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Abstract

In today’s world, hackers and espionage agents have become extremely interested at android — the
most common mobile operating system in whole planet. We introduce DeepDetector — a system
based on artificial intelligence to recognize data thefts in Android. This model is based upon a
large dataset comprising of clean and tainted network traffic trained using a Random Forest Clas-
sifier. DeepDetector scores high in two main areas as it achieves 82.9% accuracy for connection
anomaly detection and 89.9% recall in connection anomaly detection whereas it gets 78.9 percent
accuracy and 81.6 recall in terms of detection of under the system mounted with Raspberry Pi,
automatic data collection, preparing of a dataset, training and testing of the model, as well as leak
detection are ensured. In this regard, DeepDetector offers a viable way of enhancing Android user
security.
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I INTRODUCTION

Today, there are 72% of the world’s mobile operating system market share on Android smart-
phones [1]. At the same time, this high degree of adoption renders Android as a potential prey
for malware seeking to steal users’ information. This has resulted from issues that still need
to be solved, for example, despite propositions of Android malware detection techniques, only
direct detection of data leaks still remains major challenge. This is due to the fact that it is not
easy to detect network traffic on these devices. This implies that it becomes more difficult for us
to secure our phones compared to the computers. In addition, even if there were some external
network analyzers, it is not easy, neither quick, Al-based detector. This study has, therefore,
been informed by this consideration. In addition, there are three main detection methods: these
are static, dynamic and hybrid analyses.

Yet, sophisticated static detection approaches also fail against modern malware. Dynamic tech-
niques based on machine learning are however the most advanced approaches being considered
as an emerging alternative.

Multiple recent study involving different machine learning methodologies has shown promising
result. By utilizing an inter-app information flow analysis, Lee et al. (2) were able to attain
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95% on the accuracy rating with the help of RNNs. Song et al. (2015) utilized memory image
features to develop and build a random forests model with 97% accuracy (3). One study in
particular, by Zhang et. al, [4], built a communication monitoring platform using CNN’s. With
such a detection rate of 98%. Lastly, Zheng et al., [5] proposed hybrid framework which merges
static, dynamic analysis along with an SVM that offers 93% accuracy rate. Actually, lots of
studies have focused on malware and mobile phones.

The following describes DeepDetector that is a system for detecting illegal information leak-
age on Android phones. Instead, the proposed solution involves a machine learning algorithm
that will be able to analyze in real time network data about other devices and detect any abnor-
malities suggesting unauthorized leakage of personal or confidential data. Although there are
many studies already available pertaining to malware detection for smartphones; deep detector
represents the first completely self-sufficient ai system. This system incorporates automated
processes. The entire process of harvesting of network traffic, extraction of pertinent features
and their processing using the pre-trained ML model as well as the visualization of results oc-
cur independently within the system. DeepDetector is an advancement because it offers the first
solution for deep learning-based leakage detection.

It will be organized according to following arrangement. Then, describing the overall and
specific structure of the system will be included in the next section. To begin with, the design
of the dataset and training of this model with its rationalization of why the picked algorithm is
appropriate will also be stated. Thirdly, a comparative study will be carried out and resultant
findings highlighted. Thereafter, a conclusion with relevant recommendations/perspective shall
be made.

I MATERIALS AND METHODS

2.1 Hardware Architecture

The DeepDetector system was implemented on a nano computer called Raspberry PI 3 Model
B with a powerful internal hardware configuration that includes 1.4 GHz 64 bit quad core ARM
Cortex-A53 processor, 1 GB RAM, 802. Raspian is the operating system that powers this
device. It has a 10.1-inch touch screen attached for interacting with the users.

2.2 DeepDetector General Software Architecture

The approach used by DeepDetector follows a 5-step main architecture as shown in figure 1:

1. Network traffic collection: Tshark detects Android’s network traffic in real-time. The
data sets include TCP connection logs and DNS queries. This data is in the native/.pcap
format that cannot be used directly in its current form).

2. Data pre-processing: Unprocessed data is converted into the Zeek log format and then
undergoes change to get the training dataset. Zeek program organises data, which is
contained in more than two logs that are specifically optimised for a better dataset prepa-
ration, such as conn.log and dns.log. Thereafter, they organize and prepare the connection
and DNS query datasets then clean them, select features, vectorize and normalize.

3. Machine Learning model training and evaluation: Random Forest Classifier model is
trained supervisely on developed data set.

4. Anomaly detection: In production, trained model analyzes Android network traffic for
possible data leaks anomalies.
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Figure 1: System architecture.

5. Visualization of results: in this step, you will observe the detection outcomes and draw
conclusions from them.

2.3 Dataset

DeepDetector’s training dataset consists of network captures from:

* Healthy Android devices: Smartphone usage leads to normal traffic as well. To derive
this “healthy” dataset, we had to go by exclusion involving using, emulating or virtualing
a smartphone. Therefore, the most suitable method was the virtualization that offered
minimal probability of a corrupted data.

* Devices infected with malware: traffic from one out of eight common Android RATs. A
particular type of malware known as RAT (remote access Trojan) allows for the attacker
to assume command and control the victim’s device from afar. This takeover is primarily
done for stealing of data. The Stratosphere Laboratory of the Czech Technical University,
in Prague, created the Android Mischierf Dataset [6].

The Android Mischief is a collection that comprises of network captures from different malware
infected android apps. The current version of the dataset includes 8 packet captures from 8
Android RATSs executed: RAT01 - ANDROID TESTER V.6.4.6, RAT02 - DROIDJACK V4.4 ,
RATO03 - HAWKSHAW, RAT04 - SPYMAX V2.0, RAT05 - ANDRORAT, RAT06 - SAEFKO
ATTACK SYSTEMS V4.9, RAT07 - AHMYTH, RAT08 - ANDRORAT COMMAND LINE.

The dataset contains both positive (malicious traffic) and negative (normal traffic) samples as
shown in figure 2. In total, over 500,000 samples were collected.

2.4 Model Training

In this study, the data was trained on a single machine learning algorithm: Random Forest
Classifier. First, it was chosen based on the following criteria:

* High performance: Random Forest usually has very high accuracy in malware detection
and it has been reported that in a number of studies, the rate goes beyond 90 percent.

* Robustness to overfitting: Aggregation of multiple decision trees to form the Random
Forest algorithm as well as shuffling the data during tree construction make Random
Forests especially resistant to the overfitting issue. This helps in avoiding over-fitting
with respect to the input information.

* Handling of imbalanced data: Malware is normally represented by the minority class in
malware classification, while benign software constitutes the majority class. This is a
class imbalance that is however handled by the Random Forests.
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Figure 2: Dataset Creation

* Interpretability: In a sense Random Forest has some measure of interpretation through the
tree rules as compared to pure neural network approaches. It enables one to determine
the vital elements.

* Efficiency on large datasets: This makes Random Forest, an ideal tool for handling vast
volumes of data collected from several Android apps, some carrying tens of thousands of
attributes.

Afterwards, a general review showed it [7] suggested that random forest was best performing
compared to the other methods depicted in figure 3.

The primary goal consisted in putting on footings to an independent, fully automated, real
time leakage trace detection system. Therefore, greater importance focused on automation.
Nonetheless, as a matter of fact, new algorithms will be used for comparison against their
respective performances.

ML/DL Model/Technique

4 6 & 10 12 14 16 18 20
No of Studies

Figure 3: Performance comparison of different algorithms.

The training set of DeepDetector’s Random Forest Classifier consists of 80 % of the available



Recall | Precision | F-score
Connection data | 89.98% | 82.90% | 86.29%
DNS irregularities | 81.69% | 78.91% | 80.27%

Table 1: Model evaluation results.

dataset. This stage involves optimization of different parameters like number of decision trees.
For this purpose, the rest of 20The Random Forest Classifier model was trained by optimizing
the following hyperparameters via cross validation on the training dataset:
* Number of decision trees: Optimal number of trees to be tested between 10 and 500 is
100.
* Node split function: A comparison between Gini and Entropy has indicated that Gini
performs better.
* Maximum tree depth: optimally with no specified depth limit, tested at least five and not
more than twenty levels.
* Minimum number of samples per node: optimized between 1-10; it is best at 2
* Evaluation criterion: accuracy vs. Optimization of F1 score, better performance.

Finally, it should be noted that the model was trained on two datasets (so there are two models):
conn.log and dns.log detect connection data and DNS queries respectively. Thus, the reasons
behind having results concerning anomalous connections traces as well as anomalous DNS
requests in the visualization of the results is that they are presented in table 1.

Some key features required for effective detection of data leaks.

In the detection of data leaks using machine learning algorithms, it is possible to leverage a
number of relevant network traffic parameters for anomaly identification and leak pattern recog-
nition.

For our random forest model, we utilized some of these features collected from Zeek network
logs in training our DeepDetector. As such, the model is designed to identify atypical combina-
tions of these attributes in order to expose potential data compromise. Some of these features
are:
* Traffic statistics per connection: Any volume of bytes sent or received that appears ab-
normal is suspect.
* Connection duration: Any unusual duration of these connections is deemed suspicious.
* DNS query sizes: Unusually large lengths of DNS queries are deemed uncommon and
regarded as suspect ones.
* Source and destination IP addresses and ports: Other types of suspicious connections
include normally closed ports.
* Timestamp of events: Timestamp consistency is important for leak detection.
* Geolocation: Such connections might be abnormal since they are not coming from their
usual geographical origins.

The categorical information of our data set was converted into digital and uploaded to the algo-
rithm. This is what informed the Random Forest classifier on the important aspects of consid-
eration it would focus on. Proper selection of features and a selected appropriate algorithm can
help in effective anomaly detection. DeepDetector was indeed developed with special focus on
such aspects.



2.5 Source Code

The complete DeepDetector source code is available on GitHub at: https://github.c
om/Beninwende/Dataleak_detector_by_Machine_Learning. All Python
scripts that collect data, pre-process it, train ML models, and detect anomalies are located in
this directory, shown in Figure 4. Additionally, it encompasses Jupyter notebooks utilized for
first prototyping and descriptive data analytics. These notebooks describe in detail each of
the key development steps: data preprocessing, training, tuning, testing and validation. The
code in comment is all structured so that anyone can understand it, rewrite something for the
betterment of the system or improve what already exists. Lastly, the steps of running this system
on Raspberry Pi are explained.
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Figure 4: System operation.

III COMPARATIVE STUDY

This is part of the comparative study for various methods of android malwar detection in dy-
namic approach Al for 2017-2023. Several criteria are compared: using the detection process
applied, choosing the appropriate algorithm, model’s accuracy, as well as the pros and cons of
each study. Datasets consist of DREBIN, Andro360, AMD, ML-Android, and Android Mis-
chief dataset with up to 500,000 samples. Detectability depends on employed methods, with
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detection rates ranging between 83 - 99%. Their performance in high performance is evident.
Nevertheless, there are drawbacks associated with each method. Refer to Table 2 in appendix.

Its strengths include DeepDetector, among other things. First of all, Deep Detlector uses a
dynamic technique for detecting leaks through the analysis of live traffic. This applies machine
learning algorithms (Random Forest trained on healthy and infected network data).

Its main strengths are:
* Dynamic real-time approach, Modifiable and extendible architecture involving the inte-
gration of new ML models.
* Supervised training

IV RESULTS

The trained Random Forest model achieves 82.9% precision and 89.9% recall in classifying
network connections, and 78.9% precision with 81.6% recall in detecting abnormal DNS re-
quests.

These results were obtained using the following criteria in building the decision trees:

* Number of trees: optimal at 100

Split hyperparameter (data split): GINI (measure of impurity)
Number of features considered at each split: optimal with sqrt
* Maximum tree depth: optimal with no depth limit

* Minimum number of samples per node: optimal at 2

These performances are obtained on the 20% test dataset of samples not used for training. They
demonstrate the good generalization capabilities of the model to detect anomalies in the network
traffic of unknown Android devices.

In addition, the DeepDetector system operates in a fully automated manner to:
* Collect Android device traffic in real time via the Raspberry Pi configured as a WiFi
access point.
* Generate the training dataset from the Zeek logs.
Train the Random Forest model with hyperparameter optimization.
Evaluate performance on the test dataset.
Analyze traffic with the trained model and report detection results to the user in graphical
interactive form.

This complete automation of data collection, processing and analysis steps is a key advantage
of DeepDetector for practical field use.

V  DISCUSSION

This achieved shows promise for application of artificial intelligence methods in particular su-
pervised machine learning in the detection of data leakage from Android smart phones.

A solution DeepDetector — free, easy to use and efficient for increased users’ security and
privacy against the growing risk of malware.

Several improvements can still be made to the system:
* Increase the size and variety of the training dataset to reinforce model robustness.
* Optimize model parameters and architecture to improve performance.
* Add new software sensors to enrich the data collected.
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Figure 5: Model evaluation results.

* Implement advanced techniques like deep learning.

* Deploy the system on a cloud platform for scaling.
This work demonstrates the potential of artificial intelligence for protecting mobile data and
paves the way for developing ever higher performing future data leak detection systems.

VI CONCLUSION

Here, we introduced Deepdetector — an artificial intelligent-based detection system of data leak-
age that can be run purely on Raspberry Pi by itself in order to avoid such incident on mobile
phones. These findings showed promise for detecting anomalies in network traffic (80% preci-
sion) and DNS queries (90% recall).

In this regard, DeepDetector proves the capability of supervised machine learning methods in
securing people’s sensitive information from the increasing danger posed by mobile malware.

Adding more and different information will further enhance the results in future implementa-
tions. Another way of improving this collection is by adding new software sensors for additional
data enhancement.

In essence, DeepDetector might eventually be considered universally available efficient antimo-
bilism measure. Automatic data leak detection would further enhance users’ privacy protection.

Deep detector’s contribution is described in the conclusion that summarises the main results.
This as well creates avenues for future work to further enhance the system. uitgen.
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Table 2: Comparative study of Android malware detection techniques.
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