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Abstract—The progress made in the field of machine learning
applied to signal processing offers interesting perspectives in
terms of technological evolution but also causes some troubles
in terms of ethics and security. For example, we are witnessing
the emergence of audio deepFakes used to orchestrate scams.
However, although the tools used in the generation of these
deepFake audios show good results which can sometimes produce
audios that seem to be confused with real audio, it is not
impossible to dissect them. In order to detect them, many
methods exist, in particular the analysis of the acoustic param-
eters which can attest to the authenticity of an audio extract.
These parameters include energy, power, pitch, signal spectrum,
cepstral coefficients, etc. However, these acoustic parameters are
numerous and not all of them are suitable for detecting deepFake
audio. This paper presents a comparative review of acoustic
parameters useful in detecting DeepFake audio. Among them,
we highlight the relevance of the study of cepstral parameters
such as MFCC compared to other acoustic parameters such as
mel-spectograms. The objective is to provide reliable leads in the
detection of deepFake audio.

Index Terms—deepFake audio, detection, mel-spectogram,
MFCC

I. INTRODUCTION

Artificial intelligence has contributed to major advances in
many areas of digital technology, with audio signal processing
being one of the primary beneficiaries. From voice assistants to
audio transcription services, AI has significantly transformed
the audio landscape. Specially, speech synthesis systems have
been extensively employed in various applications such as
audiobooks, despite their increasing misuse in generating
DeepFake audios.

Most of the time, these deepFake audios are generated
from a speech synthesis model (Text to speech), using neural
networks pre-trained with the target person’s voice in order
to produce audio messages with the voice of the latter from
submitted text messages.
Also, advanced methods in terms of voice synthesis are based
on the prediction of acoustic parameters. It generally consists
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Fig. 1. Advanced models of vocal syntesis process

of three modules, including the word processing module, the
acoustic parameter prediction module and a vocoder as shown
in Figure 1. The first module aims at the prediction of phonetic
units from the text provided. These are most often phonemes
because they are the units that best translate the pronunciation
of a word or a sentence. The second module uses these pho-
netic units to predict the acoustic parameters of the synthesis
message. Among these acoustic parameters, we have the mel-
spectogram, the fundamental frequencies, the energy, the pitch
of the signal etc. The vocoder is responsible for converting
the predicted acoustic parameters into a waveform useful for
producing the audio message [20].

However, these voice synthesis models have shortcomings.
In addition, we have problems relating to taking into account
the context of the message which, even if we have a large
corpus, is difficult to overcome [9]. Also, these models present
inferior results compared to authentic speech extracts by
relying on the Mean Opinion Score (MOS) as illustrated in
Table I [18]. This subjective measure is the average of these
scores between subjects and is widely used to determine the
quality of a transmission or the synthesis of an audio signal
[15].

Thus, these may look like human voices, but they will re-
main synthesized voices. Even if these sounds are ineradicable
to the human ear, which perceives sounds as a whole, the



Model MOS
Tacotron 2 3.82 ±0.085

Deep Voice 3 3.75 ±0.03
Multispeech 3.65±0.14
Fastspeech 3.83 ±0.08
Real Voice 4.30 ±0.07

TABLE I
PERFORMANCE OF VOICE SYNTHESIS MODEL

analysis of certain acoustic parameters will undoubtedly make
it possible to classify the audio extracts according to their
authentic or fake nature. For this, the analysis of the acoustic
parameters proves to be a credible solution to the resolution
of this problem. However, maybe not all of these parame-
ters are effective in determining audio deepfakes. Between
spectograms, scepstral and spectral parameters, waveforms,
fundamental and harmonic frequencies, there are a multitude
of acoustic parameters that can help determine the authenticity
of an audio. This paper focuses on examining these key acous-
tic parameters and their effectiveness in detecting DeepFake
audio.

II. STATE OF ART

Our present work has been carried out on the basis
of various articles dealing with techniques for detecting
audio deepfakes and in particular those based on Artificial
Intelligence.

Regarding the useful acoustic parameters we have the
basic components of an audio signal such as the waveform,
the fundamental frequency and any harmonics. Besides that,
we have the mel-spectrogram, which is a representation of
a signal in both the time and frequency domain following
the Mel scale used by some vocoders, cepstral parameters
such as Mel-Frequency Cepstral Coefficients (MFCC),
Linear-Frequency Cepstrum Coefficients (LFCC), constant-Q
Cepstrum Coefficients (CQCC) and spectral parameters.

A. Spectrograms

A spectrogram is a representation of a sound signal in
the time and frequency domain. Indeed, the spectrograms
represent sequences of the spectrum of the following sound
signal as a function of time, the pitch of the signal being
represented by a colored scale as shown in Figure 2 [19].
There are several types of spectrograms including the mel
spectrogram using the mel scale. This scale makes it possible
to locate the pitch of a sound depending on whether it is low
or high. Mel is related to hertz by the equation 1.

m = 2595 ∗ log10(1 + f/700) (1)

The mel spectrogram is widely used in modern speech syn-
thesis models. Indeed, in models such as tacotron, deepvoice,
multispeech or fastspeech, the acoustic parameter prediction
models output mel-spectograms that the vocoder converts into
a waveform, even though the last two models are able to
synthesize waveforms directly.

Fig. 2. Sample spectrogram of a sound signal

B. Cepstral parameters

A cepstrum designates the transformation of a signal from
the time domain to another domain analogous to the time.
The extraction of the cepstrum from an audio signal involves
a series of well-defined steps, each adhering to established
methodologies in signal processing. The process commences
with Sampling, typically using the Nyquist-Shannon sampling
theorem as a guideline. This is followed by Pre-emphasis,
where a first-order filter is commonly applied. The next stage
involves Framing the signal into short frames, followed by
Windowing each frame using a window function such as a
Hamming window. The final step is the computation of the
Fast Fourier Transform (FFT), utilizing algorithms like the
Cooley-Tukey radix-2 algorithm.
Then according to the characteristic of the studied signal, we
must apply a filter which according to its nature will give us a
different cepstrum. The most used being the filter bank on the
Mel scale giving, after taking the logarithm of that spectrum,
and computing its inverse Fourier transform, the MFCC [11]
and Linear filter bank giving the LFCC [6] as shown in Figure
3.

C. DeepFake audio detection models

There are several methods and models aimed at detecting
fake voice. Much work has also been done on the analysis
of acoustic parameters using deep learning methods in order
to classify audios according to their authentic or fake nature.
For example, we can cite the use of DNNs, CNNs and their
variants applied to the classification of acoustic parameters
such as MFCCs, LFCCs and spectrograms. However, most of
these models had limitations and inadequacies in solving the
problem [2].

Another work on this subject consisted in the analysis of
histograms for the detection of fake voices [4]. This analysis
uses computer vision with CNN to classify histograms ac-
cording to their nature [5]. However, although the approach is
interesting, the model turns out to be non-scalable and very
affected by the data transformation process [2].



Fig. 3. Cepstral parameters computing process

There are also other successful works in this field, in par-
ticular Deepsonar which monitors the behavior of the neurons
of a DNN during the analysis of the different MFCCs [16].
Although it presents good results in terms of classifying audios
according to their nature, it is very sensitive to noise and
therefore requires high quality audios for efficient processing.

III. METHODOLOGY

This work was done according to methodology showed by
the Figure 4.

A. Extraction of useful parameters

The second part of our work consisted in the extraction
of the acoustic parameters useful for our experiments. These
acoustic parameters are the Mel spectrogram, the Mel fre-
quency cepstral coefficients (MFCC).
Another aspect of this present work was to study the impact of
the duration of the signal to be analyzed on the performance
of the models. To do this, we used the audio from the dataset
previously created, which we segmented into a sequence of 10s
and 02s. We thus obtained 02 datasets, derived from the initial
dataset, which we used to extract the acoustic parameters.

Concerning the extraction of the MFCCs, we used the
librosa library which offers us several tools for audio analysis
and in particular for the calculation of the MFCCs [10]. The
results were stored in matrices of dimension 128*y where

y is proportional to the duration of the extract. For audios
of 10 seconds y=250 and for audios of 02 seconds y=48.
Then, concerning the 10 seconds extracts, we homogenized
the dimensions of these matrices in order to obtain matrices
of dimension 128*250. To do this, we used the zero padding
method to complete the lower dimensional matrices and for
the higher dimensional matrices, we just extracted the first 250
columns.

Concerning the obtaining of the mel-spectrograms, we also
used the librosa library which allows a synthesis of the mel-
spectrograms of an audio signal. The results were stored as an
image of size 700px*700px.

B. Detection models

At the end of the extraction of the useful parameters, we
trained various models of neural networks in order to evaluate
on the one hand the relevance of the parameter in the detection
of DeepFake audio and on the other hand the performance of
the models in the detection of DeepFake audio. To do this,
we submitted each of these datasets to a convolutional neural
network, a recurrent neural network and a Resnet model [8].
The models used were structured as follows:

• The CNN whose intermediate layers consisted of four
convolutional layers whose number of filters are respec-
tively 32, 64, 64, 128. At the output of each convo-
lution layer, we have a pooling layer of size 2*2 and
using Max Pooling. These layers are each followed by a
dropout layer to limit overfitting. After these intermediate
convolution layers, we have two FC layers respectively
of size 512 and 2. Of course between the two layers
we have a Dropout layer and the last layer provides us
with the result of the prediction. Regarding the correction
functions, we used a ReLu function for all convolution
and FC layers. However we applied a softmax function
on the last layer of our convolution network.

• The bidirectional LSTM recurrent network whose in-
termediate layers consisted of a one-dimensional con-
volution layer whose role was to reduce the size of
the data to be processed for the downstream layers, of
02 bidirectional recurrent layers each consisting of 125
LSTM cells and 02 FC layers. Like the previous network,
each Convolution, Recursive, and FC layer is followed by
a Dropout layer. To the recurring layers we applied as a
correction layer, a tanh type layer. The convolutional layer
has at its output a correction layer of the ReLu type and
the last two correction layers applied to the FC layers are
respectively of the ReLu and softmax type.

• The Resnet-50 network in which all layers can be trained.
At the end of this network we added 02 FC layers
respectively of size 64 and 02 with the correction layer
respectively of ReLu and softmax type.

IV. EXPERIMENTS

During this work, we chose to compare the performances of
two types of acoustic parameters: spectrograms and cepstral
parameters. In addition, these two types of parameters will be



Fig. 4. Proposed workflow

treated according to a common scale. We chose the mel scale
which is a scale which best transcribes the human perception
of sounds. Thus, the parameters studied will respectively be
the spectograms applied to the mel scale or mel spectrograms
and the MFCC for the cepstral parameters.

A. Data

The first part of this work consisted of data collection. To
do this, we generated from a speech synthesis model including
Tacotron 2 [17], Deepvoice 3 [3] and FastSpeech 2 [12] audio
messages to constitute a false sound of dataset extraction.
The first two models are speech synthesis models based on
the prediction of acoustic parameters, in this case the mel
spectrogram, and whose overall structure is as shown in Figure
1. Concerning the vocoder used for them, it is wavenet which
is a vocoder based on the dilated causal convolution [1]. As
for the last model, it is based on the use of transformers
and unlike previous models, the vocoder is optional as the
model can directly synthesize waveforms. Also, concerning
the acoustic parameter prediction module of FastSpeech 2,
it consists of several sub-modules each managing a specific
parameter. Thus, there is a signal duration prediction sub-
module, a pitch prediction sub-module, an energy prediction
sub-module, which makes this module quite scalable [13].

To the data generated from the various models listed rep-
resenting the fake audio datasets, we added audio snippets
from various recordings and datasets like synplaflex which is
a corpus of audiobooks in French composed of 87 hours of
good quality speech [14] and other recorded audio messages
mainly in French language thus representing the authentic
audio snippets dataset. Table II provides a comprehensive
breakdown of the data that has been collected.

Number of audio Average time Speakers
Audio Fake 30000 11.6s 6
Authentic Audio 30000 12.9s 13

TABLE II
AUDIO DATASET VOLUME

Segmentation time Number of extracts
Mel Spectogram 10s 60000
MFCC 10s 60000
Mel Spectogram 02s 100000
MFCC 02s 100000

TABLE III
ACOUSTIC PARAMETERS DATASET VOLUME

Then, from this dataset, we segmented the audios into 10
seconds snippets and 02 seconds snippets. From these two
sets of data obtained, we proceeded to the extraction of the
acoustic parameters useful to our experiments, namely the
mel-spectrograms and the MFCCs in accordance with the
stated methodology. Thus, at the end of this step, the result
is the creation of 04 new datasets that we use in training and
evaluating the performance of our analysis models. The details
of the different datasets are summarized in Table III .

B. Results

We evaluate the performance of our models with the
F1 Score metric and the accuracy calculated from the confu-
sion matrix. The F1 Score is defined as the harmonic average
between precision and recall. It is calculated using the formula
2 [7].

F1score = 2 ∗ 1/(1/Precision+ 1/RecallF1score) (2)



Fig. 5. Experiment results

The results obtained from these experiments are shown in
Figure 5.

Thus, according to this result, it appears that the analysis of
the cepstral parameters, in this case the MFCC, makes it pos-
sible to obtain a vocal DeepFake detection model with fairly
decent performance. Whether for long or short extracts or on
the nature of the type of model used for the analysis, the results
are relatively similar even if the recurrent network constructed
and applied to the classification of short MFFCs has lower
performance than the others. However, the performance of
these models can be improved by modifying their parameters
such as the depth of the network, the size of the intermediate
layers and the dropout applied between the different layers.
However, besides the analysis of cepstral parameters, that of
mel-spectrograms did not provide good results, regardless of
the technology used. This can be explained by the excessive
similarity between the representations of fake and authentic
mel-spectrograms. Thus, it would perhaps be possible to work
on the numerical data obtained after the calculation of the
constituent values of the mel-spectrogram rather than on its
graphic representation. We can also explore other acoustic
parametres such as waveforms, power spectrums, the other
cepstral parameters, the succession of formants which desig-
nates a frequency at which we observe a maximum of energy
of the sound spectrum of a sound or a word, etc.

C. Discussion

In order to detect deepfake audio, several techniques and
methods have been developed. Among them, one of the
most interesting to date remains audio analysis using deep
learning techniques. However, various works have shown that
raw audio analysis produces unsatisfactory results in terms
of detecting deepFake audio. Subsequently, the experiments
focused on the analysis of acoustic parameters, always using
deep learning techniques. The results provided following this
vary depending on the acoustic parameters and the model
used in the processing of these parameters. The objective of
this present work is to establish a comparative assessment
of the relevance of acoustic parameters in order to reveal
the effective acoustic parameters in the detection of deepfake

audio. In this sense, the experiments revealed the effectiveness
of the analysis of MFCCs compared to the Mel spectrogram.
However, there remain several acoustic parameters to explore
such as the log-frequency spectrograms, the Frequency Mask
or the Large Margin Cosine Loss, the Fast Fourier Transform,
the Short Time Fourier Transform and the other cepstral
parameters. Continuing work in this area in order to provide
an exhaustive assessment of the performance of acoustic
parameters in the detection of deepfake audio. Still with the
aim of producing more efficient systems in terms of detecting
audio deepfakes, it would be interesting to consider combining
the analysis of several credible acoustic parameters. Another
point to address is also the problem of the language used.
Given that most of our work has focused on French audio
messages, it would be interesting to consider the use and, if
necessary, improvement of current models to take into account
the multilingual parameter.

V. CONCLUSION

At the end of our various experiments, it appears that it is
possible to detect the audio deepFake thanks to the analysis
of the acoustic parameters. However, as expected, not all
acoustic parameters are reliable for this, as we have seen
with mel spectrograms. Regarding the analysis of MFCCs,
the results are conclusive and a slight improvement in the
performance of the models is observed when they are subjected
to long extracts. Also, it would be good to salute the various
works that have been carried out in this field, even if their
components have limits, their results are sometimes usable for
the detection of deepFake audio and can direct research in
the right direction. Several other acoustic parameters are to be
considered such as the Frequency Mask or the Large Margin
Cosine Loss [6], the other types of spectrum and cepstral
coefficient. It should also be noted that the Deep Learning
models used in this work can always be improved either by
optimizing their parameters or by enriching the dataset used.
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[3] Sercan Ö Arık, Mike Chrzanowski, Adam Coates, Gregory Diamos,
Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Andrew Ng,
and Jonathan Raiman. Deep voice: Real-time neural text-to-speech. In
International Conference on Machine Learning, pages 195–204. PMLR,
2017.



[4] Dora M. Ballesteros, Yohanna Rodriguez, and Diego Renza. A dataset
of histograms of original and fake voice recordings (H-Voice). Data in
Brief, 29:105331, April 2020.

[5] Dora M. Ballesteros, Yohanna Rodriguez-Ortega, Diego Renza, and
Gonzalo Arce. Deep4SNet: deep learning for fake speech classifica-
tion. Expert Systems with Applications, 184:115465, 2021. Publisher:
Elsevier.

[6] Tianxiang Chen, Avrosh Kumar, Parav Nagarsheth, Ganesh Sivaraman,
and Elie Khoury. Generalization of audio deepfake detection. In Proc.
Odyssey 2020 The Speaker and Language Recognition Workshop, pages
132–137, 2020.

[7] Leon Derczynski. Complementarity, f-score, and nlp evaluation. In Pro-
ceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC’16), pages 261–266, 2016.

[8] Riaz Ullah Khan, Xiaosong Zhang, Rajesh Kumar, and Emelia Opoku
Aboagye. Evaluating the performance of resnet model based on image
recognition. In Proceedings of the 2018 International Conference on
Computing and Artificial Intelligence, pages 86–90, 2018.

[9] Simon King. An introduction to statistical parametric speech synthesis.
Sadhana, 36(5):837–852, October 2011.

[10] Brian McFee, Colin Raffel, Dawen Liang, Daniel P Ellis, Matt McVicar,
Eric Battenberg, and Oriol Nieto. librosa: Audio and music signal
analysis in python. In Proceedings of the 14th python in science
conference, volume 8, pages 18–25, 2015.

[11] P Prithvi and Dr T Kishore Kumar. Comparative Analysis of MFCC,
LFCC, RASTA-PLP. 4(5):4, 2015.

[12] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and
Tie-Yan Liu. Fastspeech 2: Fast and high-quality end-to-end text to
speech. arXiv preprint arXiv:2006.04558, 2020.

[13] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and

Tie-Yan Liu. FastSpeech: Fast, Robust and Controllable Text to Speech,
November 2019. arXiv:1905.09263 [cs, eess].

[14] Aghilas Sini, Damien Lolive, Gaëlle Vidal, Marie Tahon, and Élisabeth
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