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MULTISCALE HYBRID-MIXED METHODS FOR THE STOKES AND
BRINKMAN EQUATIONS – A PRIORI ANALYSIS

RODOLFO ARAYA, CHRISTOPHER HARDER, ABNER H. POZA, AND FRÉDÉRIC VALENTIN

Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was for-

mally introduced in Araya at al. (2017) and numerically validated. The method has face

degrees of freedom associated with multiscale basis functions computed from local Neumann

problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM

version approximates the multiscale basis using a stabilized finite element method. This work

proposes the first numerical analysis for the one- and two-level MHM methods applied to

the Stokes/Brinkman equations within a new abstract framework relating MHM methods to

discrete primal hybrid formulations. As a result, we generalize the two-level MHM method

to include general second-level solvers and continuous polynomial interpolation on faces and

establish abstract conditions to have those methods well-posed and optimally convergent on

natural norms. We apply the abstract setting to analyze the MHM methods using stabilized

and stable finite element methods as second-level solvers with (dis)continuous interpolation

on faces. Also, we find that the discrete velocity and pressure variables preserve the bal-

ance of forces and conservation of mass at the element level. Numerical benchmarks assess

theoretical results.

1. introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open, bounded polyhedron domain with Lipschitz bound-

ary ∂Ω. We consider the generalized Stokes problem, also called Brinkman model, which

corresponds to finding the velocity u and the pressure p such that

(1.1)

−ν ∆u+ θ u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

where f ∈ L2(Ω)d and g ∈ H1/2(∂Ω)d with
∫
∂Ω
g · n ds = 0. The viscosity ν is a positive

constant, and the reaction coefficient θ = θ(x) is a semidefinite positive, symmetric tensor
1
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which is uniformly elliptic, i.e., there exist constants cmin ≥ 0 and cmax > 0 such that

0 ≤ cmin |ξ|2 ≤ θmin(x) |ξ|2 ≤ ξTθ(x) ξ ≤ θmax(x) |ξ|2 ≤ cmax |ξ|2,(1.2)

for all ξ ∈ Rd and x a.e. in Ω, where θmin and θmax are the smallest and largest eigenvalues

of θ (cmin > 0 if θ is a definite positive matrix). Also, θ may contain multiscale geometrical

features of the media. We recognize the Stokes problem in (1.1) if θ = 0. The Dirichlet

boundary condition in (1.1) is chosen for the sake of the presentation, Neumann or Robin

boundary conditions can be easily accommodated in what follows. The Stokes-Brinkman’s

unique weak solution (u, p) ∈ H1(Ω)d × L2
0(Ω), with u |∂Ω = g, satisfies∫

Ω

(ν∇u : ∇v + θ u · v) dx−
∫

Ω

p∇ · v dx =

∫
Ω

f · v dx for all v ∈ H1
0 (Ω)d,∫

Ω

q∇ · u dx = 0 for all q ∈ L2
0(Ω),

(1.3)

and there exists positive C, dependent on ν, θ and Ω, such that

‖u‖1,Ω + ‖p‖0,Ω ≤ C
(
‖f‖0,Ω + ‖g‖1/2,∂Ω

)
.

Given any measurable set D ⊂ Ω and any integer m ≥ 0, we respectively denote by | · |m,D
and ‖ · ‖m,D the standard semi-norm and norm in Hm(D). The L2

0(D) space stands for

the functions in L2(D) := H0(D) with zero mean value in D. We use the convention of

denoting vector-valued functions and spaces in bold. Hereafter, we shall denote by C a

positive constant, which is independent of any partition (mesh) parameter but can change

in each occurrence.

When attempting to approximate solutions to problem (1.3), one must deal with some

(potential) numerical instabilities. First, one must either choose compatible approximation

spaces (in the sense of the inf–sup condition [19]) or use stabilized numerical methods that

overcome this incompatibility [53]. Furthermore, in the case of a dominant reaction term,

numerical methods must be robust with respect to vanishing diffusion coefficient due to the

singularly perturbed nature of the solutions characterized by boundary layers. Without such

care, spurious non-physical oscillations may plague the numerical approximation. Beyond

these, solutions may exhibit poor approximation properties arising from the insufficient res-

olution of the physics occurring at multiple scales coming through heterogeneous and or high

contrast coefficients. Finally, it is desirable that numerical methods for the Stokes/Brinkman

problem produce discrete velocity fields respecting the local mass balance.

Theoretically, the issue involving multiple scales and boundary layers may be overcome

by choosing a mesh whose size is smaller than the smallest relevant scale for the physics.
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Practically, this can lead to problem statements that are intractable computationally. For

this reason, multi-scale methods are proposed to correctly incorporate the effect of subscales

(including boundary layers) into a numerical scheme proposed on a relatively coarse partition.

Such methods use a form of upscaling to incorporate sub-scales within the scheme on the

coarse mesh. This idea underlies the Variational Multiscale Method (VMS) [52], Residual-

Free Bubbles (RFB) [62, 23] and other enriched finite element methods as the Residual Local

Projection (RELP) method [15] and the Petrov-Galerkin Enriched (PGEM) method [4]. See

[33] for an overview. Some of these multiscale methods are directly related to stabilized

finite element methods, as pointed out in [22, 23, 14], for example, and they deal with issues

related to the inf-sup condition and the approximation of boundary layers at the same time.

The idea of multiscale finite element methods goes back to [12] where the multiscale

basis concept was introduced and analyzed first in one dimension for a highly oscillatory

coefficient problem. This seminal work was later extended to higher dimensions in the form

of the MsFEM [51]. Following such an idea, other multiscale methods have been proposed for

various operators, including the heterogeneous multiscale method [36], localizable orthogonal

decomposition [57], the sub-grid finite element method [9], and the generalized multiscale

finite element method [37]. More recently, multiscale methods have been devised for Stokes

and Brinkmann problems [1, 5, 44], with discontinuous methods which are proving effective

in highly heterogeneous media context [24, 50, 54].

The Multiscale Hybrid-Mixed (MHM) finite element method fits with relatively recent

attempts to use hybridization to resolve multiple scales [10, 38, 64]. First analyzed in the

context of the Poisson problem [60], hybrid methods for various operators are intrinsically

related to the domain decomposition methods [3, 25, 26], the discontinuous enriched method

(DEM) [40], and strategies to reduce computational cost related to saddle point problems

[11, 32]. As for the MHM method, it was proposed for the first time for the Poisson (Darcy)

equation in [47] with an a priori and a posteriori error analysis developed in [6, 16, 58, 59].

The methodology was extended to other operators, such as the linear elasticity model in

[46, 45], the complete transport equation in [48], and wave problems in [55, 30]. Furthermore,

the MHM method is closely related to other multiscale methods, such as the MsHHO [28] and

the multiscale version of the Crouzeix-Raviart element [56], and retrieves the lowest-order

Raviart-Thomas element in the homogeneous coefficient case [47]. In its two-level version,

it is related to the FETI domain decomposition approach [41] and can also be seen as the

dual version of the MsFEM and the multiscale mortar methods [10] (see also [20] for a recent

primal version of the multiscale mortar method).
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In a companion paper [7] to the present work, the MHM method was extended to the

Stokes/Brinkman problem (1.1), and a residual a posteriori error estimator was proposed in

[8]. The philosophy underlying the MHM method involves using a hybrid form of (1.1) posed

on a coarse partition. The approach decomposes the exact solution into local and global

coupled systems, and discretization decouples the system as follows: the global formulation

is responsible for the degrees of freedom over the skeleton of the coarse partition, and the

local problems driven by upscaling operators T and T̂ provide the multiscale basis functions

resolving sub-scales. To fix ideas, consider PH a general partition of a domain Ω with

characteristic length H decomposed into elements K with contour ∂K. The skeleton of PH,

denoted by ∂PH, is partitioned with elements of diameter H. Remember (c.f. [7]) that the

one-level MHM method for the Stokes equation consists of finding a flow λH in a polynomial

space ΛH defined on the skeleton of PH, a velocity uH0 in V0, the piecewise constant space

over PH, and ρ ∈ R such that

(1.4)

∑
K∈PH

∫
∂K

λH · v0 ds =
∑
K∈PH

∫
K

f · v0 dx for all v0 ∈ V0,

∑
K∈PH

∫
∂K

µH · uH ds =

∫
∂Ω

µH · g ds for all µH ∈ ΛH ,

ξ

∫
Ω

pH dx = 0 for all ξ ∈ R,

where the discrete velocity and pressure variables (uH , pH) in (1.4) depend on the coarse

scale variables (uH0 ,λH , ρ) in the form

(1.5) (uH , pH) := (uH0 , 0) + T (λH , ρ) + T̂ (f).

The fine scales are resolved via the locally defined bounded mappings T and T̂ , which have

finite-dimensional images in the local product space [H1(K) ∩ L2
0(K)]d × L2(K). Specif-

ically, the mappings T and T̂ are inverses of well-posed Stokes problems with prescribed

Neuman boundary conditions on each K ∈ PH. As a result, the MHM method (1.4) is

non-conforming in H1(Ω) as the discrete velocity in (1.5) does not belong to the H1
0 (Ω)

space. Note that the second equation in (1.4) reinforces the weak continuity of the velocity

field in the boundary elements, while the third equation guarantees the uniqueness of the

pressure. The first equation in (1.4) imposes that the numerical flux is in local equilibrium

with external force, which is a consequence of the spatial decomposition adopted in the con-

struction of the MHM method (see [7] and Section 3 for more details). Furthermore, the
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discrete velocity field uH is locally divergent free, i.e.,

∇ · uH = 0 in all K ∈PH.

In [7], the MHM method was presented along with numerical results involving a stabilized

finite element method to approximate local problems, but numerical analysis was absent.

The use of these local numerical schemes is viewed as forming approximations of multiscale

basis functions and leads to two-level methods. In the context of [7], the choice of the unusual

stabilized finite element method (USFEM) [14] intended to take advantage of its well-known

robustness to approximate boundary layers that can be presented in the multiscale basis

while making the pair of polynomials spaces of the same order available to approximate

both pressure and velocity multiscale basis functions. The efficiency of this choice has been

extensively verified in [7] numerically.

In the present paper, we fill this theoretical gap and propose the first numerical analysis

for the one- and two-level MHM methods applied to the Stokes/Brinkman equations. For

example, we prove that (1.4) is well-posed and the error due to exact flow approximation

λH of λ := ν∇u ·nK − pnK on ∂K turns out to be an upper bound for the error associated

with velocity and pressure approximations, where nK is the outward normal vector on ∂K

for all K ∈ PH. Notably, we prove (see Theorem 3.2 in the context of the one-level MHM

method)

‖u− uH‖1,PH
+ ‖p− pH‖0,Ω ≤ C inf

µH∈ΛH

(λ−µH ,v0)∂PH=0 ∀v0∈V0

‖λ− µH‖Λ,

where ‖ · ‖Λ is a norm in Λ and (·, ·)∂PH means a dual product on the skeleton ∂PH (see

Section 2.2 for precisions). So, convergence arises by bringing approximability properties to

the definition of the finite-dimensional space ΛH ⊂ Λ. This will be the subject of Section

4. Furthermore, under local regularity assumptions for the exact velocity and pressure

variables, we prove that the two-level MHM solution in [7] converges in the energy norm

with rate O(H`+1 + hk), where ` ≥ 0 is the polynomial degree of interpolation on faces

used in ΛH , and h is the local submesh diameter and k ≥ 1 is the polynomial degree of

interpolation on sub-meshes (see Theorem 5.2). This way, convergence can be achieved by

keeping the macroelement mesh fixed (i.e., H remains fixed). This property, in addition to

its practical interest in avoiding remeshing of complex geometries to improve accuracy, leads

to super-convergence with additional convergence order O(H1/2) under smoother local exact

solution assumption (see Remark 4.3). This is also verified numerically in Section 6.
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In a broad sense, the proof strategy is as follows: we first establish a relationship between

the primal-hybrid version of (1.3) and the MHM method in an abstract general sense, showing

that the well-posedness of both are related at the fully discrete level and also establish how

their stability constants are related. Then, the numerical analysis of the MHM method

proposed in [7] arises from fulfilling the conditions to have the primal-hybrid version of

(1.3) well-posed. Thereby, the overall analysis in this work follows a totally different path

from that used in previous MHM works, which is fundamental to prove the existence and

uniqueness and the best approximation property of the two-level MHM method with the

USFEM method used to approximate T and T̂ in (1.5). In a sense, such a perspective is

also presented in previous works on MHM-type methods applied to the Poisson problem

[49, 28, 13].

The correspondence between the solution of the discrete primal-hybrid methods and the

two-level MHM methods also produces an interesting reinterpretation of the two-level MHM

methods. When the stabilized finite element method (USFEM) is used as a second-level

solver on one-element sub-meshes, the corresponding discrete primal-hybrid method can be

seen as a new member of the class of non-conforming stabilized finite element methods. Sta-

bilization then acts at the element level, which has a global impact by weakly imposing con-

tinuity on the boundary elements (see [27, 2] for other examples of non-conforming stabilized

methods). As a result, local mass is conserved, which is a property missing from conforming-

stabilized methods in general (see [15] for a post-processing strategy to recover this property

in the conforming scenario). Furthermore, the use of refined sub-meshes in this context can

be interpreted as a multiscale version of non-conforming stabilized methods. A similar in-

terpretation arises if we replace the stabilized second-level solver with the Galerkin method

based on stable pairs of spaces. For example, when adopting the lowest-degree Taylor-Hood

element into the scope of the two-level MHM method with single-element sub-meshes, this

corresponds to nothing more than the non-conforming Crouzeix-Raviart method [35]. Thus,

with the adoption of refined sub-meshes in the context of the stable two-level MHM method,

a non-conforming multiscale version of the Crouzeix-Raviart method emerges.

In addition to providing a numerical analysis for the one- and two-level MHM methods

introduced in [7], in this work we

(i) establish abstract conditions for the well-posedness and optimality of MHM methods

for the Stokes/Brinkman model in natural norms. Such conditions allow extending

the analysis to more general second-level solvers than the stabilized method used in

[7];
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(ii) extend the two-level MHM analysis to include a stable second-level solver and con-

tinuous polynomial interpolation for the flux variable. This version of the two-level

MHM method is new, and we prove that the method also achieves optimal conver-

gence using the abstract conditions of item (i). This version of the two-level MHM

method produces point-wise divergence-free exact discrete velocity when it adopts

one-element sub-meshes;

(iii) validate numerically the MHM method using continuous interpolation on faces. The

results indicate that interpolating the flux continuously improves convergence when

compared to the discontinuous case, at least for regular exact solutions. The use of

continuous interpolation within the MHM methodology is new, even in the context

of other operators.

We also provide some numerical verification about the dependence of the constant in the

error estimates in terms of the physical coefficients, but we leave this theoretical question

outside the scope of this work.

The remainder of the paper is organized as follows. We present the hybrid framework for

problem (1.1) in Section 2, which is leveraged in Section 3 to present and analyze an abstract

MHM method. This setting is used in Section 4 to establish that the MHM method, on closed

sub-spaces, is well-posed and provides best approximation results under the assumption that

the second level is exact. In Section 5, we apply the abstraction in the context of stable and

stabilized finite element methods used at the second level to approximate multiscale basis

functions. Numerical tests assessing theoretical results are presented in Section 6, with

conclusions in Section 7. A technical result is included in the appendix section.

2. Hybridization

The MHM methods are built on reformulating a hybridized version of (1.1). In a broad

sense, given spaces V, Q, and Λ and (bi)linear forms f : V × Q → R, g : Λ × R → R,

a : (V×Q)× (V×Q)→ R, and b : (Λ×R)× (V×Q)→ R, the hybrid formulation takes

the form: Find (u, p) ∈ V ×Q and (λ, ρ) ∈ Λ× R such that

(2.1)
a(u, p; v, q) + b(λ, ρ; v, q) = f(v, q),

b(µ, ξ; u, p) = g(µ, ξ),

for all (v, q) ∈ V×Q and (µ, ξ) ∈ Λ×R. The hybrid forms in (2.1) arise working in the space

V, which contains H1(Ω)d, as well as functions that satisfy more flexible conditions. The

burden of enforcing the missing conditions is then borne by the action of the bilinear form

b(·; ·) defined over spaces appropriate to enforce u ∈ H1(Ω)d. The remainder of this section
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is dedicated to defining this setting precisely and establishing the equivalence of (1.3) and

(2.1). This will provide a solid basis for defining the MHM formulation of (1.3) in Section 3.

2.1. Partitions. Consider a family of partitions {PH}H>0 of Ω parameterized by H :=

maxK∈PH hK , where hK is the diameter of simplex elements K. The collection of all element

boundaries ∂K is denoted ∂PH. Without loss of generality, we shall use hereafter the

terminology employed for three-dimensional domains. The collection of all faces E in the

triangulations, with diameter hE, is denoted E . This set is decomposed into the set of faces

on ∂Ω denoted E∂, and its complement E0. To each E ∈ E , a normal n is associated, taking

care to ensure this is directed outward on ∂Ω. For each K ∈ PH we collect local faces

of E ⊂ ∂K in the set EK , while denoting the outward normal on ∂K by nK and defining

nKE := nK |E for each E ⊂ EK . Also, we denote by {EH}H>0 a regular family of simplicial

partitions of E , where H := maxF∈EH hF and hF is the diameter of F ∈ EH . We collect the

faces of F ⊂ ∂K in the set EKH .

2.2. Broken spaces and norms. Given a partition PH in {PH}H>0, we adopt the nota-

tion

(2.2) Q := L2(Ω) and V := {v ∈ L2(Ω)d : vK ∈ H1(K)d ∀K ∈PH },

where we denote vD := v |D with D ⊂ Ω a measurable set, and

Λ :=
{
µ ∈ ΠK∈PH

H−1/2(∂K)d : µ∂K = σK n
K |∂K ∀K ∈PH and σ ∈H(div; Ω)

}
,

(2.3)

and

Σ :=
{
ζ ∈ ΠK∈PH

H1/2(∂K)d : ζ∂K = vK |∂K ∀K ∈PH and v ∈ H1
0 (Ω)d

}
.(2.4)

Also, we define the broken gradient operator ∇H : V→ L2(Ω)d×d as such, for all v ∈ V,

(∇Hv) |K := ∇vK for all K ∈PH .

Given w, v ∈ L2(Ω)d, and owing to the notation

(w,v)PH
:=

∑
K∈PH

(wK ,vK)K ,

where (·, ·)D stands for the L2(D)d inner product, we equip V with the norm ‖ · ‖V induced

by the inner product

(w,v)V := d−2
Ω (w,v)PH

+ (∇Hw,∇Hv)PH
,(2.5)
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where dΩ is the diameter of Ω. Further, we equip Q with the induced norm

‖ · ‖2
Q := (·, ·)Q = (·, ·)PH .

We denote (·, ·)V×Q := (·, ·)V + (·, ·)Q the inner-product on the product space V×Q, which

induces the following norm in V ×Q

‖v, q‖2
V×Q := ‖v‖2

V + ‖q‖2
Q for all (v, q) ∈ V ×Q.(2.6)

We equip the space H(div; Ω) and Λ with the norms,

||σ||2H(div;Ω) :=
∑
K∈PH

(
‖σ‖2

0,K + d2
Ω ‖∇·σ‖2

0,K

)
,(2.7)

‖µ‖Λ := inf
σ∈H(div;Ω)

σ∂Kn
K |∂K=µ∂K ,K∈PH

‖σ‖H(div;Ω),(2.8)

and the space Σ with the norm

‖ζ‖Σ := inf
v∈H1

0 (Ω)d

v∂K=ζ∂K ,K∈PH

‖v‖1,Ω.

Also, we define the following product norm

‖µ, ξ‖2
Λ×Q := ‖µ‖2

Λ + ‖ξ‖2
Q for all (µ, ξ) ∈ Λ× R.(2.9)

The duality pairing between H−1/2(∂K)d and H1/2(∂K)d is denoted by 〈·, ·〉∂K , and we

define, for µ ∈ ΠK∈PHH
−1/2(∂K) and ζ ∈ ΠK∈PHH

1/2(∂K),

(µ, ζ)∂PH :=
∑
K∈PH

〈µ∂K , ζ∂K〉∂K .

Observe that if µ ∈ Λ and ζ ∈ Σ, then (µ, ζ)∂PH = 0 (c.f. [7, Lemma 4]). Also, consider

closed (not necessarily finite) subspaces

Λs :=
∑
K∈PH

Λs(∂K), Vs :=
∑
K∈PH

Vs(K) and Qs :=
∑
K∈PH

Qs(K),

of spaces Λ, V and Q, respectively, where Λs(∂K), Vs(K) and Qs(K) are respectively closed

subspaces of H−1/2(∂K)d, H1(K)d and L2(K).
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2.3. (Bi)linear Forms. We now define the bilinear forms a(·; ·) and b(·; ·). Given, w, v ∈ V

and q, r ∈ Q, and (µ, ξ) ∈ Λ× R

a(w, r; v, q) :=
∑
K∈PH

aK(wK , rK ; vK , qK),

b(µ, ξ; v, q) :=
∑
K∈PH

bK(µ∂K , ξK ; v∂K , qK),

where,

(2.10)

aK(vK , qK ; wK , rK) := (ν∇vK ,∇wK)K + (θ vK ,wK)K

− (qK ,∇ ·wK)K + (∇ · vK , rK)K ,

bK(µ∂K , ξK ; v∂K , qK) := 〈µ∂K ,v∂K〉∂K + (ξK , qK)K .

Furthermore, the linear forms f(·) and g(·) are defined by

(2.11) f(v, q) := (f ,v)PH and g(µ, ξ) := (µ, g)∂Ω.

Observe that since f ∈ L2(Ω)d and g ∈ H1/2(∂Ω)d, there exist constants C > 0 independent

of the mesh PH, such that f(v, q) = (f ,v)PH ≤ C‖v, q‖V×Q for all (v, q) ∈ V × Q and

g(µ, ξ) = (µ, g)∂Ω ≤ C‖µ, ξ‖Λ×Q for all (µ, ξ) ∈ Λ × R. We denote by ‖f‖ and ‖g‖ the

smallest possible of such constants. Similarly, bilinear form a(·; ·) is uniformly bounded over

all (v, q), (w, r) ∈ V ×Q, and then

(2.12) ‖a‖ := sup
(v,q)∈V×Q

sup
(w,r)∈V×Q

a(v, q; w, r)

‖v, q‖V×Q‖w, r‖V×Q
<∞.

Above and hereafter, we lighten notation and understand the supremum to be taken over

sets excluding the zero function, even though this is not specifically indicated. The nullspace

of a(·; ·) will play a critical role in the analysis. We define

Na := {(v, 0) ∈ Vs ×Qs : (vK , 0) ∈ Na(K) ∀K ∈PH} ,

where

Na(K) :=
{

(v, q) ∈ H1(K)d × L2(K) : aK(v, q; w, r) = 0 ∀(w, r) ∈ H1(K)d × L2(K)
}
,

and their orthogonal complements are

(2.13)
Na(K)⊥ :=

{
(v, q) ∈ H1(K)d × L2(K) : (v, q; w, r)V×Q = 0 ∀(w, r) ∈ Na(K)

}
,

N ⊥
a :=

{
(v, q) ∈ V ×Q : (vK , qK) ∈ Na(K)⊥ ∀K ∈PH

}
.

We notice that, based on the space Na(K), the following characterisations hold
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Stokes model: Na(K) = P0(K)d×{0} and N ⊥
a (K) = [H1(K)∩L2

0(K)]d×L2(K);

Brinkman model: Na(K) is trivial and N ⊥
a (K) = H1(K)d × L2(K),

where P0(K)d is the constant vector function space in K ∈PH.

2.4. The well-posedness of hybrid problem (2.1). With the previous definitions, we

establish that hybrid formulation (2.1) of (1.1) is well-posed.

Lemma 2.1. Let (µ, ξ) ∈ Λ× R and (v, q) ∈ Nb , where

(2.14) Nb := {(v, q) ∈ V ×Q : b(µ, ξ; v, q) = 0 for all (µ, ξ) ∈ Λ× R} .

Then, there exists a positive constant αb, independent of H, such that

(2.15)

αb‖v, q‖V×Q ≤ sup
(w,r)∈Nb

a(v, q; w, r)

‖w, r‖V×Q
for all (v, q) ∈ Nb ,

‖µ, ξ‖Λ×Q = sup
(w,r)∈V×Q

b(µ, ξ; w, r)

‖w, r‖V×Q
for all (µ, ξ) ∈ Λ× R.

Moreover, hybrid formulation (2.1) is well-posed and

‖u, p‖V×Q ≤
1

αb
‖f‖+

(
1 +
‖a‖
αb

)
‖g‖,

‖λ, ρ‖Λ×Q ≤
(

1 +
‖a‖
αb

)(
‖f‖+ ‖a‖‖g‖

)
.

(2.16)

Proof. First observe that Nb = H1
0 (Ω)d×L2

0(Ω) (c.f. [7, Lemma 4]), and then the first result

in (2.15) stems from the classical well-posedness of (1.3) over H1
0 (Ω)d × L2

0(Ω). Next, let

(µ, ξ) ∈ Λ× R. From Green’s Theorem and the Cauchy-Schwarz inequality, we get

b(µ, ξ; v, q) =
∑
K∈PH

[(σ,∇v)K + (∇·σ,v)K ] + (ξ, q)Q

≤ ‖v, q‖V×Q
(
‖σ‖2

H(div;Ω) + ‖ξ‖2
Q

)1/2
,

for all (v, q) ∈ V × Q and all σ ∈ H(div; Ω) with the property σK n
K |∂K = µ∂K for each

K ∈PH. It follows that

sup
(v,q)∈V×Q

b(µ, ξ; v, q)

‖v, q‖V×Q
≤ ‖µ, ξ‖Λ×Q,

for all (µ, ξ) ∈ Λ×R. Next, for each K ∈PH, note that for each component µ∂K,i of µ∂K ,

1 ≤ i ≤ d, there exists a unique v?K,i ∈ H1(K) such that

(∇v?K,i,∇zK)K + d−2
Ω (v?K,i, zK)K = 〈µ∂K,i, zK〉∂K ,
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for all zK ∈ H1(K). It follows that ∇·∇v?K,i = d−2
Ω v?K,i ∈ L2(K) and ∇v?K,i · nK |∂K =

µ∂K,i. Defining v? ∈ V by v?|K = v?K , where v?K := (v?K,1, . . . , v
?
K,d), it holds that ∇Hv? ∈

H(div; Ω) and,

‖µ, ξ‖Λ×Q ≤
(
‖∇Hv?‖2

0,Ω + d2
Ω‖∇·∇Hv?‖2

0,Ω + ‖ξ‖2
Q

)1/2

=

(
‖∇Hv?‖2

0,Ω +
1

d2
Ω

‖v?‖2
0,Ω + ‖ξ‖2

Q

)1/2

=
〈µ,v?〉∂PH

+ (ξ, ξ)Q

‖v?, ξ‖V×Q
.

So, ‖µ, ξ‖Λ×Q ≤ sup(v,q)∈V×Q
b(µ,ξ;v,q)
‖v,q‖V×Q

, thereby proving the second condition in (2.15). Fi-

nally, the stability of the solutions follows by classical results (see [39, Theorem 2.34]). �

Remark 2.2 (Equivalence with primal-hybrid formulation). The solution of the classical

weak formulation (1.3) and it’s hybrid form (2.1) coincides and λ∂K = (ν∇uK − pK I)nK

on ∂K, with I being the d× d identity operator, and ρ = 0 (c.f. [7, Theorem 1]). �

3. MHM’s abstract setting

This section presents the MHM formulation in general terms, which will be used to analyze

specific cases in the following sections. It also establishes necessary and sufficient conditions

for the MHM method to be well-posed and with best approximation properties.

To this end, let as,K(·; ·) and fs,K(·) be bounded (bi)linears form over closed subspace

Vs(K)×Qs(K). For all instances below, we assume the nullspace of as,K(·; ·) equals Na(K)

and fs,K(·) coincides with fK(·) over Na(K). However, we distinguish its orthogonal com-

plement from (2.13) as follows

Na,s(K)⊥ := {(v, q) ∈ Vs(K)×Qs(K) : (v, q; w, r)V×Q = 0 ∀(w, r) ∈ Na(K)} ,
N ⊥
a,s :=

{
(v, q) ∈ V ×Q : (v, q)|K ∈ Na,s(K)⊥ ∀K ∈PH

}
.

Next, we define two global mappings Ts and T̂s from their local counterpart, namely, Ts,K :

Λs(∂K)× R→ N ⊥
a,s(K) and T̂s,K : L2(K)d → N ⊥

a,s(K) defined by

(3.1) as,K(Ts,K(µ, ξ); v, q) = −bK(µ, ξ; v, q) and as,K(T̂s,K(q); v, q) = lqs,K(v, q),

for all (v, q) ∈ N ⊥
a,s(K), where lqs,K(·) is a given bounded linear form over Vs(K) × Qs(K)

associated with a q ∈ L2(Ω)d, and bK(·; ·) is given in (2.10). Global versions of as,K(·; ·),
fs(·) and lqs,K(·) are defined by

as(v, q;w, r) :=
∑
K∈PH

as,K(v, q;w, r), fs(v, q) :=
∑
K∈PH

fs,K(v, q), lqs (v, q) :=
∑
K∈PH

lqs,K(v, q),
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for all (v, q), (w, r) ∈ Vs×Qs, where it is assumed that lqs,K(·) are such that ‖lqs‖ ≤ C‖q‖0,Ω.

Given those definitions, the MHM abstract formulation is: Find (us0, 0) ∈ Na and (λs, ρs) ∈
Λs × R such that

(3.2)
b(µ, ξ; Ts(λs, ρs)) + b(µ, ξ; us0, 0) = (µ, g)∂Ω − b(µ, ξ; T̂s(f)),

b(λs, ρs; v0, 0) = f(v0, 0),

for all (µ, ξ) ∈ Λs × R and (v0, 0) ∈ Na.

Remark 3.1 (Simplified MHM formulation for the Brinkman case). In the case of the

Brinkman equation (θ 6= 0), the nullspace Na contains only the zero element. It follows that

for this case, the MHM formulation (3.2) reduces to find (λs, ρs) ∈ Λs × R such that

b(µ, ξ; Ts(λs, ρs)) = (µ, g)∂Ω − b(µ, ξ; T̂s(f)) for all (µ, ξ) ∈ Λs × R.

�

3.1. Well-posedness of the abstract MHM (3.2). Here, we establish conditions under

which the MHM formulation (3.2) is well-posed. To this end, define

(3.3) Nb,s := {(v, q) ∈ Vs ×Qs : b(µ, ξ; v, q) = 0 for all (µ, ξ) ∈ Λs × R} ,

and assume the following conditions hold:

Assumption. Given (vK , qK) ∈ N ⊥
a,s(K), (z,m) ∈ Nb,s and (µ, ξ) ∈ Λs × R,

αa,s‖vK , qK‖H1(K)×L2(K) ≤ sup
(wK ,rK)∈N ⊥

a,s(K)

as,K(vK , qK ; wK , rK)

‖wK , rK‖H1(K)×L2(K)

,(H1)

αb,s‖z,m‖V×Q ≤ sup
(w,r)∈Nb,s

as(z,m; w, r)

‖w, r‖V×Q
,(H2)

βs‖µ, ξ‖Λ×Q ≤ sup
(w,r)∈Vs×Qs

b(µ, ξ; w, r)

‖w, r‖V×Q
,(H3)

where positive constants αa,s, αb,s and βs are independent of mesh parameters.

Remark 3.2 (Stability of Ts and T̂s). Condition (H1) ensures computations may be localized

to each K ∈ PH, thereby ensuring that operators Ts and T̂s are well-defined. Indeed, using

(H1) and appendix A, we establish that

αa,s‖v, q‖V×Q ≤ sup
(w,r)∈N ⊥

a,s

as(v, q; w, r)

‖w, r‖V×Q
for all (v, q) ∈ N ⊥

a,s,(3.4)
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from which we have the operators Ts and T̂s are bounded as follows

αa,s‖Ts(µ, ξ))‖V×Q ≤ sup
(w, q)∈N ⊥

a,s

as(Ts(µ, ξ); w, q)

‖w, q‖V×Q

= − sup
(w,q)∈N ⊥

a

b(µ, ξ; w, q)

‖w, q‖V×Q
≤ ‖µ, ξ‖Λ×Q,(3.5)

and

αa,s‖T̂s(q)‖V×Q ≤ sup
(w, q)∈N ⊥

a,s

as(T̂s(q); w, q)

‖w, q‖V×Q

= sup
(w,q)∈N ⊥

a

lqs (w, q)

‖w, q‖V×Q
≤ ‖lqs‖ ≤ C ‖q‖0,Ω.(3.6)

�

Remark 3.3 (Well-posedness of hybrid problem (2.1) on closed spaces). In (H2)-(H3) we

recognize the necessary and sufficient condition for hybrid problem (2.1) to be well-posed

over the spaces Vs × Qs and Λs × R with a(·; ·) replaced by as(·; ·) and f(·) by fs(·). If

(us, ps,λs, ρs) denotes such a unique solution of (2.1) in Vs ×Qs ×Λs × R, then following

the argument in Lemma 2.1

‖us, ps‖V×Q ≤
1

αbs
sup

(v,q)∈Vs×Qs

fs(v, q)

‖v, q‖V×Q
+

1

βs

(
1 +
‖as‖
αb,s

)
sup
µ∈Λs

g(µ, 0)

‖µ, 0‖Λ×Q
,

‖λs, ρs‖Λ×Q ≤
1

βs

(
1 +
‖as‖
αb,s

)(
sup

(v,q)∈Vs×Qs

fs(v, q)

‖v, q‖V×Q
+
‖as‖
βs

sup
µ∈Λs

g(µ, 0)

‖µ, 0‖Λ×Q

)
.

(3.7)

�

The following result is central to the analysis of the MHM methods that will follow. We

establish that (3.2) is indeed well-posed under the assumptions (H1)-(H3). We also see that

the unique solution of (2.1), when taken over the subspaces Vs × Qs and Λs × R, can be

constructed using the unique solution of (3.2), establishing thus an equivalence between both

formulations.

Theorem 3.1. Consider

(3.8) Ns := {(µ, ξ) ∈ Λs × R : b(µ, ξ; v, q) = 0 for all (v, q) ∈ Na} .
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Under assumptions (H1)–(H3), it holds

(3.9)

αb,sβ
2
s

(αb,s + ‖as‖)‖as‖
‖γ, τ‖Λ×Q ≤ sup

(µ,ξ)∈Ns

b(µ, ξ; Ts(γ, τ))

‖µ, ξ‖Λ×Q
,

αb,sβs
αb,s + ‖as‖

‖v0, 0‖V×Q ≤ sup
(µ,ξ)∈Λs×R

b(µ, ξ; v0, 0)

‖µ, ξ‖Λ×Q
,

for all (γ, τ) ∈ Ns and (v0, 0) ∈ Na. Thus, the abstract MHM formulation (3.2) admits a

unique solution, and

‖λs, ρs‖Λ×Q ≤ C

(
sup

(v0,0)∈Na

f(v0, 0)

‖v0, 0‖V×Q
+ ‖T̂s(f)‖V×Q + sup

µ∈Λs

g(µ, 0)

‖µ, 0‖Λ×Q

)
,

‖us0, 0‖V×Q ≤ C

(
sup

(v0,0)∈Na

f(v0, 0)

‖v0, 0‖V×Q
+ ‖T̂s(f)‖V×Q + sup

µ∈Λs

g(µ, 0)

‖µ, 0‖Λ×Q

)
.

Furthermore, the solution (us, ps) of hybrid problem (2.1) in Vs×Qs can be written in terms

of the solution (us0, 0) and (λs, ρs) of (3.2) as follows

(3.10) (us, ps) = (us0, 0) + Ts(λs, ρs) + T̂s(f).

Proof. Let (γ, τ) ∈ Ns and define Ts(γ, τ) by the first equation of (3.1), observing the need

for assumption (H1). Then, define (w, r) ∈ Vs×Qs and (µ, ξ) ∈ Λs×R the unique solution

(from (H2)-(H3)) of

(3.11)
aTs (w, r; v, q) + b(µ, ξ; v, q) = (Ts(γ, τ); v, q)V×Q for all (v, q) ∈ Vs ×Qs,

b(ζ, φ; w, r) = 0 for all (ζ, φ) ∈ Λs × R,

where aTs (·, ·) stands for the adjoint operator of as(·, ·). Picking (v, q) := Ts(γ, τ) in (3.11),

‖Ts(γ, τ)‖2
V×Q = aT (w, r; Ts(γ, τ)) + b(µ, ξ; Ts(γ, τ))

= a(Ts(γ, τ); w, r) + b(µ, ξ; Ts(γ, τ))

= −b(γ, τ ; w, r) + b(µ, ξ; Ts(γ, τ))

= b(µ, ξ; Ts(γ, τ)),

where we used the second equation in (3.11). The term ‖Ts(γ, τ)‖2
V×Q may be bounded from

below. On one hand, from (3.7) it holds

‖µ, ξ‖Λ×Q ≤
1

βs

(
1 +
‖as‖
αb,s

)
sup

(v,q)∈Vs×Qs

(Ts(γ, τ); v, q)V×Q

‖v, q‖V×Q

≤ 1

βs

(
1 +
‖as‖
αb,s

)
‖Ts(γ, τ)‖V×Q.
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On the other hand, from (H3) and the first equation in (3.1) (which we use owing to the

definition of Ns), and the boundedness of as(·; ·) that

βs
‖as‖

‖γ, τ‖Λ×Q ≤ ‖Ts(γ, τ)‖V×Q for all (γ, τ) ∈ Ns.

As a result, the first inequality of (3.9) holds since the above three equations imply

β2
s αb,s

‖as‖(αb,s + ‖as‖)
‖µ, ξ‖Λ×Q‖γ, τ‖Λ×Q ≤ b(µ, ξ; Ts(γ, τ)).

We follow the same strategy to establish the second inequality of (3.9), this time using

(v0, 0) ∈ Na and defining (w, r) ∈ Vs ×Qs and (µ, ξ) ∈ Λs × R as the unique solution of

aTs (w, r; v, q) + b(µ, ξ; v, q) = (v0, 0; v, q)V×Q for all (v, q) ∈ Vs ×Qs,

b(ζ, τ ; w, r) = 0 for all (ζ, τ) ∈ Λs × R.

Taking (v, q) := (v0, 0) we have

‖v0, 0‖2
V×Q = aTs (w, r; v0, 0) + b(µ, ξ; v0, 0)

= as(v0, 0; w, r) + b(µ, ξ; v0, 0)

= b(µ, ξ; v0, 0).

By (3.7), we get,

‖µ, ξ‖Λ×Q ≤
1

βs

(
1 +
‖as‖
αb,s

)
‖v0, 0‖V×Q,

which establishes the second inequality since the above two equations imply

βs αb,s
αb,s + ‖as‖

‖v0, 0‖V×Q‖µ, ξ‖Λ×Q ≤ b(µ, ξ; v0, 0).

Hence, the abstract MHM method (3.2) has a unique (us0,λs, ρs) from standard saddle-point

theory. Finally, it is straightforward to verify that (us0, 0) + Ts(λs, ρs) + T̂s(f) satisfies the

hybrid formulation (2.1) when restricted to subspaces Vs×Qs. Then, the equivalence (3.10)

follows from the uniqueness of solution of (2.1) on Vs ×Qs using (H2)–(H3). �

Remark 3.4 (The continuous MHM formulation). We consider the MHM formulation (3.2)

for the case Vs = V, Qs = Q, and Λs = Λ, i.e., we seek (u0, 0) ∈ Na and (λ, ρ) ∈ Λ × R

(3.12)
b(µ, ξ; T (λ, ρ)) + b(µ, ξ; u0, 0) = (µ, g)∂Ω − b(µ, ξ; T̂ (f)),

b(λ, ρ; v0, 0) = f (v0, 0),

for all (µ, ξ) ∈ Λ × R and (v0, 0) ∈ Na. Since (3.1) is solved using as(·; ·) := a(·; ·) and

lfs (v, q) := (f ,v)PH, we adopt the notation Ts = T : Λ×R→ V×Q and T̂s = T̂ : L2(Ω)d →
V × Q. Theorem 3.1 asserts this problem is well-posed under the assumptions (H1)–(H3).
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Note that Lemma 2.1 establishes directly (H2)–(H3), and (H1) also holds. It follows that

(3.12) provides a unique solution, which we use to characterize the (unique) solution to the

hybrid formulation (2.1)

(u, p) = (u0, 0) + T (λ, ρ) + T̂ (f) and λ∂K = (ν∇uK − pK I)nK on ∂K.(3.13)

Note that ρ vanishes (see [7, Theorem 1] for details). Also, following Remark 3.2, T and T̂

are bounded as follows

αa‖T (µ, ξ)‖V×Q ≤ ‖µ, ξ‖Λ×Q and αa‖T̂ (q)‖V×Q ≤ C‖q‖0,Ω.(3.14)

�

3.2. Best approximation results. Having established conditions for the MHM formula-

tion to be well posed, we can explore best approximation properties. These will find appli-

cation in later sections using interpolation results to establish convergence for the various

versions of the MHM methods to be considered. Let

(3.15) Λ?
s := {µ ∈ Λs : b(µ, 0;v0, 0) = f(v0, 0) ∀(v0, 0) ∈ Na} ,

and note that Λ?
s = Λs in the Brinkman case.

Theorem 3.2 (Best approximation). Assume (H1)–(H3) hold. Let (λs, ρs) ∈ Λs × R and

(us0, 0) ∈ Na be the solution of (3.2), (λ, ρ) ∈ Λ × R and (u0, 0) ∈ Na the exact solution

of (3.12), and (u, p) and (us, ps) given in (3.13) and (3.10), respectively. Then, there exist

positive constants C, depending only on constants in (H1)–(H3), such that

‖λ− λs‖Λ + ‖u0 − us0‖V ≤ C
(

inf
µ∈Λ?

s

‖λ− µ‖Λ + ‖(T − Ts)(λ, 0) + (T̂ − T̂s)(f)‖V×Q
)
,

‖u− us, p− ps‖V×Q ≤ C
(

inf
µ∈Λ?

s

‖λ− µ‖Λ + ‖(T − Ts)(λ, 0) + (T̂ − T̂s)(f)‖V×Q
)
.

Proof. First, recall that ρ = ρs = 0. Given µs ∈ Λ?
s, and using λs satisfies the second

equation in (3.2), it holds for all (v, 0) ∈ Na,∑
K∈PH

〈µs |∂K − λs |∂K ,v∂K〉∂K = 0,
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and then (µs−λs, 0) ∈ Ns, where Ns is defined in (3.8). Therefore, from Theorem 3.1 there

exists α :=
αb,sβ

2
s

(αb,s+‖as‖)‖as‖
such that

α ‖µs − λs, 0‖Λ×Q ≤ sup
(µ,ξ)∈Ns

b(µ, ξ; Ts(µs − λs, 0))

‖µ, ξ‖Λ×Q

≤ sup
(µ,ξ)∈Ns

−b(µ, ξ; T (λ− µs, 0))− b(µ, ξ; (T − Ts)(µs, 0) + (T̂ − T̂s)(f))

‖µ, ξ‖Λ×Q

≤ 1

αa
‖λ− µs‖Λ + ‖(T − Ts)(µs, 0) + (T̂ − T̂s)(f)‖V×Q

≤ αa + 2αa,s
αaαa,s

‖λ− µs‖Λ + ‖(T − Ts)(λ, 0) + (T̂ − T̂s)(f)‖V×Q,

where we used (3.14), (3.5) and ‖(T − Ts)(λ − µs, 0)‖V×Q ≤ αa+αa,s
αaαa,s

‖(λ − µs, 0)‖Λ×Q.

Therefore, the triangle inequality yields

‖λ− λs‖Λ ≤ ‖λ− µs‖Λ + ‖µs − λs‖Λ

≤ C

(
inf
µ∈Λ?

s

‖λ− µ‖Λ + ‖(T − Ts)(λ, 0) + (T̂ − T̂s)(f)‖V×Q
)
.

Next, observe that from Theorem 3.1 there exists β :=
αb,sβs

αb,s+‖as‖
such that

β‖u0 − us0, 0‖V×Q ≤ sup
(µ,ξ)∈Λs×R

b(µ, ξ;u0 − us0, 0)

‖µ, ξ‖Λ×Q

≤ sup
(µ,ξ)∈Λs×R

−b(µ, ξ; (T̂ − T̂s)(f) + (T − Ts)(λs, 0) + T (λ− λs, 0))

‖µ, ξ‖Λ×Q

≤ ‖(T̂ − T̂s)(f) + (T − Ts)(λs, 0)‖V×Q +
1

αa
‖λ− λs‖Λ

≤ ‖(T̂ − T̂s)(f) + (T − Ts)(λ, 0)‖V×Q +
αa + 2αa,s
αaαa,s

‖λ− λs‖Λ,

we used again (3.14), (3.5), and the first estimate follows. The second estimate is a simple

consequence of the characterization of (u, p) in (3.13) and (us, ps) in (3.10), using the first

estimate. �

4. The one-level MHM method

For the one-level MHM method, we define a finite-dimensional space Λ`
H of Λ, and choose

Vs = V and Qs = Q. The latter two choices correspond to assuming that the action of the

mappings Ts,K and T̂s,K can be calculated exactly using (3.1).
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Specifically, let 0 ≤ ` ∈ N and define the space of (dis)continuous piecewise polynomial

functions on EH of degree up to ` given by

Pdis` (EKH )d :=
{
µ ∈ L2(∂K)d : µF ∈ Pd` (F ) for all F ∈ EKH

}
,

and

Pcon` (EKH )d :=
{
µ ∈ C0(E)d for all E ⊂ ∂K : µF ∈ Pd` (F ) for all F ∈ EKH

}
.

Their global counterparts are

Pdis` (EH)d :=
{
µ ∈ L2(E)d : µF ∈ Pd` (F ) for all F ∈ EH

}
,

and

Pcon` (EH)d :=
{
µ ∈ C0(E)d for all E ⊂ E : µF ∈ Pd` (F ) for all F ∈ EH

}
.

Then, we consider the following finite-dimensional subspace of Λ

(4.1) Λs = Λ`
H :=

{
µ ∈ Λ : µ∂K ∈ Pdis` (EKH )d or Pcon` (EKH )d for all K ∈PH

}
.

The one-level MHM method consists of finding (uH0 , 0) ∈ Na and (λH , ρH) ∈ Λ`
H × R such

that

(4.2)
b(µH , ξ; T (λH , ρH)) + b(µH , ξ; u

H
0 , 0) = (µH , g)∂Ω − b(µH , ξ; T̂ (f)),

b(λH , ρH ; v0, 0) = f(v0, 0),

for all (v0, 0) ∈ Na and (µH , ξ) ∈ Λ`
H × R. According to Theorem 3.1, we form

(uH , pH) = (uH0 , 0) + T (λH , ρH) + T̂ (f),(4.3)

the discrete solution to the hybrid formulation (2.1) over V × Q and Λ`
H × R. Note that

although (uH , pH) is searched in V×Q, they belong to a finite-dimensional subspace induced

by the basis functions of ΛH and Na plus T̂ (f). Moreover, it also provides the discrete dual

variable σH ∈H(div; Ω) defined by

σH := ν∇HuH − pHI.(4.4)

We analyze the one-level MHM method (4.2) by establishing the assumptions (H1)–(H3) as

well as best approximation results for Λ`
H . In this setting we may understand convergence

properties without consistency errors related to approximations of the operators T and T̂ .
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4.1. Well-posedness of (4.2). Here, we set s = H and observe that

Nb,s = Nb,H :=
{

(v, q) ∈ V ×Q : b(µ, ξ; v, q) = 0 for all (µ, ξ) ∈ Λ`
H × R

}
,(4.5)

Ns = NH :=
{

(µ, ξ) ∈ Λ`
H × R : b(µ, ξ; v, q) = 0 for all (v, q) ∈ Na

}
.(4.6)

The one-level MHM method is well-posed as shown in the next theorem.

Theorem 4.1 (Well-posedness of (4.2)). Let (γ, τ) ∈ NH and (v0, 0) ∈ Na. The following

inequalities hold

(4.7)

αbβ
2
s

(αb + ‖a‖)‖as‖
‖γ, τ‖Λ×Q ≤ sup

(µ,ξ)∈NH

b(µ, ξ; T (γ, τ))

‖µ, ξ‖Λ×Q
,

αb,sβs
αb,s + ‖as‖

‖v0, 0‖V×Q ≤ sup
(µ,ξ)∈Λ`

H×R

b(µ, ξ; v0, 0)

‖µ, ξ‖Λ×Q
.

Then, there exists unique solution (uH0 , 0) ∈ Na and (λH , ρH) ∈ Λ`
H × R of (4.2), and

‖λH , ρH‖Λ×Q ≤ C

(
sup

(v0,0)∈Na

f(v0, 0)

‖v0, 0‖V×Q
+ ‖T̂ (f)‖V×Q + sup

µ∈ΛH

g(µ, 0)

‖µ, 0‖Λ×Q

)
,

‖uH0 , 0‖V×Q ≤ C

(
sup

(v0,0)∈Na

f(v0, 0)

‖v0, 0‖V×Q
+ ‖T̂ (f)‖V×Q + sup

µ∈ΛH

g(µ, 0)

‖µ, 0‖Λ×Q

)
.

Proof. We shall prove the conditions (H1)–(H3) needed in Theorem 3.1. Indeed, (H1) and

(H3) hold since Vs×Qs = V×Q, meaning these are inherited from Lemma 2.1. For condition

(H2), consider (v, q) ∈ Nb,H in (4.5). Since q ∈ L2
0(Ω), there exists ṽ ∈ H1

0 (Ω)d such that

(q,∇ · ṽ)Ω = ‖q‖2
0,Ω and ‖ṽ‖1,Ω ≤ C ‖q‖0,Ω. We set (w, r) := (v − ε ṽ, q) and observe that

(w, r) ∈ Nb,H , where ε is a positive constant. Then, there exist positive constants C1 and

C2 independent of mesh parameters, such that

a(v, q; w, q) = a(v, q; v, q)− ε a(v, q; ṽ, 0)

≥ C1 ‖v‖2
V − ε

[
ν(∇Hv,∇Hṽ)PH

+ (θ v, ṽ)PH
− (q,∇ · ṽ)PH

]
≥ C1 ‖v‖2

V + ε
[
‖q‖2

0,Ω − C2 ‖v‖V‖ṽ‖V
]

≥ C1 ‖v‖2
V + ε

[
(1− CC2

γ

2
)‖q‖2

0,Ω − C2
1

2γ
‖v‖2

V

]
= C3 ‖v, q‖2

V×Q,

where C3 is a positive constant independent of mesh parameters by taking the positive

constants γ and ε small enough. Next, observe that

‖w, q‖V×Q ≤ ‖v, q‖V×Q + ε ‖ṽ, 0‖V×Q ≤ ‖v, q‖V×Q + C ε ‖0, q‖V×Q ≤ C4 ‖v, q‖V×Q,
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where C4 is a positive constant independent of mesh parameters. Combining this with

previous estimates gives condition (H2), therefore Theorem 3.1 holds. �

4.2. Convergence. In light of Theorem 3.2, the convergence properties will follow from an

interpolation result for Λ`
H , and focus on convergence with respect to the mesh parameters

H, H. We follow the strategy of [16] proposed for the Poisson problem and in [45] for

elasticity, which extended the approach of using interpolation mappings in one-element sub-

meshes (c.f. [60]) to more general sub-mesh cases. Here, we adapt the proof given in [45]

to deal with the Stokes/Brinkman operator. We do not prove spectral convergence in terms

of the polynomial degree ` in this work, which would be expected based on preliminary

theoretical and numerical results in [29].

For the present approach, we require a submesh ΞK
H , which denotes a regular minimal

simplicial partition for each K ∈PH and extends the partition on EH to the interior of K.

That is, for each F ∈ EH , there exists τF ∈ ΞK
H with diameter hτF such that ∂τF ∩ ∂K = F ,

and for simplicity, we assume that for two different F, F ′ ∈ EH , we have τF 6= τF ′ . We note

that by mesh regularity there exists a uniform, positive global constant C, independent of

H and H and physical parameters, such that hτF ≤ ChF .

Lemma 4.1. Suppose (v, q) ∈ Hm+1(PH)d×Hm(PH), 1 ≤ m ≤ `+ 1, and (ν∇Hv− qI) ∈
H(div; Ω), and ` ≥ 1 if Λ`

H is the continuous space and ` ≥ 0 otherwise, and let µ ∈ Λ be

such that µKE := (ν∇v − qI)nKE |E for each E ∈ E. Then, there exists µ` ∈ Λ`
H and C such

that

‖µ− µ`‖Λ ≤ C Hm
(
|ν∇Hv|m,PH + |q|m,PH

)
,(4.8)

and b(µ− µ`, 0;w0, 0) = 0 for all w0 ∈ P0(PH)d.

Proof. For sake of completeness, we describe the main steps following closely [45] for the

discontinuous case and [59] for the continuous case. To begin, let K ∈ PH and E ∈ E be

a face of ∂K. Define χKE := (ν∇v − qI)nKE ∈ Hm(ΞK
H)d, where nKE is the extension of the

outward unit normal vector nK |E to the constant function defined on the interior of K, and

observe µKE = χKE |E. Define the function µK ∈ L2(∂K)d by µK |E = µKE , and collect each of

these across all K to yield µ ∈ Λ.

We first analyze the discontinuous interpolant case. Consider the orthogonal projection

Π`
∂K(µ) |F := Π`

F (µK) where F ∈ EH satisfies F ⊂ E ⊂ ∂K and Π`
F is the L2(F )d-orthogonal

projector onto P`(F )d, ` ≥ 0. Define µ`∂K := Π`
∂K (µ). Using the regularity of the mesh, and
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following closely the proof in [45, Lemma 5.1], for each K ∈PH we get

〈µ − µ`∂K ,w〉∂K ≤ C
∑
F⊂∂K

hmτF |ν∇vτF − qτF I|m,τF |wτF
|1,τF for all w ∈ H1(K)d.

Define µ` ∈ Λ`
H by µ`|∂K := µ`∂K and observe that b(µ − µ`, 0;w0, 0) = 0 for all w0 ∈

P0(PH)d. Summing up over K ∈PH and using mesh regularity, it holds

b(µ− µ`, 0; w, r) = (µ− µ`,w)∂PH
≤ C

∑
K∈PH

∑
F⊂∂K

hmF |ν∇vτF − qτF I|m,τF |wτF
|1,τF

≤ C Hm(|ν∇Hv|m,PH + |q|m,PH) |w|1,PH ,

for all (w, r) ∈ V ×Q, which immediately leads to

(4.9) sup
(w,r)∈V×Q

b(µ− µ`, 0; w, r)

‖w, r‖V×Q
≤ C Hm(|ν∇Hv|m,PH + |q|m,PH).

The result (4.8) follows using the second equation in (2.15).

Now, we analyze a continuous interpolant, which is constructed using a vector version of

the Scott-Zhang interpolation operator P`K on the space of piecewise continuous polynomials

P`(ΞK
H)d of degree ` with respect to ΞK

H . We recall that this interpolation operator is a

projection, i.e., P`K(v) = v for all v ∈ P`(ΞK
H)d. Taking µ`∂K := P`K(χKE )|∂K and defining

µ` ∈ Λ`
H by µ`|∂K := µ`∂K , we follow closely [16] to find

(4.10) ‖µ− µ`‖Λ ≤ C Hm
(
|ν∇Hv|m,PH + |q|m,PH

)
.

Observing that b(µ − µ`, 0;w0, 0) 6= 0 for all w0 ∈ P0(PH)d, we introduce µ̃` ∈ Λ`
H

defined by µ̃`|E := µ`|E + π1
E(µE − µ`|E) for each E ⊂ ∂K, ∀K ∈ PH. Here, π1

E is

the L2(E)d-orthogonal projector onto [P1(E) ∩ C0(E)]
d
. It follows immediately that that

b(µ − µ̃`, 0;w0, 0) = 0 for all (w0, 0) ∈ P0(PH)d. Moreover, letting π1
K be the L2(K)d-

orthogonal projector onto P1(ΞK
H)d, for all w ∈ V, we get

(µ∂K − µ̃`|∂K ,w∂K)∂K =
∑
E⊂∂K

(µE − µ`|E − π1
E(µE − µ`|E),wE)E

=
∑
E⊂∂K

(µE − µ`|E − π1
E(µE − µ`|E),wE − π1

K(wK)|E)E

≤
∑
E⊂∂K

(
‖µE − µ`|E‖0,E + ‖π1

E(µE − µ`|E)‖0,E

)
‖wE − π1

K(wK)|E‖0,E

≤ CH1/2‖µ∂K − µ`∂K‖0,∂K |wK |1,K ,

where we used the standard L2 stability result ‖π1
E(µE −µ`|E)‖0,E ≤ C ‖µE −µ`|E‖0,E and

approximability property ‖wE−π1
K(wK)|E‖0,E ≤ CH1/2|wK |1,K (c.f. [39]). Then, summing
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up for all K ∈PH, we get

b(µ− µ̃`, 0; w, r) = (µ− µ̃`,w)∂PH
≤ CH1/2‖µ− µ`‖0,∂PH‖w, r‖V×Q.

Following closely the proof in [59, Lemma 5]), we get ‖µ − µ`‖0,∂PH ≤ CHm−1/2|ν∇Hv −
q I|m,PH which yields (4.9) for continuous interpolation. �

Remark 4.2 (Conservation properties). Note from (4.3) and the definitions of local mapping

T and T̂ that the one-level discrete velocity field is divergence-free, i.e.,

∇ · uH = 0 in K ∈PH.

Also, from the local problems (3.1), the discrete stress variable σH in (4.4) is in point-wisely

local equilibrium with external force, i.e.,

(4.11) θ uH +∇ · σH = f in K ∈PH.

Those properties are intrinsically related to the fact that exact second-level solutions are

assumed to be known and readily available. In general, this assumption is not valid and

second-level discrete solvers are needed to approximate the T and T̂ operators. So, the next

challenge is to propose two-level versions of the MHM method that preserve the optimal

convergence rates and conservative properties of the one-level MHM method. This is precisely

the subject of Section 5. �

We are ready to present the main convergence result.

Theorem 4.2. Assume (u, p) ∈ Hm+1(PH)d × Hm(PH), (ν∇u − pI) ∈ H(div; Ω), with

1 ≤ m ≤ ` + 1 and ` ≥ 1 if Λ`
H is the continuous space and ` ≥ 0 otherwise. If (uH , pH)

and σH are defined in (4.3) and (4.4), respectively, then there exists C such that

‖λ− λH‖Λ + ‖u0 − uh0‖V ≤ C Hm
(
|ν∇Hu|m,PH + |p|m,PH

)
,

‖u− uH , p− ph‖V×Q ≤ C Hm
(
|ν∇Hu|m,PH + |p|m,PH

)
,

‖σ − σH‖H(div;Ω) ≤ C Hm
(
|ν∇Hu|m,PH + |p|m,PH

)
.

(4.12)

Proof. Observing (T − Ts)(λH) and (T̂ − T̂s)(f) are identically zero, the results are a direct

consequence of Theorem 3.2, Lemma 4.1 and (4.11). �

Remark 4.3 (Super-convergence). When the exact solution (u, p) is regular “enough” the

MHM method (4.2) super-converges with an additional O(H1/2) for a given quasi-uniform

coarse mesh PH (e.g., H fixed). The proof follows the strategy proposed in [29] for the

discontinuous Λ`
H case. Notably, let Π0

K : L2(K)d → P0(K)d be the L2 projection operator
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on the space of constant functions on K ∈ PH, and Π0(·) its global counterpart defined

by Π0(·)|K = Π0
K(·). Note that if µ` ∈ Λ`

H is the function obtained from Lemma 4.1 then

(λ − µ`,v0)∂PH = 0, for all v0 ∈ P0(PH)d and ‖λ − µ`‖∂PH ≤ CHm‖λ‖m,∂PH with

1 ≤ m ≤ `+ 1 and ` ≥ 0, and using (2.15) it holds

‖λ− µ`‖Λ = sup
(w,r)∈V×Q

b(λ− µ`, 0; w, r)

‖w, r‖V×Q
= sup

(w,r)∈V×Q

(λ− µ`,w − Π0(w))∂PH

‖w, r‖V×Q

≤ sup
(w,r)∈V×Q

‖λ− µ`‖∂PH‖w − Π0(w)‖∂PH

‖w, r‖V×Q
≤ CH1/2‖λ− µ`‖∂PH

≤ CHm+1/2‖λ‖m,∂PH ,

where we used Cauchy-Schwarz inequality and the estimate ‖w−Π0(w)‖∂PH ≤ C H1/2|w|1,PH.

Now, using λ = (ν∇u− pI)nK in ∂K for all K ∈PH, assuming additional regularity such

that ‖u‖m+2,PH and ‖p‖m+1,PH are limited, and from trace inequalities (see [29] for details),

it results that µ` ∈ Λ`
H satisfies

‖λ− µ`‖Λ ≤ C(H)Hm+1/2
(
‖u‖m+2,PH

+ ‖p‖m+1,PH

)
,(4.13)

where C(H) is a positive constant dependent on a negative power of H (which is fixed). Then,

from Theorem 3.2 the MHM solution converges as follows

(4.14) ‖u− uH , p− ph‖V×Q ≤ C(H)Hm+1/2
(
‖u‖m+2,PH

+ ‖p‖m+1,PH

)
.

For the continuous case Λ`
H , the idea is to select µ̃` ∈ Λ`

H used in the proof of Lemma 4.1

such that (λ − µ̃`,v0)∂PH = 0, for all v0 ∈ P0(PH)d. Then, following steps analogous to

those in the discontinuous case

‖λ− µ̃`‖Λ ≤ CH1/2‖λ− µ̃`‖∂PH
≤ CH1/2‖λ− µ?`‖∂PH

,

where here µ?` is related to the Scott-Zhang interpolator (see proof of Lemma 4.1). The rest of

the proof follows closely that for the discontinuous case using ‖λ−µ?`‖∂PH ≤ CHm‖λ‖m,∂PH

with 1 ≤ m ≤ `+ 1 and ` ≥ 1 and thus (4.14) is valid. �

5. Two-level MHM methods

In this section, we introduce practical strategies to approximate the solutions of the local

Stokes/Brinkman problems (3.1) in order to seed the global problem of the form (3.2). In

principle, second-level solvers may be quite general. Here, we consider two approaches:

(i) a stabilized finite element method with equal-order nodal approximation for velocity

and pressure (the USFEM, [14]);
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(ii) the Galerkin method using stable pairs of spaces (Taylor Hood elements, c.f. [19]).

The first level of a two-level MHM method is built on partitions PH of Ω and EH of E , using

Λs = Λ`
H in (3.2) and (3.1) defined by (4.1) (as with the one-level method). The second

level involves building numerical solutions to these local problems using local shape-regular,

simplicial triangulations
{
T Kh
}
h>0

of each K ∈PH, where we denote the collection of such

triangulations

Th :=
⋃

K∈PH

T Kh .

Here, h = maxτ∈Th hτ and hτ is the diameter of an element τ ∈ Th. We denote by EKh the

set of faces on T Kh , and EK0 the set of internal faces. To each face γ ∈ EKh , we associate a

normal vector nτγ, taking care to ensure this is facing outward on ∂τ .

Since methods will be defined by choosing spaces and forms with notation dependent of

mesh parameter h, e.g., all subscripts s in previous sections will be replaced by h. Notably,

the methods are then defined using specific choices of spaces Vs = Vh and Qs = Qh and

(bi)linear forms as,K(·; ·) = ah,K(·; ·) and lfs,K(·) = lfh,K(·). These will be introduced and ana-

lyzed in Sections 5.1 and 5.2, respectively, which define the approximate upscaling mappings

Th and T̂h.

Owing to those discrete (local) operators, the two-level MHM method reads: Find (uH,h0 , 0) ∈
Na and (λH,h, ρH,h) ∈ Λ`

H × R such that

(5.1)
b(µH , ξ; Th(λH,h, ρH,h)) + b(µH , ξ; u

H,h
0 , 0) = (µH , g)∂Ω − b(µH , ξ; T̂h(f)),

b(λH,h, ρH ; v0, 0) = f(v0, 0),

for all (v0, 0) ∈ Na and (µH , ξ) ∈ Λ`
H × R. We form the two-level discrete solution

(uH,h, pH,h) ∈ Vh ×Qh as follows

(uH,h, pH,h) = (uH,h0 , 0) + Th(λH,h, ρH,h) + T̂h(f),(5.2)

which also corresponds to the solution to the hybrid formulation (2.1) over Vh × Qh and

Λ`
H × R from Theorem 3.1.

5.1. Analysis of a stabilized two-level MHM method. The unusual stabilized finite

element method (USFEM) proposed in [14] was first adopted in [7] as a consistent second-

level solver for local problems (3.1) to solve MHM formulation (5.1). For this method, we

take

Vh :=
⊕
K∈PH

Vh(K) and Qh :=
⊕
K∈PH

Qh(K),
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where, given k ≥ 1 and K ∈PH,

Vh(K) :=
{
v ∈ C0(K)d : vτ ∈ Pk(τ)d ∀τ ∈ T Kh

}
,

Qh(K) :=
{
q ∈ C0(K) : qτ ∈ Pk(τ) ∀τ ∈ T Kh

}
.

The global operators Th ∈ L(Λ`
H ×R,N ⊥

a,h) and T̂h ∈ L(L2(Ω)d,N ⊥
a,h) are defined locally by

using the USFEM in (3.1), i.e., taking (u, p), (v, q) ∈ Vh(K) × Qh(K) and the (bi)linear

forms

ah,K(u, p;v, q) :=(ν∇u,∇v)K + (θ u,v)K − (p,∇ · v)K + (q,∇ · u)K

−
∑
τ∈T Kh

δτ (−ν∆u+ θu+∇p,−ν∆v + θv −∇q)τ ,(5.3)

lfh,K(v, q) := (f ,v)K −
∑
τ∈T Kh

δτ (f ,−ν∆v + θ v −∇q)τ .(5.4)

The stabilization parameter δτ reads

δτ :=
h2
τ

θτmax h
2
τ max {1, P eτ}+

4 ν

mk

with Peτ :=
4ν

θτmax h
2
τ mk

,

where mk := min
{

1
3
, Ck
}

, the non-negative constant θτmax := maxx∈τ θmax(x) and Ck is a

positive constant, independent of hτ , such that,

Ck hτ ‖∆v‖0,τ ≤ ‖∇v‖0,τ for all v ∈ Vh(K).

The USFEM has the property (see [14, Lemma 4.2] for details), given (v, q) ∈ Vh(K) ×
Qh(K),

αa,h‖v, q‖H1(K)×L2(K) ≤ sup
(w,r)∈N ⊥

a,h(K)

ah,K(v, q; w, r)

‖w, r‖H1(K)×L2(K)

,(5.5)

where αa,h depends on physical parameters but is independent of the partition.

Remark 5.1. Following closely Remark 3.2, using (5.5), mappings Th and T̂h are bounded

(5.6) ‖Th(µ, ξ)‖V×Q ≤ α−1
a,h ‖µ, ξ‖Λ×R and ‖T̂h(q)‖V×Q ≤ C α−1

a,h ‖lqh‖,

where lqh(·) is the linear form such that lqh(·) |K = lqh,K(·) for all K ∈PH. Furthermore, there

exists C dependent only on physical coefficients, such that

‖lqh‖ ≤ C ‖q‖0,Ω ⇒ ‖T̂h(q)‖V×Q ≤ C α−1
a,h ‖q‖0,Ω,

as a result of definition of the dual norm (2.12), the linear form lqh,K(·) in (5.4), and inverse

inequalities. �
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Remark 5.2 (The MHM method as a reduced modeling technique). When restricted to an

element K ∈ PH the two-level MHM solution (uH,h, pH,h) belongs to the polynomial spaces

Vh(K) and Qh(K) of degree k ≥ 1. However, note that (uH,h, pH,h)|K effectively belongs to

a much smaller subspace of Vh(K)×Qh(K) driven by the dimension of Λ`
H and Na in K.

For example, consider the simplest case of sub-mesh of an element in two dimensions for

Stokes problems (Na is non-trivial) and define ` = 0 and k = 2. The product space dimension

Vh(K)×Qh(K) is 18, but by (5.2) (uH,h, pH,h)|K is a linear combination of 9 space functions

arising from 2 constant vector functions of Na, 6 functions induced by the local basis in Λ0
H

through the operator Th,K, and one basis function associated to T̂h,Kf . Such reduction may

be even more prominent for sub-meshes with higher k values or with refinement due to the

approximation of problems with multiple scales. The burden of the overhead computational

cost related to Th,K and T̂h,K is “embarrassingly parallelizable” and can be done in an off-line

stage. �

The remainder of this subsection is dedicated to the analysis of the method (5.1) with Th

and T̂h defined throught (5.3)-(5.4). Observe that by (5.5), assumption (H1) is satisfied. It

remains to establish (H2)-(H3). Before these may be tackled, some preliminary results must

be established.

5.1.1. Preliminary results. The analysis for the stabilized two-level MHM method requires

a geometrical assumption between meshes. Specifically, letting κF be an element of minimal

partition ΞK
H of K ∈ PH such that ∂κF ∩ ∂K = F , choose τ ∈ T Kh such that τ ⊂ κF . We

assume that there exists a positive constant C such that

(5.7) hκF ≤ C hτ .

Remark 5.3 (Interpretation of (5.7)). Since hF ≤ hκF , we see that the assumption (5.7)

is equivalent to the requirement that the collection Th cannot contain elements of size “too

small” relative to the elements in EH . This indicates the need for a sufficiently small partition

of faces in areas of the domain with strong small-scale physics, which fits in with practice.

�

Let Ch : H1(PH)d → Vh be the Clément interpolation operator defined locally. In other

words, for every v ∈ V we define Ch(v)|K := CK
h (v) where CK

h : H1(K)d → Vh(K) is the

usual Clément interpolation operator. It is well-known that the operator CK
h satisfies the

following two properties (see [39, Lemma 1.127]):
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(i) there exists C > 0 such that

‖CK
h (vK)‖1,K 6 C ‖vK‖1,K ,(5.8)

(ii) for m and s satisfying 0 6 m 6 s, with s = 0, 1, there is C > 0 such that

‖vτ − CK
h (vK) |τ‖m,τ ≤ c hs−mτ ‖vτ‖s,ωKτ ,(5.9)

for all vτ ∈ Hs(ωKτ )d and all τ ∈ T Kh , where ωKτ := {τ ∈ T Kh : τ ∩ τ ′ 6= ∅}. The constants

C depend only on k and d. The next lemma recalls the Fortin operator proposed in [45],

(which is based on an argument in [16]), adding some additional information about it.

Lemma 5.4. Assume integers k ≥ 1 and ` ≥ 0 satisfy k − ` ≥ d, and let F ∈ EH . Then,

there exists a mapping Πh : V→ Vh such that, for all v ∈ V, it holds

(5.10)

(Πh(v) |F ,µ`)F = (vF ,µ`)F for all µ` ∈ P`(F )d,∫
K

∇ · Πh(v) |K dx =

∫
K

∇ · vK dx for all K ∈PH,

and (Πh(v), 0) ∈ Nb,h given in (3.3) if v ∈ H1
0 (Ω)d. Moreover, there exist constants C such

that

(5.11) ‖Πh(v)‖V ≤ C ‖v‖V and
∑
K∈PH

∑
τ∈T Kh

h−2
τ ‖vτ − Πh (v) |τ‖2

0,τ ≤ C ‖v‖2
V.

Proof. From [45], it follows there exists a mapping Πh : V → Vh that satisfies the first

equality in (5.10) and the left inequality in (5.11). The second equality in (5.10) follows from

the first one after integration by parts and nK |F ∈ P0(F )d. As for the second inequality in

(5.11), we recall the definition of Πh(·) defined locally on each K ∈PH as follows (see [45,

Lemma 4.2])

Πh(v) |K := CK
h (vK) +

∑
F⊂∂K

ρKF (vK − CK
h (vK)),(5.12)

where ρKF is a mapping from H1(K)d to Vh(K) (see [45, Lemma 4.1] for details). Mapping

ρKF is bounded, for each τ ∈ T Kh , as follows

‖ρKF vK |τ‖0,τ + hτ |ρKF vK |τ |1,τ ≤ C (‖vτ‖0,τ + hτ |vτ |1,τ ).
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Using this, mesh regularity, and (5.8)-(5.9), we get

∑
K∈PH

∑
τ∈T Kh

h−2
τ ‖vτ − Πh(v) |τ‖2

0,τ

≤
∑
K∈PH

∑
τ∈T Kh

(
h−2
τ ‖vτ − CK

h (vK) |τ‖2
0,τ + h−2

τ

∑
F⊂∂K∩∂τ

‖ρKF (vK − CK
h (vK)) |τ‖2

0,τ

)
≤ C

∑
K∈PH

∑
τ∈T Kh

(
h−2
τ ‖vτ − CK

h (vK) |τ‖2
0,τ + ‖vτ − CK

h (vK) |τ‖2
1,τ

)
≤ C ‖v‖2

V.

Finally, if one restricts Πh(·) to the space H1
0 (Ω)d, then it holds from (5.10) that

∑
K∈PH

∫
∂K

Πh(v) |∂K µ` |∂K ds =
∑
K∈PH

∑
F⊂∂K

∫
F

Πh(v) |F µ` |F ds

=
∑
K∈PH

∑
F⊂∂K

∫
F

vF µ` |F ds =
∑
K∈PH

∫
∂K

v∂K µ` |∂K ds = 0,

for all µ` ∈ Λ`
H , and then (Πh(v), 0) belongs to Nb,h. �

The next result generalizes [43, Lemma 3.3].

Lemma 5.5. Let (0, q) ∈ Nb,h given in (3.3). There exist positive constants C1 and C2,

independent of mesh parameters, such that for all q ∈ Q we have

(5.13) sup
(v,0)∈Nb,h

(∇ · v, q)PH

‖v, 0‖V×Q
≥ C1‖q‖Q − C2|q|h,

where |q|2h :=
∑

K∈PH
|qK |2h,K with |qK |h,K :=

(∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

is a semi-norm on Q.

Proof. Let (0, q) ∈ Nb,h and v ∈ H1
0 (Ω)d be such that

∇ · v = q and ‖v‖1,Ω ≤ C‖q‖Q.

Define (ṽ, 0) := (Πh(v), 0) ∈ Nb,h where Πh(·) is the Fortin operator available from Lemma

5.4. Given K ∈ PH, let κF be an element of ΞK
H such that ∂κF ∩ ∂K = F . Set q0 :=

1
|κF |

∫
κF
qκF dx, and define hκF the diameter of κF . From the trace and Poincaré inequalities

(5.14)

‖qF − q0 |F‖0,F ≤ C
( 1

h
1/2
κF

‖qκF − q0‖0,κF + h1/2
κF
‖∇(qκF − q0)‖0,κF

)
≤ Ch1/2

κF
‖∇qκF ‖0,κF .
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Then, by integration by parts, using (5.10), the trace inequality (5.14), (5.7) and (5.11), and

the fact that δ−1
τ ≤ C θτmax+4ν

h2
τ

(c.f. [14, estimate (39)]), we obtain

(∇ · ṽ, q)PH
= (∇ · v, q)PH

+ (∇ · (ṽ − v), q)PH

= ‖q‖2
Q + (∇ · (ṽ − v), q)PH

= ‖q‖2
Q −

∑
K∈PH

∑
τ∈T Kh

(ṽτ − vτ ,∇qτ )τ +
∑
K∈PH

∑
τ∈T Kh

(ṽ∂τ − v∂τ , q∂τ nτ )∂τ

= ‖q‖2
Q −

∑
K∈PH

∑
τ∈T Kh

(ṽτ − vτ ,∇qτ )τ +
∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

(ṽγ − vγ, qγ nKγ )γ

= ‖q‖2
Q −

∑
K∈PH

∑
τ∈T Kh

(ṽτ − vτ ,∇qτ )τ +
∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

(ṽγ − vγ, (qγ − q0|γ)nKγ )γ

≥ ‖q‖2
Q −

( ∑
K∈PH

∑
τ∈T Kh

δ−1
τ ‖vτ − ṽτ‖2

0,τ

)1/2( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

−
( ∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

h−1
γ ‖ṽγ − vγ‖2

0,γ

)1/2( ∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

hγ ‖qγ − q0|γ‖2
0,γ

)1/2

≥ ‖q‖2
Q − C

( ∑
K∈PH

∑
τ∈T Kh

h−2
τ ‖vτ − ṽτ‖2

0,τ

)1/2( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

− C
( ∑
K∈PH

∑
τ∈T Kh

(h−2
τ ‖vτ − ṽτ‖2

0,τ + ‖∇(vτ − ṽτ )‖2
0,τ )
)1/2( ∑

K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

hγ ‖qγ − q0|γ‖2
0,γ

)1/2

≥ ‖ṽ‖V
[
C1 ‖q‖Q − C

( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

− C
( ∑
K∈PH

∑
F⊂∂K

∑
τ⊂T κFh

h2
τ‖∇qτ‖2

0,τ

)1/2]
≥ ‖ṽ‖V

[
C1 ‖q‖Q − C

( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

− C
( ∑
K∈PH

∑
F⊂∂K

∑
τ⊂T κFh

δτ‖∇qτ‖2
0,τ

)1/2]
≥ ‖ṽ‖V

[
C1 ‖q‖Q − C2

( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2]
,

and the result follows. �
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5.1.2. Well-posedness. We prove that the two-level MHM method (5.1) with the stabilized

finite element method (5.3)-(5.4) is well-posed in the following theorem.

Theorem 5.1 (Well-posedness of (5.1) with (5.3)-(5.4)). Assume that k−` ≥ d with ` ≥ 0 if

Λ`
h is discontinous and ` ≥ 1 otherwise, and assume that (5.7) is satisfied. Then, there exists

a unique solution of (5.1) with the stabilized method (5.3)-(5.4) denoted by (uH,h0 , 0) ∈ Na

and (λH,h, ρH,h) ∈ Λ`
H × R, such that

‖λH,h, ρH,h‖Λ×Q ≤ C

(
sup

(v0,0)∈Na

(f ; v0, 0)V×Q

‖v0, 0‖V×Q
+ ‖T̂h(f)‖V×Q + sup

µ∈Λ`
H

g(µ, 0)

‖µ, 0‖Λ×Q

)
,

‖uH,h0 , 0‖V×Q ≤ C

(
sup

(v0,0)∈Na

(f ; v0, 0)V×Q

‖v0, 0‖V×Q
+ ‖T̂h(f)‖V×Q + sup

µ∈Λ`
H

g(µ, 0)

‖µ, 0‖Λ×Q

)
.

Proof. We prove conditions (H2)–(H3) as (H1) holds from (5.5). First, condition (H3) follows

from the Fortin operator in Lemma 5.4 under the condition k ≥ ` + d, and using the L2

orthogonal projection Π0(r) := 1
|Ω|

∫
Ω
r dx. In fact, let (µ, ξ) ∈ Λ`

H × R then

‖µ, ξ‖Λ×R = sup
(w,r)∈V×Q

b(µ, ξ; w, r)

‖w, r‖V×Q
= sup

(w,r)∈V×Q

b(µ, ξ; Πh(w),Π0(r))

‖w, r‖V×Q

≤ C sup
(w,r)∈V×Q

b(µ, ξ; Πh(w),Π0(r))

‖Πh(w),Π0(r)‖V×Q
≤ C sup

(w,r)∈Vh×Qh

b(µ, ξ; w, r)

‖w, r‖V×Q
,

where we used (2.15). As for condition (H2), we adapt the strategy of the proof of [14,

Lemma 4.2]. Let (v, q) ∈ Nb,h and set w := v − ε z, where z achieves the supremum in

Lemma 5.5 with properties ‖z‖V = ‖q‖0,Ω, and (z, 0) ∈ Nb,h. First, [14] establishes

ah,K(vK , qK ;vK , qK) ≥ 3ν

4
||∇vK ||20,K + |qK |2h,K for all K ∈PH.

Further, given K ∈PH define θKmax := maxτ∈T Kh θτmax. Since δτθ
τ
max ≤ 1 and δτν‖∆vτ‖2

0,τ ≤
1
4
‖∇vτ‖2

0,τ , and using ab ≤ 1
2γ
a2 + γ

2
b2 we get
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ah,K(vK , qK ;−zK , 0) ≥ −θKmax‖vK‖0,K‖zK‖0,K − ν‖∇vK‖0,K‖∇zK‖0,K + (∇ · zK , qK)K

−
∑
τ∈T Kh

δτ (‖θvτ − ν∆vτ‖0,τ + ‖∇qK‖0,τ ) ‖θzτ − ν∆zτ‖0,τ

≥− θKmax‖vK‖0,K‖z‖0,K − ν‖∇vK‖0,K‖∇zK‖0,K + (∇ · zK , qK)K

−


∑
τ∈T Kh

δτ‖θvτ − ν∆vτ‖2
0,τ

1/2

+ |qK |h,K


∑
τ∈T Kh

δτ‖θzτ − ν∆zτ‖2
0,τ

1/2

≥−
(
θKmax‖vK‖2

0,K + ν‖∇vK‖2
0,K

)1/2 (
θKmax‖zK‖2

0,K + ν‖∇zK‖2
0,K

)1/2
+ (∇ · zK , qK)K

−


2

∑
τ∈T Kh

θτmax‖vτ‖2
0,τ +

ν

4
‖∇vτ‖2

0,τ

1/2

+ |qK |h,K


∑
τ∈T Kh

δτ‖θzτ − ν∆zτ‖2
0,τ

1/2

≥− 3
(
θKmax‖vK‖2

0,K + ν‖∇vK‖2
0,K

)1/2 (
θKmax‖zK‖2

0,K + ν‖∇zK‖2
0,K

)1/2
+ (∇ · zK , qK)K

− |qK |h,K

2
∑
τ∈T Kh

θτmax‖zτ‖2
0,τ +

ν

4
‖∇Hzτ‖2

0,τ

1/2

≥− 3

2γ1

(
θKmax‖vK‖2

0,K + ν‖∇vK‖2
0,K

)
− 3γ1C̃

2

( 1

d2
Ω

‖zK‖2
1,K + ‖∇zK‖2

0,K

)
+ (∇ · zK , qK)K

− 1

2γ2

|qK |2h,K −
2γ2C̃

2

( 1

d2
Ω

‖zK‖2
1,K + ‖∇zK‖2

0,K

)
,

where C̃ := max{θKmaxd2
Ω, ν}.

Therefore, using the lower bound on (∇· zK , qK)K from Lemma 5.5, and ‖z‖V = ‖q‖Q,

we get
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ah(v, q;w, q) ≥
3ν

2

(
1

2
− ε

γ1

)
‖∇Hv‖2

PH
− 3 cmaxε

2γ1

‖v‖2
PH

+ ε(q,∇· z)PH

− C̃ε

2
(3γ1 + 2γ2)‖z‖2

V +

(
1− ε

2γ2

)
|q|2h

≥3ν

2

(
1

2
− ε

γ1

)
‖∇Hv‖2

PH
− 3 cmaxε

2γ1

‖v‖2
PH

+ ε(C1‖q‖2
Q − C2|q|h‖q‖Q)

− C̃ε

2
(3γ1 + 2γ2)‖q‖2

Q +

(
1− ε

2γ2

)
|q|2h

≥3ν

2

(
1

2
− ε

γ1

)
‖∇Hv‖2

PH
− 3 cmaxε

2γ1

‖v‖2
PH

+
1

2

(
2− ε

γ2

− C2ε

γ3

)
|q|2h

+
ε

2

(
2C1 − C̃ (3γ1 + 2γ2)− C2γ3

)
‖q‖2

Q

=
3ν

2

(
1

2
− 12C̃

ε

C1

)
‖∇Hv‖2

PH
− 18 cmaxC̃

ε

C1

‖v‖2
PH

+
εC1

2
‖q‖2

Q

+

(
1− ε

C1

(
4C̃ + C2

2

))
|q|2h,

where we used γ1 = C1

12C̃
, γ2 = C1

8C̃
, and γ3 = C1

2C2
. Now, since (v, q) ∈ Nb,h, we have the

Poincaré inequality [21]
CP
d2

Ω

‖v‖2
PH
≤ ‖∇Hv‖2

PH
,

where CP is a positive constant independent of mesh parameters, from which we find

ah,K(v, q;w, q) ≥3ν

4

(
1

2
− 12C̃

ε

C1

)
‖∇Hv‖2

PH
+

3

8

(
CPν

d2
Ω

− 48cmaxC̃
ε

C1

)
‖v‖2

PH
+
εC1

2
‖q‖2

Q

+

(
1− ε

C1

(
4C̃ + C2

2

))
|q|2h

≥3ν

16

(
‖∇Hv‖2

PH
+
CP
d2

Ω

‖v‖2
PH

)
+
εC1

2
‖q‖2

Q ≥ C ‖v, q‖2
V×Q,

where we took ε
C1

= min{ 1

48C̃
, CP ν

96cmaxC̃d2
Ω

, 1

4C̃+C2
2

}. Finally, condition (H2) follows observing

that

‖w, q‖V×Q ≤ ‖v, q‖V×Q + ε ‖z, 0‖V×Q ≤ ‖v, q‖V×Q + C ε ‖0, q‖V×Q ≤ C ‖v, q‖V×Q,

and the result follows from Theorem 3.1. �

Remark 5.6 (Relaxing k− ` ≥ d constraint). The constraint k− d ≥ ` ≥ 0 in Theorem 5.1

leads to the well-posedness of eq. (5.1) in two and three-dimensional problems on simplicial
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meshes. In the two-dimensional case, other possibilities exist to ensure the well-posedness of

eq. (5.1), such as

• Th = PH, and even polynomial degree ` under the constraint k = ` + 1. The proof

follows from [61, Lemma 4] applied to each component of the vector function µ`H ∈
Λ`
H ;

• meshes with “enough” refined local meshes T Kh under the conditions k = ` + 1 with

` ≥ 0 or k = ` with ` ≥ 1. The proof follows from [16, Lemmas 4 and 5] applied to

each component of the vector function µ`H ∈ Λ`
H . �

5.1.3. Convergence. We recall from [14, Theorem 4.1] that the mapping Th and T̂h carry

approximation properties. In other words, adopted element-wisely in each K ∈ PH, they

approximate T and T̂ with sharp constants which are independent of mesh parameters.

Specifically, assume that (u, p) ∈ Hm+1(PH)d × Hm(PH), for 1 ≤ m ≤ k and k ≥ 1, it

holds

‖(T − Th)(λ, ρ) + (T̂ − T̂h)(f)‖V×Q ≤ C hm
(
|u|m+1,PH

+ ‖p‖m,PH
)
,(5.15)

where Th and T̂h are defined from (3.1) with (5.3)-(5.4). We are ready to present the main

convergence result.

Theorem 5.2 (Convergence of (5.1) with (5.3)-(5.4)). Assume k − ` ≥ d, with ` ≥ 0

(` ≥ 1) if Λ`
H is discontinuous (continuous), and (u, p) ∈ Hm+1(PH)d × Hm(PH), with

1 ≤ m ≤ ` + 1, and (ν∇u − pI) ∈ H(div; Ω). Then, there exist positive constants Ci,

i = 1, ...4, independent of H, H, h, such that

‖λ− λH,h‖Λ + ‖u0 − uH,h0 ‖V ≤ C1H
m
(
|ν∇Hu|m,PH + |p|m,PH

)
+ C2h

m
(
|u|m+1,PH + ‖p‖m,PH

)
,

‖u− uH,h, p− pH,h‖V×Q ≤ C3H
m
(
|ν∇Hu|m,PH + |p|m,PH

)
+ C4h

m
(
|u|m+1,PH + ‖p‖m,PH

)
,

where (λH,h,u
H,h
0 ) solves (5.1) with (5.3)-(5.4), and (uH,h, pH,h) is given in (5.2).

Proof. The result is a direct consequence of Theorem 3.2, Lemma 4.1, and (5.15). �

Remark 5.7 (Local conservation). The discrete velocity uH,h built according to (5.2) pre-

serves the divergence-free constraint weakly. Indeed, taking (wh, qh)|K = (0, 1K) ∈ N ⊥
a,s(K)

in (5.3)–(5.4) and using ρH,h = 0, it holds∫
K

∇ · uH,h dx = 0 for all K ∈PH .
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In addition, the local equilibrium between the numerical traction λH,h and the external force

is satisfied, i.e., ∫
K

θ uH,h dx+

∫
∂K

λH,h ds =

∫
K

f dx for all K ∈PH,(5.16)

where we used the second equation in (5.1) if θ = 0, and the definition of uH,h in (5.2)

and local problems (3.1) with (5.3)–(5.4) tested with (wh, qh)|K = (1K , 0) ∈ Vh(K)×Qh(K)

otherwise. �

5.2. Analysis of a stable two-level MHM method. Stable pairs of spaces may be used

in local problems (3.1) to solve MHM formulation (5.1). Notably, we analyze here a two-level

method based on the Taylor-Hood element (c.f. [19]). Recall that the Taylor-Hood element

is such that given k ≥ 2 and K ∈PH,

Vh(K) :=
{
vh ∈ V(K) ∩ C0(K)d : vh |τ ∈ Pk(τ)d ∀τ ∈ T Kh

}
,

Qh(K) :=
{
qh ∈ Q(K) ∩ C0(K) : qh |τ ∈ Pk−1(τ) ∀τ ∈ T Kh

}
,

and velocity and pressure are approximated in the corresponding global finite-dimensional

spaces

Vh :=
⊕
K∈PH

Vh(K) and Qh :=
⊕
K∈PH

Qh(K).(5.17)

We then have a fully defined MHM method by letting ah,K(·; ·) := aK(·; ·) and lfh,K(·) =

(f , ·)K as defined in (2.10) and (2.11), respectively.

To see that the method (5.1) is well-posed and converges optimally using these definitions,

we first note that assumption (H1) is met when using spaces Vh(K) and Qh(K) (c.f. [17,

18]), with a constant independent of K, when the sub-mesh T Kh satisfies the following mild

conditions:

Assumption (M).

2D case: T Kh contains at least one internal vertex;

3D case: Every tetrahedron in T Kh has at least one internal vertex.

Lemma 5.8. Given K ∈PH, assume that T Kh satisfies Assumption (M). Then, condition

(H1) holds, and

‖(T − Th)(λ, ρ) + (T̂ − T̂h)(f)‖V×Q ≤ C hm
(
‖u‖m+1,PH + ‖p‖m,PH

)
,(5.18)

where 1 ≤ m ≤ k, and k ≥ 2. Moreover, if T Kh is a one-element mesh, then condition (H1)

and estimate (5.18) also hold.
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Proof. We use the standard technique for mixed problems to prove (H1) on each K ∈ PH

(see [19]). Note that

(5.19) (ν∇vh,∇vh)K + (θ vh,vh)K ≥ C ‖vh‖2
1,K

for all (vh, 0) ∈ N ⊥
a,h(K) where we used Poincaré inequality for the Stokes case (θ = 0). It

remains to prove that velocity and pressure spaces are compatible in the sense of Babuska-

Brezzi, i.e., given (0, qh) ∈ N ⊥
a,h(K), there exists (vh, 0) ∈ N ⊥

a,h(K) such that

(5.20) (∇ · vh, qh)K ≥ C ‖qh‖0,K‖vh‖1,K .

First, let the case θ 6= 0, e.g., N ⊥
a,h(K) = Vh(K) × Qh(K). From the assumption on

the partition T Kh the spaces Vh(K) ∩ H1
0 (K)d and Qh(K) ∩ L2

0(K) are compatible (see

[17, Theorem 4.1] and [18, Theorem 3.1]). Since Vh(K) ∩ H1
0 (K)d ⊂ Vh(K), the spaces

Qh(K) ∩ L2
0(K) and Vh(K) are also inf-sup stable. As for the pressure qh = 1K ∈ Qh(K),

we select vh in the lowest-order Raviart-Thomas space RT0(K) ⊂ Vh(K) and then (5.20)

holds.

Next, we assume θ = 0, e.g., N ⊥
a,h(K) = [Vh(K) ∩ L2

0(K)d]×Qh(K). Given qh ∈ Qh(K),

take vh ∈ Vh(K) from the previous case, and define wh := vh − 1
|K|

∫
K
vh dx ∈ Vh(K) ∩

L2
0(K)d. Note that ‖wh‖1,K ≤ C ‖vh‖1,K , and then (5.20) holds as

(∇ ·wh, qh)K = (∇ · vh, qh)K ≥ C ‖qh‖0,K‖vh‖1,K ≥ C ‖qh‖0,K‖wh‖1,K .

When T Kh is a mesh of one element, the condition (5.20) follows noting that the image of the

Raviart-Thomas space RTk(K) ⊂ Vh(K) by the divergence operator coincides with Pk−1(K).

Therefore, we recover the condition (H1) from the combination of (5.19) and (5.20) using

[65, Theorem 3]. Finally, classical arguments based on the best approximation property of

the Galerkin method and interpolation results applied to each K ∈PH result in (5.18). �

The two-level MHM method (5.1) with the stable second-level solver (3.1) is well-posed

and convergent. This is establish in the next theorem.

Theorem 5.3. Assume that T Kh satisfies Assumption (M). Then, the method (5.1) with

the local problems (3.1) defined using (2.10)-(2.11) is well-posed with k − ` ≥ d and ` ≥ 0

if Λ`
H is discontinuous and ` ≥ 1 otherwise. Moreover, if (u, p) ∈ Hm+1(PH)d ×Hm(PH),

with 1 ≤ m ≤ `+ 1, and (ν∇u− pI) ∈H(div; Ω) then there exist C such that

‖λ− λH,h‖Λ + ‖u0 − uH,h0 ‖V ≤ C (Hm + hm)
(
‖u‖m+1,PH

+ ‖p‖m,PH
)
,

‖u− uH,h‖V + ‖p− pH,h‖Q ≤ C (Hm + hm)
(
‖u‖m+1,PH

+ ‖p‖m,PH
)
,

(5.21)

where (λH,h,u
H,h
0 ) solves (5.1) with (2.10)-(2.11), and (uH,h, pH,h) is given in (5.2).
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Proof. First, observe that (H3) holds by the arguments used in the proof of Theorem 5.1 and

(H1) follows from Lemma 5.8. It remains to show condition (H2), which is a consequence of

the local inf-sup condition of the generalized Taylor-Hood element presented in the proof of

Lemma 5.8, and the Fortin mapping proposed in Lemma 5.4. Specifically, note that given

(0, q) ∈ Nb,h, there exists v ∈ H1
0 (Ω)d such that

(5.22) ∇ · v = q in Ω and ‖v‖1,Ω ≤ C ‖q‖Q.

Then, we adapt the technique of [44, Lemma 3.5], and define the following “corrector”

mapping Mh : H1
0 (Ω)d → Vh ∩H1

0 (PH)d as

∫
K

rh∇ ·Mh(v)|K dx =

∫
K

rh∇ · (vK − Πh(v)|K) dx for all rh ∈ Qh(K) ∩ L2
0(K),

(5.23)

where H1
0 (PH)d denotes the space of functions vK ∈ H1

0 (K)d, for all K ∈ PH. Observe

that Mh(v)|K ∈ Vh(K) ∩H1
0 (K)d exists under the mesh assumption (M) which allows the

use of [17, Theorem 4.1] and [18, Theorem 3.1], and then

(5.24) ‖Mh(v)‖V ≤ C ‖v‖V.

Next, using k ≥ d+ ` ≥ 2 by assumption, we set Θh : H1
0 (Ω)d → Vh as

Θh(v) := Πh(v) + Mh(v),

and then from (5.11), (5.24) and (5.22)

‖Θh(v)‖V ≤ ‖Πh(v)‖V + ‖Mh(v)‖V ≤ C ‖v‖V ≤ C‖q‖Q.

Notice from the properties of operator Πh(·) in (5.10) and Mh(v)|∂K = 0 for all K ∈ PH,

that for all µh ∈ Λ`
H it holds

(µh,Θh(v))∂P = (µh,Πh(v))∂P = 0 ⇒ (Θh(v), 0) ∈ Nb,h.

In addition, for all q ∈ Qh, q = q̃ + q0 with q̃ ∈ L2
0(PH) and q0 ∈ P0(PH),∫

K

qK∇ ·Θh(v)|K dx =

∫
K

q̃K∇ ·Θh(v)|K dx+

∫
K

q0
K∇ ·Θh(v)|K dx

=

∫
K

q̃K∇ · vK dx+

∫
K

q0
K∇ · Πh(v)|K dx+

∫
K

q0
K∇ ·Mh(v)|K dx

=

∫
K

qK∇ · vK dx,
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where we used the definition of operador Mh(·) in (5.23), Lemma 5.4 and
∫
K
q0
K∇·Mh(v)|K dx =

0 since Mh(v)|K ∈ H1
0 (K)d. We conclude that, given (0, q) ∈ Nb,h, there exists (ṽ, 0) :=

(Θh(v), 0) ∈ Nb,h such that

(5.25) (q,∇ · ṽ)Ω = (q,∇ · v)Ω = ‖q‖2
Q and ‖ṽ‖V ≤ C‖q‖Q.

Let (v, q) ∈ Nb,h and define w := v − ε ṽ. We observe (w, q) ∈ Nb,h and then there exists

positive constants C1 and C2 independent of mesh parameters, such that

ah(v, q; w, q) = ah(v, q; v, q)− ε ah(v, q; ṽ, 0)

≥ C1 ‖v‖2
V − ε

[
ν(∇v,∇ṽ)PH

+ (θ v, ṽ)PH
− (q,∇ · ṽ)PH

]
≥ C1 ‖v‖2

V − εC2‖v‖V‖ṽ‖V + ε‖q‖2
Q

≥ C1 ‖v‖2
V − εC2C‖v‖V‖q‖Q + ε ‖q‖2

Q

≥
(
C1 −

C2C ε

2 γ

)
‖v‖2

V + ε

(
1− C2Cγ

2

)
‖q‖2

Q

≥ C3‖v, q‖2
V×Q,

where we chose the positive constants γ and ε such that C3 is a positive constant independent

of mesh parameters. In addition, we have

‖w, q‖V×Q ≤ ‖v, q‖V×Q + ε ‖ṽ, 0‖V×Q ≤ ‖v, q‖V×Q + C ε ‖0, q‖V×Q ≤ C ‖v, q‖V×Q,

and the well-posedness follows from Theorem 3.1. The error estimates (5.21) follow from

Theorem 3.2, Lemma 4.1 and estimate (5.18) using min {`+ 1, k} = `+ 1. �

Remark 5.9 (The one-element sub-mesh case). We note that if T Kh is a mesh of an element

(H = H = h), then the MHM method with the stable Taylor-Hood element at the second level

coincides with the non-conforming Galerkin method with the Crouzeix–Raviart element for

polynomial degrees k = 1, 2, 3. In fact, note that the MHM method can be recast as find

(uh, ph) ∈ Nb,h

ah(uh, ph;vh, qh) = (f ,vh)Ω for all (vh, qh) ∈ Nb,h,

where the product space with weakly continuous polynomial velocity and pressure with zero

mean value Nb,h is given in (3.3). Then, we recognize [35] for ` = 0 and k = 1 (d = 2, 3),

[42] for ` = 1 and k = 2 (d = 2) and [34] for ` = 2 and k = 3 (d = 2). Consequently, the

two-level stable MHM method using one-element sub-meshes is well-posed and satisfies

(5.26) ‖u− uh‖V + ‖p− ph‖Q ≤ C hm
(
‖u‖m+1,PH

+ ‖p‖m,PH
)
,
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with 1 ≤ m ≤ ` + 1. The pair of spaces Vh × Qh with polynomial degree k ≥ ` + d and

` ≥ 2 in 2D and ` ≥ 0 in 3D are inf-sup stable as it includes the (stable) Scott-Vogelius

element (c.f. [63, 66]). Then, the two-level MHM method is also well-posed in those cases

and satisfies (5.26). �

Remark 5.10 (Stable or stabilized MHM: Pros and cons). Stabilized and stable MHM meth-

ods share equivalent convergence rates and local conservation properties (see Remark 5.7).

However, we note that the mesh constraint given in (5.7) is unnecessary in the case of the

stable version of the MHM method. Other difference is that in the particular case of the one-

element sub-mesh, the two-level stable MHM method is point-wisely divergence-free since

∇ · uH,h|K ∈ Pk−1(K) and∫
K

∇ · uH,h qk dx = 0 → ∇ · uH,h = 0 for all qk ∈ Pk−1(K) and K ∈PH.

In favor of the two-level stabilized MHM method, one has that it allows local polynomial

interpolation of equal order, which easy computational implementations. It is also tailored to

handle singularly perturbed reactive flows at the local level, which can avoid local refinements

to capture boundary layers. �

6. Numerical benchmarks

In this section, we assess the two-level stabilized MHM method (5.1) using USFEM as

a local solver (Section 5.1), performing convergence tests and verifying that this method is

robust when simulating fluid flows in highly heterogeneous porous media. Details of the

underlying algorithm and its implementation can be found in [7, Algorithm 1].

6.1. Convergence studies. We first focus on the Stokes model (θ = 0) with ν = 1. The

domain Ω is ]0, 1[×]0, 1[, the function f is chosen such that the exact solution is given by

u1(x, y) = −256x2(x− 1)2y(y − 1)(2y − 1),

u2(x, y) = −u1(y, x),

p(x, y) = 150
(
x− 1

2

)(
y − 1

2

)
.

The discontinuous version of Λ`
H was validated in [7], and then we assume hereafter that

Λ`
H is the space of piecewise continuous polynomial functions. We set ` = 1, 2 and first

validate the method using USFEM with the elements P3(K)2 × P3(K) and P4(K)2 × P4(K)

in one-element sub-meshes (i.e., H = H = h), respectively. We observe convergence rates

concerning H in Figure 1 that perfectly agree with the theoretical estimates of Theorem 5.2.
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Using the broken norm in the H(div; PH) space, we also verify in Figure 1 the convergence

of the two-level stress variable σH,h := ν∇HuH,h − pH,hI

‖σ − σH,h‖2
H(div;PH) :=

∑
K∈PH

‖σ − σH,h‖2
H(div;K),

which is not covered in Theorem 5.2. Owing to the regularity of the exact solution, we also

observe that the error in the L2(Ω) norm for the velocity converges of order O(H`+2) as

expected.

H3

H2

H

‖σ − σH,h‖0,Ω
‖σ − σH,h‖H(div;PH)

‖u− uH,h‖0,Ω
|u− uH,h|1,Ω
‖p− pH,h‖0,Ω

log H
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Figure 1. Convergence curves for Λ1
H with P3(K)2 × P3(K) (left) and Λ2

H

with P4(K)2 × P4(K) (right). In both case we used one element to solve the

second level local problems (here ν = 1 and θ = 0).

Next, we maintain H fixed and refine the face partitions (H → 0). Since the exact

solution is regular, we expect to achieve super-convergence with an extra O(H1/2) rate, as

pointed out in Remark 4.3. This is, indeed, obtained as shown in Figure 2 (right) using the

P3(K)2 × P3(K) element which validates the theory. We note a decrease in the number of

degrees of freedom needed (see Figure 2 (left)) to achieve a given error threshold when we

compared it with the strategy to refine the first-level mesh (H → 0).
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Figure 2. Convergence curves for Λ1
H with P3(K)2 × P3(K) in terms of dof

(left) and the diameter of the face meshes H (right). In all cases we fixed to

64 the number of elements of the first level mesh (here ν = 1 and θ = 0).

Table 1 shows convergence when using continuous or piecewise discontinuous space Λ1
H .

To do so, we keep the number of mesh elements constant at the first level (64 elements) and

refine the mesh only at the skeleton. Note that using the piecewise continuous space Λ1
H , we

obtain better error results for a given number of degrees of freedom than the discontinuous

case. However, the discontinuous option can still be attractive, especially when the physical

coefficients are discontinuous or exhibit multiscale behavior.

‖p− pH,h‖0,Ω ‖u− uH,h‖0,Ω ‖u− uH,h‖1,Ω
dof ΛH,h (cont) ΛH,h,(disc) ΛH,h (cont) ΛH,h,(disc) ΛH,h (cont) ΛH,h,(disc)

545 0.1978e+00 0.1978e+00 0.8244e-02 0.8244e-02 0.2857e+00 0.2857e+00

961 0.1206e-01 0.3500e-01 0.3500e-01 0.6158e-03 0.1879e-01 0.4665e-01

1377 0.3197e-02 0.1275e-01 0.2673e-04 0.1435e-03 0.5017e-02 0.1667e-01

1793 0.1348e-02 0.6178e-02 0.7905e-05 0.5169e-04 0.2122e-02 0.8093e-02

2209 0.7108e-03 0.3535e-02 0.3203e-05 0.2343e-04 0.1120e-02 0.4614e-02

2625 0.4271e-03 0.2236e-02 0.1563e-05 0.1230e-04 0.6739e-03 0.2917e-02

3041 0.2797e-03 0.1519e-02 0.8617e-06 0.7135e-05 0.4418e-03 0.1980e-02

3457 0.1948e-03 0.1086e-02 0.5181e-06 0.4453e-05 0.3079e-03 0.1415e-02

3873 0.1421e-03 0.8087e-03 0.3322e-06 0.2940e-05 0.2246e-03 0.1053e-02

Table 1. History of convergence of the error in terms of the number of degrees

of freedom in the skeleton, for Λ1
H continuous or discontinuous.

Next, we are interested in the exact solution of the Brinkman problem (θ = I) using

the same analytical solution above, just changing the definition of the exact pressure by
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p(x, y) = (x− y)6 − 1/28. We do not show the convergence in relation to H and H because

this is close to that obtained for the Stokes problem. Instead, we address in Figure 3 the

behavior of the error in relation to the diffusion coefficient ν when it tends to zero.

‖u− uH,h‖0,Ω
|u− uH,h|1,Ω
‖p− pH,h‖0,Ω
‖σ − σH,h‖0,Ω
‖σ − σH,h‖H(div;PH)
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10−3

Figure 3. Error sensitivity in relation to different values of ν. Here we use

Λ1
H with P3(K)2 × P3(K), with a coarse mesh of 64 elements.

We note that the error remains limited for a wide range of ν values. This indicates

that the constant in the error estimates in Theorem 5.2 depends only slightly in terms of

physical coefficients, which verifies the robustness of the two-level stabilized MHM method.

The analysis of such property, which appears closely related to the accuracy of second-

level USFEM in dealing with vanishing coefficient problems, deserves further theoretical

investigation.

6.2. A highly heterogeneous case. This numerical test illustrates the capacity of the

MHM method to simulate a fluid flow with a highly heterogeneous porous media on top of

a coarse mesh. Indeed, such a domain represents a quite realistic prototype of a reservoir.

In this context, we adopt the following version of the Brinkman model

(6.1) − µ∆u+ θ u+∇p = 0 in Ω, ∇ · u = 0 in Ω,

with θ := µ∗K−1, where K is the permeability tensor, µ is the fluid viscosity, and µ∗ is the

so-called effective viscosity of the fluid. Generally, the value of µ∗ depends on the properties

of the porous media. For example, if there are large variations in the material properties, µ∗

might not be considered a homogeneous coefficient. Nevertheless, it is often assumed that

such an effective viscosity is homogeneous and that µ = µ∗. Here we adopt a heterogenous

isotropic permeability coefficient K, which is obtained from layer 36 of the 85 layers in

SPE10 project [31] (second dataset). The domain Ω :=]0, 1200[×]0, 2200[, µ = µ∗ = 0.3.

The permeability tensor K and the boundary conditions are depicted in Figure 4.
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Figure 4. The statement of the problem (left), the permeability field K in

a logarithmic scale (center), and the coarse mesh with 528 triangle elements

used for the MHM computations (right).

A reference solution is calculated by solving the problem using USFEM on a mesh with

1, 081, 344 elements (1, 625, 283 degrees of freedom) with P1(K)2 × P1(K) element. We

perform the calculations using the MHM method with the discontinuous space Λ10
1 on a

coarse structured mesh with 528 elements, as shown in Figure 4 (right). The number of

degrees of freedom is 33, 040. The coarse partition faces are not aligned with changing

coefficients, and multiple scales still persist within the elements. The submeshes contain one

hundred triangles with P3(K)2×P3(K) interpolation. We note a good agreement between the

reference and the MHM solution through the pressure isolines and |uH,h|, and the pressure

profiles (see Figures 5–7) .

Figure 5. Isolines of the velocity magnitude. The reference solution (left)

and the MHM solution (right).
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Figure 6. Pressure isolines. Comparison between the reference solution (left)

and the MHM solution (right).
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Figure 7. Pressure profiles of pressure at x = 600. Reference versus MHM solutions.

7. Conclusion

Hybridization was used to characterize exact velocity and pressure variables in terms

of local and global problems, producing new face-based multiscale numerical methods for

the Stokes/Brinkman model. The Neumann local problems respond to multiscale basis

functions that incorporate physical and geometric aspects of the coarse mesh, while the global

formulation responds to the degrees of freedom. The present work is also the first to prove

that, under conditions of local regularity, the two-level MHM method originally given in [7] is

well-posed and achieves better approximation results. Such results are previously established

in an abstract way, starting at the continuous level and assuming generic second-level solvers

that satisfy some local properties. Then, by particularizing the second-level solver via a

stabilized and stable finite element method and (dis)continuous polynomial interpolation

for the flow variable (e.g., Lagrange multiplier), we demonstrate that the underlying MHM
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methods are high-order super-convergent for pressure and velocity variables and release local

mass conservative numerical velocity fields and numerical flux in local equilibrium with

external forces. These properties are achieved without post-processing. In the case of a sub-

mesh composed of only one element, we establish relationships between the MHM method

and classical non-conforming methods in the literature. The numerical tests validated the

theoretical results and fully complement and support the extensive numerical validation first

proposed in [7]. The robustness of the proposed MHM methods with respect to physical

coefficients is verified numerically, but its precise demonstration is left for future work.

Appendix A. Equivalence of norms in broken spaces

Consider a set of Hilbert spaces Zi with inner products (·, ·)Zi , 1 ≤ i ≤ N and denote by

Fi a linear bounded functional acting on Zi. Given the Hilbert space Z := ΠN
i=1Zi with inner

product (·, ·)Z :=
∑N

i=1(·, ·)Zi , consider linear bounded functional

F (w) :=
N∑
i=1

Fi(wi), for all w = (w1, . . . , wN) ∈ Z.(A.1)

We take the usual norms of these functionals:

||F ||Z′ = sup
w∈Z

F (w)

||w||Z
and ||Fi||Z′i = sup

wi∈Zi

Fi(wi)

||wi||Zi
.

Lemma A.1.

||F ||2Z′ =
N∑
i=1

||Fi||2Z′i .

Proof. The Riesz Representation Theorem guarantees existence of zF ∈ Z and zFi ∈ Zi such

that

F (w) = (zF ,w)Z , ||zF ||Z = ||F ||Z′ ,
Fi(wi) = (zFi , wi)Zi , ||zFi ||Zi = ||Fi||Z′i .

Use ziF to denote the components of zF . Then, since Z is a product space on one hand, and

by definition eq. (A.1) on the other, it holds that for all w = (w1, . . . , wN) ∈ Z,

N∑
i=1

(zFi , wi)Zi =
N∑
i=1

(ziF , wi)Zi .

We easily see that zFi = ziF for 1 ≤ i ≤ N . Therefore,

||F ||2Z′ =
N∑
i=1

||ziF ||
2

Zi
=

N∑
i=1

||zFi||2Zi =
N∑
i=1

||Fi||2Z′i .

�
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