δdΓ(ω 2σ ) ] ψ⟩ = -i ⟨ϕ, (B 1 + B 2 + B 3 ) ψ⟩ = -i⟨ϕ, B 1 ψ⟩ (a) + -i⟨ϕ, B 2 ψ⟩ (b) + -i⟨ϕ, B 3 ψ⟩ (c) 
.

For (b), we have

|⟨ϕ, B 2 ψ⟩| = ⟨ϕ, dΓ(ω 2σ ) e -δdΓ(ω 2σ ) âℏ β G ℏ ψ⟩ = ⟨ϕ, δ dΓ(ω 2σ ) e -δdΓ(ω 2σ ) âℏ β G δ ℏ ψ⟩ ≤ ∥ϕ∥ ∥δdΓ(ω 2σ ) e -δdΓ(ω 2σ ) âℏ β G δ ℏ ψ∥ ≤ 1 e ∥ϕ∥ ∥â ℏ β G δ ℏ ψ∥,
where in the last line we have used the fact that sup δ>0 ∥δdΓ(ω 2σ ) e -δdΓ(ω 2σ ) ∥ ≤ 1/e. Remark also that we have with K m and X n as in (1.2)

∥â ℏ β G δ ℏ ψ∥ 2 H = m≥0 R dn R dm âℏ β G δ ℏ ψ m (X n , K m ) 2 dK m dX n = m≥0 R dn R dm R d n j=1 ℏ(m + 1) 1 -e -δ ℏ ω 2σ ℏ δ χ(k) ω(k) e 2πik•q j ψ m+1 (X n , K m , k)dk 2 dK m dX n ≤ m≥0 R dn R dm R d n j=1 ℏ(m + 1) ω 2σ (k) χ(k) ω(k) e 2πik•q j ψ m+1 (X n , K m , k)dk 2 dK m dX n = m≥0 R dn R dm R d n j=1 ω σ-1 2 (k) χ(k) ℏ(m + 1) ω σ (k) e 2πik•q j ψ m+1 (X n , K m , k)dk 2 dK m dX n ≤ c-s n 2 ∥ω σ-1 2 χ∥ 2 2 m≥0 R dn R dm R d ℏ(m + 1) ω 2σ (k) ψ m+1 (X n , K m , k) 2 dk dK m dX n ≤ n 2 ∥ω σ-1 2 χ∥ 2 2 ∥dΓ(ω 2σ ) 1/2 ψ∥ 2 H .
Using the above estimates, we find that

|⟨ϕ, B 2 ψ⟩| ≤ n e ∥ω σ-1 2 χ∥ 2 ∥ϕ∥ ∥dΓ(ω 2σ ) 1/2 ψ∥ H .
For (c), remark first that we have

[dΓ(ω 2σ ), â * ℏ -β G ℏ ] = ℏ â * ℏ -ω 2σ β G ℏ , and 
[dΓ(ω 2σ ), â * ℏ -β G ℏ ] = dΓ(ω 2σ ) â * ℏ -β G ℏ -â * ℏ -β G ℏ dΓ(ω 2σ )
This implies that

dΓ(ω 2σ ) â * ℏ -β G ℏ = â * ℏ -ω 2σ β G + â * ℏ -β G ℏ dΓ(ω 2σ ).
Then, we have

|⟨ϕ, B 3 ψ⟩| ≤ |⟨ϕ, â * ℏ -ω 2σ β G e -δdΓ(ω 2σ ) ψ⟩| + |⟨ϕ, â * ℏ -β G ℏ dΓ(ω 2σ ) e -δdΓ(ω 2σ ) ψ⟩| ≲ ∥ω σ-1 2 χ∥ 2 ∥ψ∥ ∥dΓ(ω 2σ ) 1/2 ϕ∥ H ,
where in the last line, we have used the same tricks as before as well as the fact that |β| ≤ 2 and e -δ dΓ(ω 2σ ) ∈ L(H) with ∥e -δ dΓ(ω 2σ ) ∥ ≤ 1. Similarly for (a), we can have by same techniques that |⟨ϕ, â *

ℏ (ω 2σ G) e -δdΓ(ω 2σ ) ψ⟩| = |⟨â ℏ (ω 2σ G) ϕ, e -δdΓ(ω 2σ ) ψ⟩| ≲ ∥ω σ-1 2 χ∥ 2 ∥ψ∥ ∥dΓ(ω 2σ ) 1/2 ϕ∥ H .
For the other term in (a), note that

[e -δdΓ(ω 2σ ) , âℏ (ω 2σ G)] = e -δdΓ(ω 2σ ) âℏ (β ω 2σ G). This implies that âℏ (ω 2σ G) e -δdΓ(ω 2σ ) = e -δdΓ(ω 2σ ) âℏ ((1 -β) ω 2σ G).
Then, using the above equality, we get

|⟨ϕ, âℏ (ω 2σ G) e -δdΓ(ω 2σ ) ψ⟩| ≲ ∥ω σ-1 2 χ∥ 2 ∥ϕ∥ ∥dΓ(ω 2σ ) 1/2 ψ∥ H . We conclude that |⟨ϕ, B 1 ψ⟩| ≲ ∥ω σ-1 2 χ∥ 2 ∥ψ∥ ∥dΓ(ω 2σ ) 1/2 ϕ∥ H + ∥ϕ∥ ∥dΓ(ω 2σ ) 1/2 ψ∥ H .
And thus, the final result follows. □ Lemma 4.4. There exists

C 1 , C 2 ∈ R * + such that Θ 3 (t) ≤ C 1 ⟨ψ, (dΓ(ω 2σ ) e -δdΓ(ω 2σ ) + 1) ψ⟩ e C 2 |t| .
Proof. Use the previous Lemma 4.3 with ϕ = ψ = ψ(t), we get that

Θ3 (t) = i ℏ ⟨ψ(t), [ Ĥ, dΓ(ω 2σ ) e -δdΓ(ω 2σ ) ] ψ(t)⟩ ≲ ∥ω σ-1 2 χ∥ 2 ∥ψ∥ ∥dΓ(ω 2σ ) 1/2 ψ(t)∥ H ≲ ∥ω σ-1 2 χ∥ 2 ∥ψ∥ ∥ dΓ(ω 2σ )e -δdΓ(ω 2σ ) 1/2 ψ(t)∥ H ≲ ∥ω σ-1 2 χ∥ 2 ∥ψ∥ 2 + ∥ dΓ(ω 2σ )e -δdΓ(ω 2σ ) 1/2 ψ(t)∥ 2 H ≲ c⟨ψ, ψ⟩ + c Θ 3 (t).
And thus the result follows by applying the Gronwall's Lemma. □ Lemma 4.5 (Field estimate). Assume that (1.6) and ω σ-

1 2 χ ∈ L 2 (R d , dk). Then, there exists constants C 1 , C 2 > 0 such that for all ψ ∈ D( Ĥ1/2 0 ) ∩ D(dΓ(ω 2σ ) 1/2
), all t ∈ R and all ℏ ∈ (0, 1):

⟨e -i t ℏ Ĥ ψ, dΓ(ω 2σ ) e -i t ℏ Ĥ ψ⟩ ≤ C 1 ⟨ψ, (dΓ(ω 2σ ) + 1) ψ⟩ e C 2 |t| . (4.6) 
Proof. It is a consequence of the previous Lemma 4. [START_REF] Ammari | Asymptotic completeness for a renormalized nonrelativistic hamiltonian in quantum field theory: The nelson model[END_REF]. Indeed, the approximation map e -δdΓ(ω 2σ ) dΓ(ω 2σ ) converges strongly to dΓ(ω 2σ ). This leads to

∥ dΓ(ω 2σ ) 1/2 ψ(t)∥ 2 = lim δ→0 ∥ e -δdΓ(ω 2σ ) dΓ(ω 2σ ) 1/2 ψ(t)∥ 2 ≲ lim δ→0 C 1 ∥(e -δdΓ(ω 2σ ) dΓ(ω 2σ ) + 1) 1/2 ψ∥ 2 e C 2 |t| = C 1 ∥(dΓ(ω 2σ ) + 1) 1/2 ψ∥ 2 e C 2 |t| .
And thus, we achieve the desired result. □ 4.1.3. Propagation of estimates uniformly for all times. As a consequence of the previous estimates, the uniform bound on the initial states (ϱ ℏ ) ℏ∈(0,1) propagates in time.

Lemma 4.6 (Propagation of the assumptions (1.8) and (1.9) in time). Assume (1.6) and ω 1/2 χ ∈ L 2 (R d , dk). Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices satisfying (1.8) and (1.9). Then, the family of states (ϱ h (t)) ℏ∈(0,1) and (ρ h (t)) ℏ∈(0,1) satisfy the same assumptions (1.8) and (1.9) uniformly for any t ∈ R in arbitrary compact interval.

Proof. Before we begin the proof, remark that by spectral decomposition, we have

ϱ ℏ = m∈N λ ℏ (m) |e -i t ℏ Ĥ ψ ℏ (m)⟩⟨e -i t ℏ Ĥ ψ ℏ (m)|,
where λ ℏ (m) are the eigenvalues and ψ ℏ (m) are their related eigenfunctions. Let J be a compact interval. Then for all t ∈ J:

• We have with some c ∈ R * + the following uniform estimate

Tr ρℏ (t) p2 = Tr e i t ℏ Ĥ02 ϱ ℏ (t) e -i t ℏ Ĥ02 p2 = Tr ϱ ℏ (t) p2 = m∈N λ ℏ (m) ∥p e -i t ℏ Ĥ ψ ℏ (m)∥ 2 = m∈N λ ℏ (m) ⟨e -i t ℏ Ĥ ψ ℏ (m), p2 e -i t ℏ Ĥ ψ ℏ (m)⟩ ≤ C 1 m∈N λ ℏ (m) ⟨ψ ℏ (m), ( Ĥ0 + p2 + 1) ψ ℏ (m)⟩ e C 2 |t| ≤ c,
where we have used Lemma 4.2 as well as assumptions (1.8) and (1.9).

• We have with some c ′ ∈ R * + the following estimate

Tr ρℏ (t) q2 = Tr e i t ℏ Ĥ02 ϱ ℏ (t) e -i t ℏ Ĥ02 q2 = Tr ϱ ℏ (t) q2 = m∈N λ ℏ (m) ∥q e -i t ℏ Ĥ ψ ℏ (m)∥ 2 = m∈N λ ℏ (m) ⟨e -i t ℏ Ĥ ψ ℏ (m), q2 e -i t ℏ Ĥ ψ ℏ (m)⟩ ≤ C 1 m∈N λ ℏ (m) ⟨ψ ℏ (m), ( Ĥ0 + q2 + 1) ψ ℏ (m)⟩ e C 2 |t| ≤ c ′ ,
where we have used Lemma 4.1 as well as assumptions (1.8) and (1.9). • We have for some c ′′ the following uniform estimate

Tr ρℏ (t) dΓ(ω 2σ ) = Tr e i t ℏ Ĥ02 ϱ ℏ (t) e -i t ℏ Ĥ02 dΓ(ω 2σ ) = Tr ϱ ℏ (t) dΓ(ω 2σ ) = m∈N λ ℏ (m) ∥dΓ(ω 2σ ) 1/2 e -i t ℏ Ĥ ψ ℏ (m)∥ 2 = m∈N λ ℏ (m) ⟨e -i t ℏ Ĥ ψ ℏ (m), dΓ(ω 2σ ) e -i t ℏ H ψ ℏ (m)⟩ ≤ C 1 m∈N λ ℏ (m) ⟨ψ ℏ (m), (dΓ(ω 2σ ) + 1) ψ ℏ (m)⟩ e C 2 |t| ≤ c ′′ .
where we have used Lemma 4.5 as well as assumptions (1.8). □ 4.2. Existence of unique Wigner measure. In this section, we prove that for any family of states (ϱ h ) ℏ∈(0,1) which satisfies (1.8) and (1.9) and for any sequence ℏ n → 0, we can extract a subsequence ℏ n ℓ → 0 such that the set of Wigner measure

M(ρ ℏn ℓ (t), ℓ ∈ N)
is singleton. The main results are stated below: Proposition 4.7 (Existence of unique Wigner measure μt for all times). Assume that (1.6) and (1.7) hold true. Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices satisfying (1.8) and (1.9). For any sequence (ℏ n ) n∈N in (0, 1) such that ℏ n → 0, there exists a subsequence (ℏ n ℓ ) ℓ∈N and a family of probability measures (μ t ) t∈R such that for all t ∈ R,

M(ρ ℏn ℓ (t), ℓ ∈ N) = {μ t }.
Moreover, for every compact time interval J there exists a constant C > 0 such that for all times t ∈ J,

X 0 ∥u∥ 2 X σ dμ t (u) < C. (4.7) 
Proof. We prove the above proposition in two steps.

Step 1 is dedicated to the extraction of a unique Wigner measure at fixed times.

Step 2 generalizes for all times. To establish Step 1, it is necessary to recall the following result from [9, Theorem 6.2].

Proposition 4.8 (The set of Wigner measure is not empty). Let (ϱ h ) ℏ∈(0,1) be a family of density matrices satisfying (1.8) and (1.9). Then for all sequences (ℏ n ) n∈N with lim n→∞ ℏ n = 0, there exists a subsequence (ℏ n ℓ ) ℓ∈N with lim ℓ→∞ ℏ n ℓ = 0 such that M(ϱ ℏn ℓ , ℓ ∈ N) = {µ}.

Moreover, we have

X 0 ∥u∥ 2 X 0 dµ(u) < +∞, X 0 ∥u∥ 2 X σ dµ(u) < +∞. (4.8)
Step 1: Extraction of a unique Wigner measure at fixed times.

Let s ∈ R be a fixed time. Let ℏ n → 0 n→∞ . Then, by Proposition 4.8, there exists a subsequence (ℏ ℓ ) ℓ∈N ≡ (ℏ n ℓ ) ℓ∈N such that ℏ ℓ → 0 ℓ→∞ and a probability measure μs ∈ P(X 0 ) such that

M(ρ ℏn ℓ (s), ℓ ∈ N) = {μ s }.
Moreover, we have the following integrability formula

X 0 ∥u∥ 2 X σ dμ s (u) = X 0 (p 2 + q 2 + ∥α∥ 2 G σ ) dμ s (p, q, α) < +∞. (4.9)
The above integrability formula is a consequence of the following implications proved in [START_REF] Ammari | Mean field propagation of infinite dimensional wigner measures with a singular two-body interaction potential[END_REF]Lemma 3.12] for some C > 0:

(i) If Tr[ϱ ℏ Nℏ ] ≤ C =⇒ ∀µ ∈ M(ϱ ℏ ; ℏ ∈ (0, 1)), X 0 ∥α∥ 2 G 0 dµ ≤ C; (ii) If Tr[ϱ ℏ dΓ(ω 2σ )] ≤ C =⇒ ∀µ ∈ M(ϱ ℏ ; ℏ ∈ (0, 1)), X 0 ∥α∥ 2 G σ dµ ≤ C; (iii) If Tr[ϱ ℏ (q 2 + p2 )] ≤ C =⇒ ∀µ ∈ M(ϱ ℏ ; ℏ ∈ (0, 1)), X 0 (q 2 + p 2 ) dµ ≤ C.
Now, by the help of uniform estimate in Lemma 4.6, we have the two family of states (ϱ h (t)) ℏ∈(0,1) and (ρ h (t)) ℏ∈(0,1) satisfy uniformly the bounds of (i)-(ii)-(iii), one obtains then that (4.9) holds true as a consequence of (4.7) in Proposition 4.8.

Step 2: Generalization for all times. Claim first that we have for all times t ∈ R

M(ρ ℏ ℓ (t), ℓ ∈ N) = {μ t }. (4.10) 
Let us now prove the integrability formula in Proposition 4.7. Recall that our density metrices (ϱ ℏ ) ℏ∈(0,1) satisfies the assumptions (1.8) and (1.9). And, by Lemma 4.6, the family of states (ρ ℏ (t)) ℏ∈(0,1) satisfies the same assumptions uniformly in any compact time interval J. Then, using (4.8), for all t ∈ J, we have (4.7). we come back now to prove the claim (4.10). Let (t j ) j∈N be a countable dense set in R. We have by Step 1 that • for t 1 , for ℏ n -→ 0 n→∞ , there exists a subsequence ℏ ℓ -→ 0 ℓ→∞ such that

M(ρ ℏ ℓ (t 1 ), ℓ ∈ N) = {μ t 1 }.
• for t 2 , for (ℏ ℓ ) ℓ∈N , there exists a subsequence (ℏ ϕ 2 (ℓ) ) ℓ∈N ⊂ (ℏ ℓ ) ℓ∈N such that

M(ρ ℏ ϕ 2 (ℓ) (t 2 ), ℓ ∈ N) = {μ t 2 }.
• for t 3 , for (ℏ ϕ 2 (ℓ) ) ℓ∈N , there exists a subsequence (ℏ

ϕ 3 (ℓ) ) ℓ∈N ⊂ (ℏ ϕ 2 (ℓ) ) ℓ∈N such that M(ρ ℏ ϕ 3 (ℓ) (t 3 ), ℓ ∈ N) = {μ t 3 }.
• And so on, for t j , for (ℏ ϕ j-1 (ℓ) ) ℓ∈N , there exists a subsequence (ℏ ϕ j (ℓ)

) ℓ∈N ⊂ (ℏ ϕ j-1 (ℓ) ) ℓ∈N such that M(ρ ℏ ϕ j (ℓ) (t j ), ℓ ∈ N) = {μ t j }.
By diagonal arguments, we extract the subsequence (ℏ ϕ ℓ (ℓ) ) ℓ denoted by (ℏ ℓ ) ℓ for simplicity such that for all j ∈ N, we have M(ρ ℏ ℓ (t j ), ℓ ∈ N) = {μ t j }.

The above formula implies that for all ξ = (p 0 , q 0 , α 0 ) ∈ X 0 and ξ = (-2πq 0 , 2πp 0 , √ 2πα 0 ) lim ℓ→∞ Tr W( ξ) ρℏ ℓ (t j ) =

X 0 e 2πiℜe⟨ξ,u⟩ X 0 dμ t j (u) (4.11)

We have

X 0 ∥u∥ 2 X σ dμ t j (u) < +∞.
The above formula implies that the set of Wigner measure {μ t j } j∈N is tight in P(X 0 ). This implies that according to Prokhorov's theorem in Lemma A.1, for all ξ ∈ X 0 , there exists a subsequence still denoted by t j and a probability measure μt ∈ P(X 0 ) such that μt j converges weakly narrowly to μt . This gives since the function e 2πiℜe⟨ξ,u⟩ X 0 is bounded that

X 0 e 2πiℜe⟨ξ,u⟩ X 0 dμ t j (u) -→ t j →t X 0 e 2πiℜe⟨ξ,u⟩ X 0 dμ t (u)
Now, we need to prove that

X 0 e 2πiℜe⟨ξ,u⟩ X 0 dμ t j (u) -→ t j →t lim ℓ→∞ Tr W( ξ) ρℏ ℓ (t) (4.12)
We start by

X 0 e 2πiℜe⟨ξ,u⟩ X 0 dμ t j (u) -lim ℓ→∞ Tr W( ξ) ρℏ ℓ (t) ≤ X 0 e 2πiℜe⟨ξ,u⟩ X 0 dμ t j (u) -lim ℓ→∞ Tr W( ξ) ρℏ ℓ (t j ) • • • (1) + lim ℓ→∞ Tr W( ξ) ρℏ ℓ (t j ) -lim ℓ→∞ Tr W( ξ) ρℏ ℓ (t) • • • (2) (4.13)
The quantity (1) is zero by (4.11). The quantity ( 2) is zero by using the following estimates:

(i) For ξ ∈ X 0 , for all t, t 0 ∈ J where J is compact interval, we have

Tr W(ξ) ρℏ (t) -ρℏ (t 0 ) ≲ |t -t 0 | ∥ξ∥ X 0 ∥ξ∥ X 0 + ∥χ∥ L 2 + ∥χ∥ G 0 ;
(ii) For all ξ 1 , ξ 2 ∈ X 0 , for all t ∈ J where J is compact interval, we have

Tr W(ξ 1 ) -W(ξ 2 ) ρℏ (t) ≲ ∥ξ 1 -ξ 2 ∥ X 0 ∥ξ 1 ∥ X 0 + ∥ξ 2 ∥ X 0 + 1 .
For (i), we exploit (3.13), we have with S = ( Ĥ0 + 1)

1/2 Tr W(ξ) ρℏ (t) -ρℏ (t 0 ) ≤ |t -t 0 | (B 0 + ℏB 1 ) S -1 L(H) SW(ξ)S -1 L(H) S ρℏ (t) L 1 (H)
. Now using Lemma 3.5, the two estimates (3.28) and (3.29) and the two assumptions (1.8) and (1.9), we get the desired result. For (ii), we have

Tr W(ξ 1 ) -W(ξ 2 ) ρℏ (t) ≤ (W(ξ 1 ) -W(ξ 2 ))( Nℏ + 1) -1/2 L(H) ( Nℏ + 1) 1/2 ρℏ (t) L 1 (H)
<∞ by (1.8) .

And thus, using following the same computations as in [9, Lemma 3.1], the result follows. □

Derivation of the characteristic equations

Subsection 5.1 focuses on investigating the convergence of the quantum dynamics towards the evolution of the particle-field equation. In Subsection 5.2, we derive the characteristic equation that the Wigner measure satisfies. Finally, in Subsection 5.3, we demonstrate that this characteristic equation is equivalent to a Liouville equation. 5.1. Convergence. In this section, we take the classical limit ℏ n ℓ → 0 as ℓ → ∞ in the Duhamel formula (3.13) to derive the characteristics equation satisfied by the Wigner measure (μ t ) t∈R . Lemma 5.1 (Convergence). Assume (1.6) and ω 1/2 χ ∈ L 2 (R d , dk). Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices satisfying (1.8) and (1.9). Then for all ξ = (z 0 , α 0 ) ∈ X 0 and all t, t 0 ∈ R,, the Duhamel formula (3.13) converges to the following characteristics equation

X 0 e Q(ξ,u) dμ t (u) = X 0 e Q(ξ,u) dμ t 0 (u) -i t t 0 X 0 b(s, ξ) e Q(ξ,u) dμ s (u) ds (5.1) with Q(ξ, u) = iℑm⟨z, z 0 ⟩ + √ 2iℜe⟨α 0 , α⟩, ξ = (z 0 , α 0 ), u = (z, α), (5.2) 
and where we have introduced

b(s, ξ) := - n j=1 ∇f j (p j ) • p 0j - n j=1 ∇ q j V (q) • q 0j + n j=1 ⟨α, b 0 j (s)⟩ L 2 + ⟨b 0 j (s), α⟩ L 2 + i √ 2 ⟨α 0 , g j (s)⟩ L 2 -⟨g j (s), α 0 ⟩ L 2 .
The function b 0 j (s) is such that b 0 j (s) ≡ b 0 j (s)(p j , q j ) is defined as follows

b 0 j (s) := 2πik • q 0j χ(k) ω(k) e -2πik•q j +isω(k) (5.3) 
Proof. From the Definition 1.2 of Wigner measure, we have

lim ℓ→+∞ Tr[W(ξ) ρℏn ℓ (s)] = X 0 e Q(ξ,u) dμ s (u).
We plug (3.25) in the Duhamel's formula (3.13), we get

X 0 e Q(ξ,u) dμ t (u) = X 0 e Q(ξ,u) dμ t 0 (u) -i t t 0 lim ℓ→∞
Tr[B 0 (s, ℏ n ℓ , ξ) W(ξ) ρℏn ℓ (s)] ds.

We have to prove then

lim ℓ→+∞ Tr[B 0 (s, ℏ n ℓ , ξ) W(ξ) ρℏn ℓ (s)] = X 0 b(s, ξ) e Q(ξ,u) dμ s (u).
We start with Tr[B 0 (s,

ℏ n ℓ , ξ) W(ξ) ρℏn ℓ (s)] = - n j=1 Tr[∇f j (p j ) • p 0j W(ξ) ρℏn ℓ (s)] - n j=1 Tr[∇ q j V (q) • q 0j W(ξ) ρℏn ℓ (s)] + n j=1
Tr[â ℏn ℓ gj (s) -g j (s)

ℏ n ℓ W(ξ) ρℏn ℓ (s)] + Tr[â * ℏn ℓ gj (s) -g j (s) ℏ n ℓ W(ξ) ρℏn ℓ (s)] + n j=1 i √ 2 Tr[⟨α 0 , gj (s)⟩ L 2 (R d ,C) W(ξ) ρℏn ℓ (s)] -Tr[⟨g j (s), α 0 ⟩ L 2 (R d ,C) W(ξ) ρℏn ℓ (s)] .
Let us start with the first two terms. We have

lim ℓ→∞ Tr[∇f j (p j ) • p 0j W(ξ) ρℏn ℓ (s)] = X 0 e Q(ξ,u) ∇f j (p j ) • p 0j dμ s (u), (5.4) lim ℓ→∞ Tr[∇ q j V (q) • q 0j W(ξ) ρℏn ℓ (s)] = X 0 e Q(ξ,u) ∇ q j V (q) • q 0j dμ s (u), (5.5) 
where we have used in the above two lines the convergent results in [6, Lemma B.1] since ⟨p j ⟩ -1 ∇f j (p j ) • p 0j ∈ L ∞ and ⟨q⟩ -1 ∇ q j V (q) • q 0j ∈ L ∞ . Let us deal now with the second line.

The goal is to prove the following limit:

lim ℓ Tr â * ℏn ℓ gj (s) -g j (s) ℏ n ℓ W(ξ) ρℏn ℓ (s) = X 0 e Q(ξ,u) ⟨α, b 0 j (s)⟩ L 2 dμ s (u).
We start then with Tr â * ℏn ℓ gj (s) -g j (s)

ℏ n ℓ W(ξ) ρℏn ℓ (s) - X 0 e Q(ξ,u) ⟨α, b 0 j (s)⟩ L 2 dμ s (u) ≤ Tr â * ℏn ℓ gj (s) -g j (s) ℏ n ℓ -b0 j (s) W(ξ) ρℏn ℓ (s) (1) 
+ Tr â *

ℏn ℓ b0 j (s) W(ξ) ρℏn ℓ (s) - X 0 e Q(ξ,u) ⟨α, b 0 j (s)⟩ L 2 dμ s (u) (2) 
, where b0 j (s) := 2πik • q 0j χ(k) ω(k) e -2πik•q j +isω(k) .

(5.6)

For (1), let S = ( Ĥ0 + 1) 1/2 , we have

Tr â * ℏn ℓ gj (s) -g j (s) ℏ n ℓ -b0 j (s) W(ξ) ρℏn ℓ (s) ≤ 1 √ ω gj (s) -g j (s) ℏ n ℓ -b0 j (s) L(L 2 ,L 2 ⊗L 2 ) -→0 ℓ→∞ ∥S W(ξ) S -1 ∥ L(H) S ρℏ (s) L 1 (H)
.

The above convergence follows from dominated convergence theorem and our assumptions. For (2), according to the expression (5.6), we have b0 j (s) = e -2πik•q j φ j (k), for some φ j ∈ L 2 (R d ). Hence, applying Lemma C.2 in the appendix, we conclude that (2) converges to zero as ℓ → ∞. Similar discussions lead to lim ℓ→∞ Tr[â ℏn ℓ gj (s) -g j (s)

ℏ n ℓ W(ξ) ρℏn ℓ (s)] = X 0 e Q(ξ,u) ⟨b 0 j (s), α⟩ L 2 dμ s (u)
We deal now with the last line

Tr[⟨α 0 , gj (s)⟩ L 2 W(ξ) ρℏn k (s)] = R d α 0 (k) χ(k) ω(k) e isω(k) e 2πik•q 0j ℏn ℓ Tr[e -2πik•q j W(ξ) ρℏn ℓ (s)] dk = R d α 0 (k) χ(k) ω(k) e isω(k) e 2πik•q 0j ℏn ℓ Tr[W 1 -2πk, 0 W(ξ) ρℏn ℓ (s)] dk = R d α 0 (k) χ(k) ω(k) e isω(k) e 2πik•q 0j ℏn ℓ Tr[W -2πk, 0, 0 W(ξ) ρℏn ℓ (s)] dk = R d α 0 (k) χ(k) ω(k) e isω(k) e 2πik•q 0j ℏn ℓ Tr[e -iℏn ℓ 2 
ℑm⟨i2πk,q 0 +ip 0 ⟩ W(p 0 -2πke j , q 0 , α 0 ) ρℏn ℓ (s)] dk.

We conclude

lim ℓ→+∞ Tr[⟨α 0 , gj (s)⟩ L 2 W(ξ) ρℏn ℓ (s)] = R d α 0 (k) χ(k) ω(k) e isω(k) lim ℓ→+∞ Tr[W(p 0 -2πk, q 0 , α 0 ) ρℏn ℓ (s)] dk = R d α 0 (k) χ(k) ω(k) e isω(k)
X 0 e -2πik•q j e Q(ξ,u) dμ s (u)dk By Fubini, we get lim ℓ→+∞

Tr[⟨α 0 , gj (s)⟩ L 2 W(ξ) ρℏn ℓ (s)] = X 0 e Q(ξ,u) R d α 0 (k) χ(k) ω(k) e -2πik•q j +isω(k) dk dμ s (u) = X 0 e Q(ξ,u) ⟨α 0 , g j (s)⟩ L 2 dμ s (u).
Similar discussions also work to prove e 2iπℜe⟨y,u⟩ X σ dμ t (u) =

lim ℓ→+∞ Tr[⟨g j (s), α 0 ⟩ L 2 W(ξ) ρℏn ℓ (s)] = X 0 ⟨g j (s), α 0 ⟩ L 2 e Q(ξ,u) dμ s (u).
X 0 e 2iπℜe⟨y,u⟩ X σ dμ t 0 (u) + 2πi t t 0 X 0 e 2iπℜe⟨y,u⟩ X σ ℜe⟨v(s, u), y⟩ X σ dμ s (u) ds,

for all t, t 0 ∈ R and y ∈ X σ .

Proof. Define ξ := (

z 0 2iπ , α 0 √ 2π ) ∈ X 0 , with ξ = (z 0 , α 0 ) ∈ X 0 .
We claim that b(s, ξ) = -2πℜe⟨v(s, u), ξ⟩ X 0 . Indeed, we first remark that

-2πℜe⟨v(s, u), ξ⟩ X 0 = -2πℜe⟨(v(s, u)) z , z 0 2iπ ⟩ (1) -2πℜe⟨(v(s, u)) α , α 0 √ 2π ⟩ L 2 (2) 
.

For (1), we have

-2πℜe⟨(v(s, u)) z , z 0 2iπ ⟩ = -ℑm⟨(v(s, u)) z , z 0 ⟩ = - n j=1 (v(s, u)) q j • p 0j -(v(s, u)) p j • q 0j = - n j=1 ∇f j (p j ) • p 0j - n j=1 ∇ q j V (q) • q 0j + n j=1 ⟨α, b 0 j (s)⟩ L 2 + ⟨b 0 j (s), α⟩ L 2 ,
where recall that v(s, u) is as in (2.6) and b 0 j (s) is as in (5.3).

For (2), we have

-2πℜe⟨(v(s, u)) α , α 0 √ 2π ⟩ L 2 = - √ 2ℜe⟨(v(s, u)) α , α 0 ⟩ L 2 = - √ 2ℜe⟨-i n j=1 χ(k) ω(k) e -2πik•q j +isω(k) , α 0 ⟩ L 2 = √ 2 n j=1 ℑm⟨g j (s), α 0 ⟩ L 2 .
where g j (s) is as in (3.16). On the other hand, we have

i √ 2 ⟨α 0 , g j (s)⟩ L 2 (R d ,C) -⟨g j (s), α 0 ⟩ L 2 (R d ,C) = - √ 2ℑm⟨α 0 , g j (s)⟩ L 2 (R d ,C) = √ 2ℑm⟨g j (s), α 0 ⟩ L 2 (R d ,C) .
And, thus combining the above arguments, we prove the claimed results. The Characteristic equation (5.1) becomes then

X 0 e Q(ξ,u) dμ t (u) = X 0 e Q(ξ,u) dμ t 0 (u) + 2πi t t 0 X 0 e Q(ξ,u) ℜe⟨v(s, u), ξ⟩ X 0 dμ s (u) ds. (5.8)
We have, with Q(ξ, u) as in (5.2), that

Q(ξ, u) = 2πiℜe⟨ ξ, u⟩ X 0 . (5.9) 
We have also for all y = (p, q, α) ∈ X 2σ and all ξ = (p, q, ω 2σ α) ∈ X 0 that ℜe⟨y, u⟩

X σ = ℜe⟨ ξ, u⟩ X 0 , ℜe⟨v(s, u), y⟩ X σ = ℜe⟨v(s, u), ξ⟩ X 0 (5.10) 
By this way, plugging (5.9)-(5.10) in (5.8) gives that (5.7) is valid for all y ∈ X 2σ . The latter could be extended to all y ∈ X σ by dominated convergence theorem and the bound (5.12). □ 5.3. The Liouville equation. In this part, we relate the characteristic equation (5.7) satisfied by the set of Wigner measures (μ t ) t∈R to a special Liouville equation. To do that, we need to have some integrability condition of the vector field v of (IVP) with respect to this Wigner measure and some regularities of the latter measure.

Lemma 5.3 (Integrability of the vector field v). Assume (1.6) and (1.7) hold true. Then, there exists a constant C > 0 such that for all u = (p, q, α) ∈ X σ ,

∥v(t, u)∥ X σ ≤ C ∥u∥ 2 X 0 + 1 . (5.11) 
Moreover, for any bounded open interval I,

I X σ ∥v(t, u)∥ X σ dμ t (u) dt < +∞.
(5.12)

Proof. The non-autonomous vector field v is defined in terms of the nonlinearity N as indicated in (2.6). Then it is not hard to see by looking at the proof of Proposition 2.4 that • in the semi-relativistic case, since the function ∇f j (p j ) is bounded, we get

∥v(t, u)∥ X σ ≤ C ∥α∥ 2 L 2 + 1 .
(5.13)

• in the non-relativistic case, we get

∥v(t, u)∥ X σ ≤ C ∥α∥ 2 L 2 + |p| 2 + 1 . (5.14)
Thus, both inequalities (5.13) and (5.14) lead to (5.11). Now, the integrability condition (5.12) is a consequence of (4.7) in Proposition 4.7. □

We establish now some regularity of the Wigner measures (μ t ) t∈R with respect to time.

Lemma 5.4 (Regular properties of the Wigner Measure μt ). The Wigner measures (μ t ) t∈R extracted in Proposition 4.7 satisfy (i) μt concentrates on X σ i.e. μt (X σ ) = 1;

(ii) R ∋ t -→ μt ∈ P(X σ ) is weakly narrowly continuous.

Proof. For the first assertion (i), we have from Proposition 4.7 that

X 0 ∥u∥ 2 X σ dμ t (u) < C.
And, from the Markov's inequality, we have

μt ({u ∈ X 0 : ∥u∥ X σ ≥ ε}) ≤ 1 ε 2 μt (∥u∥ X σ ). Let ε → ∞, we get μt ({u ∈ X 0 ; u / ∈ X σ }) = 0.
Hence, we get that the measure μt is concentrated in X σ . The second assertion (ii) is proved in a similar fashion as in [6, Lemma 5.5] using Prokhorov's Theorem. □

In the coming discussions, for more details, we refer the reader to Appendix A in [START_REF] Ammari | Towards a derivation of classical electrodynamics of charges and fields from qed[END_REF]. Let I be an open bounded interval. Define the space of smooth cylindrical functions on I × X σ , denoted by C ∞ 0,cyl (I × X σ ), as follows {∂ t ϕ(t, u) + ℜe⟨v(t, u), ∇ϕ(t, u)⟩ X σ }dμ t (u) dt = 0, (LE)

C ∞ 0,cyl (I × X σ ) := ϕ : I × X σ → R; ϕ(t, u) = ψ(t, π(u)), ψ ∈ C ∞ 0 (I × R d ′ ), π : X σ → R d ′ , d ′ ∈ N ,
for any bounded open interval I containing the origin with ϕ ∈ C ∞ 0,cyl (I × X σ ). Proof. It is a direct consequence of Lemma B.1 by selecting H ≡ X σ which is a Hilbert space. More precisely, all the prerequists of Lemma B.1 are satisfied. Indeed, we have • from Corollary 5.2 that the set of Wigner measures {μ t } t∈I solves the characteristic equation (5.7);

• from Lemma 5.4, we have checked that μt ∈ P(X σ ) is a weakly narrowly continuous;

• from Lemma 5.3, we have checked the integrability condition of v with respect to μt .

And thus the result follows. □

Proof of the main result

In order to prove the main Theorems 1.1 and 1.3, we must establish some identities. It is important to note that the statement of Theorem 1.1 is not related directly to the quantum dynamics and does not require any restrictions on it. Therefore, our plan is to ensure that the assumptions (1.8) and (1.9) are applied to a specific class of density matrices, namely the coherent states. To achieve this, we must first define the coherent states for the particle and field components separately, and then generalize to the entire interacting space since we are dealing with an interaction between particles and field. Let u 0 = (z 0 , α 0 ) ∈ X 0 and consider the family of coherent states

C ℏ (u 0 ) = W 1 ( √ 2 iℏ z 0 )ψ ⊗ W 2 ( √ 2 iℏ α 0 )Ω W 1 ( √ 2 iℏ z 0 )ψ ⊗ W 2 ( √ 2 iℏ α 0 )Ω
where we have introduced → the coherent vector: W 1 ( √ 2 iℏ z 0 )ψ, centered on z 0 ∈ C dn where ψ(x) = (πℏ) -dn/4 e -x 2 /2ℏ ∈ L 2 (R dn , dx) is the normalized gaussian function on the particles related to the particle space L 2 (R dn , C). → the coherent vector: W 2 ( √ 2 iℏ α 0 )Ω in the Fock space, for α ∈ G 0 and Ω is the vacuum vector on the fock space. It bears noting that these family of coherent states gives rise to a family of density matrices satisfying the assumptions (1.8) and (1.9). Lemma 6.1 (The family of coherent states). The family of coherent states (C ℏ (u 0 )) ℏ∈(0,1) . satisfies M(C ℏ (u 0 ), ℏ ∈ (0, 1)) = {δ u 0 }, where δ u 0 is the Dirac measure centered on u 0 . Moreover, if u 0 = (z 0 , α 0 ) ∈ X σ , then (C ℏ (u 0 )) ℏ∈(0,1) satisfies (1.8)and (1.9). Tr(C ℏ (u 0 ) q2 ) = ⟨ψ, q2 ψ⟩ -2q 2 0 . □ Below, we give useful lemma which relates the Wigner measure μt to µ t in terms of the free field flow Φ f t . Lemma 6.2 (Relations between the sets of Wigner measure). Let (ϱ ℏ ) h∈(0,1) be a family of density matrices satisfying (1.8) and (1.9). Define ρℏ (t) := e i t ℏ dΓ(ω) ϱ ℏ e -i t ℏ dΓ(ω) . Then, we can assert that (1) the family of states (ρ ℏ (t)) ℏ∈(0,1) satisfies (1.8) and (1.9);

Proof. We have

(2) for all sequences (ℏ n ) n∈N with ℏ n → 0, there exists a subsequence ℏ n ℓ with ℏ n ℓ → 0 such that M(ρ ℏn ℓ (t), ℓ ∈ N) = {(Φ f -t ) ♯ µ; µ ∈ M(ϱ ℏn ℓ , ℓ ∈ N)}, where Φ f t is the free field flow as in (2.5) . Proof. The first assertion is a consequence of Lemma 4.6. Let µ ∈ M(ϱ ℏ ℓ , ℓ ∈ N) and μt ∈ M(ρ ℏ ℓ (t), ℓ ∈ N). On one hand, we have e Q(ξ,u) dμ t (u).

We conclude then that μt = (Φ f -t ) ♯ µ.

□

Below, we start the proof Theorems 1.1 and 1.3. Proof of Theorem 1.1. Let u 0 ∈ X σ and defines the density matrices for all ℏ ∈ (0, 1) as follows ϱ ℏ := C ℏ (u 0 ).

Then since u 0 ∈ X σ , we can assert by Lemma 6.1 that the family of density matrices (ϱ ℏ ) ℏ∈(0,1) satisfies (1.8) and (1.9). Thus, with this choice of density matrices and using the arguments of Proposition 4. 

: G -→ X σ u 0 -→ u(t),
where G is the ensemble of initial data obtained from Theorem B.2.

◁ Let u 0 ∈ X σ . From Lemma 6.1, we have μ0 (G) = δ u 0 (G) = 1. This implies u 0 ∈ G;

◁ Use the equivalence between the solution to (IVP) and (1.1), we can show the existence and uniqueness of the solution of (1.1) with a generalized global flow Φ t (u 0 ) = Φ f t • Φt (u 0 ), where Φ f t is the free flow and Φt is the generalized flow of (IVP); Proof of Theorem 1.3. We have here to prove the validity of Bohr's correspondence principle. Assume (ϱ ℏ ) ℏ is a family of density matrices satisfying the Assumptions (1.8) and (1.9). Then, using Proposition 4.7, we can assert that for each sequence (ℏ n ) n∈N with ℏ n → 0 n→∞ , there exists a subsequence (ℏ n ℓ ) ℓ∈N with ℏ n ℓ → 0 ℓ→∞ and a family of Borel probability measures {μ t } t∈R in X 0 such that M(ρ ℏn ℓ (t), ℓ ∈ N) = {μ t }.

By Lemma 6.2, we have M(ϱ ℏn ℓ (t), ℓ ∈ N) = {(Φ f t ) ♯ μt ; μt ∈ M(ρ ℏn ℓ (t), ℓ ∈ N)}. This implies that M(ϱ ℏn ℓ (t), ℓ ∈ N) = {µ t } = {(Φ f t ) ♯ μt } From (ii) in Porbabilistic representation, we can assert that for any bounded Borel functions ψ : X σ → R X σ ψ(u) dμ t (u) = F I ψ(e t (u 0 , u(•))) dη(u 0 , u(•)).

Since, we have the generalized global flow Φt to (IVP), we get e t (u 0 , u(•)) = Φt (e 0 (u 0 , u(•))) = Φt (u 0 ).

Theorem 1 . 1 (

 11 Global well-posedness of the particle-field equation). Let σ ∈ [ 1 2 , 1]. Assume (1.6) and (1.7) hold. Then for any initial condition u 0 ∈ X σ there exists a unique global strong solution u

2. 1 .

 1 The interaction representation. The particle-field equation (1.1) takes the following form    du(t) dt = w(u(t)) = L(u(t)) + N (u(t)),

Proposition 2 . 6 (

 26 Uniqueness property). Assume (1.6) and (1.7) are satisfied. Let I be an open interval containing the origin and let u 1 , u 2 ∈ C(I, X σ ) be two strong solutions of the particle-field equation (PFE) such that u 1

  since the Weyl operator W(ξ) is a unitary operator, we have 1 ℏ W(ξ), ĤI (s) = 1 ℏ W(ξ) ĤI (s)W(ξ) * -ĤI (s) W(ξ). (3.18)

□ 5 . 2 .Corollary 5 . 2 (

 5252 The characteristic equation. Below, we derive the final form of the time-evolution equation satisfied by the Wigner measure μt . Characteristic equation). Assume (1.6) and ω 1/2 χ ∈ L 2 (R d , dk). Then, the charactristic equation (5.1) can be further reduced to the following form X 0

Proposition 5 . 5 .

 55 where π :X σ → R d ′ is a projection of the form π : u → π(u) = (ℜe⟨u, e 1 ⟩ X σ , • • • , ℜe⟨u, e d ′ ⟩ X σ ), with (e 1 , • • • , e d ′) is an arbitrary orthonormal family of X σ . The family of Wigner measures (μ t ) t∈R defined in Proposition 4.7 is a weakly narrowly continuous solution to the following Liouville equationI X σ

  Tr(C ℏ (u 0 ) dΓ(ω 2σ )) = ∥α 0 ∥ 2 G σ Tr(C ℏ (u 0 ) p2 ) = ⟨ψ, p2 ψ⟩ -2p 2 0

  lim

ℓ

  Tr ρℏ ℓ (t) W(ξ) = lim ℓ Tr ϱ ℏ ℓ e -i t ℏ dΓ(ω) W(ξ) e i t ℏ dΓ(ω) = lim ℓ Tr ϱ ℏ ℓ W(Φ f t (ξ)) = X 0 e Q(Φ f t (ξ) ,u) dµ(u) = X 0 e Q(ξ, Φ f -t (u)) dµ(u) = X 0 e Q(ξ,u) d(Φ f -t ) ♯ µ(u).On the other hand, we have lim ℓTr ρℏ ℓ (t) W(ξ) = X 0

  The dynamical equation. The primary objective of this section is to determine the dynamical equation of the quantum system. This equation should converge, as ℏ approaches zero, to a classical dynamical equation that involves the inverse Fourier transform of a specific Wigner measure. To achieve this, in Paragraph 3.3.1, we derive the Duhamel formula for the quantum system. Then, in Paragraph 3.3.2, we expand the commutator within this Duhamel formula.3.3.1. Duhamel formula. We begin by introducing the Weyl Heisenberg operator, which acts on the entire interacting Hilbert space

  [START_REF] Ammari | On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs[END_REF], we can assert that for each sequence (ℏ n ) n∈N with ℏ n → 0 n→∞ , there exists a subsequence (ℏ n ℓ ) ℓ∈N with ℏ n ℓ → 0 ℓ→∞ and a family of Borel probability measure {μ t } t∈R in X 0ℏn ℓ Ĥ C ℏn ℓ (u 0 ) e , ℓ ∈ N) = {μ t }.Now, on one hand , we do have from Proposition 5.5 that {μ t } t∈R is weakly narrowly continuous solution to the Liouville equation (LE); from the other hand, from Lemma 5.3 , we can assert that all the prerequists to apply Theorem B.2 are in our hand. To recover the proof of Theorem 1.1, we follow the steps below.◁ We apply Theorem B.2 with the measure μt obtained above, we get the global well posedness of the initial value problem (IVP) μ0 -almost all initial data in X σ as well as the existence of a generalized Borel measurable global flow Φt as follows Φt

	such that				
	M(e i t ℏn ℓ	dΓ(ω) e	-i t	i t ℏn ℓ Ĥ e -i t ℏn ℓ	dΓ(ω)
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This gives

We conclude that μt = ( Φt ) ♯ μ0 . This implies that:

♯ µ 0 and where we have used μ0 = µ 0 as a consequence of ρℏ (0) = ϱ ℏ (0) = ϱ ℏ .

□ Appendix A. Prokhorov theorem

Let X be separable metric space. The proof of the following result is proved in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 5.1.3].

Appendix B. Useful results

The following results relate the Liouville equations and the Characteristic equations satisfied by a family of Wigner measures. For more details, we refer the reader to [START_REF] Rouffort | On the general principle of the mean-field approximation for many-boson dynamics[END_REF]Proposition 4.2]. Let H be a Hilbert space.

Lemma B.1 (Equivalence). Let v : R × H → H be a continuous vector field such that it is bounded on bounded sets. Let I ∋ t → µ t a weakly narrowly continuous curve in P(H) such that we have the following integrability condition

Then, the following statements are equivalent:

(i) {µ t } t∈I is a solution of Liouville equation (LE);

(ii) {µ t } t∈I solves the characteristic equation (5.7) for all t ∈ Iand for all y ∈ H.

The subsequent outcomes illustrate how to build the global solution to the (IVP) utilizing measure-theoretical approaches and certain probabilistic representations of the measure-valued solutions for the Liouville equation. Additional information on the topic can be found in the Appendices of [START_REF] Ammari | Towards a derivation of classical electrodynamics of charges and fields from qed[END_REF].

Theorem B.2 (Global flow of the initial value problem). Let v : R × X σ → X σ be a continuous vector field bounded on bounded sets. Assume

• ∃t ∈ R → μt ∈ P(X σ ) a weakly narrowly continuous solution to (LE) satisfying the integrability condition (5.12) on I; • There is at most one solution of the initial value problem (IVP) over any bounded open interval I containing the origin . Then for μ0 -almost all initial conditions u 0 in X σ , there exists a unique global strong solution to (IVP). In addition, the set

with the initial condition u 0 }, is Borel subset of X σ with μ0 (G) = 1 and for any time t ∈ R the map u 0 ∈ G → Φt (u 0 ) = u(t) is Borel measurable.

Proposition B.3 (Superposition principle).

There exists η ∈ P(X σ × C(I, X σ )) satisfying:

(i) η(F I ) = 1 where

is the evaluation map.

Appendix C. Technical results about convergence

Finally, we prove two technical lemmas which are useful for the study of the quantum-classical convergence in Subsection 5.1. We denote by F the Fourier transform on R d .

Lemma C.1. Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices on the Hilbert space H satisfying (1.8)-(1.9) for σ = 1 2 . Assume that for some sequence (ℏ ℓ ) ℓ∈N ⊂ (0, 1), ℏ ℓ → 0, there exists a (unique) Borel measure µ ∈ P(X 0 ) such that

with u = (p, q, α) ∈ X 0 and Q(•, •) is the phase given in (5.2).

Proof. The two limits are similar. By linear combinations one can use instead the fields operators

So, it is enough to show

Our goal is to prove (C.1). Since β = F(g) for some g ∈ L 1 (R d ), one can write

Furthermore, dominated convergence applies to the right hand side of (C.2) thanks to the assumptions (1.8)-(1.9) and the estimates in Lemma 3.1. Thus, the limit (C.1) reduces to

Now, applying [6, Lemma B.2], we obtain (C.3) for all y ∈ R d since e -2πiy•q j W(ξ) = W 1 (-2πy, 0) W(ξ) = W(-2πy, 0, 0) W(ξ) = e iℏ ℓ πy•p 0 W( ξ) , with ξ = (-2πy, 0, 0) + ξ and ξ = (p 0 , q 0 , α). Recall that the Weyl-Heisenberg operator W 1 (•) is given in (3.10) while W(•) is defined by (3.9)-(3.7). □ Lemma C.2. Let (ϱ ℏ ) ℏ∈(0,1) be a family of density matrices on the Hilbert space H satisfying (1.8)-(1.9) for σ = 1 2 . Assume that for some sequence (ℏ ℓ ) ℓ∈N ⊂ (0, 1), ℏ ℓ → 0, there exists a (unique) Borel measure µ ∈ P(X 0 ) such that

with u = (p, q, α) ∈ X 0 and Q(•, •) is the phase given in (5.2).

Proof. According to Definition 1.2 of Wigner measures and [9, Theorem 6.2 and Proposition 6.4], we deduce that

Here, we have used the extension of the notion of Wigner measures to trace-class operators which are not necessary non-negative nor trace normalized (see [START_REF] Ammari | Mean field limit for bosons and infinite dimensional phase-space analysis[END_REF]Proposition 6.4]). Let {e m } m∈N be O.N.B of the Hilbert space L 2 (R d k ). The two limits are similar (almost conjugate) and it is enough to explain the argument for the second one. We denote ϱ ℏ ℓ (ξ) := W(ξ)ϱ ℏ ℓ and b(q j ) = e -2πik•q j φ. We have

,

.

Using estimates as in Lemma 3.1 and assumptions (1.8)-(1.9), one proves

So, thanks to a further localization argument in the variable x combined to Dini's theorem, one concludes that (1) converges to zero uniformly in ℏ ∈ (0, 1) as R → ∞. Similarly, using the pointwise convergence for any x ∈ R d , , we obtain that (2) converges also to zero for any fixed R ∈ N as ℏ ℓ → 0. Hence, using an ε/3-argument we prove the claimed statement. □