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New metrics for analyzing continual learners

Nicolas MICHEL1,2,3,a) Giovanni CHIERCHIA1,2,3,b) Romain NEGREL1,2,3,c)

Jean-François BERCHER1,2,3,d) Toshihiko YAMASAKI4,e)

Abstract

Deep neural networks have shown remarkable perfor-

mance when trained on independent and identically dis-

tributed data from a fixed set of classes. However, in real-

world scenarios, it can be desirable to train models on a con-

tinuous stream of data where multiple classification tasks are

presented sequentially. This scenario, known as Continual

Learning (CL) poses challenges to standard learning algo-

rithms which struggle to maintain knowledge of old tasks

while learning new ones. This stability-plasticity dilemma

remains central to CL and multiple metrics have been pro-

posed to adequately measure stability and plasticity sep-

arately. However, none considers the increasing difficulty

of the classification task, which inherently results in per-

formance loss for any model. In that sense, we analyze

some limitations of current metrics and identify the pres-

ence of setup-induced forgetting. Therefore, we propose

new metrics that account for the task’s increasing difficulty.

Through experiments on benchmark datasets, we demon-

strate that our proposed metrics can provide new insights

into the stability-plasticity trade-off achieved by models in

the continual learning environment.

1. Introduction

Although deep neural networks can exhibit remarkable

performances when trained on independent and identically

distributed data drawn from a fixed set of classes, the prac-

tical need arises to train models on a continuous stream

of data. In such real-world scenarios, multiple classifica-

tion tasks are presented sequentially, leading to a situation

where the data pertaining to previous tasks becomes inac-

cessible when learning new ones. This scenario is known

as Continual Learning (CL) and poses many challenges to

standard learning algorithms which can suffer from Catas-

trophic Forgetting (CF). Learning algorithms must trade-off

between maintaining performances on old tasks (stability)
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and achieving competitive performances on the current task

(plasticity). While the main objective remains to maximize

accuracy across all classes at the end of training, it is also

essential to define meaningful metrics to capture individual

methods learning behavior and capabilities.

Metrics such as the Average Accuracy (AA) and the Av-

erage Forgetting (AF) have been proposed in past studies.

However, none of these metrics takes into account the in-

creasing difficulty of the classification task, which automat-

ically induces a loss in performance for any model. In that

sense, we argue that the AF metric is inherently linked to

the continual learning setup and does not fairly represent

how the model reacts to the continuous environment.

In this paper, we analyze the limitations of the current

forgetting metric through simple examples and propose new

metrics for CL that take into account the increasing dif-

ficulty of the task being solved by the model. We show

through several experiments on benchmark datasets that

our proposed metrics can shed new light on the stability-

plasticity trade-off reached by the model when training on

the continual environment. In that sense, we make the fol-

lowing contributions:

• We review traditional metrics and show their current

limitations;

• We propose new metrics which take into account the

increasing difficulty of the continual setup;

• We experimentally demonstrate the advantages of our

metrics compared to traditional metrics for analyzing

continual learners.

The rest of the paper is organized as follows. In section 2 we

describe work related to ours. In section 3.2, we review two

classical CL metrics and show their limitations. In section

4 we defined our proposed metrics. Section 5 presents our

experiments and eventually section 6 concludes the paper.

2. Related Work

2.1 Online Continual Learning (OCL)

OCL addresses the problem of learning from a continuous

stream of data. Formally, we consider a sequential learn-

ing setup with a sequence {T1, · · · , TK} of K tasks, and

Dk = (Xk, Yk) the corresponding data-label pairs. In CL,

we often assume that for any value k1, k2 ∈ {1, · · · ,K},
if k1 ̸= k2 then we have Yk1

∩ Yk2
= ∅ and the number

of classes in each task is the same. Contrary to standard

CL, in OCL only one pass over the data is allowed. This
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setup has been widely studied in the supervised scenario

[1], [2], [3], [9], [10], [12], [13]. It is also referred to as Online

Class Incremental Learning. This setup is the one consid-

ered for experiments in this paper.

2.2 Memory Based Method

Memory-based methods consist in using a memory buffer

to store a small portion of past samples. When encounter-

ing a new batch coming from the stream, another batch

is retrieved from the memory, and the model is trained

on the combination of both stream and memory batches.

Between one stream batch and the other, the memory is

updated using the current stream batch data. Memory-

based methods have been especially popular in Online

Continual Learning as they achieve the best performances

[4], [5], [8], [9], [11], [12], [13]. Compared methods in the

experiments section are all memory-based.

3. Traditional Metrics

In continual learning for image classification, we are inter-

ested in the accuracy of the held-out test sets of the learned

classes, just as in standard learning. However, as the model

is trained on a sequence of tasks {T1, · · · , Tk}, specific met-

rics have been designed. In this section, we first define tra-

ditional metrics used in CL for measuring plasticity and sta-

bility. Second, we study their current limitations.

3.1 Traditional Metrics Definitions

Definition 3.1 The Average Accuracy (AA) after

training on Tk, for a classifier g in the set G of all classifiers,

is:

AAk(g) =
1

k

k∑
j=1

ak,j(g), (1)

with ak,j(g), the accuracy of classifier g on task j after train-

ing on {T1, · · · , Tk}.
The final average accuracy AAK(g) is the accuracy after

training g on the last task TK and is the metric of interest

for evaluating the performance of g.

Definition 3.2 The Average Forgetting (AF) after

training on Tk, for a classifier g ∈ G is:

AFk(g) =
1

k − 1

k−1∑
j=1

fk,j(g), (2)

with fk,j(g) = max
l∈{j,··· ,k−1}

al,j(g)− ak,j(g) and k ≥ 2.

Other CL metrics also exist but are not covered in this work.

Please note that none of existing metrics take into account

task difficulty.

3.2 Traditional Metrics Limitations

Here, we point out some current limitations of AA and

AF by using the example of a random classifier and a toy

example.

Random classifier case. Looking at Definition 3.2, it

can be observed that AF refers to how poorly the model

ak,j T1 T2 T3 T4 T5 AAk

T1 50 - - - - 50

T2 25 25 - - - 25

T3 16.7 16.7 16.7 - - 16.7

T4 12.5 12.5 12.5 12.5 - 12.5

T5 10 10 10 10 10 10
Table 1 Accuracy (%) of a random classifier in a continual set-

ting of 5 tasks with 2 classes per task. Each element at
row k and column j is the accuracy ak,j(Rand2k)

fk,j T1 T2 T3 T4 T5 AFk

T1 - - - - - -

T2 25 - - - - 25

T3 33.3 8.33 - - - 20.83

T4 37.5 12.5 4.16 - - 18.06

T5 40 15 6.66 2.5 - 16.04
Table 2 Forgetting (%) of a random classifier in a continual set-

ting of 5 tasks with 2 classes per task. Each element at
row k and column j is the forgetting fk,j(Rand2k)

currently performs when compared to its all-time-high per-

formance on previous tasks. The main limitation of AF is

that it does not solely measure how much the model forgot,

but also how much harder the current overall problem is

compared to a single task. To illustrate this phenomenon,

let us consider a simple example where we learn from a se-

quence of 5 tasks {T1, · · · , T5}, each task being composed

of two classes for a total of 10 distinct classes. We want to

use a random classifier RandCk
, where Ck is the total num-

ber of classes when training on task k. For this example,

the accuracy and forgetting are displayed in Tables 1 and 2

respectively.

As expected, the accuracy decreases during training as

the number of classes becomes larger, therefore the AF is

positive. However, a random classifier can hardly forget

knowledge as it does not learn at all. While expanding the

number of classes should make the task harder for the model,

the drop in performance is not due to the model forgetting

knowledge but rather to the fact that the model is not able

to learn how to solve the hard task as well as the easy one.

Using AA and AF can demonstrate forgetting for any model,

even if the model cannot possibly forget.

Toy example. Previous example demonstrates a setup-

induced forgetting due to the increasing task difficulty. This

increasing task difficulty effect is also illustrated in Figure 1

with a simple 2 tasks sequence example. In this case, the

classification tasks T1 and T2 are simple. However, the over-

all task Tall = {T1, T2} is more complex and it is the task

the model is evaluated on after training on T2. It is unlikely

that the model forgot how to solve both binary classifica-

tion tasks separately, as they are very similar. Specifically,

in this example, the model might not forget how to dif-

ferentiate classes 1 and 2 or how to differentiate classes 3

and 4. Rather, the model might not learn how to differenti-

ate classes 1 and 3 or how to differentiate classes 2 and 4.

4. New Metrics for Continual Learning

Current accuracy and forgetting metrics depend strongly
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class 1

class 2

class 3

class 4
unknown
sample 

Fig. 1 Toy example of a two tasks learning sequence. The model
learns from T1 then T2 and is then evaluated on Tall. Left
tile represents learning T1, middle tile represents learning
T2 and right tile represents learning Tall = {T1, T2}. Best
viewed in color.

on the continual learning setup and can mislead forgetting

analysis. We propose two metrics that attempt to dissociate

this setup-induced forgetting from the overall performance

by rescaling the original AA and AF using the performances

of a random classifier to account for task difficulty.

4.1 Rescaled Average Accuracy and Forgetting

Definition 4.1 The unnormalized Rescaled Average

Accuracy (uRAA) and unnormalized Rescaled Average For-

getting (uRAF) after training on Tk, for a classifier g are:

uRAAk(g) =
AAk(g)

AAk(RandCk
)
,

uRAFk(g) =
AFk(g)

AFk(RandCk
)
,

(3)

where Ck is the total number of classes seen at task Tk.

Definition 4.2 The Rescaled Average Accuracy

(RAA) and Rescaled Average Forgetting (RAF) after

training on Tk, for a classifier g ∈ G are:

RAAk(g) =
uRAAk(g)

max
f∈G,k

uRAAk(f)
,

RAFk(g) =
uRAFk(g)

max
f∈G,k

uRAFk(f)
.

(4)

Proposition 4.3 Let K be the total number of tasks

and CK the total number of classes. The Rescaled Average

Accuracy (RAA) after training on Tk, for a classifier g can

be expressed as:

RAAk(g) = γkAAk(g) with γk =
Ck

CK
. (5)

Proposition 4.4 If every task has the same number of

classes, the Rescaled Average Forgetting (RAF) after train-

ing on Tk, for a classifier g can be expressed as:

RAFk(g) = βkAFk(g),

with βk =
(HK − 1)(k − 1)

(Hk − 1)(K − 1)
and Hk =

k∑
i=1

1

i
.

(6)

The coefficients βk and γk act as task difficulty coeffi-

cients. Figure 2 shows different values for these coefficients

along training. The harder the task, the higher the coeffi-

cient. Indeed, (βk, γk) ∈ ]0, 1]2 with one being the maximum
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Fig. 2 Visualization of accuracy coefficient γk and forgetting co-
efficient βk for (a) K = 20 (b) K = 100

difficulty corresponding to the final task. With such defini-

tions, we have equal values at the end of training such that

RAAK(g) = AAK(g) and RAFK(g) = AFK(g).

4.2 Interpreting RAA and RAF

In subsequent we give insight on how to interpret previ-

ously refined metrics.

Comparison to a random classifier. RAA and RAF

represent how much the model learns or forgets when com-

pared to a random classifier. For example, a constant RAA

indicates that the model performances are decreasing ex-

actly like a random classifier. This situation can happen

if the model cannot learn new tasks efficiently while main-

taining high performance on past tasks (high stability and

low plasticity) or oppositely the model perfectly learns new

tasks while forgetting older tasks (low stability and high

plasticity). In other words, a constant RAA translates a

failed stability-plasticity trade-off, while an increasing RAA

demonstrates that the model learns more than a random

classifier and hence can still accumulate new knowledge de-

spite the increasing task difficulty. Both previous situations

cannot be easily differentiated using AA as its value would

be decreasing in both cases.

Decoupling task difficulty. As explained in sec-

tion 3.2, the increase in task difficulty while training of-

ten implies a decrease in model accuracy. Current RAA

and RAF expression can be interpreted as the correction of

current AA and AF to compensate for the drop in perfor-

mance due to task difficulty. Decoupling the task difficulty

allows us to detect if the model’s performances change due to

the increasing number of classes or due to a failed stability-

plasticity trade-off.

To showcase how RAA and RAF help detect learning

regimes hardly visible with AA and AF, we conduct sev-

eral experiments, detailed in section 5.

5. Experiments

In the following, we apply our metric to several Online

Continual Learning methods and compare their values to

standard metrics.

5.1 Datasets

We use variations of standard image classification datasets

[6], [7] to build continual learning environments. The orig-

inal datasets are split into several tasks of non-overlapping

3



classes. Specifically, we experimented on split-CIFAR100

and split-Tiny ImageNet. In this paper, we omitted the

split- suffix for simplicity. CIFAR100 contains 50,000

32x32 train images as well as 10,000 test images and is split

into 10 tasks containing 10 classes each for a total of 100 dis-

tinct classes. Tiny ImageNet is a subset of the ILSVRC-

2012 classification dataset and contains 100,000 64×64 train

images as well as 10,000 test images and is split into 100

tasks containing two classes each for a total of 200 distinct

classes.

5.2 Baselines

In the following, we describe considered baselines. For

every memory-based method, we use reservoir sampling [14]

for memory update and random retrieval.

Experience Replay (ER) [13]: ER is a supervised

memory based technique using reservoir sampling [14] for

memory update and random retrieval. The model is trained

using cross-entropy.

Finetune: Usual model training with no measure taken to

mitigate forgetting.

GDumb [12]: Simple method that stores data from the

stream in memory, with the constraint of having a balanced

class selection. At inference time, the model is trained

offline on memory data.

5.3 Results

In the following, we analyze our experimental results.

Training regimes with RAA. Comparison of obtained

values with AA and RAA are displayed in Figure 3. It can

be observed that for all methods the AA decreases during

training, which is expected. Given AA alone, it can be hard

to understand what dissociates each method’s behavior, as

they all follow a similar trend. However, looking at RAA,

distinct training regimes can be observed. Notably, GDumb

RAA reaches a plateau on Tiny ImageNet around task 25

which shows that this method cannot accumulate knowledge

correctly past this point. Similarly, we can observe that ER

also reaches a plateau around task 65 on Tiny ImageNet

while no such behavior is displayed on CIFAR100. Such ob-

servation suggests that in this case, ER reaches maximum

learning capabilities on Tiny ImageNet whereas not on CI-

FAR100. Interestingly, finetune’s RAA is almost constant

and near zero, which can be expected as such a naive ap-

proach shows no plasticity capabilities.

Increasing forgetting with RAF. Figure 4 shows AF

and RAF values for considered methods. On both datasets,

AF is rather constant or slightly increasing for all methods.

However, RAF displays a strong increase throughout train-

ing for finetune and ER. Such an effect is less pronounced

for GDumb. Even if no specific training regime can directly

be observed with RAF, its overall trend highlights the dif-

ferent difficulty gaps between tasks. Indeed, a 60% loss in

accuracy from T1 to T2 should not be interpreted equally

as a 60% loss from T9 to T10. If we consider 10 classes per
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Fig. 3 Values of AAk and RAAk with k ∈ [1,K] the task id.
From left to write, the performances are shown on CI-
FAR100 M = 2k with K = 5 and Tiny ImageNet M = 2k
with K = 5. The top row shows the AA while the bottom
row shows the RAA. Comparing AA to RAA, we can ob-
serve different training behavior, notably, GDumb reaches
a plateau in CIFAR100 using RAA which is not the case
using AA.
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Fig. 4 Values of AFk and RAFk with k ∈ [1,K] the task id. From
left to write, the performances are shown on CIFAR100
M = 2k with K = 5 and Tiny ImageNet M = 2k with
K = 5. The top row shows the AF while the bottom row
shows the RAF. Comparing AF to RAF, we can observe
that for most cases AFk is rather constant while RAFk

keeps increasing for every method. Best viewed in color.

task, the former corresponds to going from 10 to 20 classes

to classify while the latter corresponds to going from 90 to

100 classes to classify. The difficulty gap is therefore much

stronger in the former case than in the latter and should not

translate as the same forgetting value.

6. Conclusions

In this paper, we discussed the limitations of current tra-

ditional CL metrics. After showing that AF and AA suffer

from a setup-induced bias which can deteriorate continual

learners analysis, we introduced new metrics for CL taking

into account the increasing difficulty of the setup. We con-

ducted several experiments on classical methods for the On-

line Class Incremental Learning scenario and experimentally

demonstrate various advantages of using RAA and RAF for

analyzing continual learners. We believe these metrics can

help design new methods for CL. Extensions of this work

might consider expanding the notion of task difficulty be-

yond the performance of a random classifier.
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Appendix

A.1 Proof of proposition 4.3

Lemma A.1.1 AAk(RandCk
) = 1

Ck

Proof. Trivial.

Lemma A.1.2 max
f∈G,k

uRAAk(f) = CK . With K the

total number of tasks.

Proof. From definition 4.1 we have:

max
f∈G,k

uRAAk(f) = max
f∈G,k

AAk(f)

AAk(RandCk
)

With definition 3.1 and lemma A.1.1:

max
f∈G,k

AAk(f)

AAk(RandCk
)
= max

f∈G,k

Ck

k

k∑
j=1

ak,j(f)

∀f ∈ G, ak,j(f) ∈ [0, 1], so for any k, uRAAk(f) is maxi-

mum when ∀(k, j) ∈ [1,K]2, ak,j(f) = 1. This corresponds

to having a perfect classifier. Then we have:

max
f∈G,k

uRAAk(f) = max
k

Ck = CK (A.1)

Because the number of classes to classify increases linearly

over time in our setup.

With definition 4.1 and equation A.1, we obtained the de-

sired result.

A.2 Proof of proposition 4.4

Lemma A.2.1 AFk(RandCk
) = 1

Ck
( k
k−1Hk−1 − 1).

With Hk =
∑k

i=1
1
i the k-th harmonic number.

Proof. From definition 3.2:

AFk(RandCk
) =

1

k − 1

k−1∑
j=1

fk,j(RandCk
)

with fk,j(RandCk
) = max

l∈{j,··· ,k−1}
(al,j(RandCl

))− ak,j(RandCk
)

= max
l∈{j,··· ,k−1}

(
1

Cl

)
− 1

Ck

=
1

Cj

1

Ck

=
Ck − Cj

CjCk

fk,j(RandCk
) =

Ck−j

CjCk

Because Ck+1 = Ck + nC with nC the number of classes

per task.

Then we have:

AFk(RandCk) =
1

k − 1

k−1∑
j=1

Ck−j

CjCk

=
1

(k − 1)Ck

k−1∑
j=1

k − j

j

=
k

(k − 1)Ck

k−1∑
j=1

1

j
− 1

Ck

=
1

Ck

(
kHk−1

k − 1
− 1

)
With Hk =

∑k
j=1

1
j . Falling back to definition 4.1:

uRAFk(RandCk) =
AFk(g)

AFk(RandCk)

=
Ck

k
k−1Hk−1 − 1

1

k − 1

k−1∑
j=1

fk,j(g)

=
Ck

k(Hk−1 − 1) + 1

k−1∑
j=1

fk,j(g)

=
Ck

k(Hk − 1)

k−1∑
j=1

fk,j(g)

Lemma A.2.2 max
h∈G,k

uRAFk(h) =
Ck(K−1)
K(HK−1) . With K

the total number of tasks.

Proof. ∀h ∈ G, fk,j(h) ∈ [0, 1], so for any k, uRAFk(h) is

maximum when ∀(k, j) ∈ [1,K]2, fk,j(h) = 1. This corre-

sponds to having the worst classifier. Then we have:

max
h∈G,k

uRAFk(h) = max
k

Ck(k − 1)

k(Hk − 1)
=

CK(K − 1)

K(HK − 1)

Because Ck = knC with nC the number of classes per task

and k−1
Hk−1 is an increasing function.

Eventually with A.2.2 we have:

RAFk(g) =
uRAFk(g)

max
h∈G,k

uRAFk(h)
=

KCk(HK − 1)

kCK(Hk − 1)(K − 1)

k−1∑
j=1

fk,j(g)

=
HK − 1

(Hk − 1)(K − 1)

k−1∑
j=1

fk,j(g)
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