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MULTISCALE HYBRID-MIXED METHODS FOR THE STOKES AND
BRINKMAN EQUATIONS – A PRIORI ANALYSIS

RODOLFO ARAYA, CHRISTOPHER HARDER, ABNER H. POZA, AND FRÉDÉRIC VALENTIN

Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was for-

mally introduced in Araya at al. (2017) and numerically validated. The method has face

degrees of freedom associated with multiscale basis functions computed from local Neumann

problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM

version approximates the multiscale basis using a stabilized finite element method. This work

proposes the first numerical analysis for the one- and two-level MHM method applied to the

Stokes/Brinkman equations within a new abstract framework relating MHM methods to

discrete primal hybrid formulations. As a result, we generalize the two-level MHM method

to include general second-level solvers and continuous polynomial interpolation on faces and

establish abstract conditions to have those methods well-posed and optimally convergent on

natural norms. We apply the abstract setting to analyze the MHM methods using stabilized

and stable finite element methods as second-level solvers with (dis)continuous interpolation

on faces. Also, we find that the discrete velocity and pressure variables preserve the bal-

ance of forces and conservation of mass at the element level. Numerical benchmarks assess

theoretical results.

1. Introduction

Let Ω ⊂ Rd, d ∈ {2, 3}, be an open, bounded polyhedron domain with Lipschitz bound-

ary ∂Ω. We consider the generalized Stokes problem, also called Brinkman model, which

corresponds to finding the velocity u and the pressure p such that

(1.1)

−ν ∆u+ θ u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ∂Ω,

where f ∈ L2(Ω)d and g ∈ H1/2(∂Ω)d with
∫
∂Ω
g · n ds = 0, and n is the outward normal

vector on ∂Ω. The viscosity ν is a positive constant, and the reaction coefficient θ = θ(x) is a
1
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semidefinite positive, symmetric tensor which is uniformly elliptic, i.e., there exist constants

cmin ≥ 0 and cmax > 0 such that

0 ≤ cmin |ξ|2 ≤ θmin(x) |ξ|2 ≤ ξT · θ(x) ξ ≤ θmax(x) |ξ|2 ≤ cmax |ξ|2,(1.2)

for all ξ ∈ Rd and x a.e. in Ω, where θmin and θmax are the smallest and largest eigenvalues

of θ (cmin > 0 if θ is a definite positive matrix). Also, θ may contain multiscale geometrical

features of the media. We recognize the Stokes problem in (1.1) if θ = 0. The Dirichlet

boundary condition in (1.1) is chosen for the sake of the presentation, Neumann or Robin

boundary conditions can be easily accommodated in what follows. The Stokes-Brinkman’s

unique weak solution (u, p) ∈ H1(Ω)d × L2
0(Ω), with u |∂Ω = g, satisfies∫

Ω

(ν∇u : ∇v + θ u · v) dx−
∫

Ω

p∇ · v dx =

∫
Ω

f · v dx for all v ∈ H1
0 (Ω)d,∫

Ω

q∇ · u dx = 0 for all q ∈ L2
0(Ω),

(1.3)

and there exists positive C, dependent on ν, θ and Ω, such that

‖u‖1,Ω + ‖p‖0,Ω ≤ C
(
‖f‖0,Ω + ‖g‖1/2,∂Ω

)
.

Given any measurable set D ⊂ Ω and any integer m ≥ 0, we respectively denote by | · |m,D
and ‖ · ‖m,D the standard semi-norm and norm in Hm(D). The L2

0(D) space stands for

the functions in L2(D) := H0(D) with zero mean value in D. We use the convention of

denoting (matrix-)vector-valued functions and spaces in bold. Hereafter, we shall denote

by C a positive constant, which is independent of any partition (mesh) parameter but can

change in each occurrence.

When attempting to approximate solutions to problem (1.3), one must deal with some

(potential) numerical instabilities. First, one must either choose compatible approximation

spaces (in the sense of the inf–sup condition [20]) or use stabilized numerical methods that

overcome this incompatibility [54]. Furthermore, in the case of a dominant reaction term,

numerical methods must be robust with respect to vanishing diffusion coefficient due to the

singularly perturbed nature of the solutions characterized by boundary layers. Without such

care, spurious non-physical oscillations may plague the numerical approximation. Beyond

these, solutions may exhibit poor approximation properties arising from the insufficient res-

olution of the physics occurring at multiple scales coming through heterogeneous and or high

contrast coefficients. Finally, it is desirable that numerical methods for the Stokes/Brinkman

problem produce discrete velocity fields respecting the local mass balance.
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Theoretically, the issue involving multiple scales and boundary layers may be overcome

by choosing a mesh whose size is smaller than the smallest relevant scale for the physics.

Practically, this can lead to problem statements that are intractable computationally. For

this reason, multi-scale methods are proposed to correctly incorporate the effect of subscales

(including boundary layers) into a numerical scheme proposed on a relatively coarse partition.

Such methods use a form of upscaling to incorporate sub-scales within the scheme on the

coarse mesh. This idea underlies the Variational Multiscale Method (VMS) [53], Residual-

Free Bubbles (RFB) [63] and other enriched finite element methods as the Residual Local

Projection (RELP) method [17] and the Petrov-Galerkin Enriched (PGEM) method [4]. See

[34] for an overview. Some of these multiscale methods are directly related to stabilized

finite element methods, as pointed out in [23, 24, 16], for example, and they deal with issues

related to the inf-sup condition and the approximation of boundary layers at the same time.

The idea of multiscale finite element methods goes back to [13] where the multiscale

basis concept was introduced and analyzed first in one dimension for a highly oscillatory

coefficient problem. This seminal work was later extended to higher dimensions in the form

of the MsFEM [52]. Following such an idea, other multiscale methods have been proposed for

various operators, including the heterogeneous multiscale method [37], localizable orthogonal

decomposition [58], the sub-grid finite element method [10], and the generalized multiscale

finite element method [38]. More recently, multiscale methods have been devised for Stokes

and Brinkman problems [1, 5, 46], with discontinuous methods which are proving effective

in highly heterogeneous media context [25, 55].

The Multiscale Hybrid-Mixed (MHM) finite element method fits with relatively recent

attempts to use hybridization to resolve multiple scales [11, 39, 65]. First analyzed in the

context of the Poisson problem [61], hybrid methods for various operators are intrinsically

related to the domain decomposition methods [3, 26, 27], the discontinuous enriched method

(DEM) [42], and strategies to reduce computational cost related to saddle point problems

[12, 33]. As for the MHM method, it was proposed for the first time for the Poisson (Darcy)

equation in [49] with an a priori and a posteriori error analysis developed in [6, 15, 59, 60].

The methodology was extended to other operators, such as the linear elasticity model in [48,

47], the complete transport equation in [50, 8], and wave problems in [56, 31]. Furthermore,

the MHM method is closely related to other multiscale methods, such as the MsHHO [29] and

the multiscale version of the Crouzeix-Raviart element [57], and retrieves the lowest-order

Raviart-Thomas element in the homogeneous coefficient case [49]. In its two-level version,

it is related to the FETI domain decomposition approach [43] and can also be seen as the
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dual version of the MsFEM and the multiscale mortar methods [11] (see also [21] for a recent

primal version of the multiscale mortar method).

In a companion paper [7] to the present work, the MHM method was extended to the

Stokes/Brinkman problem (1.1), and a residual a posteriori error estimator was proposed in

[9]. The philosophy underlying the MHM method involves using a hybrid form of (1.1) posed

on a coarse partition. The approach decomposes the exact solution into local and global

coupled systems, and discretization decouples the system as follows: the global formulation

is responsible for the degrees of freedom over the skeleton of the coarse partition, and the

local problems driven by upscaling operators T and T̂ provide the multiscale basis functions

resolving sub-scales. To fix ideas, consider PH a general partition of a domain Ω with

characteristic length H decomposed into elements K with contour ∂K. The skeleton of PH,

denoted by ∂PH, is partitioned with elements of diameter H. Remember (c.f. [7]) that the

one-level MHM method for the Stokes equation consists of finding a flux λH in a polynomial

space ΛH defined on the skeleton of PH, a velocity uH0 in V0, the piecewise constant space

over PH, and ρ ∈ R such that

(1.4)

∑
K∈PH

∫
∂K

λH · v0 ds =
∑
K∈PH

∫
K

f · v0 dx for all v0 ∈ V0,

∑
K∈PH

∫
∂K

µH · uH ds =

∫
∂Ω

µH · g ds for all µH ∈ ΛH ,

ξ

∫
Ω

pH dx = 0 for all ξ ∈ R,

where the discrete velocity and pressure variables (uH , pH) in (1.4) depend on the coarse

scale variables (uH0 ,λH , ρ) in the form

(1.5) (uH , pH) := (uH0 , 0) + T (λH , ρ) + T̂ (f).

The fine scales are resolved via the locally defined bounded mappings T and T̂ , which have

finite-dimensional images in the local product space [H1(K) ∩ L2
0(K)]d × L2(K). Specif-

ically, the mappings T and T̂ are inverses of well-posed Stokes problems with prescribed

Neuman boundary conditions on each K ∈ PH. As a result, the MHM method (1.4) is

non-conforming in H1(Ω) as the discrete velocity in (1.5) does not belong to the H1
0 (Ω)

space. Note that the second equation in (1.4) reinforces the weak continuity of the velocity

field in the boundary elements, while the third equation guarantees the uniqueness of the

pressure. The first equation in (1.4) imposes that the numerical flux is in local equilibrium

with external force, which is a consequence of the spatial decomposition adopted in the con-

struction of the MHM method (see [7] and Section 3 for more details). Furthermore, the



MHM METHODS FOR THE STOKES AND BRINKMAN EQUATIONS – A PRIORI ANALYSIS 5

discrete velocity field uH is locally divergent free, i.e.,

∇ · uH = 0 in all K ∈PH.

In [7], the MHM method was presented along with numerical results involving a stabilized

finite element method to approximate local problems, but numerical analysis was absent.

The use of these local numerical schemes is viewed as forming approximations of multiscale

basis functions and leads to two-level methods. In the context of [7], the choice of the unusual

stabilized finite element method (USFEM) [16] intended to take advantage of its well-known

robustness to approximate boundary layers that can be presented in the multiscale basis

while making the pair of polynomials spaces of the same order available to approximate

both pressure and velocity multiscale basis functions. The efficiency of this choice has been

extensively verified in [7] numerically.

In the present paper, we fill this theoretical gap and propose the first numerical analysis

for the one- and two-level MHM methods applied to the Stokes/Brinkman equations. For

example, we prove that (1.4) is well-posed and the error due to exact flow approximation

λH of λ := (ν∇u− p I)nK on ∂K turns out to be an upper bound for the error associated

with velocity and pressure approximations, where nK is the outward normal vector on ∂K

for all K ∈PH and I is the d× d identity operator. Notably, we prove (see Theorem 3.2 in

the context of the one-level MHM method)

‖u− uH‖1,PH
+ ‖p− pH‖0,Ω ≤ C inf

µH∈ΛH

(λ−µH ,v0)∂PH=0 ∀v0∈V0

‖λ− µH‖Λ,

where ‖ · ‖Λ is a norm in Λ and (·, ·)∂PH means a dual product on the skeleton ∂PH (see

Section 2.2 for precisions). So, convergence arises by bringing approximability properties to

the definition of the finite-dimensional space ΛH ⊂ Λ. Furthermore, under local regularity

assumptions for the exact velocity and pressure variables, we prove that the two-level MHM

solution in [7] converges in the energy norm with rate O(H`+1 + hk), where ` ≥ 0 is the

polynomial degree of interpolation on faces used in ΛH , and h is the local submesh diameter

and k ≥ 1 is the polynomial degree of interpolation on sub-meshes (see Theorem 4.2). This

way, convergence can be achieved by keeping the macroelement mesh fixed (i.e., H remains

fixed). This property, in addition to its practical interest in avoiding remeshing complex

geometries to improve accuracy, leads to superconvergence with additional convergence or-

der O(H1/2) under the smoothest local exact solution assumption (see Theorem 4.2) and

assuming that the local multiscale basis functions are “sufficiently” approximate. This is

also verified numerically in Section 5.
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In a broad sense, the proof strategy is as follows: we first establish a relationship between

the primal-hybrid version of (1.3) and the MHM method in an abstract general sense, showing

that the well-posedness of both are related at the fully discrete level and also establish how

their stability constants are related. Then, the numerical analysis of the MHM method

proposed in [7] arises from fulfilling the conditions to have the primal-hybrid version of

(1.3) well-posed. Thereby, the overall analysis in this work follows a totally different path

from that used in previous MHM works, which is fundamental to prove the existence and

uniqueness and the best approximation property of the two-level MHM method with the

USFEM method used to approximate T and T̂ in (1.5). In a sense, such a perspective is

also presented in previous works on MHM-type methods applied to the Poisson problem

[51, 29, 14].

The correspondence between the solution of the discrete primal-hybrid methods and the

two-level MHM methods also produces an interesting reinterpretation of the two-level MHM

methods. When the USFEM is used as a second-level solver on one-element sub-meshes,

the corresponding discrete primal-hybrid method can be seen as a new member of the class

of non-conforming stabilized finite element methods. Stabilization then acts at the element

level, which has a global impact by weakly imposing continuity on the boundary elements (see

[28, 2] for other examples of non-conforming stabilized methods). As a result, local mass

is conserved, which is a property missing from conforming-stabilized methods in general

(see [17] for a post-processing strategy to recover this property in the conforming scenario).

Furthermore, the use of refined sub-meshes in this context can be interpreted as a multiscale

version of non-conforming stabilized methods. A similar interpretation arises if we replace

the stabilized second-level solver with the Galerkin method based on stable pairs of spaces.

For example, when adopting the lowest-degree Taylor-Hood element into the scope of the

two-level MHM method with single-element sub-meshes, this corresponds to nothing more

than the non-conforming Crouzeix-Raviart method [36]. Thus, with the adoption of refined

sub-meshes in the context of the stable two-level MHM method, a non-conforming multiscale

version of the Crouzeix-Raviart method emerges.

In addition to providing a numerical analysis for the two-level MHM method introduced

in [7], in this work we

(i) establish abstract conditions for the well-posedness and optimality of MHM methods

for the Stokes/Brinkman model in natural norms. Such conditions allow extending

the analysis to more general second-level solvers than the stabilized method used in

[7];
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(ii) extend the two-level MHM analysis to include a stable second-level solver and con-

tinuous polynomial interpolation for the flux variable. This version of the two-level

MHM method is new, and we prove that the method also achieves optimal conver-

gence using the abstract conditions of item (i). This version of the two-level MHM

method produces point-wise divergence-free exact discrete velocity when it adopts

one-element sub-meshes;

(iii) validate numerically the MHM method using continuous interpolation on faces. The

results indicate that interpolating the flux continuously improves convergence when

compared to the discontinuous case, at least for regular exact solutions. The use of

continuous interpolation within the MHM methodology is new, even in the context

of other operators.

We also provide some numerical verification about the dependence of the constant in the

error estimates in terms of the physical coefficients, but we leave this theoretical question

outside the scope of this work.

2. Hybridization

The MHM methods are built on reformulating a hybridized version of (1.3). In a broad

sense, given spaces V, Q, and Λ and (bi)linear forms f : V × Q → R, g : Λ × R → R,

a : (V×Q)× (V×Q)→ R, and b : (Λ×R)× (V×Q)→ R, the hybrid formulation takes

the form: Find (u, p) ∈ V ×Q and (λ, ρ) ∈ Λ× R such that

(2.1)
a(u, p; v, q) + b(λ, ρ; v, q) = f(v, q),

b(µ, ξ; u, p) = g(µ, ξ),

for all (v, q) ∈ V×Q and (µ, ξ) ∈ Λ×R. The hybrid forms in (2.1) arise working in the spaces

V × Q which contain H1(Ω)d × L2
0(Ω). The burden of enforcing (u, p) ∈ H1(Ω)d × L2

0(Ω)

is then borne by the action of the bilinear form b(·; ·) defined over appropriate spaces. The

remainder of this section is dedicated to defining this setting precisely and establishing

the equivalence of (1.3) and (2.1). This will provide a solid basis for defining the MHM

formulation of (1.3) in Section 3.

2.1. Partitions. Consider a family of partitions {PH}H>0 of Ω parameterized by H :=

maxK∈PH hK , where hK is the diameter of simplex elements K. The collection of all element

boundaries ∂K is denoted ∂PH. Without loss of generality, we shall use hereafter the

terminology employed for three-dimensional domains. The collection of all faces E in the

triangulations, with diameter hE, is denoted E . This set is decomposed into the set of faces
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on ∂Ω denoted E∂, and its complement E0. To each E ∈ E , a normal n is associated, taking

care to ensure this is directed outward on ∂Ω. For each K ∈ PH we collect local faces

of E ⊂ ∂K in the set EK , while denoting the outward normal on ∂K by nK and defining

nKE := nK |E for each E ⊂ EK . Also, we denote by {EH}H>0 a regular family of simplicial

partitions of E , where H := maxF∈EH hF and hF is the diameter of F ∈ EH . We collect the

faces of F ⊂ ∂K in the set EKH .

2.2. Broken spaces and norms. Given a partition PH in {PH}H>0, we adopt the nota-

tion

(2.2) Q := L2(Ω) and V := {v ∈ L2(Ω)d : vK ∈ H1(K)d ∀K ∈PH },

where we denote vD := v |D with D ⊂ Ω a measurable set, and

Λ :=
{
σK n

K |∂K for all K ∈PH : σ ∈H(div; Ω)
}
.(2.3)

Also, we define the broken gradient operator ∇H : V→ L2(Ω)d×d as such (∇Hv) |K := ∇vK
for all v ∈ V and K ∈ PH. Given w, v ∈ L2(Ω)d, and owing to the notation (w,v)PH

:=∑
K∈PH

(wK ,vK)K , where (·, ·)D stands for the L2(D)d inner product, we equip V with the

norm ‖ · ‖V induced by the inner product

(w,v)V := d−2
Ω (w,v)PH

+ (∇Hw,∇Hv)PH
,(2.4)

where dΩ is the diameter of Ω. Further, we equip Q with the induced norm ‖·‖2
Q := (·, ·)Q :=

(·, ·)PH . We denote (·, ·)V×Q := (·, ·)V +(·, ·)Q the inner-product on the product space V×Q,

which induces the following norm in V ×Q

‖v, q‖2
V×Q := ‖v‖2

V + ‖q‖2
Q for all (v, q) ∈ V ×Q.(2.5)

We equip the space H(div; Ω) and Λ with the norms,

||σ||2H(div;Ω) :=
∑
K∈PH

(
‖σ‖2

0,K + d2
Ω ‖∇·σ‖2

0,K

)
,(2.6)

‖µ‖Λ := inf
σ∈H(div;Ω)

σ∂Kn
K |∂K=µ∂K ,K∈PH

‖σ‖H(div;Ω).(2.7)

Also, we define the following product norm

‖µ, ξ‖2
Λ×Q := ‖µ‖2

Λ + ‖ξ‖2
Q for all (µ, ξ) ∈ Λ× R.(2.8)

The duality pairing between H−1/2(∂K)d and H1/2(∂K)d is denoted by 〈·, ·〉∂K , and we de-

fine (µ, ζ)∂PH :=
∑

K∈PH
〈µ∂K , ζ∂K〉∂K for µ ∈ ∏

K∈PH

H−1/2(∂K)d and ζ ∈ ∏
K∈PH

H1/2(∂K)d.
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Observe that if µ ∈ Λ and ζ∂K = vK |∂K for all K ∈ PH where v ∈ H1
0 (Ω)d, then

(µ, ζ)∂PH = 0 (c.f. [7, Lemma 4]).

2.3. (Bi)linear Forms. Given, w, v ∈ V and q, r ∈ Q, and (µ, ξ) ∈ Λ× R, let

a(w, r; v, q) :=
∑
K∈PH

aK(wK , rK ; vK , qK) and b(µ, ξ; v, q) :=
∑
K∈PH

bK(µ∂K , ξK ; v∂K , qK),

where

(2.9)

aK(vK , qK ; wK , rK) := (ν∇vK ,∇wK)K + (θ vK ,wK)K − (qK ,∇ ·wK)K

+ (∇ · vK , rK)K ,

bK(µ∂K , ξK ; v∂K , qK) := 〈µ∂K ,v∂K〉∂K + (ξK , qK)K ,

and

(2.10) f(v, q) := (f ,v)PH and g(µ, ξ) := (µ, g)∂Ω.

Observe that since f ∈ L2(Ω)d and g ∈ H1/2(∂Ω)d, there exist constants C > 0 independent

of the mesh PH, such that f(v, q) = (f ,v)PH ≤ C‖v, q‖V×Q for all (v, q) ∈ V × Q

and g(µ, ξ) = (µ, g)∂Ω ≤ C‖µ, ξ‖Λ×Q for all (µ, ξ) ∈ Λ × R. We denote by ‖f‖ and

‖g‖ the smallest possible of such constants. Similarly, a(·; ·) is uniformly bounded over all

(v, q), (w, r) ∈ V ×Q, and then

(2.11) ‖a‖ := sup
(v,q)∈V×Q

sup
(w,r)∈V×Q

a(v, q; w, r)

‖v, q‖V×Q‖w, r‖V×Q
<∞.

Above and hereafter, we lighten notation and understand the supremum to be taken over

sets excluding the zero function, even though this is not specifically indicated. The nullspace

of a(·; ·) will play a critical role in the analysis. We define

Na := {(v, q) ∈ V ×Q : (vK , qK) ∈ Na(K) ∀K ∈PH} ,

where

Na(K) :=
{

(v, q) ∈ H1(K)d × L2(K) : aK(v, q; w, r) = 0 ∀(w, r) ∈ H1(K)d × L2(K)
}
,

and their orthogonal complements are

(2.12)
Na(K)⊥ :=

{
(v, q) ∈ H1(K)d × L2(K) : (v, q; w, r)V×Q = 0 ∀(w, r) ∈ Na(K)

}
,

N ⊥
a :=

{
(v, q) ∈ V ×Q : (vK , qK) ∈ Na(K)⊥ ∀K ∈PH

}
.

We notice that, based on the space Na(K), the following characterisations hold

Stokes model: Na(K) = P0(K)d×{0} and N ⊥
a (K) = [H1(K)∩L2

0(K)]d×L2(K);
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Brinkman model: Na(K) is trivial and N ⊥
a (K) = H1(K)d × L2(K),

where P0(K)d is the constant vector function space in K ∈PH.

For simplicity, we assume hereafter that Na(K) is of Stokes or Brinkman type for all

K ∈PH.

2.4. The well-posedness of hybrid problem (2.1). With the previous definitions and

the definition of the null space Nb given by

(2.13) Nb := {(v, q) ∈ V ×Q : b(µ, ξ; v, q) = 0 for all (µ, ξ) ∈ Λ× R} ,

we establish that hybrid formulation (2.1) of (1.1) is well-posed.

Lemma 2.1. There exists a positive constant αb, independent of H, such that

(2.14) αb‖v, q‖V×Q ≤ sup
(w,r)∈Nb

a(v, q; w, r)

‖w, r‖V×Q
for all (v, q) ∈ Nb .

Moreover, it holds

(2.15) ‖µ, ξ‖Λ×Q = sup
(w,r)∈V×Q

b(µ, ξ; w, r)

‖w, r‖V×Q
for all (µ, ξ) ∈ Λ× R.

Therefore, hybrid formulation (2.1) is well-posed and

‖u, p‖V×Q ≤
1

αb
‖f‖+

(
1 +
‖a‖
αb

)
‖g‖, ‖λ, ρ‖Λ×Q ≤

(
1 +
‖a‖
αb

)(
‖f‖+ ‖a‖‖g‖

)
.

(2.16)

Proof. First observe that Nb = H1
0 (Ω)d×L2

0(Ω) (c.f. [7, Lemma 4]), and then the first result

in (2.14) stems from the classical well-posedness of (1.3) over H1
0 (Ω)d × L2

0(Ω). Next, let

(µ, ξ) ∈ Λ× R. From Green’s Theorem and the Cauchy-Schwarz inequality, we get

b(µ, ξ; v, q) =
∑
K∈PH

[(σ,∇v)K + (∇·σ,v)K ] + (ξ, q)Q ≤ ‖v, q‖V×Q
(
‖σ‖2

H(div;Ω) + ‖ξ‖2
Q

)1/2
,

for all (v, q) ∈ V × Q and all σ ∈ H(div; Ω) with the property σK n
K |∂K = µ∂K for each

K ∈PH. It follows that sup(v,q)∈V×Q
b(µ,ξ;v,q)
‖v,q‖V×Q

≤ ‖µ, ξ‖Λ×Q for all (µ, ξ) ∈ Λ×R. Next, for

each K ∈PH, note that for each component µ∂K,i of µ∂K , 1 ≤ i ≤ d, there exists a unique

v?K,i ∈ H1(K) such that

(∇v?K,i,∇zK)K + d−2
Ω (v?K,i, zK)K = 〈µ∂K,i, zK〉∂K for all zK ∈ H1(K).
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It follows that ∇·∇v?K,i = d−2
Ω v?K,i ∈ L2(K) and ∇v?K,i · nK |∂K = µ∂K,i. Defining v? ∈ V by

v?|K = v?K , where v?K := (v?K,1, . . . , v
?
K,d), it holds that ∇Hv? ∈H(div; Ω) and,

‖µ, ξ‖Λ×Q ≤
(
‖∇Hv?‖2

0,Ω + d2
Ω‖∇·∇Hv?‖2

0,Ω + ‖ξ‖2
Q

)1/2
=

(
‖∇Hv?‖2

0,Ω +
1

d2
Ω

‖v?‖2
0,Ω + ‖ξ‖2

Q

)1/2

=
〈µ,v?〉∂PH

+ (ξ, ξ)Q

‖v?, ξ‖V×Q
≤ sup

(v,q)∈V×Q

b(µ, ξ; v, q)

‖v, q‖V×Q
,

thereby proving the second condition in (2.14). Finally, the stability of the solutions follows

by classical results (see [41, Theorem 2.34]). �

Remark 2.2 (Equivalence with primal-hybrid formulation). The solution of the classical

weak formulation (1.3) and its hybrid form (2.1) coincides and λ∂K = (ν∇uK − pK I)nK

on ∂K and ρ = 0 (c.f. [7, Theorem 1]). �

3. MHM’s abstract setting

This section presents the MHM formulation in general terms, which will be used to analyze

specific cases in the following section. It also establishes necessary and sufficient conditions

for the MHM method to be well-posed and with best approximation properties. To this end,

consider finite subspaces of spaces Λ, V and Q

ΛH :=
∏

K∈PH

ΛH(∂K), Vh :=
⊕
K∈PH

Vh(K) and Qh :=
⊕
K∈PH

Qh(K),(3.1)

where ΛH(∂K), Vh(K) and Qh(K) are finite subspaces of H−1/2(∂K)d, H1(K)d and L2(K).

Also, let ah,K(·; ·) and fh,K(·) be bounded (bi)linears form over Vh(K) × Qh(K). For all

instances below, we assume the nullspace of ah,K(·; ·) equals Na(K) and fh,K(·) coincides

with fK(·) over Na(K). However, we distinguish its orthogonal complement from (2.12) as

follows

Na,h(K)⊥ := {(v, q) ∈ Vh(K)×Qh(K) : (v, q; w, r)V×Q = 0 ∀(w, r) ∈ Na(K)} ,
N ⊥
a,h :=

{
(v, q) ∈ Vh ×Qh : (v, q)|K ∈ Na,h(K)⊥ ∀K ∈PH

}
.

Next, we define two global mappings Th and T̂h from their local counterpart, namely, Th,K :

ΛH(∂K)× R→ N ⊥
a,h(K) and T̂h,K : L2(K)d → N ⊥

a,h(K) defined by

(3.2) ah,K(Th,K(µ, ξ); v, q) = −bK(µ, ξ; v, q) and ah,K(T̂h,K(q); v, q) = lqh,K(v, q),

for all (v, q) ∈ N ⊥
a,h(K). Here, lqh,K(·) is a given bounded linear form over Vh(K) × Qh(K)

associated with a q ∈ L2(Ω)d such that ‖lqh‖ ≤ C‖q‖0,Ω, and bK(·; ·) is given in (2.9),



12 R. ARAYA, C. HARDER, A. H. POZA, AND F. VALENTIN

where lqh(·)|K := lqh,K(·). Global versions of ah,K(·; ·), fh,K(·) and lqh,K(·) are defined, for all

(v, q), (w, r) ∈ Vh ×Qh

ah(v, q;w, r) :=
∑
K∈PH

ah,K(v, q;w, r) and fh(v, q) :=
∑
K∈PH

fh,K(v, q).

Given those definitions, the MHM abstract formulation is: Find (uh0 , 0) ∈ Na and (λH , ρh) ∈
ΛH × R such that

(3.3)
b(µ, ξ;λH Th(λH , ρh)) + b(µ, ξ; uh0 , 0) = (µ, g)∂Ω − b(µ, ξ; T̂h(f)),

b(λH , ρh; v0, 0) = f(v0, 0),

for all (µ, ξ) ∈ ΛH × R and (v0, 0) ∈ Na. In the case of the Brinkman equation (θ 6= 0),

we recall the nullspace Na contains only the zero element, and then the MHM formulation

(3.3) reduces to find (λH , ρh) ∈ ΛH × R such that

b(µ, ξ; Th(λH , ρh)) = (µ, g)∂Ω − b(µ, ξ; T̂h(f)) for all (µ, ξ) ∈ ΛH × R.

3.1. Well-posedness of the abstract MHM (3.3). Let Nb,h be the finite space

(3.4) Nb,h := {(v, q) ∈ Vh ×Qh : b(µ, ξ; v, q) = 0 for all (µ, ξ) ∈ ΛH × R} ,

and assume the following conditions hold:

Assumption. Given (vK , qK) ∈ N ⊥
a,h(K), (z,m) ∈ Nb,h and (µ, ξ) ∈ ΛH × R, there exist

positive constants αa,h, αb,h and βh independent of mesh parameters, such that

αa,h‖vK , qK‖H1(K)×L2(K) ≤ sup
(wK ,rK)∈N ⊥

a,h(K)

ah,K(vK , qK ; wK , rK)

‖wK , rK‖H1(K)×L2(K)

,(H1)

αb,h‖z,m‖V×Q ≤ sup
(w,r)∈Nb,h

ah(z,m; w, r)

‖w, r‖V×Q
,(H2)

βh‖µ, ξ‖Λ×Q ≤ sup
(w,r)∈Vh×Qh

b(µ, ξ; w, r)

‖w, r‖V×Q
.(H3)

Condition (H1) ensures computations may be localized to each K ∈PH, thereby ensuring

that operators Th and T̂h are well-defined. Also, from (H1) the operators Th and T̂h are

bounded and

(3.5)

αa,h‖Th(µ, ξ))‖V×Q ≤ sup
(w, q)∈N ⊥

a,h

ah(Th(µ, ξ); w, q)

‖w, q‖V×Q
= sup

(w,q)∈N ⊥
a

b(µ, ξ; w, q)

‖w, q‖V×Q
≤ ‖µ, ξ‖Λ×Q,

αa,h‖T̂h(q)‖V×Q ≤ sup
(w, q)∈N ⊥

a,h

ah(T̂h(q); w, q)

‖w, q‖V×Q
= sup

(w,q)∈N ⊥
a

lqh(w, q)

‖w, q‖V×Q
≤ ‖lqh‖ ≤ C ‖q‖0,Ω.
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In (H2)-(H3) we recognize the necessary and sufficient condition for hybrid problem (2.1)

to be well-posed over the spaces Vh × Qh and ΛH × R with a(·; ·) replaced by ah(·; ·) and

f(·) by fh(·). We recall that operators ah(·; ·) and fh(·) are assumed to be continuous on

Vh ×Qh and b(·; ·) is continuous on (ΛH ×R)× (Vh ×Qh) since, from the proof of Lemma

2.1, it holds

sup
(v,q)∈Vh×Qh

b(µ, ξ; v, q)

‖v, q‖V×Q
≤ sup

(v,q)∈V×Q

b(µ, ξ; v, q)

‖v, q‖V×Q
≤ ‖µ, ξ‖Λ×Q for all (µ, ξ) ∈ ΛH × R.

If (uh, ph, λ̃H , ρ̃h) denotes such a unique solution, from the same argument in Lemma 2.1,

‖uh, ph‖V×Q ≤
1

αb,h
sup

(v,q)∈Vh×Qh

fh(v, q)

‖v, q‖V×Q
+

1

βh

(
1 +
‖ah‖
αb,h

)
sup
µ∈ΛH

g(µ, 0)

‖µ, 0‖Λ×Q
,

‖λ̃H , ρ̃h‖Λ×Q ≤
1

βh

(
1 +
‖ah‖
αb,h

)(
sup

(v,q)∈Vh×Qh

fh(v, q)

‖v, q‖V×Q
+
‖ah‖
βh

sup
µ∈ΛH

g(µ, 0)

‖µ, 0‖Λ×Q

)
.

(3.6)

The following result is central to the analysis of the MHM methods that will follow. We

establish that (3.3) is indeed well-posed under the assumptions (H1)-(H3). We also see that

the unique solution (uh, ph, λ̃H , ρ̃h) of (2.1) can be constructed using the unique solution of

(3.3), establishing thus an equivalence between both formulations.

Theorem 3.1. Consider

(3.7) NH := {(µ, ξ) ∈ ΛH × R : b(µ, ξ; v0, 0) = 0 for all (v0, 0) ∈ Na} .

Under assumptions (H1)–(H3), it holds

(3.8)

αb,hβ
2
h

(αb,h + ‖ah‖)‖ah‖
‖γ, τ‖Λ×Q ≤ sup

(µ,ξ)∈NH

b(µ, ξ; Th(γ, τ))

‖µ, ξ‖Λ×Q
,

αb,hβh
αb,h + ‖ah‖

‖v0, 0‖V×Q ≤ sup
(µ,ξ)∈ΛH×R

b(µ, ξ; v0, 0)

‖µ, ξ‖Λ×Q
,

for all (γ, τ) ∈ NH and (v0, 0) ∈ Na. Thus, the abstract MHM formulation (3.3) admits a

unique solution, and

‖λH , ρh‖Λ×Q ≤ C

(
sup

(v0,0)∈Na

f(v0, 0)

‖v0, 0‖V×Q
+ ‖T̂h(f)‖V×Q + sup

µ∈ΛH

g(µ, 0)

‖µ, 0‖Λ×Q

)
,

‖uh0 , 0‖V×Q ≤ C

(
sup

(v0,0)∈Na

f(v0, 0)

‖v0, 0‖V×Q
+ ‖T̂h(f)‖V×Q + sup

µ∈ΛH

g(µ, 0)

‖µ, 0‖Λ×Q

)
.
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Furthermore, (λ̃H , ρ̃h) = (λH , ρh) and the solution (uh, ph) of hybrid problem (2.1) in Vh×Qh

can be written in terms of the solution (uh0 , 0) and (λH , ρh) of (3.3) as follows

(3.9) (uh, ph) = (uh0 , 0) + Th(λH , ρh) + T̂h(f).

Proof. Let (γ, τ) ∈ NH and define Th(γ, τ) by the first equation of (3.2), observing the need

for assumption (H1). Then, define (w, r) ∈ Vh×Qh and (µ, ξ) ∈ ΛH×R the unique solution

(from (H2)-(H3)) of

(3.10)
aTh (w, r; v, q) + b(µ, ξ; v, q) = (Th(γ, τ); v, q)V×Q for all (v, q) ∈ Vh ×Qh,

b(ζ, φ; w, r) = 0 for all (ζ, φ) ∈ ΛH × R,

where aTh (·, ·) stands for the adjoint operator of ah(·, ·). Picking (v, q) := Th(γ, τ) in (3.10),

‖Th(γ, τ)‖2
V×Q = aT (w, r; Th(γ, τ)) + b(µ, ξ; Th(γ, τ)) = a(Th(γ, τ); w, r) + b(µ, ξ; Th(γ, τ))

= −b(γ, τ ; w, r) + b(µ, ξ; Th(γ, τ)) = b(µ, ξ; Th(γ, τ)),

where we used the second equation in (3.10). The term ‖Th(γ, τ)‖2
V×Q may be bounded

from below. On one hand, from (3.6) it holds

‖µ, ξ‖Λ×Q ≤
1

βh

(
1 +
‖ah‖
αb,h

)
sup

(v,q)∈Vh×Qh

(Th(γ, τ); v, q)V×Q

‖v, q‖V×Q
≤ 1

βh

(
1 +
‖ah‖
αb,h

)
‖Th(γ, τ)‖V×Q.

On the other hand, from (H3) and the first equation in (3.2) (which we use owing to the defini-

tion of NH), and the boundedness of ah(·; ·) that βh
‖ah‖
‖γ, τ‖Λ×Q ≤ ‖Th(γ, τ)‖V×Q for all (γ, τ) ∈

NH . As a result, the first inequality of (3.8) holds since the above equations imply

β2
h αb,h

‖ah‖(αb,h + ‖ah‖)
‖µ, ξ‖Λ×Q‖γ, τ‖Λ×Q ≤ b(µ, ξ; Th(γ, τ)).

We follow the same strategy to establish the second inequality of (3.8), this time using

(v0, 0) ∈ Na and defining (w, r) ∈ Vh ×Qh and (µ, ξ) ∈ ΛH × R as the unique solution of

aTh (w, r; v, q) + b(µ, ξ; v, q) = (v0, 0; v, q)V×Q for all (v, q) ∈ Vh ×Qh,

b(ζ, τ ; w, r) = 0 for all (ζ, τ) ∈ ΛH × R.

Taking (v, q) := (v0, 0) we have

‖v0, 0‖2
V×Q = aTh (w, r; v0, 0) + b(µ, ξ; v0, 0) = ah(v0, 0; w, r) + b(µ, ξ; v0, 0) = b(µ, ξ; v0, 0).

By (3.6), we get ‖µ, ξ‖Λ×Q ≤ 1
βh

(
1 +

‖ah‖
αb,h

)
‖v0, 0‖V×Q, which establishes the second in-

equality in (3.8) since it implies

βh αb,h
αb,h + ‖ah‖

‖v0, 0‖V×Q‖µ, ξ‖Λ×Q ≤ b(µ, ξ; v0, 0).
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Hence, the abstract MHM method (3.3) has a unique (uh0 ,λH , ρh) from standard saddle-

point theory. Finally, it is straightforward to verify that (uh0 , 0) + Th(λH , ρh) + T̂h(f) and

(λH , ρh) satisfy the hybrid formulation (2.1) when restricted to subspaces Vh×Qh×ΛH×R.

Then, (3.9) follows from the uniqueness of solution of (2.1) on Vh × Qh × ΛH × R using

(H2)–(H3). �

Remark 3.1 (The continuous MHM formulation). Consider the MHM formulation (3.3)

with spaces V×Q×Λ in place of Vh×Qh×ΛH , i.e., we seek (u0, 0) ∈ Na and (λ, ρ) ∈ Λ×R

(3.11)
b(µ, ξ; T (λ, ρ)) + b(µ, ξ; u0, 0) = (µ, g)∂Ω − b(µ, ξ; T̂ (f)) ∀(µ, ξ) ∈ Λ× R,

b(λ, ρ; v0, 0) = f (v0, 0) ∀(v0, 0) ∈ Na,

where (3.2) is solved using ah(·; ·) := a(·; ·) and lfh (v, q) := (f ,v)PH, and then, we adopt

above the notation Th = T : Λ×R→ N ⊥
a and T̂h = T̂ : L2(Ω)d → N ⊥

a . Note that Lemma

2.1 establishes directly (H2)–(H3), and (H1) holds. Thereby, Theorem 3.1 asserts (3.11) is

well-posed, and we can characterize the (unique) exact solution to the hybrid formulation

(2.1) as follows

(u, p) = (u0, 0) + T (λ, ρ) + T̂ (f) and λ∂K = (ν∇uK − pK I)nK on ∂K.(3.12)

Note that ρ vanishes (see [7, Theorem 1] for details), and following (3.5), T and T̂ are

bounded

αa‖T (µ, ξ)‖V×Q ≤ ‖µ, ξ‖Λ×Q and αa‖T̂ (q)‖V×Q ≤ C‖q‖0,Ω.(3.13)

3.2. Best approximation results. Having established conditions for the MHM formula-

tion to be well-posed, we can explore best approximation properties. Let

(3.14) Λ?
H := {µ ∈ ΛH : b(µ, 0;v0, 0) = f(v0, 0) ∀(v0, 0) ∈ Na} ,

and note that Λ?
H = ΛH in the Brinkman case.

Theorem 3.2 (Best approximation). Assume (H1)–(H3) hold. Let (λH , ρh) ∈ ΛH ×R and

(uh0 , 0) ∈ Na be the solution of (3.3), (λ, ρ) ∈ Λ × R and (u0, 0) ∈ Na the exact solution

of (3.11), and (u, p) and (uh, ph) given in (3.12) and (3.9), respectively. Then, there exist

positive constants C, depending only on constants in (H1)–(H3), such that

‖λ− λH‖Λ + ‖u0 − uh0‖V ≤ C
(

inf
µH∈Λ?

H

‖λ− µH‖Λ + ‖(T − Th)(λ, 0) + (T̂ − T̂h)(f)‖V×Q
)
,

‖u− uh, p− ph‖V×Q ≤ C
(

inf
µH∈Λ?

H

‖λ− µH‖Λ + ‖(T − Th)(λ, 0) + (T̂ − T̂h)(f)‖V×Q
)
.
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Proof. First, recall that ρ = ρh = 0. Given µH ∈ Λ?
H , and using λH satisfies the second

equation in (3.3), it holds b(µH − λH , 0;v0, 0) = 0 for all (v0, 0) ∈ Na, and then (µH −
λH , 0) ∈ NH where NH is defined in (3.7). Therefore, from Theorem 3.1 there is α :=

αb,hβ
2
h

(αb,h+‖ah‖)‖ah‖
such that

α ‖µH − λH , 0‖Λ×Q ≤ sup
(µ,ξ)∈NH

b(µ, ξ; Th(µH − λH , 0))

‖µ, ξ‖Λ×Q

≤ sup
(µ,ξ)∈NH

−b(µ, ξ; T (λ− µH , 0))− b(µ, ξ; (T − Th)(µH , 0) + (T̂ − T̂h)(f))

‖µ, ξ‖Λ×Q

≤ 1

αa
‖λ− µH‖Λ + ‖(T − Th)(µH , 0) + (T̂ − T̂h)(f)‖V×Q

≤ αa + 2αa,h
αaαa,h

‖λ− µH‖Λ + ‖(T − Th)(λ, 0) + (T̂ − T̂h)(f)‖V×Q,

where we used (3.13), (3.5) and ‖(T − Th)(λ − µH , 0)‖V×Q ≤ αa+αa,h
αaαa,h

‖(λ − µH , 0)‖Λ×Q.

Therefore, the triangle inequality yields

‖λ−λH‖Λ ≤ ‖λ−µH‖Λ+‖µH−λH‖Λ ≤ C

(
inf

µH∈Λ?
H

‖λ− µH‖Λ + ‖(T − Th)(λ, 0) + (T̂ − T̂h)(f)‖V×Q
)
.

Next, observe that from Theorem 3.1 there exists β :=
αb,hβh

αb,h+‖ah‖
such that

β‖u0 − uh0 , 0‖V×Q ≤ sup
(µ,ξ)∈λH×R

b(µ, ξ;u0 − uh0 , 0)

‖µ, ξ‖Λ×Q

≤ sup
(µ,ξ)∈λH×R

−b(µ, ξ; (T̂ − T̂h)(f) + (T − Th)(λH , 0) + T (λ− λH , 0))

‖µ, ξ‖Λ×Q

≤ ‖(T̂ − T̂h)(f) + (T − Th)(λH , 0)‖V×Q +
1

αa
‖λ− λH‖Λ

≤ ‖(T̂ − T̂h)(f) + (T − Th)(λ, 0)‖V×Q +
αa + 2αa,h
αaαa,h

‖λ− λH‖Λ,

we used again (3.13), (3.5), and the first estimate follows. The second estimate is a simple

consequence of the characterization of (u, p) in (3.12) and (uh, ph) in (3.9), using the first

estimate. �

The estimates in Theorem 3.2 highlight how the choice of the second-level solver impacts

approximability. It corresponds to the consistency errors ‖T − Th‖ and ‖T̂ − T̂h‖, which

vanishes in the case of the one-level MHM method (c.f. [7]). This is precisely the reason

for employing the inf-sup conditions (3.8) in the proof of Theorem 3.2 instead of those of

(H2)–(H3), which could be also used to estimate ‖u − uh, p − ph‖V×Q (probably with a

different error constant).
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4. Two-level MHM methods

In this section, we introduce practical strategies to approximate the solutions of the local

Stokes/Brinkman problems (3.2) in order to seed the global problem of the form (3.3). The

first level of a two-level MHM method is built on partitions PH of Ω and EH of E . Specifically,

let 0 ≤ ` ∈ N and define the space of (dis)continuous piecewise polynomial functions on EH
of degree up to ` given by

Pdis` (EKH )d :=
{
µ ∈ L2(∂K)d : µF ∈ P`(F )d for all F ∈ EKH

}
,

and

Pcon` (EKH )d :=
{
µ ∈ C0(E)d for all E ⊂ ∂K : µF ∈ P`(F )d for all F ∈ EKH

}
.

Their global counterparts are

Pdis` (EH)d :=
{
µ ∈ L2(E)d : µF ∈ P`(F )d for all F ∈ EH

}
,

and

Pcon` (EH)d :=
{
µ ∈ C0(E)d for all E ⊂ E : µF ∈ P`(F )d for all F ∈ EH

}
.

Then, we consider the following finite-dimensional subspace of Λ

(4.1) ΛH = Λ`
H :=

{
µ ∈ Λ : µ∂K ∈ Pdis` (EKH )d or Pcon` (EKH )d for all K ∈PH

}
.

In light of Theorem 3.2, we focus first on convergence with respect to the mesh parameters

H, H, and the key convergence properties will follow from the interpolation result for Λ`
H .

For that, the next result requires a sub-mesh ΞK
H , which denotes a regular simplicial partition

for each K ∈ PH and extends the partition on EH to the interior of K. That is, for each

F ∈ EH , there exists τF ∈ ΞK
H with diameter hτF such that ∂τF ∩∂K = F , and for simplicity,

we assume that for two different F, F ′ ∈ EH , we have τF 6= τF ′ .

Lemma 4.1. Suppose (v, q) ∈ Hm+1(PH)d×Hm(PH), 1 ≤ m ≤ `+ 1, and (ν∇Hv− qI) ∈
H(div; Ω), and ` ≥ 1 if Λ`

H is the continuous space and ` ≥ 0 otherwise, and let µ ∈ Λ be

such that µ∂K |E := (ν∇vK − qKI)nKE |E for each E ∈ E. Then, there exists µ` ∈ Λ`
H and

C such that

‖µ− µ`‖Λ ≤ C Hm
(
|ν∇Hv|m,PH + |q|m,PH

)
,(4.2)

and b(µ−µ`, 0;w0, 0) = 0 for all w0 ∈ P0(PH)d. Moreover, assuming the quasi-uniformity

of {PH}H>0 and (v, q) ∈ Hm+2(PH)d ×Hm+1(PH), such a µ` ∈ Λ`
H satisfies

‖µ− µ`‖Λ ≤ C
Hm+1/2

H1/2

(
‖v‖m+2,PH

+ ‖q‖m+1,PH

)
.(4.3)
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Proof. We follow closely [47] for the discontinuous case and [60] for the continuous one using

the existence of ΞK
H , for all K ∈ PH, to prove (4.2). Also, such a function µ` ∈ Λ`

H

satisfies (µ − µ`,v0)∂PH = 0, for all v0 ∈ P0(PH)d and ‖µ − µ`‖∂PH ≤ CHm‖µ‖m,∂PH

with 1 ≤ m ≤ ` + 1 and ` ≥ 0 in the discontinuous case and ` ≥ 1 otherwise. The proof of

(4.3) follows the strategy in [30]. Notably, let Π0
K : L2(K)d → P0(K)d be the L2 projection

operator on the space of constant functions on K ∈ PH, and Π0(·) its global counterpart

defined by Π0(·)|K = Π0
K(·). Then,

‖µ− µ`‖Λ = sup
(w,r)∈V×Q

b(µ− µ`, 0; w, r)

‖w, r‖V×Q
= sup

(w,r)∈V×Q

(µ− µ`,w − Π0(w))∂PH

‖w, r‖V×Q

≤ sup
(w,r)∈V×Q

‖µ− µ`‖∂PH‖w − Π0(w)‖∂PH

‖w, r‖V×Q
≤ CH1/2‖µ− µ`‖∂PH ≤ CHm+1/2‖µ‖m,∂PH ,

where we used Cauchy-Schwarz inequality and the estimate ‖w−Π0(w)‖∂PH ≤ C H1/2|w|1,PH .

Now, using µ∂K = (ν∇vK − qKI)nK |∂K for all K ∈PH, and the regularity of v and q and

trace inequalities (see [30] for details), we get (4.3). �

The second level of the MHM method involves constructing numerical solutions to local

problems using simplicial and shape-regular triangulations
{
T Kh
}
h>0

of each K ∈PH. They

are construct as red refinements of the baseline mesh ΞK
H , and we denote the collection of

such triangulations Th :=
⋃
K∈PH

T Kh . Here, h = maxτ∈Th hτ and hτ is the diameter of an

element τ ∈ Th. We denote by EKh the set of faces on T Kh , and EK0 the set of internal faces.

To each face γ ∈ EKh , we associate a normal vector nτγ, taking care to ensure this is facing

outward on ∂τ . We illustrate the different partitions of the global and local domains in

Figure 1.
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Figure 1. A sketch of the global and local meshes with notations. The red

dots represent the degrees of freedom associated with the ΛH space and the

blue dots with the Vh (or Qh) space.

In principle, second-level solvers may be quite general. Here, we consider two approaches:

(i) a stabilized finite element method with equal-order nodal approximation for velocity

and pressure (the USFEM, [16]);

(ii) the Galerkin method using stable pairs of spaces (Taylor Hood elements, c.f. [20]).

Owing to those discrete (local) operators, we form the two-level MHM discrete solution

(uH,h, pH,h) ∈ Vh ×Qh as follows

(uH,h, pH,h) := (uH,h0 , 0) + Th(λH,h, ρH,h) + T̂h(f),(4.4)

where (uH,h0 , 0) ∈ Na and (λH,h, ρH,h) ∈ Λ`
H × R is the the solution of (3.3) with mappings

Th and T̂h using the methods cited in itens (i) or (ii) above. Also, we recall that (uH,h, pH,h)

corresponds to the solution to the hybrid formulation (2.1) over Vh × Qh and Λ`
H × R

according Theorem 3.1.

4.1. Analysis of a stabilized two-level MHM method. The unusual stabilized finite

element method (USFEM) proposed in [16] was first adopted in [7] as a second-level solver

for local problems (3.2) to solve MHM formulation (3.3). For K ∈PH, we take

Vh(K) :=
{
v ∈ C0(K)d : vτ ∈ Pk(τ)d ∀τ ∈ T Kh

}
,

Qh(K) :=
{
q ∈ C0(K) : qτ ∈ Pk(τ) ∀τ ∈ T Kh

}
with k ≥ 1.
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The global operators Th ∈ L(Λ`
H ×R,N ⊥

a,h) and T̂h ∈ L(L2(Ω)d,N ⊥
a,h) are defined locally by

using the USFEM in (3.2), i.e., taking (u, p), (v, q) ∈ Vh(K) × Qh(K) and the (bi)linear

forms

ah,K(u, p;v, q) :=(ν∇u,∇v)K + (θ u,v)K − (p,∇ · v)K + (q,∇ · u)K

−
∑
τ∈T Kh

δτ (−ν∆u+ θu+∇p,−ν∆v + θv −∇q)τ ,(4.5)

lfh,K(v, q) := (f ,v)K −
∑
τ∈T Kh

δτ (f ,−ν∆v + θ v −∇q)τ .(4.6)

The stabilization parameter δτ reads

δτ :=
h2
τ

θτmax h
2
τ max {1, P eτ}+

4 ν

mk

with Peτ :=
4ν

θτmax h
2
τ mk

,

where mk := min
{

1
3
, Ck
}

, the non-negative constant θτmax := maxx∈τ θmax(x) and Ck is a

positive constant, independent of hτ , such that,

Ck hτ ‖∆v‖0,τ ≤ ‖∇v‖0,τ for all v ∈ Vh(K).

The USFEM has the property (see [16, Lemma 4.2] for details), given (v, q) ∈ Vh(K) ×
Qh(K),

αa,h‖v, q‖H1(K)×L2(K) ≤ sup
(w,r)∈N ⊥

a,h(K)

ah,K(v, q; w, r)

‖w, r‖H1(K)×L2(K)

,(4.7)

where αa,h depends on physical parameters but is independent of hK and hτ . Furthermore,

following closely the proof of Theorem 4.1 in [16] using the Cauchy-Schwartz inequality, the

definition of the stabilized parameter δτ and inverse inequalities, we obtain that ah,K(·, ·) is

bounded in Vh(K)×Qh(K) with a constant independent of the mesh parameters. Following

closely (3.5) and using (4.7), mappings Th and T̂h are bounded

(4.8) ‖Th(µ, ξ)‖V×Q ≤ α−1
a,h ‖µ, ξ‖Λ×R and ‖T̂h(q)‖V×Q ≤ C α−1

a,h ‖lqh‖.

Furthermore, there exists C dependent only on physical coefficients, such that ‖lqh‖ ≤
C ‖q‖0,Ω ⇒ ‖T̂h(q)‖V×Q ≤ C α−1

a,h ‖q‖0,Ω as a result of definition of the dual norm (2.11),

the linear form lqh,K(·) in (4.6), and inverse inequalities. The remainder of this subsection is

dedicated to the analysis of the method (3.3) with Th and T̂h defined throught (4.5)-(4.6).

Before these may be tackled, some preliminary results must be established.
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4.1.1. Preliminary results. The analysis for the stabilized two-level MHM method requires

a geometrical assumption between meshes. Specifically, letting κF be an element of minimal

partition ΞK
H of K ∈ PH such that ∂κF ∩ ∂K = F , and choose τ ∈ T Kh such that τ ⊂ κF .

We assume that there exists a positive constant C such that

(4.9) hκF ≤ C hτ .

Since hF ≤ hκF , we see that the assumption (4.9) is equivalent to the requirement that

the collection Th cannot contain elements of size “too small” relative to the elements in

EH . This indicates the need for a sufficiently small partition of faces in areas of the domain

with strong small-scale physics, which fits in with practice. Let Ch : H1(PH)d → Vh be

the Clément interpolation operator defined locally. In other words, for every v ∈ V we

define Ch(v)|K := CK
h (v) where CK

h : H1(K)d → Vh(K) is the usual Clément interpolation

operator. It is well-known that the operator CK
h satisfies the following two properties (see

[41, Lemma 1.127]):

(i) there exists C > 0 such that

‖CK
h (vK)‖1,K 6 C ‖vK‖1,K ,(4.10)

(ii) for m and s satisfying 0 6 m 6 s, with s = 0, 1, there is C > 0 such that

‖vτ − CK
h (vK) |τ‖m,τ ≤ C hs−mτ ‖vτ‖s,ωKτ ,(4.11)

for all vτ ∈ Hs(ωKτ )d and all τ ∈ T Kh , where ωKτ := {τ ∈ T Kh : τ ∩ τ ′ 6= ∅}. The constants

C depend only on k and d. The next lemma recalls the Fortin operator proposed in [47],

(which is based on an argument in [15]), adding some additional information about it.

Lemma 4.2. Assume integers k ≥ 1 and ` ≥ 0 satisfy k − ` ≥ d, and let F ∈ EH . Then,

there exists a mapping Πh : V→ Vh such that, for all v ∈ V, it holds

(4.12)

(Πh(v) |F ,µ`)F = (vF ,µ`)F for all µ` ∈ P`(F )d,∫
K

∇ · Πh(v) |K dx =

∫
K

∇ · vK dx for all K ∈PH,

and (Πh(v), 0) ∈ Nb,h given in (3.4) if v ∈ H1
0 (Ω)d. Moreover, there exist constants C such

that

(4.13) ‖Πh(v)‖V ≤ C ‖v‖V and
∑
K∈PH

∑
τ∈T Kh

h−2
τ ‖vτ − Πh (v) |τ‖2

0,τ ≤ C ‖v‖2
V.

Proof. From [47], it follows there exists a mapping Πh : V → Vh that satisfies the first

equality in (4.12) and the left inequality in (4.13). The second equality in (4.12) follows from
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the first one after integration by parts and nK |F ∈ P0(F )d. As for the second inequality in

(4.13), we recall the definition of Πh(·) defined locally on each K ∈PH as follows (see [47,

Lemma 4.2])

Πh(v) |K := CK
h (vK) +

∑
F⊂∂K

ρKF (vK − CK
h (vK)),(4.14)

where ρKF is a mapping from H1(K)d to Vh(K) (see [47, Lemma 4.1] for details). Mapping

ρKF is bounded, for each τ ∈ T Kh , as follows ‖ρKF vK |τ‖0,τ + hτ |ρKF vK |τ |1,τ ≤ C (‖vτ‖0,τ +

hτ |vτ |1,τ ). Using this, mesh regularity, (4.14) and (4.10)-(4.11), we get

∑
K∈PH

∑
τ∈T Kh

h−2
τ ‖vτ − Πh(v) |τ‖2

0,τ ≤ C
∑
K∈PH

∑
τ∈T Kh

(
h−2
τ ‖vτ − CK

h (vK) |τ‖2
0,τ + ‖vτ − CK

h (vK) |τ‖2
1,τ

)
≤ C ‖v‖2

V.

Finally, if one restricts Πh(·) toH1
0 (Ω)d, then from (4.12) it holds

∑
K∈PH

∫
∂K

Πh(v) |∂K µ` |∂K ds =∑
K∈PH

∫
∂K
v∂K µ` |∂K ds = 0, for all µ` ∈ Λ`

H , and then (Πh(v), 0) belongs to Nb,h. �

The next result generalizes [45, Lemma 3.3].

Lemma 4.3. Let (0, q) ∈ Nb,h given in (3.4). There exist positive constants C1 and C2,

independent of mesh parameters, such that for all q ∈ Q we have

(4.15) sup
(v,0)∈Nb,h

(∇ · v, q)PH

‖v, 0‖V×Q
≥ C1‖q‖Q − C2|q|h,

where |q|2h :=
∑

K∈PH
|qK |2h,K with |qK |h,K :=

(∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

is a semi-norm on Q.

Proof. Let (0, q) ∈ Nb,h and v ∈ H1
0 (Ω)d be such that ∇ · v = q and ‖v‖1,Ω ≤ C‖q‖Q.

Define (ṽ, 0) := (Πh(v), 0) ∈ Nb,h where Πh(·) is the Fortin operator available from Lemma

4.2. Given K ∈ PH, let κF be an element of ΞK
H such that ∂κF ∩ ∂K = F . Set q0 :=

1
|κF |

∫
κF
qκF dx, and define hκF the diameter of κF . From the trace and Poincaré inequalities

(4.16)

‖qF − q0 |F‖0,F ≤ C
( 1

h
1/2
κF

‖qκF − q0‖0,κF + h1/2
κF
‖∇(qκF − q0)‖0,κF

)
≤ Ch1/2

κF
‖∇qκF ‖0,κF .
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Then, by integration by parts, using (4.12), the trace inequality (4.16), (4.9) and (4.13), and

the fact that δ−1
τ ≤ C θτmax+4ν

h2
τ

(c.f. [16, estimate (39)]), we obtain

(∇ · ṽ, q)PH
= (∇ · v, q)PH

+ (∇ · (ṽ − v), q)PH

= ‖q‖2
Q + (∇ · (ṽ − v), q)PH

= ‖q‖2
Q −

∑
K∈PH

∑
τ∈T Kh

(ṽτ − vτ ,∇qτ )τ +
∑
K∈PH

∑
τ∈T Kh

(ṽ∂τ − v∂τ , q∂τ nτ )∂τ

= ‖q‖2
Q −

∑
K∈PH

∑
τ∈T Kh

(ṽτ − vτ ,∇qτ )τ +
∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

(ṽγ − vγ, (qγ − q0|γ)nKγ )γ

≥ ‖q‖2
Q −

( ∑
K∈PH

∑
τ∈T Kh

δ−1
τ ‖vτ − ṽτ‖2

0,τ

)1/2( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

−
( ∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

h−1
γ ‖ṽγ − vγ‖2

0,γ

)1/2( ∑
K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

hγ ‖qγ − q0|γ‖2
0,γ

)1/2

≥ ‖q‖2
Q − C

( ∑
K∈PH

∑
τ∈T Kh

h−2
τ ‖vτ − ṽτ‖2

0,τ

)1/2( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

− C
( ∑
K∈PH

∑
τ∈T Kh

(h−2
τ ‖vτ − ṽτ‖2

0,τ + ‖∇(vτ − ṽτ )‖2
0,τ )
)1/2( ∑

K∈PH

∑
τ∈T Kh

∑
γ⊂∂K∩∂τ

hγ ‖qγ − q0|γ‖2
0,γ

)1/2

≥ ‖ṽ‖V
[
C1 ‖q‖Q − C

( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2

− C
( ∑
K∈PH

∑
F⊂∂K

∑
τ⊂T κFh

h2
τ‖∇qτ‖2

0,τ

)1/2]
≥ ‖ṽ‖V

[
C1 ‖q‖Q − C2

( ∑
K∈PH

∑
τ∈T Kh

δτ‖∇qτ‖2
0,τ

)1/2]
,

and the result follows. �

4.1.2. Well-posedness. We prove that the two-level MHM method (3.3) with the stabilized

finite element method (4.5)-(4.6) is well-posed in the following theorem.

Theorem 4.1 (Well-posedness of (3.3) with (4.5)-(4.6)). Assume that k − ` ≥ d with ` ≥ 0

if Λ`
h is discontinuous and ` ≥ 1 otherwise, and assume that (4.9) is satisfied. Then, there

exists a unique solution of (3.3) with the stabilized method (4.5)-(4.6), denoted by (uH,h0 , 0) ∈
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Na and (λH,h, ρH,h) ∈ Λ`
H × R, and

‖λH,h, ρH,h‖Λ×Q ≤ C

(
sup

(v0,0)∈Na

(f ; v0, 0)V×Q

‖v0, 0‖V×Q
+ ‖T̂h(f)‖V×Q + sup

µ∈Λ`
H

g(µ, 0)

‖µ, 0‖Λ×Q

)
,

‖uH,h0 , 0‖V×Q ≤ C

(
sup

(v0,0)∈Na

(f ; v0, 0)V×Q

‖v0, 0‖V×Q
+ ‖T̂h(f)‖V×Q + sup

µ∈Λ`
H

g(µ, 0)

‖µ, 0‖Λ×Q

)
.

Proof. We prove conditions (H2)–(H3) as (H1) holds from (4.7). First, condition (H3) follows

from the Fortin operator in Lemma 4.2 under the condition k ≥ ` + d, and using the L2

orthogonal projection Π0(r) := 1
|Ω|

∫
Ω
r dx. In fact, let (µ, ξ) ∈ Λ`

H × R then

‖µ, ξ‖Λ×R = sup
(w,r)∈V×Q

b(µ, ξ; w, r)

‖w, r‖V×Q
≤ C sup

(w,r)∈V×Q

b(µ, ξ; Πh(w),Π0(r))

‖Πh(w),Π0(r)‖V×Q
≤ C sup

(w,r)∈Vh×Qh

b(µ, ξ; w, r)

‖w, r‖V×Q
,

where we used (2.14). As for condition (H2), we adapt the strategy of the proof of [16,

Lemma 4.2]. Let (v, q) ∈ Nb,h and set w := v − ε z, where z achieves the supremum

in Lemma 4.3 with properties ‖z‖V = ‖q‖0,Ω, and (z, 0) ∈ Nb,h. First, [16] establishes

ah,K(vK , qK ;vK , qK) ≥ 3ν
4
||∇vK ||20,K + |qK |2h,K for all K ∈ PH. Further, given K ∈ PH

define θKmax := maxτ∈T Kh θτmax. Since δτθ
τ
max ≤ 1 and δτν‖∆vτ‖2

0,τ ≤ 1
4
‖∇vτ‖2

0,τ , and using

ab ≤ 1
2γ
a2 + γ

2
b2 we get

ah,K(vK , qK ;−zK , 0) ≥ −θKmax‖vK‖0,K‖zK‖0,K − ν‖∇vK‖0,K‖∇zK‖0,K + (∇ · zK , qK)K

−
∑
τ∈T Kh

δτ (‖θvτ − ν∆vτ‖0,τ + ‖∇qK‖0,τ ) ‖θzτ − ν∆zτ‖0,τ

≥− θKmax‖vK‖0,K‖z‖0,K − ν‖∇vK‖0,K‖∇zK‖0,K + (∇ · zK , qK)K

−


∑
τ∈T Kh

δτ‖θvτ − ν∆vτ‖2
0,τ

1/2

+ |qK |h,K


∑
τ∈T Kh

δτ‖θzτ − ν∆zτ‖2
0,τ

1/2

≥− 3
(
θKmax‖vK‖2

0,K + ν‖∇vK‖2
0,K

)1/2 (
θKmax‖zK‖2

0,K + ν‖∇zK‖2
0,K

)1/2
+ (∇ · zK , qK)K

− |qK |h,K

2
∑
τ∈T Kh

θτmax‖zτ‖2
0,τ +

ν

4
‖∇Hzτ‖2

0,τ

1/2

≥− 3

2γ1

(
θKmax‖vK‖2

0,K + ν‖∇vK‖2
0,K

)
− 3γ1C̃

2

( 1

d2
Ω

‖zK‖2
1,K + ‖∇zK‖2

0,K

)
+ (∇ · zK , qK)K

− 1

2γ2

|qK |2h,K −
2γ2C̃

2

( 1

d2
Ω

‖zK‖2
1,K + ‖∇zK‖2

0,K

)
,
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where C̃ := max{θKmaxd2
Ω, ν}. Therefore, using the lower bound on (∇· zK , qK)K from Lemma

4.3, and ‖z‖V = ‖q‖Q, we get

ah(v, q;w, q) ≥
3ν

2

(
1

2
− ε

γ1

)
‖∇Hv‖2

PH
− 3 cmaxε

2γ1

‖v‖2
PH

+ ε(C1‖q‖2
Q − C2|q|h‖q‖Q)

− C̃ε

2
(3γ1 + 2γ2)‖q‖2

Q +

(
1− ε

2γ2

)
|q|2h

≥3ν

2

(
1

2
− ε

γ1

)
‖∇Hv‖2

PH
− 3 cmaxε

2γ1

‖v‖2
PH

+
1

2

(
2− ε

γ2

− C2ε

γ3

)
|q|2h

+
ε

2

(
2C1 − C̃ (3γ1 + 2γ2)− C2γ3

)
‖q‖2

Q

=
3ν

2

(
1

2
− 12C̃

ε

C1

)
‖∇Hv‖2

PH
− 18 cmaxC̃

ε

C1

‖v‖2
PH

+
εC1

2
‖q‖2

Q

+

(
1− ε

C1

(
4C̃ + C2

2

))
|q|2h,

where we used γ1 = C1

12C̃
, γ2 = C1

8C̃
, and γ3 = C1

2C2
. Now, since (v, q) ∈ Nb,h, we have the

Poincaré inequality [22]

CP
d2

Ω

‖v‖2
PH
≤ ‖∇Hv‖2

PH
,

where CP is a positive constant independent of mesh parameters, from which we find

ah,K(v, q;w, q) ≥ 3ν

4

(
1

2
− 12C̃

ε

C1

)
‖∇Hv‖2

PH
+

3

8

(
CPν

d2
Ω

− 48cmaxC̃
ε

C1

)
‖v‖2

PH
+
εC1

2
‖q‖2

Q

+

(
1− ε

C1

(
4C̃ + C2

2

))
|q|2h ≥

3ν

16

(
‖∇Hv‖2

PH
+
CP
d2

Ω

‖v‖2
PH

)
+
εC1

2
‖q‖2

Q ≥ C ‖v, q‖2
V×Q,

where we took ε
C1

= min{ 1

48C̃
, CP ν

96cmaxC̃d2
Ω

, 1

4C̃+C2
2

}. Finally, condition (H2) follows observing

that

‖w, q‖V×Q ≤ ‖v, q‖V×Q + ε ‖z, 0‖V×Q ≤ ‖v, q‖V×Q + C ε ‖0, q‖V×Q ≤ C ‖v, q‖V×Q,

and the result follows from Theorem 3.1. �

Remark 4.4 (Relaxing k− ` ≥ d constraint). The constraint k− d ≥ ` ≥ 0 in Theorem 4.1

leads to the well-posedness of eq. (3.3) in two and three-dimensional problems on simplicial

meshes. We restrict our analysis in this work to simplicial K elements to avoid unnecessary

technical details, but Theorem 4.1 also holds for polytopal elements under the mesh conditions

given in [15, Section 1.2] and [8, Section 2.1]), for instance. In the two-dimensional case,

other possibilities exist to ensure the well-posedness of eq. (3.3), such as
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• Th = PH, and even polynomial degree ` under the constraint k = ` + 1. The proof

follows from [62, Lemma 4] applied to each component of the vector function µ`H ∈
Λ`
H ;

• meshes with “enough” refined local meshes T Kh (see [15] for precisions) under the

conditions k = ` + 1 with ` ≥ 0 or k = ` with ` ≥ 1. The proof follows from [15,

Lemmas 4 and 5] applied to each component of the vector function µ`H ∈ Λ`
H .

Finally, we note the existence of multiscale methods that avoid the above space restriction,

such as the MsHDG method [40] applied to the mixed form of the Poisson model. Such an

attractive feature comes at the price of designing a priori stabilization terms on faces balanced

by positive stabilization parameters.

4.1.3. Convergence. We recall from [16, Theorem 4.1] that the mapping Th and T̂h carry

approximation properties. In other words, adopted element-wisely in each K ∈ PH, they

approximate T and T̂ with sharp constants which are independent of mesh parameters.

Specifically, assume that (u, p) ∈ Hm+1(PH)d × Hm(PH), for 1 ≤ m ≤ k and k ≥ 1, it

holds

‖(T − Th)(λ, ρ) + (T̂ − T̂h)(f)‖V×Q ≤ C hm
(
|u|m+1,PH

+ ‖p‖m,PH
)
,(4.17)

where Th and T̂h are defined from (3.2) with (4.5)-(4.6). We are ready to present the main

convergence result.

Theorem 4.2 (Convergence of (3.3) with (4.5)-(4.6)). Assume k − ` ≥ d, with ` ≥ 0

(` ≥ 1) if Λ`
H is discontinuous (continuous), and (u, p) ∈ Hm+1(PH)d × Hm(PH), with

1 ≤ m ≤ ` + 1, and (ν∇u − pI) ∈ H(div; Ω). Then, there exist positive constants Ci,

i = 1, ...5, independent of H, H, h, such that

‖λ− λH,h‖Λ + ‖u0 − uH,h0 ‖V ≤ C1H
m
(
|ν∇Hu|m,PH + |p|m,PH

)
+ C2h

m
(
|u|m+1,PH + ‖p‖m,PH

)
,

‖u− uH,h, p− pH,h‖V×Q ≤ C3H
m
(
|ν∇Hu|m,PH + |p|m,PH

)
+ C4h

m
(
|u|m+1,PH + ‖p‖m,PH

)
,

where (λH,h,u
H,h
0 ) solves (3.3) with (4.5)-(4.6), and (uH,h, pH,h) is given in (4.4). In addi-

tion, if (u, p) ∈ Hm+2(PH)d ×Hm+1(PH), then

‖u− uH,h, p− pH,h‖V×Q ≤ C5
Hm+1/2

H1/2

(
‖u‖m+2,PH

+ ‖p‖m+1,PH

)
+ C4h

m
(
|u|m+1,PH + ‖p‖m,PH

)
.

Proof. The result is a direct consequence of Theorem 3.2, Lemma 4.1, and (4.17). �

Remark 4.5 (Local conservation). The discrete velocity uH,h built according to (4.4) pre-

serves the divergence-free constraint weakly. Indeed, taking (wh, qh)|K = (0, 1K) ∈ N ⊥
a,h(K)
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in (4.5)–(4.6) and using ρH,h = 0, it holds
∫
K
∇ · uH,h dx = 0 for all K ∈PH. In addition,

the local equilibrium between the numerical traction λH,h and the external force is satisfied,

i.e., ∫
K

θ uH,h dx+

∫
∂K

λH,h ds =

∫
K

f dx for all K ∈PH,(4.18)

where we used the second equation in (3.3) if θ = 0, and the definition of uH,h in (4.4)

and local problems (3.2) with (4.5)–(4.6) tested with (wh, qh)|K = (1K , 0) ∈ Vh(K)×Qh(K)

otherwise.

4.2. Analysis of a stable two-level MHM method. Stable pairs of spaces may be used

in local problems (3.2) to solve MHM formulation (3.3). Notably, we analyze here a two-level

method based on the Taylor-Hood element (c.f. [20]). Recall that the Taylor-Hood element

is such that given k ≥ 2 and K ∈PH,

Vh(K) :=
{
vh ∈ V(K) ∩ C0(K)d : vh |τ ∈ Pk(τ)d ∀τ ∈ T Kh

}
,

Qh(K) :=
{
qh ∈ Q(K) ∩ C0(K) : qh |τ ∈ Pk−1(τ) ∀τ ∈ T Kh

}
.

We then have a fully defined MHM method by letting ah,K(·; ·) := aK(·; ·) and lfh,K(·) :=

(f , ·)K as defined in (2.9) and (2.10), respectively. We immediately obtain that ah,K(·; ·) is

bounded on Vh(K)×Qh(K) from (2.11) with a constant independent of the mesh parameters.

To see that the method (3.3) is well-posed and converges optimally using these definitions,

we first note that assumption (H1) is met when using spaces Vh(K) and Qh(K) (c.f. [18,

19]), with a constant independent of K, when the sub-mesh T Kh satisfies the following mild

conditions:

Assumption (Assumption (M)).

2D case: T Kh contains at least one internal vertex;

3D case: Every tetrahedron in T Kh has at least one internal vertex.

Lemma 4.6. Given K ∈PH, assume that T Kh satisfies Assumption (M). Then, condition

(H1) holds, and

‖(T − Th)(λ, ρ) + (T̂ − T̂h)(f)‖V×Q ≤ C hm
(
‖u‖m+1,PH + ‖p‖m,PH

)
,(4.19)

where 1 ≤ m ≤ k, and k ≥ 2. Moreover, if T Kh is a one-element mesh, then condition (H1)

and estimate (4.19) also hold.

Proof. We use the standard technique for mixed problems to prove (H1) (see [20]). First,

note that (ν∇vh,∇vh)K + (θ vh,vh)K ≥ C ‖vh‖2
1,K for all (vh, 0) ∈ N ⊥

a,h(K) where we used
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Poincaré inequality for the Stokes case (θ = 0). Next, the pair of spaces Vh(K)×Qh(K) (or

[Vh(K)∩L2
0(K)d]×Qh(K)) is compatible in the sense of Babuska-Brezzi using [18, Theorem

4.1] and [19, Theorem 3.1] under the assumption (M) on the partition T Kh . When T Kh is

a mesh of one element, the corresponding inf-sup conditions follows noting that the image

of the Raviart-Thomas space RTk(K) ⊂ Vh(K) by the divergence operator coincides with

Pk−1(K). Therefore, we recover the condition (H1) using [66, Theorem 3]. Finally, classical

arguments based on Galerkin orthogonality, continuity and interpolation results applied to

each K ∈PH result in (4.19). �

The two-level MHM method (3.3) with the stable second-level solver (3.2) is well-posed

and convergent. This is establish in the next theorem.

Theorem 4.3. Assume that T Kh satisfies Assumption (M). Then, the method (3.3) with the

local problems (3.2) defined using (2.9)-(2.10) is well-posed with k − ` ≥ d and ` ≥ 0 if Λ`
H

is discontinuous and ` ≥ 1 otherwise. Moreover, if (u, p) ∈ Hm+1(PH)d × Hm(PH), with

1 ≤ m ≤ `+ 1, and (ν∇u− pI) ∈H(div; Ω) then there exist C such that

‖λ− λH,h‖Λ + ‖u0 − uH,h0 ‖V ≤ C (Hm + hm)
(
‖u‖m+1,PH

+ ‖p‖m,PH
)
,

‖u− uH,h‖V + ‖p− pH,h‖Q ≤ C (Hm + hm)
(
‖u‖m+1,PH

+ ‖p‖m,PH
)
,

(4.20)

where (λH,h,u
H,h
0 ) solves (3.3) with (2.9)-(2.10), and (uH,h, pH,h) is given in (4.4).

Proof. First, observe that (H3) holds by the arguments used in the proof of Theorem 4.1 and

(H1) follows from Lemma 4.6. It remains to show condition (H2), which is a consequence of

the local inf-sup condition of the generalized Taylor-Hood element presented in the proof of

Lemma 4.6, and the Fortin mapping proposed in Lemma 4.2. Specifically, note that given

(0, q) ∈ Nb,h, there exists v ∈ H1
0 (Ω)d such that

(4.21) ∇ · v = q in Ω and ‖v‖1,Ω ≤ C ‖q‖Q.

Then, we adapt the technique of [46, Lemma 3.5], and define the following “corrector”

mapping Mh : H1
0 (Ω)d → Vh ∩H1

0 (PH)d as

∫
K

rh∇ ·Mh(v)|K dx =

∫
K

rh∇ · (vK − Πh(v)|K) dx for all rh ∈ Qh(K) ∩ L2
0(K),

(4.22)

where H1
0 (PH)d denotes the space of functions vK ∈ H1

0 (K)d, for all K ∈ PH. Observe

that Mh(v)|K ∈ Vh(K) ∩H1
0 (K)d exists under the mesh assumption (M) which allows the
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use of [18, Theorem 4.1] and [19, Theorem 3.1], and then

(4.23) ‖Mh(v)‖V ≤ C ‖v‖V.

Next, using k ≥ d + ` ≥ 2 by assumption, we set Θh : H1
0 (Ω)d → Vh as Θh(v) := Πh(v) +

Mh(v), and then from (4.13), (4.23) and (4.21), we get ‖Θh(v)‖V ≤ ‖Πh(v)‖V+‖Mh(v)‖V ≤
C ‖v‖V ≤ C‖q‖Q. Notice from the properties of operator Πh(·) in (4.12) and Mh(v)|∂K = 0

for all K ∈ PH, that for all µh ∈ Λ`
H it holds (µh,Θh(v))∂P = (µh,Πh(v))∂P = 0 ⇒

(Θh(v), 0) ∈ Nb,h. In addition, for all q ∈ Qh, q = q̃+q0 with q̃ ∈ L2
0(PH) and q0 ∈ P0(PH),∫

K

qK∇ ·Θh(v)|K dx =

∫
K

q̃K∇ ·Θh(v)|K dx+

∫
K

q0
K∇ ·Θh(v)|K dx

=

∫
K

q̃K∇ · vK dx+

∫
K

q0
K∇ · Πh(v)|K dx+

∫
K

q0
K∇ ·Mh(v)|K dx

=

∫
K

qK∇ · vK dx,

where we used the definition of operador Mh(·) in (4.22), Lemma 4.2 and
∫
K
q0
K∇·Mh(v)|K dx =

0 since Mh(v)|K ∈ H1
0 (K)d. We conclude that, given (0, q) ∈ Nb,h, there exists (ṽ, 0) :=

(Θh(v), 0) ∈ Nb,h such that

(4.24) (q,∇ · ṽ)Ω = (q,∇ · v)Ω = ‖q‖2
Q and ‖ṽ‖V ≤ C‖q‖Q.

Let (v, q) ∈ Nb,h and define w := v − ε ṽ. We observe (w, q) ∈ Nb,h and then there exists

positive constants C1 and C2 independent of mesh parameters, such that

ah(v, q; w, q) ≥ C1 ‖v‖2
V − ε

[
ν(∇v,∇ṽ)PH

+ (θ v, ṽ)PH
− (q,∇ · ṽ)PH

]
≥ C1 ‖v‖2

V − εC2‖v‖V‖ṽ‖V + ε‖q‖2
Q ≥ C1 ‖v‖2

V − εC2C‖v‖V‖q‖Q + ε ‖q‖2
Q

≥
(
C1 −

C2C ε

2 γ

)
‖v‖2

V + ε

(
1− C2Cγ

2

)
‖q‖2

Q ≥ C3‖v, q‖2
V×Q,

where we chose the positive constants γ and ε such that C3 is a positive constant indepen-

dent of mesh parameters. In addition, we have ‖w, q‖V×Q ≤ ‖v, q‖V×Q + ε ‖ṽ, 0‖V×Q ≤
‖v, q‖V×Q+C ε ‖0, q‖V×Q ≤ C ‖v, q‖V×Q, and the well-posedness follows from Theorem 3.1.

The error estimates (4.20) follow from Theorem 3.2, Lemma 4.1 and estimate (4.19) using

min {`+ 1, k} = `+ 1. �

Remark 4.7 (The one-element sub-mesh case). We note that if T Kh is a mesh of an element

(H = H = h), then the MHM method with the stable Taylor-Hood element at the second level

coincides with the non-conforming Galerkin method with the Crouzeix–Raviart element for
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polynomial degrees k = 1, 2, 3. In fact, note that the MHM method can be recast as find

(uh, ph) ∈ Nb,h

ah(uh, ph;vh, qh) = (f ,vh)Ω for all (vh, qh) ∈ Nb,h,

where the product space with weakly continuous polynomial velocity and pressure with zero

mean value Nb,h is given in (3.4). Then, we recognize [36] for ` = 0 and k = 1 (d = 2, 3),

[44] for ` = 1 and k = 2 (d = 2) and [35] for ` = 2 and k = 3 (d = 2). Consequently, the

two-level stable MHM method using one-element sub-meshes is well-posed for those cases and

satisfies estimate (4.20) (with H = h). The pair of spaces Vh × Qh with polynomial degree

k ≥ ` + d and ` ≥ 2 in 2D and ` ≥ 0 in 3D are inf-sup stable as it includes the (stable)

Scott-Vogelius element (c.f. [64, 67]). Then, the two-level MHM method is also well-posed

in those cases and satisfies (4.20).

5. Numerical benchmarks

In this section, we assess the two-level stabilized MHM method (3.3) using USFEM as

a local solver (Section 4.1), performing convergence tests and verifying that this method is

robust when simulating fluid flows in highly heterogeneous porous media. The validations

focus on two-dimensional problems, but since the theoretical estimates of the MHM also

work for three-dimensional problems, equivalent numerical results are expected in this case

(see the validation for three-dimensional linear elasticity in [47] and for a transport model in

[8], for example). Details of the underlying algorithm and its implementation can be found

in [7, Algorithm 1].

5.1. Convergence studies. We first focus on the Stokes model (θ = 0) with ν = 1. The

domain Ω is ]0, 1[×]0, 1[, the function f is chosen such that the exact solution is given by

u1(x, y) = −u2(x, y) = −256x2(x− 1)2y(y − 1)(2y − 1), p(x, y) = 150
(
x− 1

2

)(
y − 1

2

)
.

The discontinuous version of Λ`
H was validated in [7], and then we assume hereafter that Λ`

H

is the space of piecewise continuous polynomial functions. We set ` = 1 and first validate the

method using USFEM with the elements P3(K)2 × P3(K) in one-element sub-meshes (i.e.,

H = H = h), respectively. We observe convergence rates concerning H in Figure 2 (left)

that perfectly agree with Theorem 4.2. Using the broken norm in the H(div; PH) space,

we also verify in Figure 2 (left) the convergence of the two-level stress variable σH,h :=

ν∇HuH,h − pH,hI, and ‖σ − σH,h‖2
H(div;PH) :=

∑
K∈PH

‖σ − σH,h‖2
H(div;K), which is not

covered in Theorem 4.2. Owing to the regularity of the exact solution, we also observe that

the error in the L2(Ω) norm for the velocity converges of order O(H`+2) as expected. Next, we
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maintain H fixed and refine the face partitions (H → 0). Since the exact solution is regular,

we achieve super-convergence with an extra O(H1/2) rate in agreement with Theorem 4.2

(see Figure 2 (right)).

H3

H2

H

‖σ − σH,h‖0,Ω
‖σ − σH,h‖H(div;PH)

‖u− uH,h‖0,Ω
|u− uH,h|1,PH

‖p− pH,h‖0,Ω
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Figure 2. Convergence curves with respect to H (left) and H (right). Here

ν = 1 and θ = 0.

Table 1 shows convergence when using continuous or piecewise discontinuous space Λ1
H .

To do so, we keep the number of mesh elements constant at the first level (64 elements) and

refine the mesh only at the skeleton. Note that using the piecewise continuous space Λ1
H , we

obtain better error results for a given number of degrees of freedom than the discontinuous

case.

‖p− pH,h‖0,Ω ‖u− uH,h‖0,Ω ‖u− uH,h‖V
dof Λ1

H (cont) Λ1
H (disc) Λ1

H (cont) Λ1
H (disc) Λ1

H (cont) Λ1
H (disc)

545 0.1978e+00 0.1978e+00 0.8244e-02 0.8244e-02 0.2857e+00 0.2857e+00

1377 0.3197e-02 0.1275e-01 0.2673e-04 0.1435e-03 0.5017e-02 0.1667e-01

2209 0.7108e-03 0.3535e-02 0.3203e-05 0.2343e-04 0.1120e-02 0.4614e-02

3873 0.1421e-03 0.8087e-03 0.3322e-06 0.2940e-05 0.2246e-03 0.1053e-02

Table 1. Convergence history with respect to the number of global degrees of freedom.

Next, we are interested in the exact solution of the Brinkman problem (θ = I) using

the same analytical solution above, just changing the definition of the exact pressure by

p(x, y) = (x− y)6 − 1/28. We do not show the convergence in relation to H and H because

this is close to that obtained for the Stokes problem. Instead, we show in Figure 3 the

behavior of the error in relation to the diffusion coefficient ν when it tends to zero. We note

that the error remains limited for a wide range of ν values.
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Figure 3. Error sensitivity with respect to ν on a fixed mesh with 64 elements.

This indicates that the constant in the error estimates in Theorem 4.2 depends only slightly

in terms of physical coefficients, which verifies the robustness of the two-level stabilized MHM

method. The analysis of such property, which appears closely related to the known accuracy

of the USFEM in dealing with vanishing coefficient problems, deserves further theoretical

investigation.

5.2. A highly heterogeneous case. We adopt the following version of the Brinkman model

−µ∆u+ θ u+∇p = 0 in Ω, ∇ · u = 0 in Ω,

with θ := µK−1, where K is the permeability tensor and µ is the fluid viscosity. We

adopt a heterogenous isotropic permeability coefficient K, which is obtained from layer 36 in

SPE10 project [32] (second dataset). The domain Ω :=]0, 1200[×]0, 2200[ and µ = 0.3. The

permeability tensor K and the boundary conditions are depicted in Figure 4.

Figure 4. The statement of the problem (left), the permeability field K in a

logarithmic scale (center), and the coarse mesh with 528 triangle elements

(right).
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Figure 5. Comparison between the isolines of the velocity magnitude from

the reference solution (left) and the MHM solution (center). Profile of the

pressure (right) from the reference (red) and the MHM solutions (blue).

A reference solution is calculated by solving the problem using USFEM on a mesh with

1, 081, 344 elements (1, 625, 283 degrees of freedom) with P1(K)2 × P1(K) element. We

perform the calculations using the MHM method with the continuous space Λ1
H with 10

elements by faces on a coarse structured mesh with 528 elements, as shown in Figure 4

(right). The number of degrees of freedom is 33, 040. The coarse partition faces are not

aligned with changing coefficients, and multiple scales still persist within the elements. The

sub-meshes contain one hundred triangles with P3(K)2 × P3(K) interpolation. We note a

good agreement between the reference and the MHM solution through the isolines of |uH,h|,
and the pressure profiles (see Figure 5) .

6. Conclusion

Hybridization was used to characterize exact velocity and pressure variables in terms

of local and global problems, producing new face-based multiscale numerical methods for

the Stokes/Brinkman model. The Neumann local problems respond to multiscale basis

functions that incorporate physical and geometric aspects of the coarse mesh, while the global

formulation responds to the degrees of freedom. The present work is also the first to prove

that, under conditions of local regularity, the two-level MHM method originally given in [7] is

well-posed and has optimal approximation properties. Such results are previously established

in an abstract way, starting at the continuous level and assuming generic second-level solvers

that satisfy some local properties. Then, by particularizing the second-level solver via a

stabilized and stable finite element method and (dis)continuous polynomial interpolation

for the flow variable (e.g., Lagrange multiplier), we demonstrate that the underlying MHM

methods are high-order super-convergent for pressure and velocity variables and release local

mass conservative numerical velocity fields and numerical flux in local equilibrium with
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external forces. These properties are achieved without post-processing. In the case of a sub-

mesh composed of only one element, we establish relationships between the MHM method

and classical non-conforming methods in the literature. The numerical tests validated the

theoretical results and fully complement and support the extensive numerical validation first

proposed in [7]. The robustness of the proposed MHM methods with respect to physical

coefficients is verified numerically, but its precise demonstration is left for future work.
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[13] I. Babuška and E. Osborn, Generalized finite element methods: Their performance and their relation

to mixed methods, SIAM J. Num. Anal., 20 (1983), pp. 510–536, https://doi.org/10.1137/0720034.

3

[14] G. R. Barrenechea, A. T. A. Gomes, and D. Paredes, A multiscale hybrid method, SIAM Journal

on Scientific Computing, 46 (2024), pp. A1628–A1657, https://doi.org/10.1137/22M1542556. 6

[15] G. R. Barrenechea, F. Jaillet, D. Paredes, and F. Valentin, The multiscale hybrid mixed

method in general polygonal meshes, Numer. Math., 145 (2020), pp. 197–237, https://doi.org/10.

1007/s00211-020-01103-5. 3, 21, 25, 26

[16] G. R. Barrenechea and F. Valentin, An unusual stabilized finite element method for a generalized

Stokes problem, Numer. Math., 92 (2002), pp. 653–677, https://doi.org/10.1007/s002110100371. 3,

5, 19, 20, 23, 24, 26

[17] G. R. Barrenechea and F. Valentin, Consistent local projection stabilized finite element methods,

SIAM J. Numer. Anal., 48 (2010), pp. 1801–1825, https://doi.org/10.1137/090753334. 3, 6

[18] D. Boffi, Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations,

Math. Methods Appl. Sci., 4 (1994), pp. 223–235, https://doi.org/10.1142/S0218202594000133. 27,

28, 29

[19] D. Boffi, Three-dimensional finite element methods for the Stokes problem, SIAM J. Numer. Anal., 34

(1997), pp. 664–670, https://doi.org/10.1137/S0036142994270193. 27, 28, 29

[20] D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, vol. 44 of

Springer Series in Computational Mathematics, Springer, Heidelberg, 2013, https://doi.org/10.

1007/978-3-642-36519-5. 2, 19, 27

[21] W. Boon, D. Glaser, R. Helming, and I. Yotov, Flux-mortar mixed finite element methods on

nonmatching grids, SIAM J. Numer. Anal., 60 (2022), pp. 1193–1225, https://doi.org/10.1137/

20M1361407. 4
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Análisis Numérico y Cálculo Cient́ıfico, GIANuC2, Concepción, Chile, apoza@ucsc.cl

(F.V.) Department of Computational and Mathematical Methods, National Laboratory
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