
HAL Id: hal-04425491
https://hal.science/hal-04425491

Submitted on 30 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SL-COMP: competition of solvers for separation logic
Mihaela Sighireanu

To cite this version:
Mihaela Sighireanu. SL-COMP: competition of solvers for separation logic. International Journal
on Software Tools for Technology Transfer, 2021, 23, pp.895 - 903. �10.1007/s10009-021-00628-w�.
�hal-04425491�

https://hal.science/hal-04425491
https://hal.archives-ouvertes.fr

STTT manuscript No.
(will be inserted by the editor)

SL-COMP: Competition of Solvers for Separation Logic
Report on the Third Edition

Mihaela Sighireanu

Received: date / Accepted: date

Abstract SL-COMP is a competition bringing to-
gether researchers and users interested in automated
reasoning methods for separation logic (SL). The com-
petition provides a snapshot of the state of the art in
the area through a set of problems that put forward
the strengths and challenges of the existing solvers and
a comparative and replicable evaluation of participat-
ing solvers. The third edition of SL-COMP took place
in April 2019, as part of the TOOLympics event at
TACAS 2019. It collected more than 1K satisfiability
and entailment problems, had seen the adoption of the
new input format based on SMT-LIB and had doubled
the number of participant solvers compared with the
first edition in 2014. This report relates the history and
the context of SL-COMP competition and accounts of
its third edition. It also discusses the issues related with
its organization and the challenges for the next editions.

Keywords Separation Logic · SAT Modulo Theory ·
SMT-LIB

1 Introduction

SMT solvers play an important role in the success of
verification tools. The SL-COMP competition was in-
spired by the success of SMT-COMP for solvers on first
order theories. It aims at the development and promo-
tion of solvers for separation logic (SL), an established
and fairly popular extension of Hoare logic for imper-
ative, heap-manipulating programs [22]. A rather ex-
haustive list of the past and present tools using separa-

Mihaela Sighireanu
IRIF, Université de Paris, France
E-mail: mihaela.sighireanu@irif.fr

tion logic may be found at [21]. An SL-COMP event con-
sists of two stages. The first stage collects satisfiability
and entailment problems for SL, translates them into a
common format and finally assigns them to categories
depending on the fragment of SL they belong to. The
problems originate from two sources: the verification
tools employing SL or the theoretical studies on sepa-
ration logic. The later source provides problems corre-
sponding to corner cases (e.g., high complexity cases)
in the decidable fragments, or problems in undecidable
fragments. The second stage of SL-COMP is the com-
parative evaluation of registered solvers performed by
the organizer. SL-COMP uses StarExec [30], the plat-
form also used by SMT-COMP, to store the benchmark
and the binaries of participating solvers as well as to
run the experiments until the final run.

The first [26] and second editions of SL-COMP
took place as part of the Federated Logic Conferences
(FLoC) in 2014 respectivement 2018, and were affiliated
to SMT-COMP respectivement Automated Deduction
for Separation Logics (ADSL) workshops. The third
edition took place as part of TOOLympics event [5]
at TACAS 2019. Each event was an opportunity to ex-
change with researchers interested in SL or with devel-
opers of tools based on separation logic.

This paper provides an overview of SL-COMP and
highlights the main achievements of the third edition
and the open issues for the next editions. Section 2 de-
scribes the stages of the competition and the reasons
leading to its current organization. The next sections
detail the set of problems (Section 3), the running in-
frastructure (Section 4) and the results of the third edi-
tion (Section 5). Section 6 concludes with the achieve-
ments of SL-COMP and its perspectives.

2 M. Sighireanu

2 Competition Organization

2.1 Rise and progress

The competition started in 2014, as an outcome of the
emergence of solvers for SL which were independent
from the verification tools. These solvers considered
mainly the symbolic heap fragment (see Section 3.3)
which was successfully used by static analyzers (e.g.,
SmallFoot [29]) and deductive verification tools (e.g.,
Hip [10] or VeriFast [18]). The call for problems and
tools was addressed first to the teams developing these
solvers and then sent to the SMT-COMP community.
We collected 600 problems on different fragments of SL
from the six participating solvers. The format was an ad
hoc extension of the SMT-LIB format. This choice for
the input format allowed SL-COMP to be considered an
unofficial event associated to SMT-COMP at the FLoC
Olympic Games. SL-COMP benefited from the expe-
rience of SMT-COMP’s organizer, David Cok, in set-
ting the competition’s rules and the execution platform
StarExec, as well as in running the competition and in
the publication of final results. The organization de-
tails and the achievements of this edition are presented
in [26]. The discussion following this event had two out-
comes. First, a working group was charged to improve
the input format by taking into account the new fea-
tures included on the draft of the new version (2.6)
of SMT-LIB. Second, the participants chose a sparse
rhythm for the competition, roughly aligned with the
FLoC’s venues, in order to avoid editions with insignif-
icant increments and to promote tools with strong the-
oretical foundations.

The second edition took place as expected at FLoC
2018 and was associated with the first workshop on
Automated Deduction for Separation Logics (ADSL).
The competition’s organization followed the stages de-
scribed in the next section and was disconnected from
SMT-COMP, but it used the StarExec platform. The call
for benchmark was very fruitful: the number of prob-
lems was doubled as well as the number of categories.
Eleven solvers enrolled in the first round of the compe-
tition. The problems have been translated into the new
input format (see Section 3.2) which required to update
the translators to the input format of each solver. All
these novelties were dealt by the teams of the regis-
tered solvers and the organizer during the two months
before FLoC 2018. This short time was not enough to
fix the issues in some newcomer solvers, so one solver
abandoned before the final run. The competition was
run on all problems (from the 2014 edition and the new
ones) several times before an agreement was met on
the results. The competition’s results [28] have been

presented during a full session of the ADSL workshop,
and gave the opportunity of a prolific discussion on the
different aspects of the organization. The participants
agreed to rerun the competition next year as a pre-
event of TOOLympics 2019, in order to gain visibility
and to fix the identified problems in the benchmark,
the scoring and the solvers.

The third edition took place a few days before
TACAS 2019. Its organization was planned and de-
scribed in [27]. The competition considered a slightly
modified set of problems. The main changes were fix-
ing the expected results of some problems and changing
the division of others. The solver which abandoned at
the second edition was enrolled successfully. We tried
a new way to score the results and, as an indicator,
we nominated a virtually best solver for each job and
division. The results have been presented at TACAS
and are available on the SL-COMP web site [2]. They
are summarized in Section 5. The podium was differ-
ent from the 2018 edition in several categories since the
solvers were improved in the meanwhile. The results
pointed out some weaknesses in the organization pro-
cess, mainly concerning the choice of problems used for
scoring and the scoring itself. We discuss these points
in Section 5. The next edition of SL-COMP is supposed
to take place at FLoC 2022 and its organization will be
planned at ADSL 2021.

2.2 Organization process

The competition has a short running period, three
months on average. This is possible due to the avail-
ability of the material used in the competition (the
benchmark set, the definition of the input format, the
parsers for the input format and the translators to the
input of solvers) on StarExec and on a shared devel-
opment repository [1] maintained by the organizer and
the participants. Starting from its second edition, the
organization of the event is discussed during the ADSL
workshop of the previous year.

The call for problems and participants launches the
competition and fixes the competition timeline. The
call is sent on the competition mailing list sl-comp@
googlegroups.com and on some other mailing lists spe-
cialized on automated reasoning.

New solvers are invited to send a short presentation
(up to two pages) including the team, the SL-COMP
categories joined in, a bibliographic reference and a
website. Each team nominates a corresponding person
who is responsible for preparing the solver to comply
to the competition’s constraints. This preparation en-
sures that the input format is supported, the solver is
uploaded on the execution platform and it is registered

sl-comp@googlegroups.com
sl-comp@googlegroups.com

SL-COMP: Competition of Solvers for Separation Logic 3

at the right categories with the correct configuration.
The organizer creates a subspace for each solver on the
space SL-COMP of StarExec. The solver’s correspondent
receives the necessary permissions for this subspace.

The benchmark problems are collected from the
community and participants. Until now, we did not
limit the number of problems proposed by participants
in each category because we targeted the growing of
our benchmark set. However, this may change in the fu-
ture in order to increase the diversity of problems and
to avoid fine tuning of tools (see Section 3). A prob-
lem may change during the competition if an issue is
signaled. However, the benchmark set is fixed starting
with the pre-final run.

The competition is run in three stages:

1. The training period takes around two weeks during
which the solver’s correspondent runs the solver on
the execution platform and the existing benchmark
set. During this step, the benchmark set may evolve
if issues are detected; the solver’s binary may be also
changed.

2. The pre-final run is launched by the organizer us-
ing the binaries of solvers uploaded on the execution
platform. The results of a pre-final run are available
for all solvers’ representatives, in order to compare
results and have a first view on competitors’ achieve-
ments. The organizer communicates with each cor-
respondent to be sure that the results of this run are
accepted. The benchmark set is fixed, but solvers’
binaries may change until the acceptance of results.

3. The final run takes place one week before the event
at which the results are presented. The final results
are available as soon as possible on the competition’s
web site and the podium is presented during the
event.

3 Benchmark Set

The benchmark set of SL-COMP contains 1286 prob-
lems which cover several fragments of Separation Logic.
A quarter of these problems are satisfiability checking
problems, the reminder are entailment problems. This
section outlines the main features of this benchmark
set, including the fragments covered, the input format,
and the divisions established for this edition. The input
theory and format are formally presented in [17].

3.1 Separation logic theory

The input theory is a multi-sorted second order logic
over a signature Σ = (Σs, Σf), where the set of sorts

Σs includes two (non necessarily disjoint) subsets of
sorts: Σs

Loc represents locations of the heap and Σs
Data

represents heap’s data. For each sort Loc in Σs
Loc, the

set of operations includes a constant symbol nilLoc mod-
eling the null location. The heap’s type τ is an injection
from location sorts in Σs

Loc to data sorts in Σs
Data. We

also assume that the signature Σ includes the Boolean
signature and an equality function for each sort.

Let Vars be a countable set of first-order variables,
each xσ ∈ Vars having an associated sort σ. The
Ground Separation Logic SLg is the set of formulae gen-
erated by the following syntax:

ϕ := φ | emp | t 7→ u | ϕ1 ∗ ϕ2 | ϕ1 −−∗ ϕ2 (1)
¬ϕ1 | ϕ1 ∧ ϕ2 | ∃xσ . ϕ1(x)

where φ is a Σ-formula, and t, u are Σ-terms of sorts in
Σs

Loc and Σs
Data respectively, such that they are related

by the heap’s type τ . We omit specifying the sorts of
variables and functions when they are clear from the
context.

The special atomic formulas of SLg are the so-called
spatial atoms: emp specifies an empty heap, t 7→ u spec-
ifies a heap consisting of one allocated cell whose ad-
dress is t and whose value is u. The operator “∗” is
the separating conjunction denoting that the sub-heaps
specified by its operands have disjoint locations. The
operator “−−∗” is the separating implication operator,
also called magic wand. A formula containing only spa-
tial atoms combined using separating conjunction and
implication is called spatial. Formulas without spatial
atoms and separating operators are called pure.

The full separation logic SL contains formulas with
spatial predicate atoms of the form Pσ1...σn(t1, . . . , tn),
where each ti is a first-order term of sort σi, for i =
1, . . . , n. The predicates Pσ1...σn belong to a finite set
P of second-order variables and have associated a tuple
of parameter sorts σ1, . . . , σn ∈ Σs. Second-order vari-
ables Pσ1...σn ∈ P are defined using a set of rules of the
form:

P (x1, . . . , xn)← ϕP (x1, . . . , xn), (2)

where ϕP is a formula possibly containing predicate
atoms and having free variables in x1, . . . , xn. The se-
mantics of predicate atoms is defined by the least fixed
point of the function defined by these rules.

An example of a formula specifying a heap with at
least two singly linked list cells at locations x and y is:

x 7→ node(1, y) ∗ y 7→ node(1, z) ∗ ls(z, nil) ∧ z 6= x (3)

where Σs = {Int, Loc,Data} and the function node has
parameters of sort Int and Loc and its type is Data. The
predicate ls is defined by the following rules:

ls(h, f)← h = f ∧ emp (4)
ls(h, f)← ∃x, i . h 6= f ∧ x 7→ node(i, x) ∗ ls(x, f) (5)

4 M. Sighireanu

and specifies a possible empty heap storing a singly
linked list of Data starting at the location denoted by
h and whose last cell contains the location denoted by
f . More complex examples of formulas and predicate
definitions are provided in [26,17].

3.2 Input format

The input format of SL-COMP changed between the
first and the second edition, but it was always based on
the SMT-LIB format [4]. The first version of the format
was built upon the version 2.5 of SMT-LIB and therefore
introduced ad hoc constructs for inductive predicate
definitions (not allowed in SMT-LIB 2.5) or datatypes;
it also had the drawback of introducing a special type
for spatial formulas. The new format fixed these issues
and was built upon version 2.6 of SMT-LIB. The syntax
and the semantics of this format were discussed and
approved using the public mailing group.

Signature encoding: Following this format, the new
functions of SL theory are declared in a “theory” file
SepLogicTyped.smt2 as follows:

(theory SepLogicTyped
:funs ((emp Bool)

(sep Bool Bool Bool :left-assoc)
(wand Bool Bool Bool :right-assoc)
(par (L D) (pto L D Bool))
(par (L) (nil L))
)

)

The functions pto and nil are polymorphic, with
sort parameters L (for location sort) and D (for data
sort). There is no restriction on the choice of loca-
tion and data sorts. However, each problem shall fix
them using a special command, not included in SMT-
LIB, declare-heap. For example, to encode the formula
given in Equation 3, we declare an uninterpreted sort
Loc and a sort Data as a datatype as follows:

(declare-sort Loc 0)

(declare-datatype Data
((node (d Int) (next Loc))))

(declare-heap (Loc Data))

The last declaration fixes the type of the heap model.
The predicate definitions are written into SMT-LIB

format using the recursive function definition intro-
duced in version 2.6. For instance, the definition of the
list segment from Equations 4 and 5 is written into
SMT-LIB as follows (based on the above declarations of
Loc and Data):

(define-fun-rec ls ((h Loc) (f Loc)) Bool
(or (and emp (= h f))

(exists ((x Loc) (d Int))
(and (distinct h f)

(sep (pto h (node d x))
(ls x f))))

)
)

Problem format: Each benchmark file is organized as
follows:

– Preamble information required by the SMT-LIB for-
mat: the sub-logic of SL theory (see Section 3.3),
the team which proposed the problem, the kind
(crafted, application, etc.) and the status (sat or
unsat) of the problem.

– A list of declarations for the sorts of locations and
data, for the type of the heap (the declare-heap
command), for the second order predicates, and for
the free variables used in the problem’s formulae.
Notice that the input format is strongly typed. At
the end of the declarations, a checking command
check-sat may appear to trigger for some solvers
the checking for models of predicate declarations.

– One or two assertions (command assert) introduc-
ing the formulas used in the satisfiability respec-
tively entailment problem.

– The file ends with a checking satisfiability command
check-sat. Notice that checking the validity of the
entailment A⇒ B is encoded by satisfiability check-
ing of its negation A ∧ ¬B.

3.3 Divisions

The main difficulty that faces automatic reasoning us-
ing SL is that the logic, due to its expressiveness,
does not have very nice decidability properties [3].
For this reason, most solvers use incomplete heuris-
tics to solve the satisfiability and entailment problems
in SL or restrict the logic employed to decidable frag-
ments. Overviews of decidable results for SL are avail-
able in [26,11].

Each problem of SL-COMP’s benchmark refers to
one of the sub-logics of the multi-sorted Separation
Logic. These sub-logics identify fragments which are
handled by at least two participants or have been identi-
fied to be of interest by the jury (organizer with solvers’s
representatives).

The sub-logics are named using groups of letters,
in a way similar to the SMT-LIB format. These letters
have been chosen to evoke the restrictions used by the
sub-logics:

SL-COMP: Competition of Solvers for Separation Logic 5

Table 1 Divisions at SL-COMP and the participants enrolled

Division size Solvers enrolled

qf_bsl_sat 46 CVC4-SL
qf_bsllia_sat 24 CVC4-SL
qf_shid_entl 312 Cyclist-SL, Harrsh, S2S, Sleek, Slide, Songbird, Spen
qf_shid_sat 99 Harrsh, S2S, Sleek, SlSat
qf_shidlia_entl 75 ComSPEN, S2S
qf_shidlia_sat 33 ComSPEN, S2S
qf_shlid_entl 60 ComSPEN, Cyclist-SL, Harrsh, S2S, Spen
qf_shls_entl 296 Asterix, ComSPEN, Cyclist-SL, Harrsh, S2S, Spen
qf_shls_sat 110 Asterix, ComSPEN, Cyclist-SL, Harrsh, S2S, Spen
shid_entl 73 Cyclist-SL, S2S, Sleek, Songbird
shidlia_entl 181 S2S, Songbird

– QF for the restriction to quantifier free formulas;
– SH for the “symbolic heap fragment” where for-

mulas are restricted to (Boolean and separating)
conjunctions of atoms and do not contain magic
wand; moreover, pure atoms are only equality or
dis-equality atoms;

– LS where the only predicate allowed is the acyclic
list segment, ls, defined in Equations 4 and 5;

– ID for the fragment with user defined predicates;
– LID for the fragment allowing linear definitions of

user predicates, i.e., only one recursive call for all
rules of a predicate is allowed;

– B for the ground fragment allowing any Boolean
combination of atoms.

Moreover, the existing fragments defined in SMT-LIB
are used to further restrict the theory signature. For
example, LIA denotes the signature for linear integer
arithmetic.

Currently, the competition has eleven categories,
called divisions and named by the concatenation of the
logic’s name with the kind of problem solved (sat or
entl). Table 1 provides the names of these divisions,
their size and the solvers enrolled:

– qf_bsl_sat and qf_bsllia_sat divisions include
satisfiability problems for quantifier free formulas
in the ground logic using respectively none or LIA
logic for pure formulas.

– qf_shid_entl and qf_shid_sat divisions include
entailment respectively satisfiability problems for
the symbolic heap fragment with user defined predi-
cates. The fragment is undecidable for general pred-
icate definitions, but restrictions on these definitions
lead to decidability [15].

– qf_shidlia_entl and qf_shidlia_sat divisions
include entailment respectively satisfiability prob-
lems for the quantifier free, symbolic heap fragment
with user defined predicates and linear arithmetic
included in pure formulas even in the predicate def-
initions.

– qf_shlid_entl division includes a subset of prob-
lems of division qf_shid_entl where the predicate
definitions are linear and compositional [13]. This
fragment is of interest because the entailment prob-
lem is decidable and has lower complexity.

– qf_shls_entl and qf_shls_sat divisions include
entailment respectively satisfiability problems for
the quantifier free symbolic heap fragment with only
singly linked list predicate atoms. The inductive
predicate, called ls, is defined as above but with-
out integer data in each cell.

– shid_entl division contains entailment problems
for quantified formulas in the symbolic heap frag-
ment with general predicate definitions and no other
logic theories than Boolean.

– shidlia_entl divisions extends the problems in
shid_entl with constraints from linear integer
arithmetic.

Table 2 gives the contribution of each solver to the
benchmark set of the third edition. The changes done
on this set may be tracked in the SL-COMP reposi-
tory [1]. For the third edition, these changes concern
the expected status of some problems (5%) and their
division (2%). They have been done at the request of
participants and after the validation of the organizer.

4 Running the Third Edition

4.1 Participation

The third edition brought together eleven solvers, like
in the second edition, but all passed the final round.
A detailed presentation of each solver may be found
in [27] and on their web site which is reachable from
the competition’s web site [2]. The binaries of these
solvers are available on StarExec. Table 2 provides an
overview of the participating solvers and lists the fea-
tures and technologies which they are using, as well as
their contribution to the benchmark set.

6 M. Sighireanu

Table 2 Details on participating solvers and their contribution to the benchmark set

Solver Ref. Representative C
on

tr
ib
ut
io
n

R
ed
uc
ti
on

to
SM

T

A
bs
tr
ac
ti
on

ba
se
d

M
od

el
-b
as
ed

T
he
or
em

pr
ov

in
g

L
em

m
a
pr
ed
efi
ne
d

L
em

m
a
sy
nt
he
si
s

G
ra
ph

is
om

or
ph

is
m

H
ea
p
au

to
m
at
a

T
re
e
au

to
m
at
a

Asterix [23] Juan Navarro Perez 30% 3 3
ComSPEN [14] Chong Gao 3% 3 3 3
Cyclist-SL [8] Nikos Gorogiannis 6% 3
CVC4 [24] Andrew Reynolds 5% 3
Harrsh [19] Jens Katelaan 2% 3
S2S [25] Quang Loc Le 8% 3 3 3
Sleek [10] Benedict Lee 6% 3 3 3
Slide [16] Adam Rogalewicz 2% 3
SlSat [6] Nikos Gorogiannis – 3 3
Songbird [31] Quang-Trung Ta 31% 3 3 3
Spen [12] Mihaela Sighireanu 7% 3 3 3 3

Concerning the techniques employed, observe that
most of the solvers combine several techniques. For the
decidable fragments, the techniques based on reduc-
tion to SMT, graph isomorphism and tree automata
are predominant. For the fragments including general
inductive definitions of predicates, the solvers employ
techniques coming from the mechanized proofs domain
enriched with heuristics for lemma synthesis.

Most participants of this edition contributed to the
benchmark set, but two teams distinguish themselves.
The Asterix team provided most of the problems (>
95%) in the divisions qf_shls_entl and qf_shls_sat.
These problems have their origin in the queries gener-
ated by the SmallFoot [29] analyzer or have been
crafted in a random way. The Songbird team pro-
vided most of problems in the divisions qf_shid_entl
(> 40%) and shidlia_entl (> 95%), originating from
the verification conditions of algorithms on data struc-
tures. This massive participation to the benchmark set
influenced the podium at the second edition since As-
terix maintained its first place and Songbird won the
first place in the division shidlia_entl and the second
place in the division qf_shid_entl. The origin of the
problem lost its importance at the third edition because
the S2S solver won the first or the second place for all
categories.

The binaries used for the solvers evolved during this
edition, mainly to fix the parsing of the new input for-
mat and to deal with bugs revealed by the new prob-
lems. It is worth noticing that these new problems have
been proposed by teams which studied the binary and
the public code repository of their competitors. This is
an interesting effect of making available the binary and
the code of solvers. Three solvers used the binary stored

on StarExec at the first edition of SL-COMP: Asterix
Cyclist-SL and SlSat.

One solver, CVC4, was the only participant in its di-
visions. In the second edition of SL-COMP, it had one
competitor which was pulled out before the final run
and did not join the third edition. The organizer main-
tained these divisions to encourage the development of
solvers for these fragments and to keep track of CVC4’s
performances at this edition.

4.2 Training period

This period of the competition offers the opportunity
to interact closely with the solvers’ teams. In the third
edition, the training was used to fix some benchmarks,
to adapt some rules and to find an agreement on the
scoring scheme. This is possible due to the fact that
the SL-COMP community is still small. Having flexible
rules stimulates the participation and keeps a collegial
atmosphere.

The corresponding person has to ask for a sub-space
in the SL-COMP space on the StarExec platform. The
SL-COMP space has a subspace for each edition which
contains a subspace with an up-to-date version of the
benchmark, a subspace for the binaries corresponding
to the latest version of each solver, and several examples
of configuring StarExec tasks, i.e., execution of solvers
on benchmark’s categories.

The organizer applies for resources to the StarExec
manager. For the first edition, the training was done
with few resources, during the off-peak hours of SMT-
COMP. For the second edition, SL-COMP had used
six StarExec nodes for the training and the competi-
tion. Given the increase in the number of problems

SL-COMP: Competition of Solvers for Separation Logic 7

and solvers, the third edition used ten nodes. These
resources were enough even during the training period
when several solvers were tested. For this reason, the or-
ganizer increased the memory limit for each task (pair
of solver and problem) from 4 GB used at the sec-
ond edition to 10 GB. This amount of memory was re-
quested by one solver using JVM; however, the solvers
compiled to native code are using less than 4 GB. The
timeout for each task ranged from 600 to 2400 seconds,
depending on the timeout rate experienced in each di-
vision during the training period.

4.3 Scoring scheme

The third edition adopted a score-based system to des-
ignate the best solver in each division. In the previous
editions, the nomination of the winner was based on the
scoring scheme of SMT-COMP, i.e., the best solver was
the one with, in order: (a) the least number of incor-
rect answers, (b) the largest number of correctly solved
problems, and (c) the shortest time taken in solving the
correctly solved problems. We changed this system for
the third edition in order to limit the penalty for sound
but imprecise results (false positives). For each division,
the score was computed by:
10 · solved− false-positive− 10 · false-negative (6)
where a false-positive means a problem solved with re-
sult “sat” instead of the expected “unsat” (this result is
sound for program verification but not precise), a false-
negative denotes a problem solved with result “unsat”
instead of the expected “sat” (this result is not sound for
program verification). The CPU time is the tiebreaker.
The scoring scheme was discussed with the correspond-
ing persons during the training period. Such a scheme
deals uniformly with entailment and satisfiability prob-
lems, which may be unfair if the satisfiability problem
is used in the context of symbolic execution or program
testing. This point should be considered for the next
editions.

In addition to the score, the Virtually Best Solver
contribution (VBS, the solver which would be the best
for the division) was computed by taking the minimum
time for each correctly solved problem over all solvers.
The contribution of each solver to VBS is the number
of problems where the solver is the fastest. However,
the VBS was given only as an indicative information
and not used for the podium.

4.4 Pre-final and final runs

The pre-final stage took nine days for the third edition
compared with four days for the second edition which

used a similar number of problems and benchmarks.
More pre-final runs were needed to converge to the fi-
nal result because of frequent changes in the solver’s
binaries and configurations. This is still possible with
eleven solvers, but should be regulated if the size of the
benchmark or the number of participants increase.

The final run took two days to be run by the or-
ganizer. After that, the organizer produced the official
results. Unfortunately, the StarExec platform did not
provide means to automatically extract the results from
the CSV files given a scoring scheme. It could be inter-
esting to share such tools. The ones used for SL-COMP
are available on the GIT repository [1]. The final re-
sults were inspected and approved by the participating
teams before the presentation at TOOLympics.

5 Results and Discussion

For each division, the best solver obtained five stars,
the fifth one received one star. The global podium was
computed by sorting the solvers in the decreasing order
of the total number of stars obtained in all divisions.

Table 3 presents the podium (from first to 5th place)
for each division. For some divisions, the podium was
not completely occupied either by lack of participants
or because some solvers obtained negative scores. The
table also presents the final podium computed from
the results of all divisions. The website of the competi-
tion [2] provides detailed results for each division and
solver in the form of a CSV file.

The results revealed the domination of the S2S
solver. It participated in 9 divisions (over a total of
11), was able to solve all the problems without errors
and with the best score in 7 over 9 divisions. These re-
sults are very different from the first and the second
edition, where the podium varied between divisions. To
avoid the feeling of a special tuning of the winner for
the current benchmark, the rules of the competition
should include a new way of choosing the set of prob-
lems used for evaluation. Several competitions use such
rules consisting of a mixture of problems from the pub-
lic benchmark scrambled or not and problems chosen
by the jury for the final run. Another possibility is to
ask solvers to produce a certificate of the result as a
list of proof rules applied by the solver, like it is pro-
posed for SMT-COMP. This certificate may be checked
off-line using proof assistants like Coq.

Looking at the rest of the podium, we observe
a general improvement of results obtained compared
with the second edition. More problems were solved
in less time. However, some divisions remain difficult
to solve for most of solvers. This is not surprising be-

8 M. Sighireanu

Table 3 Overall podium and podium for each division from first to fifth place

Participant Podium qf
_b

sl
_s

at

qf
_b

sl
li

a_
sa

t

qf
_s

hi
d_

en
tl

qf
_s

hi
d_

sa
t

qf
_s

hi
dl

ia
_e

nt
l

qf
_s

hi
dl

ia
_s

at

qf
_s

hl
id

_e
nt

l

qf
_s

hl
s_

en
tl

qf
_s

hl
s_

sa
t

sh
id

_e
nt

l

sh
id

li
a_

en
tl

Asterix 1 1
ComSPEN Bronze 3 2 5 3
Cyclist-SL 4 4 3
CVC4 1 1
Harrsh 3 4 3
S2S Gold 1 1 1 1 1 2 2 1 1
Sleek 5 2 4 5 5
Slide 4
SlSat 3
Songbird Silver 2 5 2 3 2 4 2 2
Spen 3 4

cause these divisions correspond to undecidable frag-
ments. In the divisions corresponding to decidable frag-
ments, most solvers produce correct results in relatively
short time. Two newcomers obtained good general re-
sults, ComSPEN and Songbird. Notice that Asterix
maintains its first place in the qf_shls divisions from
the first edition.

6 Conclusion and Perspectives

The third edition of SL-COMP achieved the following
objectives:

1. It attracted eleven solvers (2014: 6 solvers, 2018: 10
solvers) from seven countries.

2. It provided a high-performance view of SL solvers.
3. The benchmark set was improved and reached more

than 1K of problems (600 in 2014). The repository
of problems is publicly available [1] for free use as
standard benchmark suite for evaluating solvers.

4. The input format for problems proposed in [17] was
largely adopted by the competing solvers. It is now
a standard for submitting problems to SL-COMP.

5. The competition won visibility and the researchers
interested in developing SL tools send us positive
feedback.

For the next edition, planed for 2022, several points
have to be improved in the organization of SL-COMP.
Firstly, the rules shall be enforced to obtain a fair
and transparent evaluation. During the last edition, we
identified two sources of bias: the lack of diversity in
the origin of the benchmark’s problems and an evalua-
tion process that allows the fine-tuning of solvers on the
existing benchmark. The scoring scheme should also be
changed take into account the kind of problems dealt

with (satisfiability or entailments). Secondly, the pe-
riod between two events should be used to maintain the
link between competitors and a collegial atmosphere.
The annual workshop ADSL may be an opportunity to
discuss the issues related with the competition’s rules
and content. A special session could be dedicated to
present the participating solvers or a new benchmark
set. Finally, the increasing number of participants and
problems requires more automatization for the tasks
allocated to the jury, for example the problem classifi-
cation, the validation of results and their presentation.
Appropriate tools could be developed for such tasks.
Apart from these improvements, SL-COMP should con-
tinue to enrich its benchmark with problems coming
from the fragments shown to have decidable satisfiabil-
ity and entailment problems. One of these fragments,
which has also an interesting application in program
analysis [9], is the separation logic with pointer arith-
metic and arrays [7,20]

Acknowledgements The author thanks the representative of
each participating solver for their willing collaboration during
the running of the competition, especially Andrew Reynolds, Jens
Katelaan, Le Quang Loc, Benedict Lee, Quang-Trung Ta, Adam
Rogalewicz, Chong Gao and Zhilin Wu. Cristina Şerban provided
the first version of the parser and the typechecker for the new
format. The reviewers provided interesting comments and sugges-
tions for the improvement of this paper. This work was partially
supported by the ANR project CoLiS, contract number ANR-15-
CE25-0001.

SL-COMP: Competition of Solvers for Separation Logic 9

References

1. SL-COMP repository. https://github.com/sl-comp
2. SL-COMP website. https://sl-comp.github.io/
3. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich,

M.I., Ouaknine, J.: Foundations for decision problems in sep-
aration logic with general inductive predicates. In: FOS-
SACS, LNCS, vol. 8412, pp. 411–425. Springer (2014). DOI:
10.1007/978-3-642-54830-7_27

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Stan-
dard: Version 2.6. Tech. rep., Department of Computer Sci-
ence, The University of Iowa (2017). URL www.SMT-LIB.org

5. Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.): Tools
and Algorithms for the Construction and Analysis of Sys-
tems - 25 Years of TACAS: TOOLympics, Held as Part of
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Pro-
ceedings, Part III, LNCS, vol. 11429. Springer (2019). DOI:
10.1007/978-3-030-17502-3

6. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A
decision procedure for satisfiability in separation logic with
inductive predicates. In: CSL-LICS, pp. 25:1–25:10. ACM
(2014). DOI: 10.1145/2603088.2603091

7. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction
(and related problems) in array separation logic. In: CADE,
vol. 10395, pp. 472–490. Springer (2017). DOI: 10.1007/978-
3-319-63046-5_29

8. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic
cyclic theorem prover. In: APLAS, LNCS, vol. 7705, pp. 350–
367. Springer (2012). DOI: 10.1007/978-3-642-35182-2_25

9. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Be-
yond Reachability: Shape Abstraction in the Presence of
Pointer Arithmetic. In: SAS, LNCS, vol. 4134, pp. 182–203.
Springer (2006). DOI: 10.1007/11823230_13

10. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Auto-
mated verification of shape, size and bag properties via
user-defined predicates in separation logic. Science of
Computer Programming 77(9), 1006–1036 (2012). DOI:
10.1016/j.scico.2010.07.004

11. Demri, S., Deters, M.: Separation logics and modalities: a
survey. Journal of Applied Non-Classical Logics 25(1), 50–
99 (2015). DOI: 10.1080/11663081.2015.1018801

12. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Composi-
tional entailment checking for a fragment of separation logic.
In: APLAS, LNCS, vol. 8858, pp. 314–333. Springer (2014).
DOI: 10.1007/978-3-319-12736-1_17

13. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma gen-
eration for separation logic with inductive definitions. In:
ATVA, LNCS, vol. 9364, pp. 80–96. Springer (2015). DOI:
10.1007/978-3-319-24953-7_7

14. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for
linearly compositional separation logic with data constraints.
In: IJCAR, LNCS, vol. 9706, pp. 532–549. Springer (2016).
DOI: 10.1007/978-3-319-40229-1_36

15. Iosif, R., Rogalewicz, A., Simácek, J.: The tree width of sep-
aration logic with recursive definitions. In: CADE, LNCS,
vol. 7898, pp. 21–38. Springer (2013). DOI: 10.1007/978-3-
642-38574-2_2

16. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in
inductive separation logic with tree automata. In: ATVA,
LNCS, vol. 8837, pp. 201–218. Springer (2014). DOI:
10.1007/978-3-319-11936-6_15

17. Iosif, R., Serban, C., Reynolds, A., Sighireanu, M.: Encod-
ing separation logic in SMT-LIB v2.5. https://github.com/
sl-comp/SL-COMP18/input/Docs (2018)

18. Jacobs, B., Smans, J., Piessens, F.: A quick tour of the Veri-
Fast program verifier. In: APLAS, LNCS, vol. 6461, pp. 304–
311. Springer (2010). DOI: 10.1007/978-3-642-17164-2_21

19. Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Harrsh: A
tool for unified reasoning about symbolic-heap separation
logic. In: LPAR-22, Kalpa Publications in Computing, vol. 9,
pp. 23–36. EasyChair (2018). DOI: 10.29007/qwd8

20. Kimura, D., Tatsuta, M.: Decidability for entailments of sym-
bolic heaps with arrays. CoRR abs/1802.05935 (2018).
URL http://arxiv.org/abs/1802.05935

21. O’Hearn, P.: Separation logic. http://www0.cs.ucl.ac.uk/
staff/p.ohearn/SeparationLogic/Separation_Logic/SL_
Home.html

22. O’Hearn, P.: Separation logic. Commun. ACM 62(2), 86–95
(2019). DOI: 10.1145/3211968

23. Pérez, J.A.N., Rybalchenko, A.: Separation logic modulo the-
ories. In: APLAS, LNCS, vol. 8301, pp. 90–106. Springer
(2013). DOI: 10.1007/978-3-319-03542-0_7

24. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision pro-
cedure for separation logic in SMT. In: ATVA, pp. 244–261
(2016). DOI: 10.1007/978-3-319-46520-3_16

25. S2S: https://loc.bitbucket.io/s2s/
26. Sighireanu, M., Cok, D.: Report on SL-COMP’14. JSAT 9,

173–186 (2014). DOI: 10.3233/SAT190107
27. Sighireanu, M., Pérez, J.A.N., Rybalchenko, A., Gorogiannis,

N., Iosif, R., Reynolds, A., Serban, C., Katelaan, J., Math-
eja, C., Noll, T., Zuleger, F., Chin, W., Le, Q.L., Ta, Q., Le,
T., Nguyen, T., Khoo, S., Cyprian, M., Rogalewicz, A., Vo-
jnar, T., Enea, C., Lengál, O., Gao, C., Wu, Z.: SL-COMP:
competition of solvers for separation logic. In: Beyer et al.
[5], pp. 116–132. DOI: 10.1007/978-3-030-17502-3_8

28. SL-COMP’2018: https://www.irif.fr/~sighirea/
sl-comp/18/

29. SmallFoot: http://www0.cs.ucl.ac.uk/staff/p.ohearn/
smallfoot/

30. StarExec: http://www.starexec.org
31. Ta, Q.T., Le, T.C., Khoo, S.C., Chin, W.N.: Automated

lemma synthesis in symbolic-heap separation logic. Proc.
ACM Program. Lang. 2(POPL), 9:1–9:29 (2017). DOI:
10.1145/3158097

https://github.com/sl-comp
https://sl-comp.github.io/
http://doi.org/10.1007/978-3-642-54830-7_27
http://doi.org/10.1007/978-3-642-54830-7_27
www.SMT-LIB.org
http://doi.org/10.1007/978-3-030-17502-3
http://doi.org/10.1007/978-3-030-17502-3
http://doi.org/10.1145/2603088.2603091
http://doi.org/10.1007/978-3-319-63046-5_29
http://doi.org/10.1007/978-3-319-63046-5_29
http://doi.org/10.1007/978-3-642-35182-2_25
http://doi.org/10.1007/11823230_13
http://doi.org/10.1016/j.scico.2010.07.004
http://doi.org/10.1016/j.scico.2010.07.004
http://doi.org/10.1080/11663081.2015.1018801
http://doi.org/10.1007/978-3-319-12736-1_17
http://doi.org/10.1007/978-3-319-24953-7_7
http://doi.org/10.1007/978-3-319-24953-7_7
http://doi.org/10.1007/978-3-319-40229-1_36
http://doi.org/10.1007/978-3-642-38574-2_2
http://doi.org/10.1007/978-3-642-38574-2_2
http://doi.org/10.1007/978-3-319-11936-6_15
http://doi.org/10.1007/978-3-319-11936-6_15
https://github.com/sl-comp/SL-COMP18/input/Docs
https://github.com/sl-comp/SL-COMP18/input/Docs
http://doi.org/10.1007/978-3-642-17164-2_21
http://doi.org/10.29007/qwd8
http://arxiv.org/abs/1802.05935
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://doi.org/10.1145/3211968
http://doi.org/10.1007/978-3-319-03542-0_7
http://doi.org/10.1007/978-3-319-46520-3_16
https://loc.bitbucket.io/s2s/
http://doi.org/10.3233/SAT190107
http://doi.org/10.1007/978-3-030-17502-3_8
https://www.irif.fr/~sighirea/sl-comp/18/
https://www.irif.fr/~sighirea/sl-comp/18/
http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/
http://www0.cs.ucl.ac.uk/staff/p.ohearn/smallfoot/
http://www.starexec.org
http://doi.org/10.1145/3158097
http://doi.org/10.1145/3158097

	Introduction
	Competition Organization
	Benchmark Set
	Running the Third Edition
	Results and Discussion
	Conclusion and Perspectives

