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Analytical Study of Momentum-Based Acceleration Methods in Paradigmatic High-Dimensional Non-Convex Problems

The optimization step in many machine learning problems rarely relies on vanilla gradient descent but it is common practice to use momentum-based accelerated methods. Despite these algorithms being widely applied to arbitrary loss functions, their behaviour in generically non-convex, high dimensional landscapes is poorly understood. In this work, we use dynamical mean field theory techniques to describe analytically the average dynamics of these methods in a prototypical non-convex model: the (spiked) matrix-tensor model. We derive a closed set, of equations that describe the behaviour of heavy-ball momentum and Nesterov acceleration in the infinite dimensional limit. By numerical integration of these equations we observe that these methods speed up the dynamics but do not improve the algorithmic threshold with respect to gradient descent in the spiked model.

Introduction

In many computer science applications one of the critical steps is the minimization of a cost function. Apart from very few exceptions, the simplest way to approach the problem is by running local algorithms that move down in the cost landscape and hopefully approach a minimum at a small cost. The simplest algorithm of this kind is gradient descent, that has been used since the XIX century to address optimization problems [START_REF] Cauchy | Méthode générale pour la résolution des systemes d'équations simultanées[END_REF]. Later on, faster and more stable algorithms have been developed: second order methods [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF]; [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF]; [START_REF] Charles G Broyden | The convergence of a class of double-rank minimization algorithms: 2. the new algorithm[END_REF]; [START_REF] Fletcher | A new approach to variable metric algorithms[END_REF]; [START_REF] Goldfarb | A family of variable-metric methods derived by variational means[END_REF]; [START_REF] David | Conditioning of quasi-newton methods for function minimization[END_REF] where information from the Hessian is used to adapt the descent to the local geometry of the cost landscape, and first order methods based on momentum [START_REF] Boris | Some methods of speeding up the convergence of iteration methods[END_REF]; [START_REF] Yurii | A method for solving the convex programming problem with convergence rate o (1/kˆ2)[END_REF]; [START_REF] Cyrus | A robust accelerated optimization algorithm for strongly convex functions[END_REF]; [START_REF] An | A pid controller approach for stochastic optimization of deep networks[END_REF]; [START_REF] Ma | Quasi-hyperbolic momentum and adam for deep learning[END_REF] that introduce inertia in the algorithm and provably speed up convergence in a variety of convex problems. In the era of deep-learning and large datasets, the research has pushed towards memory efficient algorithms, in particular stochastic gradient descent that trades off computational and statistical efficiency [START_REF] Robbins | A stochastic approximation method[END_REF]; [START_REF] Sutskever | On the importance of initialization and momentum in deep learning[END_REF], and momentum-based methods are very used in practice [START_REF] Lessard | Analysis and design of optimization algorithms via integral quadratic constraints[END_REF]. Which algorithm is the best in practice seems not to have a simple answer and there are instances where a class of algorithms outperforms the other and vice-versa [START_REF] Kidambi | On the insufficiency of existing momentum schemes for stochastic optimization[END_REF]. Most of the theoretical literature on momentum-based methods concerns convex problems [START_REF] Ghadimi | Global convergence of the heavy-ball method for convex optimization[END_REF]; [START_REF] Flammarion | From averaging to acceleration, there is only a step-size[END_REF]; Gitman et al. (2019); [START_REF] Sun | Non-ergodic convergence analysis of heavy-ball algorithms[END_REF]; [START_REF] Loizou | Momentum and stochastic momentum for stochastic gradient, newton, proximal point and subspace descent methods[END_REF] and, despite these methods have been successfully applied to a variety of problems, only recently high dimensional non-convex settings have been considered [START_REF] Yang | Unified convergence analysis of stochastic momentum methods for convex and non-convex optimization[END_REF]; [START_REF] Gadat | Stochastic heavy ball[END_REF]; [START_REF] Wang | Quickly finding a benign region via heavy ball momentum in non-convex optimization[END_REF]. Furthermore, with few exceptions [START_REF] Scieur | Universal average-case optimality of polyak momentum[END_REF], the majority of these studies focus on worst-case analysis while empirically one could also be interested in the behaviour of such algorithms on typical instances of the optimization problem, formulated in terms of a generative model extracted from a probability distribution.

The main contribution of this paper is the analytical description of the average evolution of momentumbased methods in two simple non-convex, high-dimensional, optimization problems. First we consider the mixed p-spin model [START_REF] Barrat | Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses[END_REF]; [START_REF] Folena | Rethinking mean-field glassy dynamics and its relation with the energy landscape: The surprising case of the spherical mixed p-spin model[END_REF], a paradigmatic random high-dimensional optimization problem. Furthermore we consider its spiked version, the spiked matrix-tensor Richard and Montanari (2014); Sarao Mannelli et al. (2020b) which is a prototype high-dimensional non-convex inference problem in which one wants to recover a signal hidden in the landscape. The second main result of the paper is the characterization of the algorithmic threshold for accelerated-methods in the inference setting and the finding that this seems to coincide with the threshold for gradient descent.

The definition of the model and the algorithms used are reported in section 2. In section 3 and 4 we use dynamical mean field theory [START_REF] Cecil Martin | Statistical dynamics of classical systems[END_REF] ;[START_REF] De | Dynamics as a substitute for replicas in systems with quenched random impurities[END_REF]; [START_REF] Crisanti | The sphericalp-spin interaction spin glass model: the statics[END_REF] to derive a set of equations that describes the average behaviour of these algorithms starting from random initialization in the high dimensional limit and in a fully non-convex setting.

We apply our equations to the spiked matrix-tensor model Sarao Mannelli et al. (2020bMannelli et al. ( , 2019b,a),a), which displays a similar phenomenology as the one described in [START_REF] Wang | Quickly finding a benign region via heavy ball momentum in non-convex optimization[END_REF]; Sarao Mannelli et al. (2020a) for the phase retrieval problem: all algorithms have two dynamical regimes. First, they navigate in the non-convex landscape and, second, if the signal to noise ratio is strong enough, the dynamics eventually enters in the basin of attraction of the signal and rapidly reaches the bottom of the cost function. We use the derived state evolution of the algorithms to determine their algorithmic threshold for signal recovery.

Finally, in Sec. 5 we show that in the analysed models, momentum-based methods only have an advantage in terms of speed but they do not outperform vanilla gradient descent in terms of the algorithmic recovery threshold.

Model definition

We consider two paradigmatic non-convex models: the mixed p-spin model [START_REF] Crisanti | The sphericalp-spin interaction spin glass model: the statics[END_REF]; [START_REF] Leticia | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF], and the spiked matrix-tensor model Richard and Montanari (2014);Sarao Mannelli et al. (2020b). Given a tensor T T T ∈ (R N ) ⊗p and a matrix Y Y Y ∈ R N ×N , the goal is to find a common low-rank representation x x x that minimizes the loss

L = - 1 ∆ p (p -1)! N p-1 N i1,...,ip=1 T i1,...,ip x i1 . . . x ip - 1 ∆ 2 1 √ N N i,j=1 Y ij x i x j , (1) 
with x x x in the N -dimensional sphere of radius √ N . The two problems differ by the definition of the variables T T T and Y Y Y . Call ξ ξ ξ (p) and ξ ξ ξ (2) order p tensor and a matrix having i.i.d. Gaussian elements, with zero mean and variances ∆ p and ∆ 2 respectively. In the mixed p-spin model, tensor and matrix are completely random T T T = ξ ξ ξ (p) and Y Y Y = ξ ξ ξ (2) . While in the spiked matrix-tensor model there is a low-rank representation given by x x x * ∈ S N -1 ( √ N ) embedded in the problem as follows:

T i1...ip = (p -1)! N p-1 x * i1 . . . x * ip + ξ (p) i1...ip , Y ij = x * i x * j √ N + ξ (2) ij .
(2)

These problems have been studied both in physics, and computer science. In the physics literature, research has focused on the relationship of gradient descent and Langevin dynamics and the corresponding topology of the complex landscape [START_REF] Crisanti | The sphericalp-spin interaction spin glass model: the statics[END_REF]; [START_REF] Crisanti | The sphericalp-spin interaction spin-glass model[END_REF]; [START_REF] Crisanti | Spherical 2+ p spin-glass model: An analytically solvable model with a glass-to-glass transition[END_REF]; [START_REF] Leticia | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF]; [START_REF] Auffinger | Random matrices and complexity of spin glasses[END_REF]; [START_REF] Folena | Rethinking mean-field glassy dynamics and its relation with the energy landscape: The surprising case of the spherical mixed p-spin model[END_REF][START_REF] Folena | Gradient descent dynamics in the mixed p-spin spherical model: finite-size simulations and comparison with mean-field integration[END_REF]. The state evolution of the gradient descent dynamics for the mixed spiked matrixtensor model has been studied only more recently Sarao Mannelli et al. (2019b,a). All these works considered simple gradient descent dynamics and its noisy (Langevin) dressing.

In this work we focus on accelerated methods and provide an analytical characterization of the average performance of these algorithms for the models introduced above. In order to simplify the analysis we relax the hard constraint on the norm of the vector x x x and consider x x x ∈ R N while adding a penalty term to L to enforce a soft constraint

µ 4N i x 2 i -N 2 , so that the total cost function is 2 H = L + µ 4N i x 2 i -N 2 .
Using the techniques described in detail in the next section we write the state evolution for the following algorithms:

• Nesterov acceleration Nesterov (1983) starting from y y y

[0] = x x x[0] ∈ S N -1 √ N x x x[t + 1] = y y y[t] -α∇H(y y y[t]), (3) 
y y y[t + 1] = x x x[t + 1] + t t + 3 (x x x[t + 1] -x x x[t]) . (4) 
given α the learning rate of the algorithm.

• Polyak's or heavy ball momentum (HB) [START_REF] Boris | Some methods of speeding up the convergence of iteration methods[END_REF] starting from y y y[0] = 0 0 0 and x

x x[0] ∈ S N -1 √ N , given the parameters α, β y y y[t + 1] = βy y y[t] + ∇H(x x x[t]), (5) x x x[t + 1] = x x x[t] -αy y y[t + 1]; (6) 
• gradient descent (GD) starting from

x x x[0] ∈ S N -1 √ N x x x[t + 1] = x x x[t] -α∇H(x x x[t]). (7) 
This case has been considered in [START_REF] Folena | Rethinking mean-field glassy dynamics and its relation with the energy landscape: The surprising case of the spherical mixed p-spin model[END_REF]Sarao Mannelli et al. (2019b) with the constraint i x 2 i = N . The generalization to the present case in which constraint is soft is a straightforward small extension of these previous works.

We will not compare the performance of these accelerated gradient methods to algorithms of different nature (such as for example message passing ones) in the same settings. Our goal will be the derivation of a set of dynamical equations describing the average evolution of such algorithms in the high dimensional limit N → ∞.

3 Dynamical mean field theory In all our simulations we use the dilution technique [START_REF] Semerjian | On the stochastic dynamics of disordered spin models[END_REF]; [START_REF] Krzakala | Performance of simulated annealing in p-spin glasses[END_REF] to reduce the computational cost. We consider: Nesterov acceleration in pink; heavy ball momentum in blue with α = 0.01 and β = 0.9; and gradient descent in grey. We run 100 simulations (in transparency) and draw the average. The parameters for heavy ball are the best parameters found in our simulations, see also Fig. 2 for a comparison. The results from the DMFT equations are drawn with dotted lines.

We use dynamical mean field theory (DMFT) techniques to derive a set of equation describing the evolution of the algorithms in the high-dimensional limit. The method has its origin in statistical physics and can be applied to the study of Langevin dynamics of disordered systems [START_REF] Cecil Martin | Statistical dynamics of classical systems[END_REF][START_REF] De | Dynamics as a substitute for replicas in systems with quenched random impurities[END_REF]; [START_REF] Mézard | Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications[END_REF]. More recently it was proved to be rigorous in the case of the mixed p-spin model Ben [START_REF] Ben Arous | Cugliandolo-Kurchan equations for dynamics of spin-glasses[END_REF]; [START_REF] Dembo | Dynamics for spherical spin glasses: disorder dependent initial conditions[END_REF]. The application to the inference version of the optimization problem is in Sarao Mannelli et al. (2020bMannelli et al. ( , 2019b)). The same techniques have also been applied to study the stochastic gradient descent dynamics in single layer networks [START_REF] Mignacco | Dynamical mean-field theory for stochastic gradient descent in gaussian mixture classification[END_REF] and in the analysis of recurrent neural networks [START_REF] Sompolinsky | Chaos in random neural networks[END_REF]; [START_REF] Mastrogiuseppe | Intrinsically-generated fluctuating activity in excitatory-inhibitory networks[END_REF]; [START_REF] Can | Gating creates slow modes and controls phase-space complexity in grus and lstms[END_REF].

The derivation presented in the rest of the section is heuristic and, as such, it is not fully rigorous.

Making our results rigorous would be an extension of the works Ben [START_REF] Ben Arous | Cugliandolo-Kurchan equations for dynamics of spin-glasses[END_REF]; [START_REF] Dembo | Dynamics for spherical spin glasses: disorder dependent initial conditions[END_REF] where path-integral methods are used to prove a large deviation principle for the infinite-dimensional limit. Our non-rigorous results are checked against extensive numerical simulations.

The idea behind DMFT is that, if the input dimension N is sufficiently large, one can obtain a description of the dynamics in terms of the typical evolution of a representative entry of the vector x x x (and vector y y y when it applies). The representative element evolves according to a non-Markovian stochastic process whose memory term and noise source encode, in a self-consistent way, the interaction with all the other components of vector x x x (and y y y). The memory terms as well as the statistical properties of the noise are described by dynamical order parameters which, in the present model, are given by the dynamical two-time correlation and response functions.

In this first step of the analysis we obtain an effective dynamics for a representative entry x i (and y i ). The next step consists in using such equations to compute self-consistently the properties of the corresponding stochastic processes, namely the memory kernel and the statistical correlation of the noise. In Fig. 1 we anticipate the results by comparing numerical simulations with the integration of the DMFT equations for the different algorithms: on the left we observe the evolution of the loss, on the right we observe the evolution of the radius of the vector x x x, defined as the L 2 norm of the vector ||x x x|| 2 . We find a good agreement between the DMFT state evolution and the numerical simulations.

We compare Nesterov acceleration with the heavy ball momentum in the mixed p-spin model Fig. 1, and in the spiked model Fig. 3. Nesterov acceleration allows for a fast convergence to the asymptotic energy without need of parameter tuning. In Fig. 2 we compare the numerical simulations for the HB algorithm and the DMFT description of the corresponding massive momentum version for several control parameters.

DMFT equations

In the following we describe the resulting DMFT equations for the correlation and response functions. The details of their derivation for the case of the Nesterov acceleration are provided in the following section, while we leave the other cases to the supplementary material (SM).

The dynamical order parameters appearing in the DMFT equations are one-time or two-time correlations, e.g.

C xy [t, t ] = i x i [t]y i [t ]
/N , and response to instantaneous perturbation of the dynamics, e.g.

R x [t, t ] = i δx i [t]/δH i [t ] /N by a local field H H H[t ] ∈ R N
where the symbol δ denotes the functional derivative. In this section we show only the equations for the mixed p-spin model and we discuss the difference and the derivation of the equations for the spiked tensor in the SM.

From the order parameters we can evaluate useful quantities that describe the evolution of the algorithms. In particular in Figs. 1,2,3 we show the loss, the radius, and the overlap with the solution in the spiked case (Fig. 3):

• Average loss

L[t] = - α ∆ p C x [t, t] p 2 t t =0 R x [t, t ]C x [t, t ] p-1 - α ∆ 2 C x [t, t] t t =0 R x [t, t ]C x [t, t ]; (8) • Radius C x [t, t]; • Define m x [t] = 1 N i x i [t]x *
i an additional order parameter for the spiked matrix-tensor model (more details are given in the SM), the overlap with ground truth is

x x x[t] • x x x * ||x x x|| = m x [t] C x [t, t]
Nesterov acceleration. It has been shown that this algorithm has a quadratic convergence rate to the minimum in convex optimization problems under Lipschitz loss functions Nesterov (1983); [START_REF] Su | A differential equation for modeling nesterov's accelerated gradient method: Theory and insights[END_REF], thus it outperforms standard gradient descent whose convergence is linear in the number of iterations. The analysis of the algorithm is described by the flow of the following dynamical correlation functions

C x [t, t ] = 1 N i x i [t]x i [t ], (9) 
C y [t, t ] = 1 N i y i [t]y i [t ], (10) 
C xy [t, t ] = 1 N i x i [t]y i [t ], (11) 
R x [t, t ] = 1 N i δx i [t] δH i [t ] , (12) 
R y [t, t ] = 1 N i δy i [t] δH i [t ] . ( 13 
)
The dynamical equations are obtained following the procedure detailed in section 4. Call

Q(x) = x 2 /(2∆ 2 ) + x p /(p∆ p ), C x [t + 1, t ] = C xy [t, t ] -αµ (C y [t, t] -1) C y [t, t ] + α 2 t t =0 R x [t , t ]Q (C y [t, t ]) + + α 2 t t =0 R y [t, t ]Q (C y [t, t ]) C xy [t , t ]; (14) 
C xy [t + 1, t ] = C y [t, t ] -αµ (C y [t, t] -1) C xy [t, t ] + α 2 t t =0 R y [t , t ]Q (C y [t, t ]) + + α 2 t t =0 R y [t, t ]Q (C y [t, t ]) C y [t , t ]; (15) 
C xy [t , t + 1] = 2t + 3 t + 3 C x [t + 1, t ] - t t + 3 C x [t, t ]; (16) C y [t , t + 1] = 2t + 3 t + 3 C xy [t + 1, t ] - t t + 3 C xy [t, t ]; (17) R x [t + 1, t ] = R y [t, t ] + δ t,t -αµ (C y [t, t] -1) R y [t, t ] + α 2 t t =t R y [t, t ]R y [t , t ]Q (C y [t, t ]) ; (18) R y [t , t + 1] = 2t + 3 t + 3 R x [t + 1, t ] - t t + 3 R x [t, t ]. (19) 
The initial conditions are:

C x [0, 0] = 1, C y [0, 0] = 1, C xy [0, 0] = 1, R x [t + 1, t] = 1, R y [t + 1, t] = 2t+3 t+3 .
The equations show a discretized version of the typical structure of DMFT equations. We can observe: terms immediately ascribable to the dynamical equations (3,4) and summations whose interpretation is less trivial without looking into the derivation. They represent memory kernels that take into account linear response theory for small perturbations to the dynamics (e.g. the last term of Eq. equation 14) and a noise whose statistical properties encode the effect of all the degrees of freedom on a representative one (e.g. the second last term of Eq. equation 14).

Heavy ball momentum. The DMFT equations are obtained analogously to previous ones,

C y [t + 1, t ] = βC y [t, t ] + µ (C x [t, t] -1) C xy [t, t ] + α t t =0 R y [t , t ]Q (C x [t, t ]) + α t t =0 R x [t, t ]Q (C x [t, t ]) C xy [t , t ];
(20)

C xy [t , t + 1] = βC xy [t , t] + µ (C x [t, t] -1) C x [t, t ] + α t t =0 R x [t , t ]Q (C x [t, t ]) + α t t =0 R x [t, t ]Q (C x [t, t ]) C x [t , t ]; (21) 
C xy [t + 1, t ] = C xy [t, t ] -αC y [t + 1, t ]; (22) C x [t + 1, t ] = C x [t, t ] -αC xy [t , t + 1]; (23) R y [t + 1, t ] = βR y [t, t ] + 1 α δ t,t + µ (C x [t, t] -1) R x [t, t ] + α t t =0 R x [t, t ]R x [t , t ]Q (C x [t, t ]) ; (24) R x [t + 1, t ] = R x [t, t ] -αR y [t + 1, t ]. (25) 
with initial conditions: 2 shows the consistency of theory and simulations.

C x [0, 0] = 1, C y [0, 0] = 0, C xy [0, 0] = 0, R y [t + 1, t] = 1/α, R x [t + 1, t] = -1. Fig.
Mappings between discrete update equation and continuous flow for both heavy ball momentum and Nesterov acceleration have been proposed in the literature. In the SM we considered the work Qian (1999) that maps HB to second order ODEs in some regimes of α and β. This mapping establishes the equivalence of the algorithm to the physics problem of a massive particle moving under the action of a potential. This problem has been studied in [START_REF] Cugliandolo | Non equilibrium dynamics of isolated disordered systems: the classical hamiltonian p-spin model[END_REF] but the result is limited to the fully under-damped regime where there is no first order derivative term, corresponding therefore to a dynamics that is fully inertial and which never stops due to energy conservation. In the SM we obtain the dynamical equations for arbitrary damping regimes, and we recover the equivalence established in Qian (1999) comparing the results from the two DMFTs formulations. Gradient descent. A simple way to obtain the gradient descent DMFT is by taking the limit m → 0 in the DMFT of the massive momentum description of HB. We get

C x [t + 1, t ] = C x [t, t ] -αµ (C x [t, t] -1) C x [t, t ] + α 2 t t =0 R x [t , t ]Q (C x [t, t ]) + α 2 t t =0 R x [t, t ]Q (C x [t, t ]) C x [t , t ]; (26) R x [t + 1, t ] = R x [t, t ] + δ t,t + α 2 t t =0 R x [t, t ]R x [t , t ]Q (C x [t, t ]) -αµ (C x [t, t] -1) R x [t, t ]. (27) 
with initial conditions: C x [0, 0] = 1, and R x [t + 1, t] = 1. Apart from the µ-dependent term, these equations are a particular case of the ones that appear in [START_REF] Leticia | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF]; [START_REF] Crisanti | The sphericalp-spin interaction spin-glass model[END_REF] and we point to these previous references for details.

4 Derivation of DMFT for Nesterov acceleration The approach for the DMFT proposed in this section is based on the dynamical cavity method [START_REF] Mézard | Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications[END_REF]. Consider the problem having dimension N + 1 and denote the additional entry of the vectors x x x and y y y with the subscript 0, x 0 and y 0 . The idea behind cavity method is to evaluate how this additional dimension changes the dynamics of all degrees of freedom. If the dimension is sufficiently large the dynamics is only slightly modified by the additional dimension, and the effect of the additional degree of freedom can be tracked in perturbation theory.

The framework described in this section might be extended to more other momentum-based algorithms (such as PID An et al. (2018) and quasi-hyperbolic momentum [START_REF] Ma | Quasi-hyperbolic momentum and adam for deep learning[END_REF]) with some minor adaptations. The steps to follow [START_REF] Mézard | Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications[END_REF] can be summarised in:

• Writing the equation of motion isolating the contributions of an additional degree of freedom, leading to Eqs. (28-30;

• Treating the effect of the terms containing the new degree of freedom in perturbation theory, Eqs. (32-34);

• Identifying the order dynamical order parameters, namely dynamical correlation and response functions, Eqs. (37,38).

Consider the Nesterov update algorithm and isolate the effect of the additional degree of freedom

x i [t + 1] = y i [t] + α j =0 J ij y j [t] + α (i,i2,...,ip) J i,i2,...,ip y i2 [t] . . . y ip [t] -αµ   j =0 y 2 j [t] N -1   y i [t] (28) 
+ α (i,0,i3,...,ip)

J i,0,i3,...,ip y 0 [t]y i3 [t] . . . y ip [t] + αJ i0 y 0 [t] + µ N y 2 0 [t]y i [t], (29) 
y i [t + 1] = x i [t + 1] + t t + 3 (x i [t + 1] -x i [t]) . ( 30 
)
We identify the term in line (29) as a perturbation, denoted by H i [t]. We will assume that the perturbation is sufficiently small and the effective dynamics is well approximated by a first order expansion around the original updates, so-called linear response regime. Therefore, the perturbed entries can be written as

x i [t] ≈ x 0 i + α t t =0 δx i [t] δH i [t ] H i [t ], y i [t] ≈ y 0 i + α t t =0 δy i [t] δH i [t ] H i [t ]. (31) 
The dynamics of the 0th degree of freedom to the leading order in the perturbation is

x 0 [t + 1] = y 0 [t] -αµ 1 N j y 2 j [t] -1 y 0 [t] + Ξ[t] + α 2 j J 0j t t =0 δy j [t] δH j [t ] H j [t ] (32) + α 2 (0,i2,...,ip) J 0,i2,...,ip t t =0 δy i2 [t] δH i2 [t ] H i2 [t ]y i3 [t] . . . y ip [t] + perm. + O 1 N , (33) 
y i [t + 1] = x i [t + 1] + t t + 3 (x i [t + 1] -x i [t]) , (34) 
with Ξ = α j J 0j y j [t] + α (0,i2,...,ip) J 0,i2,...,ip y i2 [t] . . . y ip [t] a Gaussian noise with moments:

E[Ξ[t]] = 0, E[Ξ[t]Ξ[t ]] = 1 ∆ 2 C y [t, t ] + 1 ∆ p C p-1 y [t, t ] = Q (C y [t, t ]) =K[t, t ].
The terms in Eqs. (32,33) can be simplified. Consider the last term in Eq. equation 32: after substituting the H i , J 0j J 0j and J 0j J (j,0,...,ip) can be approximated by their expected values with a difference that is subleading in

1/N α 2 j J 0j t t =0 δy j [t] δH j [t ] J 0j y 0 [t ] ≈ α 2 ∆ 2 N t t =0 δy j [t] δH j [t ] y 0 [t ] = α 2 ∆ 2 t t =0 R y [t, t ]y 0 [t ], (35) 
where the last equality follows from the definition of response function in y.

The same approximation is applied to Eq. ( 33), taking carefully into account the permutations, obtaining

α 2 (p -1) ∆ p t t =0 R y [t, t ] (C y [t, t ]) p-2 y 0 [t ]. (36) 
Finally, collecting all terms, the effective dynamics of the additional dimension is given by

x 0 [t + 1] = y 0 [t] + αΞ[t] -αµ (C y [t, t] -1) y 0 [t] + α 2 t t =0 R y [t, t ]Q (C y [t, t ]) y 0 [t ]; (37) y 0 [t + 1] = x 0 [t + 1] + t t + 3 (x 0 [t + 1] -x 0 [t]) . (38) 
In order to derive the updates of the order parameters, we need the expected values of Ξ[t]x 0 [t ] and Ξ[t]y 0 [t ] with respect to the stochastic process. These are obtained using Girsanov theorem

Ξ[t]x 0 [t ] = α t R x [t , t ]Q (C y [t, t ]) , Ξ[t]y 0 [t ] = α t R y [t , t ]Q (C y [t, t ]) .
The final step consists in substituting the Eqs. (37,38) into the equations of the order parameters Eqs. (14-19). Then we identify the order parameters in the equations and use the results of Girsanov theorem to obtain the dynamical equations reported in section 3.

5 Algorithmic threshold Given the DMFT equations derived in the previous sections we can apply the analysis used in Sarao Mannelli et al. (2019b) to accelerated gradient methods. Given order of the tensor p and ∆ p , increasing ∆ 2 the problem becomes harder and moves from the easy phase -where the signal can be partially recovered -to an algorithmically impossible phase -where the algorithm remains stuck at vanishingly small overlap with the signal. The goal of the analysis is to characterize the algorithmic threshold that separates the two phases. Using the DMFT we estimate the relaxation time -the time the accelerated methods need to find the signal. Since this time diverges approaching the algorithmic threshold, the fit of the divergence point gives an estimation of the threshold.

More precisely, for each value of ∆ p as the noise to signal ratio (∆ 2 ) increases the simulation time required to arrive close to the signal1 increases like a power law

∼ a |∆ 2 -∆ al. 2 (∆ p )| -θ . The algorithmic threshold ∆ al.
2 (∆ p ) is obtained by fitting the parameters of the power law (a, θ, ∆ al.

2 ). In the SM we show an example of the extrapolation of a single point where many initial conditions m x (0) are considered in order to correctly characterize the limits N → ∞ and m x (0) → 0 + . Finally the fits obtained for the three algorithms and for several ∆ p are shown in the phase diagram of Fig. 4 for p = 3. We observe that all the algorithms give very close thresholds. DMFT allows to obtain a good estimation of the threshold, free from finite size effects and stochastic fluctuations that are present in the direct estimation from the simulations.

Supplemental Material A Spiked matrix-tensor model

In this section we discuss how the DMFT equations of the spiked matrix-tensor model differ from the mixed p-spin model. The main difference is that the hidden solution deforms locally the loss function

H = - 1 ∆ p (p -1)! N p-1 N i1,...,ip=1 T i1,...,ip x i1 . . . x ip - 1 ∆ 2 1 √ N N i,j=1 Y ij x i x j + - 1 p∆ p   1 N j x j x * j   p - 1 2∆ 2   1 N j x j x * j   2 + µ 4N N i=1 x 2 i -N 2 . ( 39 
)
As it clearly appears from the equation of the loss, the overlap of the hidden solution with the estimator plays an important role. This leads to two additional order parameters m

x [t] = 1 N j x j [t]x * j and m y [t] = 1 N j y j [t]x * j (or m v (t) = 1 N j v j (t)
x * j for massive gradient flow). Since the stochastic part of the loss is unchanged, the derivation follows same steps shown in section 4 of the main text. They lead to modified dynamical equations where overlap with the hidden solution is present, for instance in Nesterov they are

x 0 [t + 1] = y 0 [t] + αΞ[t] -αµ (C y [t, t] -1) y 0 [t]+ + α 2 t t =0 R y [t, t ]Q (C y [t, t ]) y 0 [t ] + Q (m y [t])x x x * , ( 40 
)
y 0 [t + 1] = x 0 [t + 1] + t t + 3 (x 0 [t + 1] -x 0 [t]) . ( 41 
)
Finally, substituting the effective dynamics into the definition of the order parameters we obtain:

• for Nesterov acceleration

C x [t + 1, t ] = C xy [t, t ] + α 2 t t =0 R x [t , t ]Q (C y [t, t ]) + α 2 t t =0 R y [t, t ]Q (C y [t, t ]) C xy [t , t ]+ -αµ (C y [t, t] -1) C y [t, t ] -Q (m y [t])m x [t ], C xy [t + 1, t ] = C y [t, t ] + α 2 t t =0 R y [t , t ]Q (C y [t, t ]) + α 2 t t =0 R y [t, t ]Q (C y [t, t ]) C y [t , t ]+ -αµ (C y [t, t] -1) C xy [t, t ] -Q (m y [t])m y [t ], C xy [t , t + 1] = C x [t + 1, t ] + t t + 3 (C x [t + 1, t ] -C x [t, t ]) , C y [t , t + 1] = C xy [t + 1, t ] + t t + 3 (C xy [t + 1, t ] -C xy [t, t ]) , R x [t + 1, t ] = R y [t, t ] + δ t,t + α 2 t t =t R y [t, t ]R y [t , t ]Q (C y [t, t ]) -αµ (C y [t, t] -1) R y [t, t ], R y [t , t + 1] = R x [t + 1, t ] + t t + 3 (R x [t + 1, t ] -R x [t, t ]) , m x [t + 1] = m y [t] -αµ (C y [t, t] -1) m y [t] + α 2 t t =0 R y [t, t ]Q (C y [t, t )) m y [t ] + Q (m y [t]) , m y [t + 1] = m x [t + 1] + t t + 3 (m x [t + 1] -m x [t]) , with initial conditions C x [0, 0] = 1, C y [0, 0] = 1, C xy [0, 0] = 1, R x [t + 1, t] = 1, R y [t + 1, t] = 2t+3 t+3 , m x [0] = 0 + , m y [0] = 0 + ; • for heavy ball momentum. C y [t + 1, t ] = βC y [t, t ] + µ (C x [t, t] -1) C xy [t, t ] + α t t =0 R y [t , t ]Q (C x [t, t ]) + α t t =0 R x [t, t ]Q (C x [t, t ]) C xy [t , t ] -Q (m x [t])m y [t ]; C xy [t , t + 1] = βC xy [t , t] + µ (C x [t, t] -1) C x [t, t ] + α t t =0 R x [t , t ]Q (C x [t, t ]) + α t t =0 R x [t, t ]Q (C x [t, t ]) C x [t , t ] -Q (m x [t])m x [t ]; C xy [t + 1, t ] = C xy [t, t ] -αC y [t + 1, t ]; C x [t + 1, t ] = C x [t, t ] -αC xy [t , t + 1]; R y [t + 1, t ] = βR y [t, t ] + 1 α δ t,t + µ (C x [t, t] -1) R x [t, t ] + α t t =0 R x [t, t ]R x [t , t ]Q (C x [t, t ]) ; R x [t + 1, t ] = R x [t, t ] -αR y [t + 1, t ] m y [t + 1] = βm y [t] -µ (C x [t, t] -1) m x [t]+ + t t =0 R x [t, t ]Q (C x [t, t )) m x [t ] -Q (m x [t]) , m x [t + 1] = m x [t] -αm y [t + 1].
with initial conditions:

C x [0, 0] = 1, C y [0, 0] = 0, C xy [0, 0] = 0, R y [t + 1, t] = 1/α, R x [t + 1, t] = -1, m y [0] = O + , m x [0] = O + .
• for massive gradient flow (see Sec. C)

∂ t C x (t, t ) = C xv (t , t) , m∂ t C v (t, t ) = -C v (t, t ) + t 0 dt R x|v (t, t )Q [C x (t, t )]C xv (t , t )+ + t 0 Q [C x (t, t )]R v (t , t ) -µC x (t.t ) (C x (t, t) -1) + Q [m x (t )]m x (t) , ∂ t C xv (t, t ) = C v (t, t ) , m∂ t C xv (t, t ) = -C xv (t, t ) + t 0 dt R x|v (t , t )Q [C x (t , t )]C x (t, t )+ + t 0 Q [C x (t , t )]R x|v (t, t ) -µC xv (t, t ) (C x (t, t) -1) + Q [m x (t)]m v (t ) , m∂ t R v (t, t ) = δ(t -t ) -R v (t, t ) + t t dt Q [C(t, t )]R x|v (t, t )R x|v (t , t )+ -µR x|v (t, t ) (C x (t, t) -1) , ∂ t R x|v (t, t ) = R v (t, t ) , ∂ t m x (t) = m v (t) , m∂ t m v (t) = -m v (t) + t 0 dt R x|v (t, t )Q [C x (t, t )]m x (t ) + Q [m x (t)]+ -µm x (t) (C x (t, t) -1) ,
with initial conditions are :

C x (0, 0) = 1; C v (0, 0) = 0; C xv (0, 0) = 0; R v (t + , t) = 1/m; R x|v (t, t) = 0; m x (0) = 0 + . m y (0) = 0 + .
Finally the equation to compute the loss in time is The extrapolation procedure for ∆ 3 = 4.0 is shown in Fig. 5. The threshold obtained by fitting with a power law and observing the divergent ∆ 2 . On the left panel we plot the number of iteration before the algorithm jumps to the solution t jump as a function of the signal to noise ratio 1/∆ 2 . The figure also show remarkable effects of the initial conditions for m x and m y . These effects where already described and understood in Sarao Mannelli et al. (2019b). An alternative way to analyze the HB dynamics is by using the results of Qian (1999) to map it to the massive momentum described by the flow equation

L[t] = - α ∆ p C x [t, t] p 2 t t =0 R x [t, t ]C x [t, t ] p-1 - α ∆ 2 C x [t, t] t t =0 R x [t, t ]C x [t, t ] -Q (m x [t]) .
(0) = 1.0e-10 mx(0) = 1.0e-15 mx(0) = 1.0e-20 mx(0) = 1.0e-25 mx(0) = 1.0e-30 mx(0) = 1.0e-35 mx(0) = 1.0e-40

C Correspondence with continuous HB equations

mẍ i (t) + ẋi (t) = - δL[x x x(t)] δx i (t) . (43) 
The natural discretization of this equation is

m h 2 (x[k + 1]-2x[k]-x[k -1])+ 1 h (x[k + 1] -x[k]) = -∇L(x[k]) (44) 
being h the time discretization step (analogous to the learning rate in gradient descent). Using the mapping of Qian (1999) we can identify

m = βα (1 -β) 2 (45) h = α 1 -β (46) 
Observe that in order to be consistent with a continuous dynamics we need the following scaling

β = O(1), α = O[(1 -β) 2 ].
We empirically observe in the simulations a good agreement between massive and HB even for β = 0.999 and α = 0.01. In the following, when discussing the comparison between simulation and DMFT, we mean that we run HB algorithm and superimpose on its massive momentum description.

The massive momentum dynamics was also considered in [START_REF] Cugliandolo | Non equilibrium dynamics of isolated disordered systems: the classical hamiltonian p-spin model[END_REF] without the damping term ( ẋi (t)) and for the model with a hard spherical constraint i x i [t] 2 = N . While the DMFT derived in [START_REF] Cugliandolo | Non equilibrium dynamics of isolated disordered systems: the classical hamiltonian p-spin model[END_REF] completely describe the aforementioned particular case, the way in which it is written uses the fact that without damping the dynamics is conservative and the spherical constraint can be enforced using that. In our case we are not in this regime and therefore we resort to a different computation, that will lead us to quite different equations. Indeed if one wants to transform massive momentum in a practical algorithm one needs to transform the second order ODEs into first order by defining velocity variables v i (t) = ẋi (t). Then the discrete version of Eq. equation 43 is

x i [t + 1] = x i [t] + hv i [t] v i [t + 1] = v i [t] - h m v i [t] - h m δH δx i [t] (47) 
Analysing these equations through DMFT one gets a set of flow equations for the following dynamical order parameters

C x [t, t ] = i x i [t]x i [t ]/N , C v [t, t ] = i v i [t]v i [t ]/N , C xv [t, t ] = i x i [t]v i [t]/N , R v [t, t ] = 1 N i δvi[t] δHi[t ] , and R x|v [t, t ] = 1 N i δxi[t]
δHi [t ] ; where H H H is an instantaneous perturbation acting on the velocity. The result of the computation gives:

C x [t + 1, t ] = C x [t, t ] + h C xv (t , t) ; (48) C v [t + 1, t ] = C v [t, t ] - h m C v (t, t ) -µ h m C xv (t, t ) (C x (t, t) -1) + h 2 m t t =0 R x|v [t, t ]Q (C x [t, t ]) C xv [t , t ] + h 2 m t t =0 Q (C x [t, t ]) R v [t , t ];
(49)

C xv [t + 1, t ] = C xv [t, t ] + h C v [t, t ] ; (50) 
C xv [t, t + 1] = C xv [t, t ] - h m C xv [t, t ] -µ h m C x [t, t ] (C x [t , t ] -1) + h 2 m t t =0 R x|v [t , t ]Q (C x [t , t ]) C x [t, t ] + h 2 m t t =0 Q (C x [t , t ]) R x|v [t, t ] (51) 
R v [t + 1, t ] = R v [t, t ] + h m δ t,t -µ h m R x|v [t, t ] (C x (t, t) -1) - h m R v [t, t ] + h 2 m t t =0 Q (C[t, t ]) R x|v [t, t ]R x|v [t , t ] (52) 
R x|v [t + 1, t ] = R x|v [t, t ] + h R v [t, t ]. (53) 
and initial conditions : The parameters are α = 0.01 for all the simulations and β ∈ {0.5, 0.7, 0.9, 0.99, 0.999}. We use solid line to represent the result from the simulation, the dotted line for the DMFT of massive gradient flow with the mapping. We empirically observe that in this problem the value of β that gives the best speed up is β = 0.9. In order the integrate the DMFT of massive gradient we matched the mass as described in Eq. equation 45 and consider time steps h ∈ {0.005, 0.005, 0.0125, 0.25, 0.25}.

C x [0, 0] = 1, C v [0, 0] = 0, C xv [0, 0] = 0, R v [t+1, t] = 1/m, R x|v [t+1, t] = 0.
Derivation of the DMFT equations for massive gradient flow In this section we derive the dynamical mean field theory (DMFT) equations of massive gradient flow in the mixed p-spin.

We use the generating functional approach described in [START_REF] Castellani | Spin-glass theory for pedestrians[END_REF]; [START_REF] Agoritsas | Out-of-equilibrium dynamical mean-field equations for the perceptron model[END_REF] to obtain the effective dynamical equations. First we rewrite de massive dynamics Eq. equation 43 as two ODEs

m v v v(t) = -v v v(t) -∇H[x x x(t)], (54) 
ẋ x x(t) = v v v(t). (55) 
We use the following simple identity that takes the name of generating functional

1 = Z = D[x x x, v v v] δ (m v v v(t) + v v v(t) + ∇H[x x x(t)]) δ ( ẋ x x(t) -v v v(t)) (56) = D[x x x, x x x, v v v, ṽ v v] N i=1 exp i ṽi (t) [m vi (t) + v i (t) + ∇ i H[x x x(t)]] dt exp i xi (t) [ ẋi (t) -v i (t)] dt (57) 
where in the first line we integrate over all possible trajectories of v v v and x x x, and we impose them to match the massive gradient flow equations using Dirac's deltas. In the second line we use the Fourier representation of the delta and we absorb the normalization constants in the term D[x x x, x x x, v v v, ṽ v v]. We can now average over the stochasticity of the problem, let us indicate with an overline the average.

1 = Z = D[x x x, x x x, v v v, ṽ v v] N i=1 exp i ṽi (t) [m vi (t) + v i (t)] dt exp i xi (t) [ ẋi (t) -v i (t)] dt × (58) × N i=1 exp    i ṽi (t)   (p -1)! N p-1 (i,i2,...,ip) ξ (p) i,i2,...,ip x i2 (t) . . . x ip (t) + 1 √ N j ξ (2) i,j x j (t)   dt    × (59) × N i=1 exp    i ṽi (t)µ   1 N j x 2 j (t) -1   x i (t)dt    (60) 
We can proceed integrating the second line over the noise. Importantly we must group all the element that multiply a given ξ (p) . Considering only second line and neglecting constant multiplicative factors we obtain

exp - N 2p∆ p p i ṽi (t)ṽ i (t ) N i x i (t)x i (t ) N p-1 + + p(p -1) i ṽi (t)x i (t ) N i x i (t)ṽ i (t ) N i x i (t)x i (t ) N p-2 dt dt × × exp - N 2∆ 2 i ṽi (t)ṽ i (t ) N i x i (t)x i (t ) N + i ṽi (t)x i (t ) N i x i (t)ṽ i (t ) N dt dt
We define Q(x) = x p /(p∆ p ) + x 2 /(2∆ 2 ) and the order parameters

C x [t, t ] = i x i [t]x i [t ]/N, (61) 
C v [t, t ] = i v i [t]v i [t ]/N, (62) 
C xv [t, t ] = i x i [t]v i [t]/N, (63) 
R v [t, t ] = 1 N i δv i [t] δH i [t ] , (64) 
R x|v [t, t ] = 1 N i δx i [t] δH i [t ] ; (65) 
and enforce some of them using Dirac's deltas

D[C x , C ṽ , C xṽ , C ṽx ]δ   N C ṽ (t, t ) - j i ṽj (t) i ṽj (t )   δ   N C x (t, t ) - j x j (t) x j (t )   × × δ   N C xṽ (t, t ) - j x j (t) i ṽj (t )   δ   N C ṽx (t, t ) - j i ṽj (t) x j (t )   × × exp - N 2∆ p C ṽ (t, t )Q [C x (t, t )] + C ṽx (t, t )C xṽ (t, t )Q [C x (t, t )] dt dt .
Using again the Fourier representation of the deltas and considering N large, the auxiliary variables introduced with the transform concentrate to their saddle point according to Laplace approximation. Furthermore it is easy to show [START_REF] Castellani | Spin-glass theory for pedestrians[END_REF] that C xṽ (t, t ) = C ṽx (t , t) and C xṽ (t, t ) = R x|v (t, t ), with R x|v . Under this considerations, we rewrite the average generating functional

1 = Z = D[x x x, x x x, v v v, ṽ v v] N i=1 exp i ṽi (t) m vi (t) + v i (t) + µ j x 2 j (t) N -1 x i (t) dt × (66) × N i=1 exp i xi (t) [ ẋi (t) -v i (t)] dt × (67) × exp    - j 1 2 Q [C x (t, t )]i ṽj (t) i ṽj (t ) -Q [C x (t, t )]R x|v (t, t ) i ṽj (t ) x j (t) dt dt    . (68) 
Finally we can take a Hubbard-Stratonovich transform on the first term of the second line and identify a stochastic process Ξ(t) with zero mean at all times and covariance E

[Ξ(t)Ξ(t )] = Q [C x (t, t )].
The resulting generating functional now represent the dynamics in x x x and v v v where the cross-element interactions are replaced by the stochastic process. The resulting effective equations are

m v v v(t) = -v v v(t) + t 0 dt R x|v (t, t )Q [C x (t, t )]x x x(t ) + Ξ Ξ Ξ(t) -µ [C x (t, t) -1] x x x(t), (69) 
ẋ x x(t) = v v v(t). (70) 
Finally we introduce the order parameters Eqs. (61-65) and compute their equation explicitly by substituting the equations of the effective dynamics. In order to do that, we use Girsanov theorem and evaluate the following expected values 

D Hard spherical constraint

It is also possible to consider a hard spherical constraint, which is the situation typically considered in the physics literature [START_REF] Crisanti | The sphericalp-spin interaction spin glass model: the statics[END_REF]; [START_REF] Leticia | Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model[END_REF]. A massive dynamics was already considered in [START_REF] Cugliandolo | Non equilibrium dynamics of isolated disordered systems: the classical hamiltonian p-spin model[END_REF] but their derivation was in the underdamped regime where the total energy is conserved. Using that approach the conservation of the energy was key. Unfortunately the energy is not conserved in general, and in particular in the case of optimization where we aim to go down in energy in order to find a minimum.

For reference sake we consider massive gradient flow, the same considerations apply straightforwardly to Nesterov acceleration. Let us write the dynamics in this case splitting the system in two ODEs m v v v(t) = -v v v(t) -∇L[x x x(t)], (84) ẋ x x(t) = v v v(t) -µ(t)x x x(t).

(85)

The last term in the second line constraints the dynamics to move in the sphere by removing the terms of the velocity that move orthogonally to the sphere. Therefore the term µ(t) is given by the projection of the velocity in the direction that is tangent to the sphere j x j (t)v j (t)/N .

We can then follow the usual techniques, e.g. section C, and obtain 

∂ t C x (

Figure 1 :

 1 Figure 1: Simulation and DMFT comparison in mixed p-spin model. The simulations in the figures have parameters p = 3, ∆ 3 = 2/p, ∆ 2 = 1, ridge parameter µ = 10 and input dimension N = 1024. In all our simulations we use the dilution technique Semerjian et al. (2004);[START_REF] Krzakala | Performance of simulated annealing in p-spin glasses[END_REF] to reduce the computational cost. We consider: Nesterov acceleration in pink; heavy ball momentum in blue with α = 0.01 and β = 0.9; and gradient descent in grey. We run 100 simulations (in transparency) and draw the average. The parameters for heavy ball are the best parameters found in our simulations, see also Fig.2for a comparison. The results from the DMFT equations are drawn with dotted lines.

Figure 2 :

 2 Figure2: DMFT for HB. Simulations of HB momentum in the mixed p-spin model with p = 3, ∆ 3 = 2/p, ∆ 2 = 1, ridge parameter µ = 10 and input dimension N = 1024. The parameters are α = 0.01 for all the simulations and β ∈ {0.5, 0.7, 0.9}. We use solid lines to represent the result from the simulation, the dotted lines for the DMFT of HB.

Figure 3 :

 3 Figure3: DMFT in the spiked matrix-tensor model. Performance of heavy ball and Nesterov in the spiked matrix-tensor model with p = 3, 1/∆ 2 = 2.7, ∆ 3 = 1.0, and µ = 10. The parameters in the simulations are: α = 0.01 and β = 0.9 for HB. The different solid lines correspond to simulations with input dimension N = 8192, while the dotted lines are obtained from the DMFT that, by definition, is in the infinite dimension limit. In the spiked version of the model the finite size effects are stronger and larger simulation sizes are needed.

Figure 4 :

 4 Figure4: Phase diagram of the spiked matrix-tensor model. The horizontal and vertical axis represent the parameters of the model ∆ p and 1/∆ 2 . We identify two regions in the diagram: where Nesterov, heavy ball and gradient descent algorithms lead to the hidden solution (upper region), and where they fail (lower region). The grey square connected by a solid line represents the threshold of gradient descent estimated numerically as detailed in the text. We use points to indicate the threshold extrapolated from the DMFT: pink circles for Nesterov acceleration and blue diamonds for heavy ball momentum with β = 0.9 and α = 0.01.Finally we investigate the performance of accelerated methods in recovering a signal in a complex non-convex landscape. The dynamics of the gradient descent has been studied in the spiked matrixtensor model in SaraoMannelli et al. (2019b). Using DMFT it was possible to compute the phase diagram for signal recovery in terms of the noise levels ∆ 2 and ∆ p . This phase diagram was later confirmed theoretically SaraoMannelli et al. (2019a).

Figure 5 :

 5 Figure 5: Algorithmic threshold extrapolated using Nesterov acceleration. The dots are the divergence time obtained for the different values of ∆ 2 with ∆ 3 = 4.0 fixed. On the right panel we show that these lines collapse to a single line once rescaled by a factor a ln mx[0] with a ≈ 1.089.

Figure 6 :

 6 Figure 6: Comparison of HB and massive with mapping. The figure reproduce the same setting of Fig. 2 with the additional dashed line for the DMFT of massive gradient flow using the mapping.

Figure 7 :

 7 Figure7: Comparison of HB and with DMFT. Simulations of HB momentum in the mixed p-spin model with p = 3, ∆ 3 = 2/p, ∆ 2 = 1, ridge parameter µ = 10 and input dimension N = 1024. The parameters are α = 0.01 for all the simulations and β ∈ {0.5, 0.7, 0.9, 0.99, 0.999}. We use solid line to represent the result from the simulation, the dotted line for the DMFT of massive gradient flow with the mapping. We empirically observe that in this problem the value of β that gives the best speed up is β = 0.9. In order the integrate the DMFT of massive gradient we matched the mass as described in Eq. equation 45 and consider time steps h ∈ {0.005, 0.005, 0.0125, 0.25, 0.25}.

  ∂ t C xv (t, t ) = C v (t, t ) ;(75)m∂ t C xv (t, t ) = -C xv (t, t ) + R x|v (t, t ) = R v (t, t ). = C xv (t, t). Where Eq. equation 79 comes from the spherical constraint; Eqs. (80,81) come from the initialization with no kinetic energy v v v(0) = 0 0 0; Eqs. equation 82 and equation 83 come from Eqs. equation 69 and equation 70 (respectively) after deriving by Ξ(t ), integrating on t in [t -h; t + h] (with h → 0) and taking t → t. The equations shown in the main text are the discrete equivalent of the ones just obtained.

	∂ t (78)
	and µ(t) The initial conditions are :
			C x (t, t) = 1 ;	(79)
			C v (t = 0, t = 0) = 0 ;	(80)
			C xv (t = 0, t = 0) = 0 ;	(81)
			R v (t + , t + ) = 1/m ;	(82)
			R x|v (t, t) = 0 .	(83)
				(72)
	The dynamical equations are
	∂ (74)
			t
			dt R x|v (t , t )Q [C x (t , t )]C x (t, t )+
			0
		t	
	+	0	Q [C (77)
			20

v(t)Ξ(t ) = t 0 dt R v (t, t )Q [C x (t, t )],

(71)

x(t)Ξ(t ) = t 0 dt R x|v (t, t )Q [C x (t, t )]. t C x (t, t ) = C xv (t , t) ; (

73

)

m∂ t C v (t, t ) = -C v (t, t ) + t 0 dt R x|v (t, t )Q [C x (t, t )]C xv (t , t )+ + t 0 Q [C x (t, t )]R v (t , t ) -µC x (t, t ) (C x (t, t ) -1) ; x (t , t )]R x|v (t, t ) -µC xv (t, t ) (C x (t, t ) -1) ;

(76)

m∂ t R v (t, t ) = δ(t -t ) -R v (t, t ) + t t dt Q [C(t, t )]R x|v (t, t )R x|v (t , t )+

-µR x|v (t, t ) (C x (t, t ) -1) ;

  (87)∂ t C xv (t, t ) = -µ(t)C xv (t, t ) + C v (t, t ) , (88)m∂ t C xv (t, t ) = -C xv (t, t ) + x|v (t , t )Q [C x (t , t )]C x (t, t ) + m∂ t R v (t, t ) = δ(t -t ) -R v (t, t ) + [C(t, t )]R x|v (t, t )R x|v (t , t ) ,(90)∂ t R x|v (t, t ) = -µ(t)R x|v (t, t ) + R v (t, t );

	t	dt R t	Q [C x (t , t )]R x|v (t, t ) ,
	0		0
				(89)
		t	
		t	dt Q (91)

t, t ) = -µ(t)C x (t, t ) + C xv (t , t) , (

86

)

m∂ t C v (t, t ) = -C v (t, t ) + t 0 dt R x|v (t, t )Q [C x (t, t )]C xv (t , t ) + t 0 Q [C x (t, t )]R v (t , t ) , with µ(t) = C xv (t, t) and initial conditions C x (t, t) = 1, C v (0, 0) = 0, C xv (0, 0) = 0, R v (t + , t) = 1 m , R x|v (t, t) = 0.

Preprint. Under review.

Since the best possible overlap for maximum a posteriori estimator m MAP can be computed explicitly, "close" means the time that the algorithms takes to arrive at 0.9m MAP
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Conclusions and broader impact

In this work we analysed momentum-accelerated methods in two paradigmatic high-dimensional non-convex problems: the mixed p-spin model and the spiked matrix-tensor model. Our analysis is based on dynamical mean field theory and provides a set of equations that characterize the average evolution of the dynamics. We have focused on Polyak's heavy ball and Nesterov acceleration, but the same techniques may be applied to more recent methods such as quasi-hyperbolic momentum [START_REF] Ma | Quasi-hyperbolic momentum and adam for deep learning[END_REF] and proportional integral-derivative control algorithm [START_REF] An | A pid controller approach for stochastic optimization of deep networks[END_REF].

Momentum-based methods are techniques commonly used in practice but poorly understood at the theoretical level. This work analysed the dynamics of momentum-based algorithms in a very controlled setting of a high-dimensional non-convex inference problem which allowed us to establish that accelerated methods have a recovery threshold which is -within the limits of numerical integrationthe same of vanilla gradient descent.

Our analysis can be easily extended to 1-layer neural networks -combining our technical results with the techniques of [START_REF] Mignacco | Dynamical mean-field theory for stochastic gradient descent in gaussian mixture classification[END_REF] -and to simple inference problem seen from the learning point of view, such as the phase retrieval problem [START_REF] Mignacco | Stochasticity helps to navigate rough landscapes: comparing gradient-descent-based algorithms in the phase retrieval problem[END_REF]. The same questions can also be analysed in the context of recurrent networks [START_REF] Mastrogiuseppe | Intrinsically-generated fluctuating activity in excitatory-inhibitory networks[END_REF]; [START_REF] Can | Gating creates slow modes and controls phase-space complexity in grus and lstms[END_REF] where DMFT approaches have already been applied to gradient-based methods.

Our study is theoretical in nature and we do not foresee any societal impact.