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Abstract
Groundwater serves as a valuable resource to supplement surface water, and its extensive uti-
lization underscores the importance of precise groundwater level predictions. Burkina Faso
confronts a critical challenge in the domain of sustainable groundwater resource management,
underscoring the need for accurate forecasts of groundwater levels to enable efficient resource
allocation and ensure long-term sustainability. This study introduces a robust framework that
uses state-of-the-art Artificial Intelligence methodologies to predict groundwater levels across
six strategically located piezometers in Burkina Faso’s Central Plateau region. The dataset
combines piezometric Measurements, Rainfall, and vegetation indices that serves as a multi-
faceted feature space for model training. We systematically evaluated the performance of three
specific machine learning models—NeuralProphet, XGBoost, and Long Short-Term Memory
to determine which machine learning model offers the most robust predictions, enabling more
effective and sustainable groundwater management. We observe that the XGBoost model out-
performs its counterparts in terms of predictive accuracy. The findings of this study offer criti-
cal insights into the temporal variations in groundwater levels, thereby contributing to the for-
mulation of more efficient water resource management strategies and facilitating data-driven
decision-making processes in the target region.
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I INTRODUCTION

In Burkina Faso, a Sahelian country,groundwater is used extensively to make up for the shortage
of surface water [4]. Groundwater is used for agriculture, livestock breeding, mining, drink-
ing, etc[9]. Nevertheless, rapid population growth, improved living standards and increased
water demand linked to economic activities are exerting growing pressure on groundwater re-
serves [6]. This growing need calls for efficient and sustainable management of groundwater
resources [5]. Groundwater levels are a direct indicator of the availability of groundwater re-
sources [8]. Variations in groundwater levels can directly influence groundwater resource man-
agement strategies [1]. Effective groundwater management therefore depends on control of the
water table. This control requires the ability to predict these level fluctuations. To achieve this
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goal, two main approaches have emerged: numerical methods and Machine Learning methods,
each with its advantages and disadvantages. Numerical methods offer a detailed representa-
tion of hydrological processes, but can be complex to implement and require precise data on
subsurface properties [3]. Previous studies have shown that ML models outperform numerical
methods in terms of prediction performance [2, 3, 7].
The problem at the core of this study is the need for accurate predictions of groundwater lev-
els, which are vital for effective resource allocation and long-term sustainability. To tackle this
issue, We apply three advanced Machine Learning algorithms—NeuralProphet, Extreme Gra-
dient Boosting (XGBoost), and Long Short-Term Memory (LSTM)—each rigorously evaluated
using performance metrics such as Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE). The rationale behind this choice was driven by the effectiveness of these models in
predicting groundwater levels observed in the litterature review. This research aims to deter-
mine which machine learning model offers the most robust predictions, enabling more efficient
and sustainable groundwater management in Sahelian contexts. We focus on six strategically
selected piezometers in the Central Plateau region of Burkina Faso. These piezometers are con-
textualized by auxiliary variables such as Rainfall and enhanced vegetation index (EVI).
The paper is structured as follows: Section II provides an overview of the study area, data
sources, and methodological approach, setting the stage for the research. Section III delves
into an in-depth analysis and discussion of the results, with an emphasis on the comparative
assessment of the models using RMSE and MAE metrics. Section IV wraps up with the study’s
conclusions, underscoring the significance of our findings for the sustainable management of
water resources in Burkina Faso.

II MATERIALS AND METHODS

2.1 Study Area and Data Collection

2.1.1 Study Area

The Central Plateau is a region of Burkina Faso characterized by relatively flat terrain and mod-
erate altitudes. The climate of the Central Plateau is Sahelian, meaning that it has a short but
crucial rainy season, extending from June to September. Annual Rainfall is limited, creating
a semi-arid environment. However, despite these climatic constraints, the Central Plateau is
an important agricultural region for Burkina Faso. The region’s vegetation is adapted to Sahe-
lian conditions, with wooded and grassy savannahs. Figure 1 show the plateau central region.
Figure 2 displays the study area and the locations of the piezometers. We have a total of 6
piezometers distributed across the following localities: Barago, Boussé, and Mogtédo, with two
piezometers per locality. The proximity of the piezometers within the same locality can create
the illusion of having 3 piezometers instead of 6 due to their close proximity.

The data used in this study come from daily groundwater level records in six piezometers lo-
cated in the Central Plateau region. These data were supplied by the Direction Générale des
Ressources en Eau (DGRE).

In addition to piezometric Measurements, we integrated other factors such as Rainfall and the
enhanced vegetation index (EVI). Rainfall data were collected from the National Meteorolog-
ical Department. These data come from weather stations located in the same localities as the
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Figure 1: Burkina Faso Plateau Central
Region

Figure 2: Study area

piezometers studied. As for vegetation, we retrieved the enhanced vegetation index from satel-
lite images. Using javascript code and images provided by the Landsat 7 satellite, we were able
to extract the enhanced vegetation index for each piezometer using the google earth engine.
The Enhanced Vegetation Index (EVI) is an improved vegetation index used to assess the health
and vigor of vegetation on Earth. It is a quantitative measure of greenness and plant photo-
synthesis, based primarily on satellite data and hyperspectral imagery. The EVI was developed
to overcome some of the limitations of conventional vegetation indices, such as the Normal-
ized Difference Vegetation Index (NDVI). The EVI takes into account atmospheric scattering,
ground reflection and other factors that can influence the accuracy of vegetation assessment. It
is calculated from Measurements of light reflectance at different wavelengths, allowing us to
correct for distortions caused by the atmosphere and obtain more accurate estimates of vegeta-
tion density and health. The experimental dataset utilized in this study consists of time-series
Measurements, encapsulating piezometric levels, Rainfall statistics, and the Enhanced Vege-
tation Index (EVI), all of which were systematically collected over the timeframe of 2010 to
2021.

2.2 Methods

The methodology involves standard machine learning processes, which include data prepro-
cessing, the division of data into training and testing sets, model training, and concluding with
model evaluation. For a comprehensive view of our modeling framework, please refer to the
architectural diagram presented in the figure 3. Regarding data preprocessing, the input data
undergoes normalization using MinMax scaling. This scaling method standardizes values to a
specified range, typically within 0 and 1. The models undergo training using various combina-
tions of columns, namely "Measurement
+EVI+Rainfall" "Measurement+EVI", "Measurement+Rainfall", and "Measurement." These
combinations are employed as input features for the models to predict the target feature, "Mea-
surement." This approach allows for an assessment of each column’s contribution to the pre-
dictive accuracy of the models. As the objective of this research is to conduct a comparative
analysis of the effectiveness of these three machine learning algorithms: XGBoost, Neural-
Prophet, and LSTM, the subsequent section outlines these tree models and their application
in this research. To assess the model performance, we employed two widely recognized met-
rics: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). These metrics offer
valuable insights into the disparity between the predicted and actual groundwater level values,
allowing us to gauge the overall accuracy of our models.
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Figure 3: Model architechture

III RESULTS AND DISCUSSION

3.1 LSTM Results Analysis

Table 1 offers a comprehensive insight into the RMSE and MAE values associated with LSTM
models, implemented with various combinations of input columns. This table serves as a valu-
able resource for understanding the model’s performance across diverse feature configurations.

The performance of LSTM exhibits notable variability, contingent on both the chosen feature
combinations and the specific piezometer in consideration. For instance, optimal results for
piezometers like Barago SE6 and Boussé SE1G are attained through the combination of "Mea-
surement" and "EVI." Conversely, in the case of Barago SE1 and Boussé SE5G piezometers,
the most effective feature combination involves "Measurement" and "Rainfall." Interestingly,
for Mogtedo SE3 and Mogtedo SE5B piezometers, the utilization of solely the "Measurement"
feature yields the best results. A deep dive into LSTM’s results underscores the profound im-
pact of feature combinations on its overall efficacy. The inclusion of the "Rain" column notably
reduces the mean RMSE and MAE, and the incorporation of "EVI" further strengthens its per-
formance. However, it is crucial to note that the features "EVI" and "Rainfall" do not contribute
significantly to the improvement of the overall results, as observed in the detailed examination
of the outcomes.
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Table 1: RMSE and MAE values for LSTM with different column combinations

Columns used Barago SE1Barago SE6Boussé SE1GBoussé SE5GMogtedo SE3Mogtedo SE5B
RMSE

Measurement, EVI, Rainfall 1.0036 1.0166 0.3330 0.3176 0.0369 0.1346
Measurement, EVI 0.6275 0.4023 0.2431 0.2895 0.1020 0.2179
Measurement, Rainfall 0.3779 0.9237 0.6509 0.2772 0.03102 0.1670
Measurement 0.5470 1.0035 0.3442 0.3409 0.0146 0.1279

MAE
Measurement, EVI, Rainfall 0.8936 0.9326 0.2756 0.2642 0.0350 0.1224
Measurement, EVI 0.557 0.3245 0.2082 0.2389 0.0881 0.2013
Measurement, Rainfall 0.2633 0.8610 0.5787 0.2284 0.02443 0.1427
Measurement 0.4831 0.8689 0.3125 0.2838 0.0121 0.1056

3.2 NeuralProphet Results Analysis

Table 2 highlights RMSE and MAE values for NeuralProphet across various piezometers, re-
vealing fluctuations in the model’s performance depending on the specific monitoring point.
The performance of the NeuralProphet model is diverse, showcasing notable success for certain
piezometers, such as "Mogtedo SE3" and "Mogtedo SE5B." However, challenges arise with
increased errors observed for other locations, including "Barago SE1" and "Barago SE6." On
the other hand, for the "Boussé SE1G" and "Boussé se5" piezometers, the NeuralProphet model
shows intermediary performance. It is noteworthy that, in this model, the sole predictor utilized
is the piezometric level.

Table 2: RMSE and MAE values for NeuralProphet

Column RMSE MAE
Barago SE1 2.1591 1.9191
Barago SE6 1.6002 1.4423
Boussé SE1G 0.7295 0.6611
Boussé SE5G 0.5100 0.4616
Mogtedo SE3 0.0425 0.0349
Mogtedo SE5B 0.1313 0.1180

3.3 XGBoost Results Analysis

Table 3 presents a comprehensive overview of RMSE and MAE values for XGBoost across dif-
ferent combinations of input columns. Columns Used provides detailed explanations for each
combination of input features. XGBoost consistently exhibits outstanding performance across
all piezometers, showcasing remarkably low average RMSE and MAE values. Its predictions
particularly excel for piezometers such as "Mogtedo SE3", and it maintains commendable ac-
curacy for "Boussé SE1G". While there is a slight dEVIation in performance for piezometers
like "Barago SE1", this appears to be more of an exception than a prevailing trend. Notably,
the influence of input feature combinations on XGBoost’s performance is relatively modest; the
average RMSE and MAE values remain relatively stable across various configurations. This
observation suggests that auxiliary columns such as "EVI" and "Rain" have minimal impact on
influencing the outcomes of XGBoost. The use of the "measure" column consistently shows
lower RMSE values for all data sets. Thus, its use as a primary input feature generally results
in reduced RMSE and MAE values, suggesting its effectiveness as a predominant predictor.
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Table 3: RMSE and MAE values for XGBoost with different column combinations

Columns used Barago SE1Barago SE6Boussé SE1GBoussé SE5GMogtedo SE3Mogtedo SE5B
RMSE

Measurement, EVI, Rainfall 0.07521 0.048285 0.00128 0.00167 0.00285 0.00091
Measurement, EVI 0.07531 0.0481 0.0013 0.00157 0.00297 0.00091
Measurement, Rainfall 0.0749 0.0483 0.001301 0.00157 0.00190 0.00091
Measurement 0.0748 0.0482 0.0013 0.00157 0.00175 0.00097

MAE
Measurement, EVI, Rainfall 0.05531 0.02968 0.0010 0.00108 0.00220 0.00074
Measurement, EVI 0.0554 0.02954 0.00107 0.00106 0.00229 0.00074
Measurement, Rainfall 0.0549 0.0295 0.001049 0.00104 0.00142 0.00074
Measurement 0.0549 0.0295 0.00106 0.00104 0.00123 0.00079

3.4 Comparative study

The piezometers "Mogtedo SE3" and "Mogtedo SE5B" consistently present lower error met-
rics, underscoring their notable superiority in predictive accuracy. This steadfast performance
suggests a robust modeling capability for these specific monitoring points. On the contrary,
"Barago SE1" and "Barago SE6" consistently exhibit elevated error metrics across various fea-
ture combinations, indicating a comparatively higher level of discrepancy between the predicted
values and the actual observations.

Meanwhile, the piezometers "Boussé SE1G" and "Boussé SE5G" demonstrate results in the
intermediate range, reflecting a moderate level of prediction accuracy. This mid-range posi-
tioning suggests that the models applied to these piezometers achieve a satisfactory but not
exceptionally precise level of forecasting.

The observed variability in results among the different piezometers may potentially be attributed
to the unique data patterns or inherent characteristics specific to each monitoring point.

It is important to highlight that the inclusion of additional features, "EVI" and "Rainfall," does
not significantly enhance the predictive outcomes for both XGBoost and LSTM models. There-
fore, we use their results derived exclusively from the Measurement feature for comparison with
the results obtained using NeuralProphet.

Upon conducting a comprehensive evaluation of the three models side by side, XGBoost con-
sistently emerges as the leading performer across all piezometers, as depicted in Table 4. This
trend underscores the robust predictive capabilities of XGBoost in comparison to LSTM and
NeuralProphet across the specified monitoring points.

It combines robustness with efficiency, consistently delivering low errors across the majority of
piezometers. Thus, for those seeking steadfast and precise predictions, XGBoost stands as the
recommended choice due to its unwavering performance caliber.

IV CONCLUSIONS

In the context of Burkina Faso, a Sahelian country facing increasing challenges linked to lim-
ited access to surface water, effective management of groundwater resources is of crucial im-
portance. This study centers on predicting groundwater levels, a crucial approach for gaining
deeper insights into these invaluable resources. Our research delves into predictions of wa-
ter levels in six strategically placed piezometers within the Central Plateau region in Burkina
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Table 4: Models comparison

Piezometers NeuralProphet LSTM XGBoost Comparison
Barago SE1 2.1591 0.4831 0.0748 NeuralProphet < LSTM < XGBoost
Barago SE6 1.6002 0.8689 0.0482 NeuralProphet < LSTM < XGBoost
Boussé SE1G 0.7295 0.3125 0.0013 NeuralProphet < LSTM < XGBoost
Boussé SE5G 0.5100 0.2838 0.00157 NeuralProphet < LSTM < XGBoost
Mogtedo SE3 0.0425 0.0121 0.00175 NeuralProphet < LSTM < XGBoost
Mogtedo SE5B 0.1313 0.1056 0.00097 NeuralProphet < LSTM < XGBoost

Faso. The objective was to perform a comparative analysis among three different Machine
Learning methods predictive accuracy: XGBoost, NeuralProphet, and LSTM, with the aim of
identifying the most effective method for sustainable groundwater resource management. The
results revealed that the XGBoost model outperformed the others, demonstrating exceptional
performance with remarkably low RMSE and MAE values for all piezometers. These findings
provide valuable information to guide groundwater resource management decisions and strate-
gies, enabling more efficient use of these precious resources and better preparation for future
challenges.

For the improvement of this research, the following recommendations are proposed:
• Incorporation of Additional Features: Expanding the dataset to include more relevant

features, such as geological data and land use information, holds the potential to enhance
prediction accuracy significantly.

• Real-Time Monitoring: The development of a real-time monitoring system that seam-
lessly integrates predictive models with real-time data collection on the ground would
enable a more dynamic and adaptive approach to groundwater management.

As for future work, two potential avenues have been identified:
• Real-Time Monitoring System : Our plan involves the creation of a real-time monitor-

ing system, applying the insights gleaned from this study to enhance dynamic resource
allocation.

• Policy Formulation: Collaboration with policymakers and stakeholders is vital to integrat-
ing research findings into actionable policies for the sustainable management of ground-
water resources.

By addressing these recommendations and embarking on future work, we can contribute to
more effective and sustainable resource allocation, not only in Burkina Faso but in regions
facing similar challenges worldwide.

REFERENCES

Publications

[1] T. Abiye, K. Masindi, H. Mengistu, and M. Demlie. “Understanding the groundwater-level
fluctuations for better management of groundwater resource: A case in the Johannesburg
region”. In: Groundwater for Sustainable Development 7 (Sept. 1, 2018), pages 1–7. ISSN:
2352-801X.

7

http://dx.doi.org/10.1016/j.gsd.2018.02.004
http://dx.doi.org/10.1016/j.gsd.2018.02.004
http://dx.doi.org/10.1016/j.gsd.2018.02.004


[2] M. Malekzadeh, S. Kardar, and S. Shabanlou. “Simulation of groundwater level using
MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine mod-
els”. In: Groundwater for Sustainable Development 9 (Oct. 1, 2019), page 100279. ISSN:
2352-801X.

[3] C. Chen, W. He, H. Zhou, Y. Xue, and M. Zhu. “A comparative study among machine
learning and numerical models for simulating groundwater dynamics in the Heihe River
Basin, northwestern China”. In: Scientific Reports 10.1 (Mar. 3, 2020). Number: 1 Pub-
lisher: Nature Publishing Group, page 3904. ISSN: 2045-2322.

[4] A. P. Belemtougri, A. Ducharne, F. Tazen, L. Oudin, and H. Karambiri. “Understanding
key factors controlling the duration of river flow intermittency: Case of Burkina Faso in
West Africa”. In: Journal of Hydrology: Regional Studies 37 (Oct. 1, 2021), page 100908.
ISSN: 2214-5818.

[5] I. Fathy, A. Ahmed, and H. F. Abd-Elhamid. “Integrated management of surface water and
groundwater to mitigate flood risks and water scarcity in arid and semi-arid regions”. In:
Journal of Flood Risk Management 14.3 (2021). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jfr3.12720,
e12720. ISSN: 1753-318X.

[6] M. B. Kafando, M. Koïta, M. Le Coz, O. R. Yonaba, T. Fowe, C. O. Zouré, M. D. Faye,
and B. Leye. “Use of Multidisciplinary Approaches for Groundwater Recharge Mecha-
nism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in
Burkina Faso”. In: Water 13.22 (Jan. 2021). Number: 22 Publisher: Multidisciplinary Dig-
ital Publishing Institute, page 3216. ISSN: 2073-4441.

[7] A. Najafabadipour, G. Kamali, and H. Nezamabadi-pour. “Application of Artificial Intel-
ligence Techniques for the Determination of Groundwater Level Using Spatio–Temporal
Parameters”. In: ACS Omega 7.12 (Mar. 21, 2022), pages 10751–10764. ISSN: 2470-1343.

[8] H. Tao, M. M. Hameed, H. A. Marhoon, M. Zounemat-Kermani, S. Heddam, S. Kim,
S. O. Sulaiman, M. L. Tan, Z. Sa’adi, A. D. Mehr, M. F. Allawi, S. I. Abba, J. M. Zain,
M. W. Falah, M. Jamei, N. D. Bokde, M. Bayatvarkeshi, M. Al-Mukhtar, S. K. Bhagat, T.
Tiyasha, K. M. Khedher, N. Al-Ansari, S. Shahid, and Z. M. Yaseen. “Groundwater level
prediction using machine learning models: A comprehensive review”. In: Neurocomputing
489 (June 7, 2022), pages 271–308. ISSN: 0925-2312.

[9] H. M. D. Gramont. “DIAGNOSTIC SUR LES EAUX SOUTERRAINES”. In: ().

8

http://dx.doi.org/10.1016/j.gsd.2019.100279
http://dx.doi.org/10.1016/j.gsd.2019.100279
http://dx.doi.org/10.1016/j.gsd.2019.100279
http://dx.doi.org/10.1038/s41598-020-60698-9
http://dx.doi.org/10.1038/s41598-020-60698-9
http://dx.doi.org/10.1038/s41598-020-60698-9
http://dx.doi.org/10.1016/j.ejrh.2021.100908
http://dx.doi.org/10.1016/j.ejrh.2021.100908
http://dx.doi.org/10.1016/j.ejrh.2021.100908
http://dx.doi.org/10.1111/jfr3.12720
http://dx.doi.org/10.1111/jfr3.12720
http://dx.doi.org/10.3390/w13223216
http://dx.doi.org/10.3390/w13223216
http://dx.doi.org/10.3390/w13223216
http://dx.doi.org/10.1021/acsomega.2c00536
http://dx.doi.org/10.1021/acsomega.2c00536
http://dx.doi.org/10.1021/acsomega.2c00536
http://dx.doi.org/10.1016/j.neucom.2022.03.014
http://dx.doi.org/10.1016/j.neucom.2022.03.014

	I Introduction
	II Materials and Methods
	2.1 Study Area and Data Collection
	2.1.1 Study Area

	2.2 Methods

	III Results and Discussion
	3.1 LSTM Results Analysis
	3.2 NeuralProphet Results Analysis
	3.3 XGBoost Results Analysis
	3.4 Comparative study

	IV Conclusions

