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The Horton-Strahler number -also called the register function -is a combinatorial tool that quantifies the branching complexity of a rooted tree. We study the law of the Horton-Strahler number of stable Galton-Watson trees conditioned to have size n, including the Catalan trees. While these random variables are known to grow as a multiple of ln n in probability, their fluctuations are not well understood because they are coupled with deterministic oscillations. To rule out the latter, we introduce a real-valued variant of the Horton-Strahler number. We show that a rescaled exponential of this quantity jointly converges in distribution to a measurable function of the scaling limit of the trees, i.e. the stable Lévy tree. We call this limit the Strahler dilation and we discuss its similarities with the Horton-Strahler number.

Introduction

The Horton-Strahler number of a finite rooted tree t is a nonnegative integer S(t) ∈ N that measures its branching complexity. One of its possible formal constructions is the recursive definition below. Definition 1.1 Let t be a finite rooted tree. Its Horton-Strahler number S(t) is defined as follows.

(a) If t reduces to a single node, then S(t) = 0. (b) Otherwise, S(t) is the maximum of the Horton-Strahler numbers of the subtrees t 1 , . . . , t k that are attached to the root, plus one if that maximum is not uniquely achieved. Namely,

(1)

S(t) = max 1≤i≤k S(t i ) + 1 # argmax 1≤i≤k S(t i )≥2
.

□

Alternatively, S(t) + 1 is the number of successive pruning operations (cutting all leaves then merging each line into one edge) necessary to completely erase t, and S(t) is also the height of the largest perfect binary tree embedded into t (see Section 4.1 for details). In this article, we study the fluctuations of the Horton-Strahler number of the so-called α-stable Galton-Watson trees (or GW αtrees for short), with α ∈ (1, 2], conditioned to be large. For all α ∈ (1, 2], the offspring distribution µ α = (µ α (k)) k∈N of a GW α -tree is critical and is characterized by its generating function:

(2) ∀s ∈ [0, 1], φ α (s) :

= k∈N s k µ α (k) = s + 1 α (1 -s) α .
See Section 2.2 for a formal definition. We highlight that when α = 2, a GW 2 -tree is just a critical binary Galton-Watson tree, namely µ 2 (0) = µ 2 (2) = 1 2 . Before discussing our results, let us present a brief history of the Horton-Strahler number and explain why it is relevant to focus on that specific family of critical Galton-Watson trees. Here, all the random variables that we consider are defined on the same probability space (Ω, F , P) whose expectation is denoted by E, and all topological spaces are endowed with their Borel sigma field. For all x ∈ [0, ∞), we denote by ⌊x⌋ ∈ N the integer part of x.

Background. The Horton-Strahler number was introduced in the field of hydrogeology, first by Horton [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF] in 1945 and exactly as Definition 1.1 by Strahler [START_REF] Strahler | Hypsometric (area-altitude) analysis of erosional topography[END_REF] in 1952, to seek quantitative empirical laws about stream systems. Such a system can be seen as a tree whose root corresponds to the basin outlet and whose leaves represent the springs. Many important characteristics of river networks have been linked to the Horton-Strahler number: see Peckham [START_REF] Scott | New Results for Self-Similar Trees with Applications to River Networks[END_REF], Fac-Beneda [START_REF] Fac-Beneda | Fractal structure of the Kashubian hydrographic system[END_REF], Chavan & Srinivas [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF], and Bamufleh et al. [START_REF] Bamufleh | Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions[END_REF] among others. This number appears independently in other scientific disciplines such as anatomy, botany, molecular biology, physics, social network analysis, etc. In computer science, it is sometimes called the register function because the minimum number of registers needed to evaluate an expression tree is equal to its Horton-Strahler number. We refer to Viennot [START_REF] Viennot | Trees. In Mots, mélanges offert à M.P. Schützenberger[END_REF] for an overview of those various applications.

The Horton-Strahler number also shows a wide range of occurrences in mathematics. It can be encountered in mathematical logic, formal language theory, algebra, combinatorics, topology, approximation theory, and more. See Esparza, Luttenberger & Schlund [START_REF] Esparza | History of Strahler Numbers -with a Preface[END_REF] for an overview of those connections. In the probability area, Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and Kemp [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF] study the Horton-Strahler number of a uniform rooted ordered binary tree T n with n leaves (a uniform n-Catalan tree, which is also a GW 2 -tree conditioned to have n leaves) and they prove that as n → ∞, where log b x = ln x/ ln b stands for the logarithm of x to the base b, and D is a 1-periodic continuous function. Moreover, Devroye & Kruszewski [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF] showed that S(T n ) is uniformly concentrated around its expected value because (4) ∀m ≥ 0, sup

n≥0 P |S(T n ) -E[S(T n )]| ≥ m ≤ 4 1-m .
Drmota & Prodinger [START_REF] Drmota | The Register Function for T-Ary Trees[END_REF] extended [START_REF] Abraham | Exit times for an increasing Lévy tree-valued process[END_REF] and ( 4) to k-ary trees. More recently, Brandenberger, Devroye & Reddad [START_REF] Brandenberger | The Horton-Strahler number of conditioned Galton-Watson trees[END_REF] proved that the Horton-Strahler number of a critical Galton-Watson tree with finite variance offspring distribution conditioned to have n vertices always grows as log 4 n in probability, thus generalizing all previously obtained results on first-behavior. In a companion paper [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF], we further treat the cases where the offspring distribution belongs to the domain of attraction of a stable law (and thus may have infinite variance).

In a parallel direction, Burd, Waymire & Winn [START_REF] Burd | A Self-Similar Invariance of Critical Binary Galton-Watson Trees[END_REF] analyze the invariance and attraction properties of critical Galton-Watson trees with finite variance offspring distribution under the Horton pruning operation -erasing leaves and their parental edges, then removing vertices with a single child -which exactly decrements the Horton-Strahler number. They notably prove that GW 2 -trees are invariant under Horton pruning and that the law of their Horton-Strahler number is geometric with parameter 1 2 . Kovchegov & Zaliapin [START_REF] Kovchegov | Random self-similar trees: A mathematical theory of Horton laws[END_REF][START_REF] Kovchegov | Invariance and attraction properties of Galton-Watson trees[END_REF] broadened this study to the infinite variance case: they proved that a critical Galton-Watson tree whose offspring distribution µ is in the domain of attraction of an α-stable law is invariant by Horton pruning if and only if µ = µ α as given by ( 2), as well as the following (see [START_REF] Kovchegov | Invariance and attraction properties of Galton-Watson trees[END_REF]Lemma 10]). [START_REF] Addario-Berry | The scaling limit of the minimum spanning tree of the complete graph[END_REF] If τ is a GW α -tree with α ∈ (1, 2], then for all n ∈ N, P(S(τ

) ≥ n) = (1 -1 α ) n .
Moreover, GW α -trees are invariant attractors for a large class of other tree reductions: see Duquesne & Winkel [START_REF] Duquesne | Hereditary tree growth and Lévy forests[END_REF] and Kovchegov, Xu & Zaliapin [START_REF] Kovchegov | Invariant Galton-Watson trees: metric properties and attraction with respect to generalized dynamical pruning[END_REF]. The stable Galton-Watson trees had already appeared in numerous works such as Zolotarev [START_REF] Vladimir | More exact statements of several theorems in the theory of branching processes[END_REF], Neveu [START_REF] Neveu | Erasing a branching tree[END_REF], Le Jan [START_REF] Le | Superprocesses and projective limits of branching Markov process[END_REF], or Abraham & Delmas [START_REF] Abraham | β-coalescents and stable Galton-Watson trees[END_REF]. Indeed, they play the role of reference objects among all critical Galton-Watson trees because they are the finite-dimensional marginals of their universal scaling limits, as known as the stable Lévy trees. We refer to Duquesne & Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] and to Marchal [START_REF] Marchal | A note on the fragmentation of a stable tree[END_REF] for more details.

Let us come back to Catalan trees T n . The estimate [START_REF] Abraham | A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces[END_REF] ensures that a natural centering suffices to gain tightness on their Horton-Strahler numbers. However, the asymptotic development [START_REF] Abraham | Exit times for an increasing Lévy tree-valued process[END_REF] shows that S(T n ) is subject to deterministic oscillations. Worse, these variations inconvenience real-world applications, where characteristics derived from the Horton-Strahler number show great discrepancies due to the threshold selected for the extraction of stream networks: see e.g. Moussa & Bocquillon [START_REF] Moussa | Fractal analyses of tree-like channel networks from digital elevation model data[END_REF] or Chavan & Srinivas [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF]. This could then impact the chosen hydrologic response, as discussed by Bamufleh et al. [START_REF] Bamufleh | Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions[END_REF]. We further argue that one cannot hope to find a nondegenerate scaling limit for S(T n ). We heuristically discuss why on a simpler but related model. Heuristic discussion. We construct a random binary tree T ′ n by grafting n + 1 independent GW 2trees on the same spine of length n as illustrated by Figure 1. In other words, T ′ 0 is a GW 2 -tree, and T ′ n+1 is composed of T ′ n and an independent GW 2 -tree attached to the root. The tree T ′ n is a truncated version of Kesten's limit tree [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF] that may be informally seen as a critical binary Galton-Watson tree conditioned to survive: see Lyons, Pemantle & Peres [START_REF] Lyons | Conceptual Proofs of L Log L Criteria for Mean Behavior of Branching Processes[END_REF], Aldous & Pitman [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF], and Duquesne [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF] for more information. The trees T ′ n and Kesten's limit tree naturally appear during the study of local convergences of GW 2 -trees conditioned to be large, such as Catalan trees. We refer to Abraham & Delmas [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] for several results of this type. We give ourselves a sequence (G i ) i≥0 of independent geometric random variables with parameter 1 2 . From [START_REF] Addario-Berry | The scaling limit of the minimum spanning tree of the complete graph[END_REF], we observe that S(T ′ n ) has the same law as S n , where the sequence (S i ) is defined by

S 0 = G 0 and S i+1 = max(G i+1 , S i ) + 1 {G i+1 =S i }
for all i ≥ 0. It is then easy to convince oneself that there is an event A n such that

S n = M n + 1 An where M n = max 0≤i≤n G i . un u n-1 u 2 u 1 GW 2 GW 2 GW 2 GW 2 GW 2
Figure 1: The random binary tree T ′ n .

Let us set aside the event A n for now because it is quite difficult to precisely describe: for example, it is realized when (G i ) 0≤i≤n = (1, 1, 2, 3, . . . , n) but not when (G i ) 0≤i≤n = (1, 2, 1, 3, . . . , n). Nonetheless, the sole observation of M n already unveils an issue. Indeed, there are no sequences (a n ) and (b n ) such that (M n -b n )/a n converges in distribution to a nondegenerate random variable. In statistics, this is a classic application of the extreme value theorem, see e.g. Arnold, Balakrishnan & Nagaraja [9, page 217]. We also refer to Eisenberg [START_REF] Eisenberg | On the expectation of the maximum of IID geometric random variables[END_REF] for a detailed study of the distribution of M n . It is important to note that this situation is due to the discrete setting. Indeed, if (E i ) i≥0 is a sequence of independent exponential random variables with mean (ln 2) -1 , so that the integer part ⌊E i ⌋ of E i has the same distribution as G i , then an elementary calculation shows that ∀x ∈ R, P max

0≤i≤n E i -log 2 n ≤ x -→ exp(-2 -x ),
where the limit is the cumulative distribution function of the Gumbel law with location 0 and with scale (ln 2) -1 . Other curiosities happen for geometric order statistics which further complexify the behavior of S n . For example, Bruss & O'Cinneide [START_REF] Bruss | On the Maximum and Its Uniqueness for Geometric Random Samples[END_REF] proved that the probability that the maximum of (G i ) 0≤i≤n is uniquely achieved does not converge.

Strategy and main results. Those observations suggest to slightly modify the Horton-Strahler number into a continuous quantity, more likely to behave regularly. Since one cannot expect two real numbers to be exactly equal, the recursive formula [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF] is not suitable in this regard. Nevertheless, we see, keeping the notations of Definition 1.1, that [START_REF] Aldous | The Continuum Random Tree I[END_REF] S(t) = max 1≤i,j≤k max S(t i ), S(t j ), 1 {i̸ =j} + min(S(t i ), S(t j )) , by considering the two maximal values among S(t 1 ), . . . , S(t k ). The formula [START_REF] Aldous | The Continuum Random Tree I[END_REF] stays workable when the S(t i ) are real numbers, so it only remains to redefine the Horton-Strahler number of a tree reduced to a single node. We do so by endowing the leaves with [0, 1)-valued weights.

Definition 1.2 (Weighted Horton-Strahler number) A weighted tree t is a finite rooted tree whose each leaf v is equipped with a weight w v ∈ [0, 1). Its weighted Horton-Strahler number S(t) ∈ [0, ∞) is defined recursively as follows.

(a) If t consists of a single node with weight w root , then S(t) = w root . (b) Otherwise, S(t) is derived from the weighted Horton-Strahler numbers of the weighted subtrees t 1 , . . . , t k that are attached to the root according to the expression [START_REF] Aldous | The Continuum Random Tree I[END_REF]. Namely,

S(t) = max

1≤i,j≤k max S(t i ), S(t j ), 1 {i̸ =j} + min(S(t i ), S(t j )) .

□

See Figure 2 for an example and Section 2.2 for a more precise definition of weighted trees. The requirement for the weights to be in [0, 1) entails the following relation between the classic and the weighted Horton-Strahler numbers (see Proposition 4.3 for details): [START_REF] Aldous | The Continuum Random Tree III[END_REF] for all weighted tree t, ⌊S(t)⌋ = S(t), where t is the underlying tree of t.

Therefore, one does not lose any information about S(t) by working solely with the weighted Horton-Strahler number. However, we now need to specify the weights that we put on the leaves of stable Galton-Watson trees. In all this article, to lighten the notations, we fix and denote [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF] α ∈ (1, 2], β = 1 α-1 , γ = ln α α-1

and δ = α α-1

α-1 = e γ(α-1) ∈ [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Abraham | β-coalescents and stable Galton-Watson trees[END_REF].

For all a > 0, we say a random variable W ∈ [0, 1) has distribution FExp(a) when [START_REF] Barry | A First Course in Order Statistics[END_REF] ∀r ∈ [0, 1], P(W ≤ r) = 1 -e -ar 1 -e -a .

We point out that if E is an exponential random variable with mean 1 a then the fractional part E -⌊E⌋ of E has law FExp(a). We say a random weighted tree τ is an α-stable Galton-Watson weighted tree (or a GW α -weighted for short) when it is a GW α -tree τ whose leaves are endowed with independent weights with law FExp(γ) (more formally, see Definition 2.15). This choice of weights is justified by the following assertion that we prove in Proposition 4.5. [START_REF] Bamufleh | Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions[END_REF] If τ is a GW α -weighted tree, then for all x ∈ [0, ∞), P(S(τ ) ≥ x) = e -γx .

Note that [START_REF] Bamufleh | Developing a geomorphological instantaneous unit hydrograph (GIUH) using equivalent Horton-Strahler ratios for flash flood predictions in arid regions[END_REF] readily implies [START_REF] Addario-Berry | The scaling limit of the minimum spanning tree of the complete graph[END_REF]. The law of S(τ ) is absolutely continuous but, for all non-integer x ≥ 0, we can define the law of τ under P(dτ | S(τ ) = x) by setting

P(τ = t | S(τ ) = x) = lim ε→0 + P τ = t |S(τ ) -x| < ε
for all tree t (see Definition 4.7 and Proposition 4.6 for details and a proof).

Instead of studying the weighted Horton-Strahler number of GW α -trees conditioned to have a large number of vertices, we begin by looking for a scaling limit for τ under P(dτ | S(τ ) = x) as x tends to ∞. Indeed, this problem is easier to tackle thanks to the so-called r-weighted Horton pruning operation that we introduce in Section 5: erasing the parental edges of leaves with weights smaller than some threshold r ∈ [0, 1], then removing vertices with a single child. When r = 1, we retrieve the Horton pruning mentioned above. This operation subtracts r from the weighted Horton-Strahler number, and GW α -weighted trees are almost invariant under weighted Horton pruning (see Theorem 5.4 for a precise statement). We then deduce that x → P(dτ | S(τ ) = x) is Cauchy, which yields our first main result. The rooted Gromov-Hausdorff-Prokhorov distance, which will be recalled in Section 2.1, gives a sense to convergences of rooted measured compact metric spaces.

Theorem 1.3 Let τ be a GW α -weighted tree. The tree τ is endowed with its graph distance denoted by d gr , its root denoted by ∅, and its counting measure u∈τ δ u . There exists a nondegenerate random compact metric space (T , d) endowed with a distinguished point ρ and a finite Borel measure µ such that the convergence in distribution τ, e -γ(α-1)x d gr , ∅, e -γαx Before describing the law of this limit space or discussing the fluctuations of the weighted Horton-Strahler numbers of GW α -trees conditioned on having total progeny n, we need to recall their own scaling limit. Let (X n ) n∈N be a (left-continuous) random walk started at X 0 = 0 and with jump law given by P(X 1 = k) = µ α (k + 1) for all integers k ≥ -1. Using (2) and the continuity theorem for (bilateral) Laplace transform (see e.g. [60, Appendix A]), one can check that (11)

1 an X n d -→ X 1 , where a n = α -1/α n 1/α and E [exp (-λX 1 )] = exp(λ α )
for all n ∈ N and λ ∈ (0, ∞). Hence, µ α belongs to the domain of attraction of a stable law of index α. Note that if α ∈ (1, 2) then ⌊α⌋ = 1, and if α = 2 then ⌊α⌋ = 2. Then, keeping the same notations as in Theorem 1.3, a theorem of Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] yields that the convergence in distribution [START_REF] Billingsley | Convergence of probability measures[END_REF] τ, an n d gr , ∅, 1 n u∈τ

δ u under P( • | #τ = n + 1) d ---------→ n→∞,n∈⌊α⌋N (T nr , d nr , ρ nr , µ nr )
holds for the rooted Gromov-Hausdorff-Prokhorov distance. Here, (T nr , d nr , ρ nr , µ nr ) stands for the α-stable tree describing the genealogical structure of continuous state-branching process with branching mechanism λ → λ α , following the convention of Duquesne & Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] (see Section 2.5 for a precise definition). When α = 2, T nr corresponds to the celebrated Brownian tree of Aldous [START_REF] Aldous | The Continuum Random Tree I[END_REF][START_REF] Aldous | The Continuum Random Tree III[END_REF]. A little more precisely, if (T e , d e , ρ e , µ e ) stands for the real tree coded by the standard Brownian excursion e in the sense of Le Gall [34, Definition 2.2] (see also Section 2.3), then (T e , √ 2 d e , ρ e , µ e ) is a 2-stable tree.

The two limit spaces T and T nr in Theorem 1.3 and ( 12) are real trees, namely all pairs of their points are joined by a unique arc that turns out to be a geodesic (see Definition 2.17 for details). We denote by T m R the space of (equivalence classes of) rooted (finitely) measured compact real trees, endowed with the rooted Gromov-Hausdorff-Prokhorov distance (see Sections 2.1 and 2.3 for more precision). In light of Theorem 1.3 and of the convergence [START_REF] Billingsley | Convergence of probability measures[END_REF], it seems reasonable to expect that some functional s plays the role of a continuum analog of the weighted Horton-Strahler number, so that s(T ) is constant. We indeed explicitly introduce such an object in Definition 8.3, that we denote by s δ : T m R -→ [0, ∞] and that we call the Strahler dilation with base δ. We cannot suitably adapt the discrete Definition 1.2 or the combinatorial approach by Horton pruning to the continuum setting, but Definition 8.3 is inspired by the definition of the Horton-Strahler number as the maximal height of an embedded perfect binary tree. The proof of (ii) relies on a self-similar decomposition of T that highlights this perfect binary tree. We formulate it later as Theorem 7.3. Thanks to the Strahler dilation, we can describe the law of T in terms of the α-stable tree T nr by the following result.

Theorem 1.5 Let T be the limit tree in Theorem 1.3, and let (T nr , d nr , ρ nr , µ nr ) be the α-stable tree as in [START_REF] Billingsley | Convergence of probability measures[END_REF]. Let s δ be the Strahler dilation with base δ as in Theorem 1.4. Then for all bounded and measurable function F :

T m R -→ R, it holds that (13) E F (T ) = α β Γ(1 -1 α ) E F T nr , s δ (T nr ) -1 d nr , ρ nr , α -β s δ (T nr ) -αβ µ nr s δ (T nr ) β .
Informally, the Strahler dilation is to T what the total mass is to T nr . We precise this relation and we give other formulations of ( 13) later in Theorem 9.1. Using Theorem 1.4, the relation ( 13) follows from a Bayesian argument linking ( 12) and Theorem 1.3. Moreover, the same method yields that if τ is a GW α -weighted tree, then the scaling limit of δ S(τ ) under P( • | #τ ≥ n) is equal to the Strahler dilation with base δ of the scaling limit of the tree τ . The same proof does not hold to study the local conditioning {#τ = n} that becomes degenerate at the limit. To avoid this issue, we take advantage of a monotony property of the Horton-Strahler number by coupling a GW α -weighted tree conditioned to have exactly n leaves and a GW α -weighted tree conditioned to have at least n/2 leaves, such that one is always embedded into the other. This coupling relies on Marchal's algorithm [START_REF] Marchal | A note on the fragmentation of a stable tree[END_REF] which yields a sequence of nested GW α -trees. We then reach our goal.

Theorem 1.6 We keep the notations of Theorem 1.3. Let (a n ) be as in [START_REF] Bertoin | Lévy Processes[END_REF] and let T nr be the α-stable tree as in [START_REF] Billingsley | Convergence of probability measures[END_REF]. Let s δ be the Strahler dilation with base δ as in Theorem 1.4. Jointly with [START_REF] Billingsley | Convergence of probability measures[END_REF], the following convergence holds in distribution on (0, ∞):

a n n δ S(τ ) under P( • | #τ = n + 1) d ---------→ n→∞,n∈⌊α⌋N s δ (T nr ).
We can reformulate this result by stating that the following convergence in distribution ( 14)

S(τ ) -α-1 α log δ n -1 α log δ α under P( • | #τ = n + 1) d ---------→ n→∞,n∈⌊α⌋N log δ s δ (T nr )
holds on R. Thanks to [START_REF] Aldous | The Continuum Random Tree III[END_REF], this yields the following convergence in probability

αγ ln n S(τ ) under P( • | #τ = n + 1) P ---------→ n→∞,n∈⌊α⌋N 1,
which is [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF]Theorem 1.2] in the specific case where µ = µ α . Furthermore, the variations of the fractional part of α-1 α log δ n induce the same periodic phenomenon observed in the asymptotic estimate (3) proved by Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and Kemp [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF].

Theorem 1.6 shows that it is possible to asymptotically recover the weighted Horton-Strahler number from the sole limit metric structure. This is noteworthy because the former depends on the weights of the leaves, which are independent of the tree. While their contribution is limited to the fractional part, this part is of constant-order and is thus non-negligible within the convergence [START_REF] Brandenberger | The Horton-Strahler number of conditioned Galton-Watson trees[END_REF]. The disappearance of this dependence at the limit is explained by the specific choice of the law of weights, introduced to remove the arithmetic interference in the analysis of the classic Horton-Strahler number, which is thus an intrinsic aspect of the stable Galton-Watson tree. Similarly, the index s δ (T nr ) is a new metric characteristic of the stable tree, whose properties could provide information about its geometry.

Our last contribution specifically focuses on α = 2, namely the binary case. In this setting, Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and Kemp [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF] have explicitly derived the law of the Horton-Strahler number of Catalan trees. We adapt their computations to determine the law of the Strahler dilation of the Brownian tree. Our calculation then unveils an unexpected identity.

Theorem 1.7 If (T e , d e , ρ e , µ e ) is the Brownian tree, then its double Strahler dilation 2 s 2 (T e )

with base 2 has the same law as its height h(T e ) = sup σ∈Te d e (ρ e , σ).

Organisation of paper. In Section 2, we precisely set our framework and formally define our objects of interest. In Section 3, we adapt already known results to our setting and we derive classic estimates. We define the weighted Horton-Strahler number and we study its law for stable Galton-Watson weighted trees in Section 4. Section 5 is devoted to the study of weighted Horton pruning. In Section 6, we prove Theorem 1.3. A first description of the limit tree in Theorem 1.3 is given by Section 7. In Section 8, we construct the Strahler dilation to show Theorem 1.4. We prove Theorems 1.5 and 1.6 in Section 9. Finally, Section 10 consists of the proof of Theorem 1.7. Throughout all this work, we will write the set of nonnegative real numbers, the set of nonnegative integers, and the set of positive integers respectively as

R + = [0, ∞), N = {0, 1, 2, 3, . . .}, and N * = {1, 2, 3, . . .}.

Framework, notations, and definitions

In this section, which contains no new results, we set the notations and present the basic objects we will encounter and use throughout the paper.

Topological framework

Throughout this work, we study convergences so let us first present the topologies that we use.

Càdlàg functions with compact support. We write R + = [0, ∞) and we denote by D(R + , R) the space of all right-continuous with left limits (càdlàg for short) functions from R + to R. The space D(R + , R) is equipped with the Skorokhod (J1) topology which makes it Polish, namely separable and completely metrizable. We refer to Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF]Chapter 3] and Jacod & Shiryanev [36, Chapter VI] for background. Let f ∈ D(R + , R), we define its lifetime ζ(f ) and its η-modulus of continuity ω η (f ) as ( 15)

ζ(f ) = sup {0} ∪ {s ≥ 0 : f (s) ̸ = 0} and ω η (f ) = sup s 1 ,s 2 ≥0 |s 1 -s 2 |≤η |f (s 1 ) -f (s 2 )|
for all η > 0. We say that f has compact support when ζ(f ) < ∞. Since we are also interested in the convergences of lifetimes of càdlàg functions with compact support, it will be useful to work on the following subspaces of the product space D(R + , R) × R + :

D K = {(f, ℓ) : ℓ ∈ R + and f : R + -→ R càdlàg such that ζ(f ) ≤ ℓ} , C K = {(f, ℓ) : ℓ ∈ R + and f : R + -→ R continuous such that ζ(f ) ≤ ℓ} .
Next, we define the uniform distance d ∞ and the Skorokhod distance d S on D K by setting

d ∞ (f 1 , ℓ 1 ), (f 2 , ℓ 2 ) = |ℓ 1 -ℓ 2 | + sup s≥0 |f 1 (s) -f 2 (s)|, (16) 
d S (f 1 , ℓ 1 ), (f 2 , ℓ 2 ) = |ℓ 1 -ℓ 2 | + inf ψ sup s≥0 |ψ(s) -s| + |f 1 (ψ(s)) -f 2 (s)| (17)
where the infimum is taken over all increasing and bijective functions ψ : R + -→ R + , for all (f 1 , ℓ 1 ), (f 2 , ℓ 2 ) ∈ D K . The proposition below gathers useful properties of C K and D K .

Proposition 2.1 The following holds true.

(i) D K is a closed subset of D(R + , R) × R + , and C K is a closed subset of D K .
(ii) The spaces C K and D K are Polish.

(iii) The topology of D K is induced by the distance d S .

(iv) The distances d ∞ and d S are topologically equivalent on C K .

Proof. Let (f n , ℓ) ∈ D K such that f n -→ f for the Skorokhod topology and ℓ n -→ ℓ. If ℓ < s then f n (s) = f n (s-) = 0 for all n large enough, so f (s) = 0 by [36, Proposition 2.1, Chapter VI]. Thus, ζ(f ) ≤ ℓ < ∞. This same proposition entails that if the f n are continuous then f (s) = f (s-) for all s ∈ R + . This proves (i). Finite products and closed subsets of Polish spaces are Polish so (ii) follows from (i). The point (iii) is a consequence of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]Theorem 1.14 

(f n ) -→ ζ(f ). □
We now provide a straightforward adaptation of the classic criterion of tightness for random continuous functions, see [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 7.3].

Proposition 2.3 A sequence (ν n ) of distributions on C K is tight if and only if it holds 0 = lim m→∞ lim sup n→∞ ν n ({(f, ℓ) ∈ C K : |f (0)| ≥ m}) , (a) 0 = lim m→∞ lim sup n→∞ ν n ({(f, ℓ) ∈ C K : ℓ ≥ m}) , (b) 0 = lim η→0 + lim sup n→∞ ν n ({(f, ℓ) ∈ C K : ω η (f ) ≥ ε}) for all ε > 0. (c)
Proof. Let L ∈ R + , let C L be the space of continuous functions from [0, L] to R endowed with the uniform topology, and let A be a compact subset of C L . The points (i) and (iv) of Proposition 2.1 yield that A L = {(f, ℓ) : ℓ ≤ L, f ∈ A} is a compact subset of C K . Conversely, we see that any compact subset of C K is contained in some A L . We end the proof with [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 7.3]. ■ Furthermore, we denote by ρ S the Prokhorov metric associated with d S on the space P(D K ) of all Borel probability measures on D K . Namely, for all ν 1 , ν 2 ∈ P(D K ), we define

(18) ρ S (ν 1 , ν 2 ) = inf{ε > 0 : ∀A ⊂ D K Borel subset, ν 1 (A) ≤ ν 2 (A ε ) + ε} where A ε = {x ∈ D K : ∃a ∈ A, d S (x, a) < ε}.
The space D K is Polish so [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 6.8] gives us the following result.

Proposition 2.4 The space P(D K ) equipped with the topology of weak convergence is Polish. This topology is induced ρ S , which is indeed a distance on P(D K ).

Remark 2.5 While D K is Polish, we stress that d S is not complete. See [START_REF] Billingsley | Convergence of probability measures[END_REF]Example 12.2]. In particular, ρ S is not complete either (consider e.g. a sequence of Dirac probability measures). □ Rooted Gromov-Hausdorff-Prokhorov distance. We define almost the same distances and we follow the same presentation as in [START_REF] Addario-Berry | The scaling limit of the minimum spanning tree of the complete graph[END_REF]Section 2.1]. Let n ∈ N with n ≥ 1. We say that (E, d, a) is a n-pointed compact metric space when (E, d) is a compact metric space endowed with a sequence of n distinguished points a = (a 1 , . . . , a n ) of E. A n-pointed measured compact metric space (E, d, a, µ) is a n-pointed compact metric space (E, d, a) equipped with a finite Borel measure µ on E. We say two n-pointed compact metric spaces (E, d, a) and (E ′ , d ′ , a ′ ) are n-pointed-isometric when there exists a bijective isometry ϕ from E to E ′ such that ϕ(a i ) = a ′ i for all 1 ≤ i ≤ n. Moreover, two n-pointed measured compact metric spaces (E, d, a, µ) and (E ′ , d ′ , a ′ , µ ′ ) are said to be n-GHP-isometric when there exists a bijective isometry ϕ from E to E ′ such that ϕ(a i ) = a ′ i for all 1 ≤ i ≤ n and such that the image measure of µ by ϕ is equal to µ ′ . We denote by K n the space of n-pointed-isometry classes of n-pointed compact metric spaces, and by K m n the space of n-GHP-isometry classes of n-pointed measured compact metric spaces. Notation 2.6 When no confusion is possible, we will simply denote such a n-pointed (measured) compact metric space (E, d, a, µ), as well as its class in K n or K m n , by its underlying space E. □

A n-pointed correspondence between E and E ′ is a subset R of E × E ′ with (a i , a ′ i ) ∈ R for all 1 ≤ i ≤ n and such that for all x ∈ E and y ′ ∈ E ′ , there are x ′ ∈ E ′ and y ∈ E such that (x, x ′ ) and (y, y ′ ) are in R. The distortion of a n-pointed correspondence R is defined by ( 19)

dis(R) = sup d(x, y) -d ′ (x ′ , y ′ ) : (x, x ′ ) ∈ R and (y, y ′ ) ∈ R .
The n-pointed Gromov-Hausdorff distance between E and E ′ is then expressed by the formula (20)

d n-GH (E, E ′ ) = 1 2 inf R dis(R),
where the infimum is taken over all n-pointed correspondences R between E and E ′ . We may also restrict the infimum to compact n-pointed correspondences without modifying the value. Indeed, the closure of a n-pointed correspondence is a compact n-pointed correspondence that has the same distortion because E × E ′ is compact. For any finite Borel measure ν on E × E ′ , the discrepancy of ν with respect to µ and µ ′ is defined by

Dsp(ν ; µ, µ ′ ) = sup B⊂E Borel subset ν(B × E ′ ) -µ(B) + sup B ′ ⊂E ′ Borel subset ν(E × B ′ ) -µ ′ (B ′ ) .
The n-pointed Gromov-Hausdorff-Prokhorov distance between E and E ′ is then expressed as [START_REF] Drmota | The Register Function for T-Ary Trees[END_REF] d

n-GHP (E, E ′ ) = inf R,ν max 1 2 dis(R) , Dsp(ν ; µ, µ ′ ) + ν (E × E ′ )\R ,
where the infimum is taken over all finite Borel measures ν on E × E ′ and all compact n-pointed correspondences R between E and E ′ . The objects d n-GH and d n-GHP are only pseudo-distances but d n-GH (E, E ′ ) = 0 if and only if E and E ′ are n-pointed-isometric, and d n-GHP (E, E ′ ) = 0 if and only if E and E ′ are n-GHP-isometric. Hence, they respectively define genuine distances on K n and K m n . Furthermore, the metric spaces (K n , d n-GH ) and (K m n , d n-GHP ) are separable and complete. We refer to Abraham, Delmas & Hoscheit [4, Theorem 2.5] for proof. While they define the distances in terms of isometric embeddings, the expressions [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF] and [START_REF] Drmota | The Register Function for T-Ary Trees[END_REF] in terms of correspondences give the same objects. See e.g. Khezeli [43,Theorem 3.5].

Notation 2.7 When n = 1, we shall omit it in the notations and replace the adjective pointed by rooted. The unique distinguished point shall be called the root of the space. □

A rooted measured compact metric space is also a rooted compact metric space by forgetting its measure. This is formalized by the continuous surjection

(E, d, ρ, µ) ∈ K m -→ (E, d, ρ) ∈ K.
Moreover, endowing a rooted compact metric space with its null measure describes an isometric embedding of K into K m . Let (E, d, ρ, µ) be a rooted measured compact metric space and let λ ≥ 0. We will rescale rooted measured compact metric spaces in various ways by setting

(22) λ • (E, d, ρ, µ) = (E, λd, ρ, µ) and λ ⊙ α (E, d, ρ, µ) = (E, λd, ρ, λ α/(α-1) µ)
for all α ∈ (1, 2]. These operations are continuous from K m to itself and they coincide into one continuous map from K to itself. Furthermore, we define the height h(E) and the mass m(E) of a rooted (measured) compact metric space respectively as The functions h : K -→ [0, ∞) and m : K m -→ [0, ∞) are Lipschitz and thus continuous.

Discrete trees as sets of words

Words and trees. We recall Ulam's formalism of trees. Let N * = {1, 2, 3, . . .} be the set of positive integers and let U be the set of finite words

(24) U = n∈N (N * ) n with the convention (N * ) 0 = {∅}.
The lexicographic order, denoted by ≤, is a total order on U.

For u = (u 1 , . . . , u n ) ∈ U and v = (v 1 , . . . , v m ) ∈ U, the notation u * v = (u 1 , . . . , u n , v 1 , .
. . , v m ) ∈ U stands for the concatenation of u and v. We denote by |u| = n the height of u, and if n ≥ 1 then we denote by ←u = (u 1 , . . . , u n-1 ) the parent of u. We then say that u is a child of v when ←u = v. The genealogical order ⪯ is a partial order on U defined by u ⪯ v ⇐⇒ ∃u ′ ∈ U, v = u * u ′ . We say that u is an ancestor of v when u ⪯ v. When u ⪯ v but u ̸ = v, we may write u ≺ v. Observe that for all u ∈ U, the set {v ∈ U : v ⪯ u} of ancestors of u is totally ordered by ⪯. Eventually, we denote by u ∧ v ∈ U the most recent common ancestor of u and v, that is their common ancestor with maximal height.

Notation 2.8 Although

← -∅ is not defined, we write that ← -∅ < u and ← -∅ ≺ u for all u ∈ U. □ Definition 2.9 A subset t of U is a tree when the following is verified:

(a) t is finite and ∅ ∈ t,

(b) for all u ∈ t, if u ̸ = ∅ then ← - u ∈ t, (c 
) for all u ∈ t, there exists an integer

k u (t) ∈ N such that u * (i) ∈ t ⇐⇒ 1 ≤ i ≤ k u (t).
We denote by T the (countable) space of all trees, endowed with the discrete topology. □

Several times in this work, we will need to embed trees into others, in the following sense.

Definition 2.10 Let t be a tree and let A ⊂ U. Let ψ : t -→ A be an injective map.

(i) We say that ψ is an embedding when ψ(u

∧ v) = ψ(u) ∧ ψ(v) for all u, v ∈ t.
(ii) We say that ψ is increasing when u < v =⇒ ψ(u) < ψ(v) for all u, v ∈ t.

If ψ is an embedding, then we set ψ(

← - ∅ ) = ← - ∅ in accordance with Notation 2.8. □ Remark 2.11 Let A ⊂ U. If A satisfies (a)
and (b) in Definition 2.9, then there exist a unique tree t and a unique increasing embedding ψ : t -→ A such that ψ(t) = A. □

Let t be a tree. The number #t of its vertices is also called the size of t. We use the following notations for the height of t and its set of leaves:

(25) |t| = max u∈t |u| and ∂t = {u ∈ t : k u (t) = 0},
and #∂t stands for the number of leaves of t. For all v ∈ t, we define the subtree of t stemming from v as

θ v t = {u ∈ U : v * u ∈ t}.
Observe that θ v t is also a tree. We list all the elements of t in the lexicographic order as

(26) ∅ = u 0 (t) < . . . < u #t-1 (t),
and we call the finite sequence of words u(t) = (u i (t) ; 0 ≤ i ≤ #t -1) the depth-first exploration of t. We denote by H(t) : s ∈ [0, ∞) -→ H s (t) and we call the height function of t the affine-byparts and continuous function defined by 

(27) H s (t) = H i (t) + (s -i)(H i+1 (t) -H i (t)) and H i (t) = |u i (t)| if 0 ≤ i ≤ #t -1, 0 if i ≥ #t
φ ′ α (s) = 1 -(1 -s) α-1 and φ (m) α (s) = µ α (m) • m!(1 -s) α-m
, for all s ∈ [0, 1) and m ≥ 2. By induction, the identities (2) and ( 29) yield the expressions [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] µ α (0

) = 1 α , µ α (1) = 0, µ α (2) = α-1 2 , µ α (k) = 1 k! k-1 i=1 |α -i| = 1 {α<2} (α-1)Γ(k-α) Γ(2-α)k!
for all k ≥ 3, where Γ stands for the usual Gamma function. In particular, we recover that µ 2 is the critical binary offspring distribution. Let µ = (µ(k)) k∈N be another probability measure on N. We say that µ is critical and non-trivial when We readily observe from ( 29) and (30) that µ α is critical and non-trivial.

Definition 2.12 Let µ be a probability measure on N which verifies [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF]. A Galton-Watson tree with offspring law µ (or GW(µ)-tree for short) is a random (finite) tree τ that satisfies the following.

(a) The law of k ∅ (τ ) is µ. (b) For all k ∈ N * such that µ(k) > 0, the random trees θ (1) τ, . . . , θ (k) τ under P( • | k ∅ (τ ) = k)
are independent with the same law as τ under P. When µ = µ α as in (2), we call τ an α-stable Galton-Watson tree (or a GW α -tree for short). □

It is well-known that the assumption [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] ensures that a random (finite) tree described by Definition 2.12 indeed exists. Moreover, see e.g Le Gall [34, Propositions 1.4, 1.5], if τ is a GW(µ)-tree then

(32) ∀t ∈ T, P(τ = t) = u∈t µ k u (t) ,
and there exists a sequence (ξ i ) i∈N of independent random variables distributed as k ∅ (τ ) such that [START_REF] Gall | Branching processes in levy processes: The exploration process[END_REF] 

k u i (τ ) (τ ) ; 0 ≤ i ≤ #τ -1 = ξ i ; 0 ≤ i ≤ #τ -1 almost surely.
Trees with edge lengths. We say that T = (t, (l u ) u∈t ) is a tree with edge lengths when t is a tree, as in Definition 2.9, and l u ∈ (0, ∞) for all u ∈ t. We denote by T the space of all trees with edge lengths and we endow it with the product topology, meaning that (t n , (l n u ) u∈t n ) -→ (t, (l u ) u∈t ) if and only if there is n 0 ≥ 0 such that t n = t for all n ≥ n 0 and l n u -→ l u for all u ∈ t. This makes T a Polish space. Recall from (25) that |t| stands for the height of t. We denote [START_REF] Gall | Random trees and applications[END_REF] 

Sha(T ) = t, #T = #t, |T | = |t|, K(T ) = k ∅ (t), L(T ) = l ∅ , and S(T ) = S(t),
where S is the Horton-Strahler number as in Definition 1.1. Then, for all v ∈ t and λ > 0, we set [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF] θ v T = (θ v t, (l v * u ) u∈θvt ) and λ • T = (t, (λl u ) u∈t ).

Remark that θ v T and λ • T are also trees with edge lengths. Recall from (26) that u(t) is the depthfirst exploration of t. The tree with edge lengths T is described by a nonnegative càdlàg function with compact support H(T ) = ( Hs (T )) s≥0 , called its height function and defined by ( 36)

Hs (T ) = v≺u i (t) l v + s -i-1 j=0 l u j (t) if i-1 j=0 l u j (t) ≤ s < i j=0 l u j (t) , i ≤ #t -1 0 if #t-1 j=0 l u j (t) ≤ s
for all s ≥ 0. We stress that H(T ) is not continuous so H(T ) should not be confused with H(t).

Written with Notation 2.2, the map T ∈ T -→ H(T ) ∈ D K is continuous. Observe from ( 15), [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF], and (36) that it holds [START_REF] Janson | Conditioned Galton-Watson trees do not grow[END_REF] ζ( H(T )) = u∈t l u and Hs (λ • T ) = λ Hs/λ (T ).

One can interpret the height function as follows. Let us draw T into the upper half-plane with its correct edge lengths and let us picture a particle that, starting at ← -∅ , explores T at unit speed, from left to right, without hitting two times the same point, and backtracking only after reaching a leaf. Then, Hs (T ) is equal to the distance of the particle from ← -∅ at time s. From the point of view of the particle, a single edge or a chain of several edges put back to back with the same total length is the same, which translates into the following result. Proposition 2.13 For any tree with edge lengths T = (t, (l u ) u∈t ), there exist a unique tree t ′ and a unique increasing embedding ψ : t ′ -→ t such that ψ(t ′ ) = {u ∈ t : k u (t) ̸ = 1}. Moreover, if T ′ is the tree with edge lengths defined below, then it holds that H(T ′ ) = H(T ):

T ′ = (t ′ , (l ′ u ) u∈t ′ ) where l ′ u = ψ( ← - u )≺v⪯ψ(u) l v .
Proof. It is straightforward to do the proof by induction, by considering, for example, the ≤-minimal vertex v ∈ t such that k v (t) ̸ = 1. We leave it as an exercise for the reader. ■ Definition 2.14 Let µ be a probability measure on N which verifies [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF]. A GW(µ)-tree with edge lengths is random tree with edge lengths T = (τ, (L u ) u∈τ ) such that τ is a GW(µ)-tree and conditionally given τ , the (L u ) u∈τ are independent with exponential distribution with mean 1.

When µ = µ α as given by (2), we call T a GW α -tree with edge lengths. □ Weighted trees. We say that t = (t, (w v ) v∈∂t ) is a weighted tree when t is a tree and w v ∈ [0, 1) for all v ∈ ∂t, where ∂t stands for the set of leaves of t as in [START_REF] Duquesne | Hereditary tree growth and Lévy forests[END_REF]. We denote by T w the space of all weighted trees and we endow it the product topology, meaning that t n = (t n , (w n v ) v∈∂tn ) -→ t if and only if there is n 0 ≥ 0 such that t n = t for all n ≥ n 0 and w n v -→ w v for all v ∈ ∂t. This makes T w a Polish space. Recall from Definition 1.2 that S stands for the weighted Horton-Strahler number, and observe that the function S : T w -→ R + is continuous. For all u ∈ t, we set

θ u t = (θ u t, (w u * v ) v∈∂θut ),
which is a well-defined weighted tree because ∂θ u t = {v ∈ θ u t : u * v ∈ ∂t}. Recall the distribution FExp(a) from ( 9), and the notation γ = ln α α-1 from (8).

Definition 2.15 An α-stable Galton-Watson weighted tree (or a GW α -weighted tree for short) is a random weighted tree τ = τ, (W v ) v∈∂τ such that τ is a GW α -tree and conditionally given τ , the (W v ) v∈∂τ are independent of distribution FExp(γ). Thus, the law of τ satisfies the following.

(a) The law of k ∅ (τ ) is µ α , as characterized by [START_REF] Abraham | β-coalescents and stable Galton-Watson trees[END_REF].

(b) Under P( • | k ∅ (τ ) = 0), the law of W ∅ is FExp(γ).
(c) For all k ∈ N * such that µ α (k) > 0, the random weighted trees θ (1) τ , . . . , θ (k) τ under P( • | k ∅ (τ ) = k) are independent with the same law as τ under P. □

Weighted trees with edge lengths. We say that T = (t, (l u ) u∈t , (w v ) v∈∂t ) is a weighted tree with edge lengths when T = (t, (l u ) u∈t ) is a tree with edge lengths and w v ∈ [0, 1) for all v ∈ ∂t. We denote by T w the space of all weighted trees with edge lengths, and we endow it with the product topology, meaning that T n = (t n , (l n u ) u∈t n , (w n v ) v∈∂t n ) -→ T if and only if there is n 0 ≥ 0 such that t n = t for all n ≥ n 0 , l n u -→ l u for all u ∈ t, and w n v -→ w v for all v ∈ ∂t. In other words, T n -→ T on T w if and only if T n -→ T n on T and (t n , (w n v ) v∈∂t n ) -→ (t, (w v ) v∈∂t ) on T w . This makes T w a Polish space. To lighten the notations, we write [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF] Sha(T) = (t, (w v ) v∈∂t ) and S(T) = S(Sha(T)).

Moreover, for all u ′ ∈ t and λ > 0, we set (39)

θ u ′ T = θ u ′ t, (l u ′ * u ) u∈θ u ′ t , (w u ′ * v ) v∈∂θ u ′ t and λ • T = (t, (λl u ) u∈t , (w v ) v∈∂t ).
Remark that Sha(T) is a weighted tree, and that θ u ′ T and λ•T are weighted trees with edge lengths.

Definition 2.16 A GW α -weighted tree with edge lengths is a random weighted tree with edge lengths T = τ, (L u ) u∈τ , (W v ) v∈∂τ such that T = (τ, (L u ) u∈τ ) is a GW α -tree with edge lengths and conditionally given T , the (W v ) v∈∂τ are independent of distribution FExp(γ). Thus, the law of T satisfies the following.

(a) K(T ) and L(T ) are independent, of respective laws µ α and exponential with mean 1.

(b) Under P( • | K(T ) = 0), W ∅ is independent from L(T ) and has law FExp(γ).

(c) For all k ∈ N * with µ α (k) > 0, under P( • | K(T ) = k), the random weighted trees with edge lengths θ (1) T , . . . , θ (k) T are independent, jointly independent from L(T ), and have the same law as T under P. □

Real trees

In this work, we are mostly interested in the following type of tree-like metric spaces.

Definition 2.17 A metric space (T, d) is a real tree when for all x, y ∈ T :

(a) there exists a unique isometry g x,y : [0, d(x, y)] -→ T with g x,y (0) = x and g x,y (d(x, y)) = y, which is called the geodesic from x to y, (b) all injective continuous functions h : [0, 1] -→ T with h(0) = x and h(1) = y (that we call arcs from x to y) share the same image, denoted by x, y = h([0, 1]) = g x,y ([0, d(x, y)]).

We say a rooted (measured) compact metric space (T, d, ρ, µ) is a rooted (measured) compact real tree when (T, d) is a real tree. We denote by T R (resp. by T m R ) the space of isometry classes of rooted (measured) compact real trees equipped with d GH as in (20) (resp. with d GHP as in ( 21)). □

The spaces T R and T m R are respectively closed subsets of K and K m , see e.g. Evans [START_REF] Evans | Probability and Real Trees: École d'Été de Probabilités de Saint-Flour XXXV-2005[END_REF]Lemma 4.22], so they are separable and complete metric spaces.

Real trees coded by continuous excursions. We define the set of continuous excursions as ( 40)

E K = {(f, ℓ) ∈ C K : ∀s ≥ 0, f (s) ≥ 0 = f (0)}.
Endowed with the distance d ∞ defined by ( 16), it is a closed subspace of C K and so a Polish space thanks to Proposition 2.1. Let (f, ℓ) ∈ E K , we set 

d f (s 1 , s 2 ) = d f (s 2 , s 1 ) = f (s 1 ) + f (s 2 ) -2 inf [s 1 ,s 2 ] f for all s 2 ≥ s 1 ≥ 0. The function d f is a continuous pseudo-distance on R + . Writing s 1 ∼ f s 2 when d f (s 1 , s 2 ) = 0 defines an equivalence relation on R + . It induces the quotient space T f,ℓ = [0, ℓ]/ ∼ f on which d f induces a genuine distance that we denote by d f,ℓ . By continuity of d f on [0, ℓ] 2 , the canonical projection p f,ℓ : [0, ℓ] -→ T f,ℓ is continuous and the metric space (T f,ℓ , d f,ℓ ) is compact. Moreover, one can check that T f,ℓ is a real tree, see e.g. Le Gall [34, Theorem 2.2]. We extend p f,ℓ to R + by setting p f,ℓ (s) = p f,ℓ (ℓ) when s ≥ ℓ. Finally, we write ρ f,ℓ = p f,ℓ ( 
(T f , d f , ρ f , µ f ) = (T f,ζ(f ) , d f,ζ(f ) , ρ f,ζ(f ) , µ f,ζ(f ) ).
Recall the operations defined by ( 22) and [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]. We point out that if g(s) = λ 1-1/α f (s/λ) for all s ≥ 0 with some λ > 0, then

T g = λ 1-1/α ⊙ α T f . Observe that h(T f,ℓ ) = sup f and m(T f,ℓ ) = ℓ. The map (f, ℓ) ∈ E K -→ T f,ℓ ∈ T m R is continuous because it holds (42) d GHP (T f 1 ,ℓ 1 , T f 2 ,ℓ 2 ) ≤ |ℓ 1 -ℓ 2 | + 2 sup s≥0 |f 1 (s) -f 2 (s)| ≤ 2d ∞ (f 1 , ℓ 1 ), (f 2 , ℓ 2 ) .
Indeed, we consider the compact rooted correspondence

R = {(p f 1 ,ℓ 1 (s), p f 2 ,ℓ 2 (s)) : s ≥ 0} and the image measure by (p f 1 ,ℓ 1 , p f 2 ,ℓ 2 ) of the Lebesgue measure on the segment [0, min(ℓ 1 , ℓ 2 )].
Scaling limits of discrete trees. Any tree t (as in Definition 2.9) may be rooted at ∅, equipped with its counting measure u∈t δ u , and endowed with the graph distance on U,

(43) ∀u, v ∈ U, d gr (u, v) = |u| + |v| -2|u ∧ v|,
to obtain a rooted measured compact metric space. This describes a continuous injection from the discrete space of trees T into K m : we thus see T as a closed subset of K m with a slight abuse of notation. We stress that (discrete) trees are not real trees because they are not connected. However, linking each vertex of t to its parent by a metric segment of unit length yields a genuine real tree. Moreover, the latter is classically encoded by the so-called contour function of t. We informally present this function just below and we refer to Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] for a rigorous definition. Let us picture a particle that, starting at the root, continuously walks through the tree so that it retraces its steps as little as possible and respects the lexicographic order of the vertices. The particle crosses each edge twice, once upward and once downward, so it takes 2(#t -1) steps to return to the root after having explored the whole tree. We say that the particle follows the exploration by contour of the tree t and we denote by c(t) = (c i (t) ; 0 ≤ i ≤ 2(#t -1)) the sequence of its positions on t. Then, the contour function of t is the function

C(t) : s ∈ R + -→ C s (t) defined by C s (t) = C i (t) + (s -i)(C i+1 (t) -C i (t)) and C i (t) = |c i (t)| if 0 ≤ i ≤ 2(#t -1) 0 if i ≥ 2#t -1 for all integers i ∈ N and s ∈ [i, i+1].
The slopes of this piecewise affine function are in {1, -1, 0}.

Moreover, it is an element of E K such that sup C(t) = |t| and ζ(C(t)) = 2#t -2.
Proposition 2.18 Let (h, ℓ) ∈ C K . Let t n be a tree and let λ n , b n > 0 for all n ∈ N. We assume

λ n → 0 and λ n /b n → ∞. Recall from (27) that H(t n ) is the height function of t n . The two convergences λ n H s/bn (t n ) s≥0 -→ (h, ℓ) and λ n C 2s/bn (t n ) s≥0 -→ (h, ℓ) are equivalent on C K . If they hold, then (h, ℓ) ∈ E K and t, λ n d gr , ∅, b n u∈t δ u -→ T h,ℓ for the rooted Gromov-Hausdorff-Prokhorov distance.
Proof. The equivalence of the convergences follows from ( 28), Proposition 2.1 (iv), and general deterministic arguments of Duquesne & Le Gall [24, Section 2.5] that show the height and the contour functions are similar once rescaled. The metric of a tree t can be recovered from

C(t) via (44) d C(t) (i, j) = C i (t) + C j (t) -2 inf [i,j] C(t) = d gr (c i (t), c j (t))
for all integers 0 ≤ i ≤ j ≤ 2(#t -1), see e. Genealogical order on a rooted compact real tree. Let (T, d, ρ) be a rooted compact real tree and let σ 1 , σ 2 ∈ T . From Definition 2.17, recall that

g σ 1 ,σ 2 : [0, d(σ 1 , σ 2 )] -→ T is the geodesic between σ 1 and σ 2 and σ 1 , σ 2 = g σ 1 ,σ 2 ([0, d(σ 1 , σ 2 )] is the unique path between σ 1 and σ 2 . The equality d(σ 1 , σ 2 ) = d(σ 1 , σ) + d(σ, σ 2 ) thus holds for all σ ∈ σ 1 , σ 2 .
The genealogical order ⪯ on (T, d, ρ) is the partial order defined by ( 45)

σ 1 ⪯ σ 2 if and only if σ 1 ∈ ρ, σ 2 .
We then say that σ 1 is an ancestor of σ 2 . We may also write

σ 1 ≺ σ 2 when σ 1 ⪯ σ 2 and σ 1 ̸ = σ 2 .
It is immediate that ρ ⪯ σ for all σ ∈ T . While ⪯ is only a partial order, it induces a total order on the ancestral lineages, namely the ρ, σ for all σ ∈ T . Indeed, if σ 1 , σ 2 are ancestors of σ then

σ i = g ρ,σ (d(ρ, σ i )) for both i ∈ {1, 2}
. By the uniqueness of geodesics, it follows that

(46) if σ 1 , σ 2 ⪯ σ then σ 1 ⪯ σ 2 ⇐⇒ d(ρ, σ 1 ) ≤ d(ρ, σ 2 ) ⇐⇒ d(σ 2 , σ) ≤ d(σ 1 , σ).
The geodesics are embeddings of real segments into T so the ancestral lineages are closed in T . Hence, the subset ρ, σ 1 ∩ ρ, σ 2 admits a unique ⪯-maximal element. We call it the most recent common ancestor of σ 1 and σ 2 and we denote it by σ 1 ∧ σ 2 . It is characterized by the assertion

(47) ∀σ ∈ T , σ ⪯ σ 1 ∧ σ 2 if and only if (σ ⪯ σ 1 and σ ⪯ σ 2 ).
In particular, σ 1 ⪯ σ 2 if and only if σ 1 ∧ σ 2 = σ 1 . By [START_REF] Kovchegov | Random self-similar trees: A mathematical theory of Horton laws[END_REF], we check that ∧ is associative, namely

σ 1 ∧ (σ 2 ∧ σ 3 ) = (σ 1 ∧ σ 2 ) ∧ σ 3 for all σ 3 ∈ T . Plus, Definition 2.17 (b) yields that (48) {σ 1 ∧ σ 2 } = ρ, σ 1 ∩ ρ, σ 2 ∩ σ 1 , σ 2 .
By definition of real trees, they are locally pathwise connected and it follows that if σ

1 ∧σ 2 ̸ = σ 1 , σ 2 then σ 1 and σ 2 are in different connected components of T \{σ 1 ∧ σ 2 }.
Definition 2.19 A rooted compact real tree (T, d, ρ) is said to be planted when T \{ρ} is connected. This is equivalent to saying that for all

σ 1 , σ 2 ∈ T , ρ = σ 1 ∧ σ 2 =⇒ ρ ∈ {σ 1 , σ 2 }. □
Next, we show that the operation ∧ : T 2 -→ T enjoys a fairly strong continuity property.

Lemma 2.20 Let (T, d, ρ) be a rooted compact real tree and let

σ 1 , σ 2 , σ ′ 1 , σ ′ 2 be four points of T . If d(σ ′ 1 , σ 1 ) < d(σ 1 ∧ σ 2 , σ 1 ) and d(σ ′ 2 , σ 2 ) < d(σ 1 ∧ σ 2 , σ 2 ), then σ ′ 1 ∧ σ ′ 2 = σ 1 ∧ σ 2 .
Proof. We first assume [START_REF] Kovchegov | Invariant Galton-Watson trees: metric properties and attraction with respect to generalized dynamical pruning[END_REF]. We compute

σ 2 = σ ′ 2 . We have d(σ 1 ∧ σ ′ 1 , σ 1 ) ≤ d(σ ′ 1 , σ 1 ) because σ 1 ∧ σ ′ 1 ∈ σ 1 , σ ′ 1 . Plus, σ 1 ∧ σ ′ 1 and σ 1 ∧ σ 2 are both ancestors of σ 1 , so σ 1 ∧ σ 2 ≺ σ 1 ∧ σ ′ 1 ⪯ σ ′ 1 by
(49) (σ ′ 1 ∧ σ 1 ) ∧ (σ ′ 1 ∧ σ 2 ) = (σ 1 ∧ σ 2 ) ∧ (σ ′ 1 ∧ σ ′ 1 ) = σ 1 ∧ σ 2 ̸ = σ ′ 1 ∧ σ 1 .
The points σ ′ 1 ∧σ 1 and σ ′ 1 ∧σ 2 are both ancestors of σ ′ 1 , so ( 46) and ( 49) imply that σ 1 ∧σ 2 = σ ′ 1 ∧σ 2 . The general result follows after a double application of the case

σ 2 = σ ′ 2 . ■
We stress that the order ⪯ and the operation ∧ depend on (T, d, ρ), and especially on the root ρ, but we shall omit this dependence when no confusion is possible according to context. We end this section with the notion of subtrees of a rooted compact real tree.

Definition 2.21 Let (T 1 , d 1 , ρ 1 ) and (T 2 , d 2 , ρ 2 ) be two rooted compact real trees. We say that T 1 is a subtree of T 2 when there is an isometry ϕ :

T 1 → T 2 such that ϕ(ρ 1 ) ⪯ ϕ(σ) for all σ ∈ T 1 . □
With the setting of Definition 2.21, we observe g ϕ(σ),ϕ(σ ′ ) = ϕ • g σ,σ ′ for all σ, σ ′ ∈ T 1 , by uniqueness of geodesics. The fact that ϕ(ρ 1 ) is a ⪯-minimum of the image of ϕ then implies that ϕ(σ

∧ σ ′ ) = ϕ(σ) ∧ ϕ(σ ′ ) for all σ, σ ′ ∈ T 1 .

Grafting rooted compact metric spaces

Here, we borrow a grafting procedure from Abraham, Delmas & Hoscheit [START_REF] Abraham | Exit times for an increasing Lévy tree-valued process[END_REF] in order to later describe the limit real tree in Theorem 1.3. Informally, it consists in gluing the roots of some rooted (measured) compact metric spaces E i onto respective points a i of the same space

E o . Definition 2.22 (Grafting procedure) Let (E o , d o , ρ o , µ o
) be a rooted measured compact metric space and let (E i , d i , ρ i , µ i ) i∈I be a countable family of rooted measured compact metric spaces. Let (a i ) i∈I be a family of points of E o also indexed by I. We denote by E the disjoint union E o ⊔ i∈I E i \{ρ i } and we endow it with a distance d defined as follows:

(a) if x, y ∈ E o then d(x, y) = d o (x, y), (b) if x, y ∈ E i \{ρ i } with some i ∈ I then d(x, y) = d i (x, y), (c) if x ∈ E o and y ∈ E i \{ρ i } with some i ∈ I then d(x, y) = d o (x, a i ) + d i (ρ i , y), (d) if x ∈ E i \{ρ i } and y ∈ E j \{ρ j } with some distinct i, j ∈ I, then we set d(x, y) = d i (x, ρ i ) + d o (a i , a j ) + d j (ρ j , y).
With a slight abuse of notations, we see E o and the E i as closed subsets of E by using the identifications a i = ρ i for all i ∈ I. In accordance with Notation 2.6, we denote the rooted metric space

(E, d, ρ o ) by E o ⊛ i∈I (a i , E i ). Note that E o ⊛ i∈I (a i , E i ) may not be compact.
If the spaces E o and E i for all i ∈ I are respectively endowed with finite Borel measures µ o and µ i for all i ∈ I, then we also equip E with a (potentially infinite) Borel measure µ by setting

µ(B) = µ o (B ∩ E o ) + i∈I µ i (B ∩ E i ) for any Borel subset B of E. We still denote (E, d, ρ o , µ) by E o ⊛ i∈I (a i , E i ). □
To write a finite number of successive graftings onto the same space, we will also use the notation

E o ⊛ i∈I (a i , E i ) ⊛ j∈J (a j , E j ) := E o ⊛ i∈I (a i , E i ) ⊛ j∈J (a j , E j ) = E o ⊛ i∈I⊔J (a i , E i ).
Proposition 2. [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF] We keep the notations of Definition 2.22. Recall h and m from [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]. If it holds

(50) ∀ε > 0, {i ∈ I : h(Y i ) ≥ ε} is finite, then E o ⊛ i∈I (a i , E i ) is a rooted compact metric space. If in addition to (50) it holds (51) i∈I m(E i ) < ∞, then E o ⊛ i∈I (a i , E i ) is a rooted measured compact metric space (namely its measure is finite). Proof. Let (x j ) be a sequence of points of E = E o ⊛ i∈I (a i , E i )
, let us show it admits a convergent subsequence. Since E o and the E i are compact, we can assume that x j ∈ E i j for all j ≥ 0, where (i j ) is an injective sequence of elements of I. Then, it holds that h(E i j ) tends to 0 so we have d(x j , a i j ) -→ 0. The sequence (a i j ) stays inside the compact E o so it admits a subsequential limit, and so does (x j ). The second statement of the proposition follows from the fact that µ o is a finite measure and from the identity

µ(E) = µ o (E o ) + i∈I m(E i ). ■ Proposition 2.24 Recall from (21) that K m n is endowed with the n-pointed Gromov-Hausdorff- Prokhorov distance. For all n ≥ 1, the following map from K m n+1 × (K m ) n to K m is continuous: (E o , d o , (ρ o , a 1 , . . . , a n ), µ o ) , (E 1 , d 1 , ρ 1 , µ 1 ) , . . . , (E n , d n , ρ n , µ n ) -→ E o ⊛ n i=1 (a i , E i ).
Proof. We give ourselves a compact (n + 1)-pointed correspondence R o between E o and E o′ , and compact rooted correspondences R i respectively between E i and E ′ i . We also take finite Borel measures ν o and ν i respectively on

E o × E o′ and E i × E ′ i . Then, we construct a compact rooted correspondence between E o ⊛ n i=1 (a i , E i ) and E o′ ⊛ n i=1 (a ′ i , E ′ i )
, and a finite Borel measure on the product space

(E o ⊛ n i=1 (a i , E i )) × (E o′ ⊛ n i=1 (a ′ i , E ′ i )) by setting R = R o ⊔ n i=1 R i \{(ρ i , ρ ′ i )} and ν(•) = ν o (• ∩ E o × E o′ ) + n i=1 ν i (• ∩ E i × E ′ i ).
Taking the infimum over (R o , R i , ν o , ν i ) yields the result since we can check that the distortion of R (resp. discrepancy of ν) is bounded by the sum of the other distortions (resp. discrepancies). ■

We end this section by describing what happens when the grafting procedure only involves real trees.

Proposition 2.25 Let (T o , d o , ρ o ) be a rooted compact real tree and let (a i ) i∈I be a countable family of points of T o . Let (T i , d i , ρ i ) i∈I be a countable family of rooted compact real trees such that (50) holds. Then, T = T o ⊛ i∈I (a i , T i ) is a rooted compact real tree. We precise if the notations of Definition 2.17 and ( 47) stand for the objects on T , T o , or T i for some i ∈ I by respectively writing •, • and ∧, •, • o and ∧ o , or •, • i and ∧ i . Then, for all σ 1 , σ 2 ∈ T and distinct i, j ∈ I:

(i) if σ 1 , σ 2 ∈ T o , then σ 1 , σ 2 = σ 1 , σ 2 o and σ 1 ∧ σ 2 = σ 1 ∧ o σ 2 , (ii) if σ 1 , σ 2 ∈ T i with some i ∈ I, then σ 1 , σ 2 = σ 1 , σ 2 i and σ 1 ∧ σ 2 = σ 1 ∧ i σ 2 , (iii) if σ 1 ∈ T o and σ 2 ∈ T i , then σ 1 , σ 2 = σ 1 , a i o ∪ ρ i , σ 2 i and σ 1 ∧ σ 2 = σ 1 ∧ o a i , (iv) if σ 1 ∈ T i and σ 2 ∈ T j , then σ 1 , σ 2 = σ 1 , ρ i i ∪ a i , a j o ∪ ρ j , σ 2 j and σ 1 ∧σ 2 = a i ∧ o a j .
Proof. The proof is straightforward so we only give a sketch here, leaving the details to the reader. From Definition 2.22, we first check that concatenating the geodesics on T o , T i , T j as instructed by the desired proposition indeed yields a geodesic from σ 1 to σ 2 on T . Next, we observe that T j and T j \{a j } are respectively closed and open in T , so any path starting outside and ending inside T j has to hit a j . By injectivity, an arc from σ 1 to σ 2 on T is thus the concatenation of at most three arcs (respectively on T o , T i , T j ) as indicated by the statement, which determines its image. ■

Stable Lévy processes

We now present the continuous setting involved in the asymptotics of large stable Galton-Watson trees. We denote by X the canonical process on the space D(R + , R) of càdlàg functions endowed with the Skorokhod topology, already introduced in Section 2.1. Under the underlying probability measure P, we assume that X = (X s ) s≥0 is a spectrally positive stable Lévy process with index

α ∈ (1, 2] that is normalized such that ∀λ, s ∈ R + , E[ exp(-λX s ) ] = exp(sλ α ). If α = 2 then 1 √ 2 X is a standard Brownian motion under P. If α ∈ (1, 2), the Lévy measure of X is Π(dr) = α(α -1) Γ(2 -α) r -1-α 1 (0,∞) (r) dr,
where Γ is the usual Gamma function. Moreover, the process X enjoys the following scaling property: for all λ > 0, the laws of (λ -1/α X λs ; s ≥ 0) and X under P are the same. We write

I s = inf [0,s] X and I r s = inf [r,s]
X for all 0 ≤ r ≤ s. Observe that the process I = (I s ) s≥0 is continuous since X has no negative jumps. We refer to Bertoin [11, Chapter VIII] for background and details. The process X -I is strong Markov and the point 0 is regular for itself with respect to X -I (see [START_REF] Bertoin | Lévy Processes[END_REF]Chapter VI.1]). Moreover, we may and will choose -I as the local time of X -I at level 0 by [START_REF] Bertoin | Lévy Processes[END_REF]Theorem VII.1]. Let (g j , d j ), j ∈ J be the excursions intervals of X -I above 0 and let us set ω j s = X min(g j +s,d j ) -X g j for all j ∈ J and s ≥ 0. Since inf X = -∞ (see [11, Chapter VIII]), the ω j are càdlàg functions with compact support which start at 0 and stay nonnegative. In accordance with Notation 2.2, we see them as elements of D K . Then, the random point measure

N = j∈J δ (-Ig j ,ω j )
is a Poisson measure on R + × D K with intensity measure dt N α (dω), where N α is a sigma-finite measure on D K called the excursion measure. We refer to [11, Chapter IV] for details and background. Under N α , we simply denote by ζ = ζ(X) the lifetime (15) of X.

Le Gall & Le Jan [START_REF] Gall | Branching processes in levy processes: The exploration process[END_REF] (see also Duquesne & Le Gall [24, Chapter 1]) constructed a continuous process H = (H s ) s≥0 which is measurable with respect to X and such that for all s ∈ R + , the limit ( 52)

H s = lim ε→0 + 1 ε s 0 1 {Xr<I r s +ε} dr
holds in P-probability and in N α -measure. When α = 2, we know explicitly that H is equal to X -I under P and to X under N 2 . The process H is called the height process associated with X (and also the α-stable height process here) because it is the continuous analog of the height function [START_REF] Esparza | History of Strahler Numbers -with a Preface[END_REF] of discrete Galton-Watson trees. Observe that (52) and the scaling property of X imply that for all λ > 0, the laws of (λ 1/α-1 H λs ; s ≥ 0) and H under P are the same. Indeed, the former is the height process associated with (λ -1/α X λs ; s ≥ 0). Moreover, [START_REF] Moussa | Fractal analyses of tree-like channel networks from digital elevation model data[END_REF] 

∀ℓ > 0, N α (ζ > ℓ) = 1 Γ(1 -1/α) ℓ -1/α .
The scaling property of H yields that the law of the process with unit lifetime (ζ 

= 2 then N 2 (dH | ζ = 1) is the law of √ 2e
, where e stands for the standard Brownian excursion. Moreover, [START_REF] Neveu | Erasing a branching tree[END_REF] entails that for all nonnegative and measurable function

F : C K -→ R + , it holds that (54) N α F (H) = 1 αΓ(1 -1/α) R + N α F ℓ 1-1/α H s/ℓ ; s ≥ 0 ζ = 1 dℓ ℓ 1+1/α .
Finally, a random rooted (measured) compact real tree T nr is called an α-stable tree when it is distributed as T H under N α (dH | ζ = 1), as defined by [START_REF] Khanfir | Time and place of the maximum for one-dimensional diffusion bridges and meanders[END_REF]. Up to the multiplicative constant √ 2, the 2-stable tree is the Brownian tree introduced by Aldous [START_REF] Aldous | The Continuum Random Tree I[END_REF][START_REF] Aldous | The Continuum Random Tree III[END_REF], which is the rooted compact real tree coded by the standard Brownian excursion.

Next, recall β = 1 α-1 from (8) and observe N α (sup

H = 0) = N α (ζ = 0) = 0. A consequence of a Ray-Knight theorem, see Duquesne & Le Gall [24, Corollary 1.4.2], further asserts that (55) ∀x > 0, N α (sup H > x) = 1 (α -1) β x -β .
Let us write M = sup H to lighten the notations. Just as before, the scaling property ensures that the law of M -1 H sM αβ ; s ≥ 0 under the probability measure N α ( • | sup H > x) is the same for all x > 0: we denote it by N α (dH | sup H = 1). Moreover, that independence and the identity [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] yield that for all nonnegative and measurable function

F : C K -→ R + , it holds that (56) N α F (H) = 1 (α -1) αβ R + N α F xH sx -αβ ; s ≥ 0 sup H = 1 dx x 1+β . If α = 2 then N 2 (dH | sup H = 1) is equal to the law of (e * 2s ) s≥0
, where e * is the Brownian excursion conditioned to have its maximum equal to 1. A Brownian excursion with a fixed maximum, such as e * , can be described by William's path decomposition at the maximum, see e.g. Revuz & Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF]Chapter XII]. This then yields a simple expression for the Laplace transform of its lifetime:

(57) ∀λ > 0, E exp(-λζ(e * )) = N 2 exp(-2λζ) sup H = 1 = √ 2λ sinh √ 2λ 2 .
See [START_REF] Khanfir | Time and place of the maximum for one-dimensional diffusion bridges and meanders[END_REF] for a review of other formulas resulting from this method.

Preliminary tools

This section focuses on gathering already-known results, and on proving technical estimates via classic methods. Although not genuinely new nor directly related to the Horton-Strahler number, these tools will be useful throughout this paper.

Marchal's algorithm

Our proof of Theorem 1.6 is based on the recursive algorithm proposed by Marchal [START_REF] Marchal | A note on the fragmentation of a stable tree[END_REF] to build a sequence of nested GW α -trees conditioned on their number of leaves that converges, after scaling, towards the α-stable tree. This sequence is a Markov chain on the space of labeled but unrooted trees: namely connected and acyclic graphs equipped with an exhaustive enumeration of their vertices of degree 1. Here, we present a slight variation of this construction to produce a sequence (t i ) i≥1 of random weighted trees in the sense of the present paper (see Section 2.2). See Figure 3 for a better understanding of the recursive construction. Recall the law FExp(γ) from ( 8) and ( 9).

Algorithm 3.1 Let (W i ) i≥1 be a sequence of independent random variables with common law FExp(γ). We start by setting t 1 = ({∅}, W 1 ). To construct t i+1 from t i , we randomly choose either a vertex u ∈ t i or an edge { ←u , u} of t i -including the conventional edge { ← -∅ , ∅} -respectively with propability proportional to

p u = 1 {ku(t i )≥2} (k u (t i ) -α) or to p { ← - u ,u} = α -1.
(i) If we drew an edge { ←u , u} then we split it into two edges with a middle vertex, on which we connect a new leaf endowed with the weight W i+1 . The position of the new leaf compared to its sibling is chosen uniformly. Written with the words formalism, we take a uniform random variable J ∈ {1, 2} and t i+1 is defined as the unique weighted tree such that:

(a) for all v ∈ U such that u ∧ v / ∈ {u, v}, v ∈ t i+1 if and only if v ∈ t i , in which case it holds θ v t i+1 = θ v t i , (b) it holds u ∈ t i+1 and k u (t i+1 ) = 2, (c) it holds θ u * (J) t i+1 = ({∅}, W i+1 ) and θ u * (3-J) t i+1 = θ u t i .
(ii) If we drew a vertex u then we connect a new leaf on it that we endow with the weight W i+1 .

The position of the new leaf among its siblings is chosen uniformly. Written with the words formalism, we take a uniform random variable J ∈ {1, . . . , k u (t i ) + 1} and t i+1 is defined as the unique weighted tree such that:

(a) for all v ∈ U such that u ∧ v / ∈ {u, v}, v ∈ t i+1 if and only if v ∈ t i , in which case it holds θ v t i+1 = θ v t i , (b) it holds u ∈ t i+1 and k u (t i+1 ) = k u (t i ) + 1, (c) it holds θ u * (J) t i+1 = ({∅}, W i+1 ), and θ u * (j) t i+1 = θ u * (j) t i for all 1 ≤ j ≤ J -1,
and

θ u * (j) t i+1 = θ u * (j-1) t i for all J + 1 ≤ j ≤ k u (t i+1 ).
Throughout this algorithm, all the choices are made independently from the rest. □ Proposition 3.2 Let τ be a GW α -weighted tree as in Definition 2.15. Let (t i ) i≥1 be the sequence of random weighted trees constructed by Algorithm 3.1. For all i ≥ 1, the following holds.

(i) #∂t i = i and #t i + 1 ≤ #t i+1 .
(ii) S(t i ) ≤ S(t i+1 ).

(iii) The law of t i under P is the same as the law of τ under P(

• | #∂τ = i). ∅ ∅ W i+1 ← - u u ← - u u W i+1 u u W i+1
Figure 3: Illustration of the recursive construction of t i+1 from t i . Left : The case where the conventional parental edge of the root was chosen. Middle : The case where a genuine edge was chosen. Right : The case where a vertex was chosen.

Proof. The point (i) is clear. In both cases (i) and (ii) of Algorithm 3.1, we have S(θ u t i ) ≤ S(θ u t i+1 ) by Definition 1.2. It is then easy to obtain (ii) by a backward induction on the height of the ancestors of u. For all 1 ≤ j ≤ i, let us denote by V j the unique leaf of t i of weight W j .

We observe that all the orders of siblings are equiprobable conditionally given the graph structure of t i (which is the same as the labeled but unrooted trees of Marchal [START_REF] Marchal | A note on the fragmentation of a stable tree[END_REF]). Therefore, we get from Marchal [51, Section 2.3] and (30) that if t is a tree with i leaves enumerated in some order as v 1 , . . . , v i , then

P(t i = t; V 1 = v 1 ; . . . ; V i = v i ) is proportional to u∈t µ α (k u (t))
. By (32) and because there are always i! possible enumerations of the leaves of t, the law of t i under P is the law of τ under P( • | #∂τ = i). The (W i ) i≥1 are i.i.d and independent from (t i ) i≥1 , so (iii) follows. ■ Finally, recall from Section 2.5 that an α-stable tree is a random rooted compact real tree distributed as T H , as in [START_REF] Khanfir | Time and place of the maximum for one-dimensional diffusion bridges and meanders[END_REF], under N α (dH | ζ = 1). Recall from [START_REF] Khezeli | Metrization of the Gromov-Hausdorff (-Prokhorov) topology for boundedlycompact metric spaces[END_REF] the graph distance d gr on trees.

Theorem 3.3 Let (t i ) i≥1 be the sequence of random weighted trees constructed by Algorithm 3.1. Then, there exists an α-stable tree (T nr , d nr , ρ nr ) such that the convergence

(t i , i -1+1/α d gr , ∅) -→ (T nr , α d nr , ρ nr )
holds almost surely for the rooted Gromov-Hausdorff distance as in [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF]. [START_REF] Curien | The stable trees are nested[END_REF]Theorem 5]. Indeed, the graph metric structure of t i does not depend on the chosen orders of siblings or the weights. ■

Proof. See Curien & Haas

Limit theorems for stable Galton-Watson trees

In this section, we gather and apply already known estimates and limit theorems about the asymptotic behavior of GW(µ)-trees (see Definition 2.12) to the case of stable Galton-Watson trees. Most of these results are stated under the following assumptions on the offspring distribution µ.

(a) µ is critical and non-trivial, meaning that (31) holds.

(b) µ is in the domain of attraction of a stable law with index θ ∈ (1, 2].

(c) µ is aperiodic, meaning that µ is not supported by a proper additive subgroup of Z.

We saw from (2) that the stable offspring distribution µ α satisfies [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF]. Moreover, it verifies (b) with θ = α by [START_REF] Bertoin | Lévy Processes[END_REF]. This can also be proved directly from (2) or [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], see Bingham, Goldies & Teugels [START_REF] Nicholas | Regular Variation. Number 27 in Encyclopedia of Mathematics and its Applications[END_REF]Chapter 8.3] for details. By [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], µ α satisfies (c) if and only if α ∈ (1, 2). Nonetheless, condition (c) is only required to avoid technical complications, as it conveniently ensures that P(#τ = n) > 0 when n is large enough for a GW(µ)-tree τ , but most results we consider here can be extended to the periodic case. Anyway, µ 2 is explicitly the critical binary law and can be studied with simpler arguments.

Motivated by Marchal's algorithm (Section 3.1), we first gather some results due to Kortchemski [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF] that express the likeness between conditioning a GW α -tree by its size or by its number of leaves.

Proposition 3.4 Let τ be a GW α -tree. Recall from (25) that #∂τ is its number of leaves.

(i) If α = 2, then #τ = 2#∂τ -1 almost surely. (ii) If α ∈ (1, 2)
, then the two following convergences hold in probability:

#τ n under P( • | #∂τ = n) -→ α, (58) 
#∂τ n under P( • | #τ = n) -→ 1 α . ( 59 
)
Proof. If α = 2, k u (τ ) = 2 for all u ∈ τ \∂τ by ( 30) and [START_REF] Françon | Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique[END_REF]. Since each vertex of τ \{∅} has a single parent, we get #τ -1 = u∈τ \∂τ k u (τ ) = 2#τ -2#∂τ , which proves (i). For [START_REF] Strahler | Hypsometric (area-altitude) analysis of erosional topography[END_REF], see Kortchemski [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF]Corollary 3.3] and recall µ α (0) = 1 α from [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]. For [START_REF] Viennot | Trees. In Mots, mélanges offert à M.P. Schützenberger[END_REF], see [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF]Lemma 2.5]. ■ Lemma 3.5 We assume that α ∈ (1, 2). Let τ be a GW α -tree. Let (U n ) n≥1 be a sequence of nonnegative and uniformly bounded functions on the space

T of trees. If E[U n (τ ) | #τ ≥ n] converges as n tends to ∞, then E[U n (τ ) | #∂τ ≥ n/α -n 3/4
] converges to the same limit.

Proof. See Kortchemski [START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF]Proposition 4.4] and recall µ α (0) = 1 α from [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]. ■

Then, we recall tail estimates on the height, the size, and the number of leaves of a GW α -tree.

Proposition 3.6 Let τ be a GW α -tree. Recall from ( 8) that β = 1 α-1 and γ = ln α α-1 . (i) Recall from (25) that |τ | is the height of τ , and #∂τ for its number of leaves. It holds that

n β P(|τ | ≥ n) -→ e -γβ , (60) 
n 1/α P(#τ ≥ n) -→ α 1/α Γ(1 -1/α) , (61) 
n 1/α P(#∂τ ≥ n) -→ 1 Γ(1 -1/α) . ( 62 
) (ii) If α = 2 then it holds that (63) n 1+1/α P(#τ = 2n -1) = n 1+1/α P(#∂τ = n) -→ 1 αΓ(1 -1/α) . (iii) If α ∈ (1, 2) then it holds that (64) n 1+1/α P(#τ = n) -→ α 1/α αΓ(1 -1/α)
, and

n 1+1/α P(#∂τ = n) -→ 1 αΓ(1 -1/α) .
Proof. For (60), recall [START_REF] Abraham | β-coalescents and stable Galton-Watson trees[END_REF] and see Slack [57, Lemma 2]. For (61), we follow the proof of Kovchegov, Xu & Zaliapin [46, Proposition 3]. For all λ > 0, we set f (λ) = E[exp(-λ#τ )] and we get from (2) and Definition 2.12 that e λ f (λ

) = f (λ) + 1 α 1 -f (λ) α . Since τ is finite, (65) f (0+) = 1 and λ -1/α (1 -f (λ)) ----→ λ→0 + α 1/α .
Moreover, Fubini's theorem allows us to write

1 -f (λ) = E[1 -exp(-λ#τ )] = E λ #τ 0 e -λx dx = λ ∞ 0 e -λx P(#τ ≥ x) dx.
Since x → P(#τ ≥ x) is monotone and nonnegative, Karamata's Tauberian theorem for Laplace transforms (see Feller [30, Chapter XII.5, Theorem 4]) and the convergence in (65) yield [START_REF] Vladimir | More exact statements of several theorems in the theory of branching processes[END_REF]. The last convergence (62) of (i) will directly follow from (ii) and (iii).

Let us prove (ii). We say that a tree t is binary when k u (t) ∈ {0, 2} for all u ∈ t. A famous combinatorial result (that can be easily proved via generating functions) asserts that there are exactly

C n-1 = 1 n 2n-2
n-1 binary trees with n leaves. By [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], [START_REF] Françon | Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique[END_REF], and Proposition 3.4 (i), we then have

P(#τ = 2n -1) = P(#∂τ = n) = 2 1-2n C n-1 . Stirling's formula yields (63) because Γ( 1 2 ) = √ π.
Let us prove (iii). Recall from (30) that µ α (0) = 1 α and µ α (k) > 0 for all k ≥ 2. By (11), Kortchemski [44, Lemma 1.11 and Theorem 3.1] thus assert that there is a constant c α ∈ (0, ∞) that only depends on α such that n 1+1/α P(#τ = n) -→ c α and n 1+1/α P(#∂τ = n) -→ c α α -1/α . Finally, comparing this with [START_REF] Vladimir | More exact statements of several theorems in the theory of branching processes[END_REF] 

entails c α Γ(1 -1 α ) = α 1/α-1
, and so (64) follows. ■ Finally, we give ourselves limit theorems about the height function H(τ ), see [START_REF] Esparza | History of Strahler Numbers -with a Preface[END_REF], of a GW αtree τ conditioned to be large. Recall from Section 2.1 the space C K of continuous functions with compact support and endowed with lifetimes. From Section 2.5, recall the excursion measure N α , the α-stable height process H, its lifetime ζ, and the law N α (dH | ζ = 1) of the normalized excursion of H. An application of the work of Duquesne & Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] entails the following result.

Theorem 3.7 Recall β = 1 α-1 from (8). Let τ be a GW α -tree and let (a n ) be as in [START_REF] Bertoin | Lévy Processes[END_REF]. For all ℓ ∈ (0, ∞), the two following convergences hold in distribution on C K : As explained by Duquesne & Le Gall [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], their method cannot be directly applied to find scaling limits of Galton-Watson trees under degenerate conditionings such as {#τ = n}. Nevertheless, Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] answered this problem with another method. Then, Kortchemski [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF] proved Duquesne's theorem via an absolute continuity relation between

1 n H n αβ s (τ ) s≥0 under P • |τ | ≥ ℓn d -→ α 1/α H under N α ( • | sup H > ℓ), (66) 
a n n H ns (τ ) s≥0 under P( • | #τ ≥ ℓn) d -→ H under N α ( • | ζ > ℓ). (67 
P( • | #τ = n) and P( • | #τ ≥ n).
Theorem 3.8 Let τ be a GW α -tree and let (a n ) be as in [START_REF] Bertoin | Lévy Processes[END_REF]. The following convergence holds in distribution on C K :

a n n H ns (τ ) s≥0 under P( • | #τ = n + 1) d ---------→ n→∞,n∈⌊α⌋N H under N α (dH | ζ = 1).
Proof. Recall [START_REF] Bertoin | Lévy Processes[END_REF] and see Duquesne [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF]Theorem 3.1]. This theorem is stated under the assumption that the offspring distribution is aperiodic, but as argued by Kortchemski [START_REF] Kortchemski | A simple proof of Duquesne's theorem on contour processes of conditioned Galton-Watson trees[END_REF], it can be easily extended to the periodic case α = 2 as above. ■

We stress that Proposition 2.18 then entails the convergence [START_REF] Billingsley | Convergence of probability measures[END_REF] presented in the introduction.

An estimate for the height function of a Galton-Watson tree with edge lengths

Recall respectively from ( 27) and [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] the height function H(t) of a tree t and the height function H(T ) of a tree with edge lengths T . The goal of this section is to compare them in the case of a GW(µ)-tree with edge lengths (see Definition 2.14) by proving the following result.

Proposition 3.9 Recall d S from [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF]. Let µ be a critical and non-trivial probability measure on N, namely satisfying [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF], and let T = (τ, (L u ) u∈τ ) be a GW(µ)-tree with edge lengths. Let λ > 0, we define two random càdlàg functions with compact support X and Y by setting for all s ∈ R + ,

X s = λ 1-1/α
Hs/λ (T ) and Y s = λ 1-1/α H s/λ (τ ).

Then, there are two constants C, c ∈ (0, ∞) that only depend on µ such that for all n ≥ 1,

P #τ ≤ n ; |τ | ≤ n 1-1/α ; d S (X, Y ) ≥ C(λ √ n) 1-1/α ln n + Cλ √ n ln n ≤ Cne -c(ln n) 2 .
Before proving Proposition 3.9, we give ourselves two standard lemmas.

Lemma 3.10 (Chernoff bound) Let (L i ) i≥0 be a sequence of independent exponential random variables with mean 1. Then, it holds

(68) ∀λ > -1, E[e -λL 0 ] = 1 1+λ ,
and there is an universal constant c uni ∈ (0, ∞) such that for all n ∈ N * and x ≥ 0, it holds

P n - n-1 i=0 L i ≥ x ≤ 2 exp -c uni x min 1, x n .
Proof. The identity (68) is classic. An elementary inequality asserts there is η ∈ (0, 1) such that ln

(1 + x) ≥ x -3x 2 /4 for all x ∈ [-η, η].
The desired result follows from the Chernoff bound

P(|Z| ≥ x) ≤ e -λx E[e λZ + e -λZ ] with λ = η min(1, x n ). ■ Lemma 3.11
Let µ be a probability measure on N which satisfies [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF], and let τ be a GW(µ)-tree. Let (K, J) be a random variable on N 2 such that P(K = k ; J = j) = 1 {1≤j≤k} µ(k) for all k, j ∈ N.

(i) For all n ∈ N and for all bounded functions g 0 , . . . , g n-1 :

N 2 -→ R, it holds E u∈τ 1 {|u|=n} v∈τ, j≥1 v * (j)⪯u g |v| k v (τ ), j = n-1 i=0 E g i (K, J) . (ii) For all n, m ≥ 2, it holds P #τ ≤ n ; sup i≥0 |H i (τ ) -H i+1 (τ )| ≥ m ≤ n(1 -µ(0)) m .
Proof. The point (i) is a simplified version of the so-called Many-To-One Principle, which is part of folklore (see e.g. Duquesne [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]Equation (24)] for the general statement and a proof).

To prove (ii), let us first consider two vertices u 1 < u 2 of τ that are consecutive in lexicographic order on τ . Since ← -

u 2 < u 2 , we have ← - u 2 ≤ u 1 < u 2 and so ← - u 2 ⪯ u 1 . Thus, it holds |u 1 | -|u 2 | ≥ -1. Moreover, for all v ∈ τ and j ∈ N * such that ← - u 2 ≺ v and v * (j) ⪯ u 1 , we observe j = k v (τ ) because u 1 < v * (j + 1) < u 2 .
As m ≥ 2, we eventually obtain

P #τ ≤ n ; sup i≥0 |H i (τ ) -H i+1 (τ )| ≥ m ≤ E u∈τ 1 {m≤|u|<n} v * (j)⪯u |v|≥|u|-m 1 {kv(τ )=j} .
We easily compute P(K = J) = k≥1 µ(k) = 1 -µ(0), then we apply (i) to get

P #τ ≤ n ; sup i≥0 |H i (τ ) -H i+1 (τ )| ≥ m ≤ n-1 h=m h-1 i=h-m P(K = J) = (n -m)(1 -µ(0)) m .

■

Proof of Proposition 3.9. Recall from [START_REF] Eisenberg | On the expectation of the maximum of IID geometric random variables[END_REF] the notation u(τ ). We can choose an increasing and bijective function ψ : R + -→ R + such that ψ(0) = 0, ψ(λi + λ) = ψ(λi) + λL u i (τ ) for all 0 ≤ i ≤ #τ -1, and ψ(λ#τ + s) = ψ(λ#τ ) + s for all s ≥ 0. For λi ≤ s < λ(i + 1), we write

|X ψ(s) -Y s | ≤ |Y λi -Y λ(i+1) | + |Y λi -X ψ(λi) | + |X ψ(λi) -X ψ(λi+λ) |, |ψ(s) -s| ≤ 2λ + 2|λi -ψ(λi)| + |λi + λ -ψ(λi + λ)|.
Together with ( 28) and [START_REF] Janson | Conditioned Galton-Watson trees do not grow[END_REF], it is then not hard to check that

(69) d S (X, Y ) ≤ 3λ + 4λ max 1≤i≤#τ i - i-1 j=0 L u j (τ ) + λ 1-1/α max u∈τ |u| - v≺u L v + λ 1-1/α max u∈τ L u + λ 1-1/α sup i≥0 |H i (τ ) -H i+1 (τ )|.
We want to bound in probability each one of the terms of the right-hand side under the realization of the event {#τ ≤ n ; |τ | ≤ n 1-1/α }. Let (L i ) i≥0 be a sequence of independent exponential random variables with mean 1. We begin with the simple union bound (70)

P #τ ≤ n ; λ 1-1/α max u∈τ L u ≥ λ 1-1/α (ln n) 2 ≤ nP L 0 ≥ (ln n) 2 = ne -(ln n) 2 .
Moreover, we use another union bound and Lemma 3.10 to find (71

) P #τ ≤ n ; |τ | ≤ n 1-1/α ; λ 1-1/α max u∈τ |u| - v≺u L v ≥ (λ √ n) 1-1/α ln n ≤ n max 0≤h≤n 1-1/α P h - h-1 j=0 L j ≥ ( √ n) 1-1/α ln n ≤ 2ne -c uni (ln n) 2
for n large enough. The exact same method entails (72)

P #τ ≤ n ; λ max 1≤i≤#τ i - i-1 j=0 L u j (τ ) ≥ λ √ n ln n ≤ 2ne -c uni (ln n) 2 .
By (69), ( 70 In this section, we recall two alternative definitions of the (classic) Horton-Strahler number S, and we apply some general estimates of the companion paper [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF] to the case of stable Galton-Watson trees. But first, let us spell a simple observation out. By Definition 1.1, for any tree t, it holds that

(73) if k ∅ (t) ̸ = 1, then S(t) = 0 ⇔ t = {∅}.
Indeed, if k ∅ (t) ≥ 2 then S(t) ≥ 1 because the Horton-Strahler numbers are nonnegative. For all n ∈ N, we denote by W n = n k=0 {1, 2} k the n-perfect binary tree, with the convention that {1, 2} 0 = {∅}. Recall Definition 2.10. The Horton-Strahler number of a tree t is given by ( 74)

S(t) = max n ∈ N : ∃ψ : W n -→ t embedding .
This result seems to be 'part of the folklore', but see [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF]Equation (36)] for a brief proof.

Our second alternative definition of S involves the action of removing the subtrees with null Horton-Strahler number of a tree t. After such reduction, we might obtain some chains of edges put back to back without any branching. We wish to see such a chain as a single longer edge. Thus, we rather work with trees with edge lengths as defined in Section 2.2. The next definition is just a formal rephrasing within our framework of the Horton pruning studied by Kovchegov & Zaliapin, see [47, Definition 3 and Figure 7]. Definition 4.1 (Horton pruning) Let T = (t, (l u ) u∈t ) be a tree with edge lengths with S(t) ≥ 1. Remark 2.11 ensures that there are a unique tree t ′′ and a unique increasing embedding ψ ′′ : t ′′ → t such that ψ ′′ (t ′′ ) = {u ∈ t : S(θ u T ) ≥ 1}. Proposition 2.13 then states that there are a unique tree t ′ and a unique increasing embedding ψ ′ : t ′ → t ′′ such that ψ(t ′ ) = {u ∈ t ′′ : k u (t ′′ ) ̸ = 1}. We denote by ψ the embedding ψ ′′ • ψ ′ : t ′ → t and for all u ∈ t ′ , we set

l ′ u = ψ( ← - u )≺u ′ ⪯ψ(u) l u ′ , where ψ( ← - ∅ ) = ← - ∅ in accordance with Notation 2.8.
Eventually, we define the Horton-pruned tree with edge lengths as

R(T ) = (t ′ , (l ′ u ) u∈t ′ ). □
The number of Horton pruning operations needed to entirely erase T is equal to S(T ) + 1, namely

(75) if S(T ) ≥ 1 then S(R(T )) = S(T ) -1.
Now, we gather from the companion paper [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF] several tail estimates for the joint law of the Horton-Strahler number S(τ ) of a GW α -tree τ with either its size #τ or height |τ |. Recall that the offspring distribution of GW α -trees satisfies [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and [START_REF] Bertoin | Lévy Processes[END_REF]. Proposition 4.2 Let τ be a GW α -tree. Recall that γ = ln α α-1 and δ = e γ(α-1) from (8). Then,

P (S(τ ) ≥ n) = e -γn , (76) 
E 1 {S(τ )≤n} #τ ≤ 2e γ(α-1)n , (77) E #τ | S(τ ) = n ≤ 2αe γαn , ( 78 
)
for all n ∈ N. Moreover, for all λ ∈ (0, ∞), it holds

(79) lim sup n→∞ P |τ | ≤ λe γ(α-1)n S(τ ) = n ≤ 1 -e -λ .
Furthermore, there exists a constant λ 0 ∈ (0, ∞) that only depends on α such that for all λ > λ 0 , Lemma 10] yields (76) (see also [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF]Remark 3.3]). We independently retrieve (76) in the present paper via Proposition 4.5. Together with (2) and (76), [42, Proposition 3.5] entails (77). Then, (78) follows from (76) and (77). For (79), see [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF]Proposition 3.6]. By [START_REF] Khanfir | The Horton-Strahler number of Galton-Watson trees with possibly infinite variance[END_REF]Corollary 3.8] and [START_REF] Bertoin | Lévy Processes[END_REF], the left-hand side of (80) is bounded by Ce -λ/8δ for all λ > 0, where C ∈ (0, ∞) is a constant that only depends on α. Using Bayes's theorem with [START_REF] Yamato | Fluctuation scaling limits for positive recurrent jumping-in diffusions with small jumps[END_REF] and (76), we then get that the left-hand side of (81) is bounded by αe -γβ Cλ -β e -λ/8δ for all λ ∈ (0, ∞). Since 8δ < 20, we readily obtain (80) and (81). ■

lim sup n→∞ P S(τ ) ≤ log δ (n/λ) |τ | ≥ n ≤ e -λ/20 , (80) lim sup n→∞ P |τ | ≥ λe γ(α-1)n S(τ ) = n ≤ e -λ/20 . (81) Proof. Kovchegov & Zaliapin [48,

First properties of the weighted Horton-Strahler number

Here, we provide basic properties of the weighted Horton-Strahler number S (recall Definition 1.2), that show that it is a good approximation of the (classic) Horton-Strahler number S while being a continuous quantity. For all x ∈ R + , we denote by ⌊x⌋ ∈ N the integer part of x and by frac(x) = x -⌊x⌋ ∈ [0, 1) the fractional part of x.

Proposition 4.3 For any weighted tree t = (t, (w v ) v∈∂t ), it holds that S(t) = ⌊S(t)⌋. Moreover, there exists a leaf v ∈ ∂t of the tree t such that frac(S(t)) = w v .

Proof. We argue by induction on |t|. If |t| = 0 then t = ∂t = {∅}, so that S(t) = 0 and

⌊S(t)⌋ = ⌊w ∅ ⌋ = 0 because w ∅ ∈ [0, 1). Moreover, frac(S(t)) = S(t) = w ∅ . If k ∅ (t) ≥ 1 then there is 1 ≤ i ≤ k ∅ (t) such that either S(t) = S(θ (i) t) or S(t) = 1 + S(θ (i) t) by Definition 1.2.
Either way, it holds frac(S(t)) = frac(S(θ (i) t)), so there is v ∈ ∂t such that frac(S(t)) = w v by induction hypothesis. The induction hypothesis also entails that

⌊S(t)⌋ = max 1≤i,j≤k∅(t) max S(θ (i) t), S(θ (j) t), 1 {i̸ =j} + min S(θ (i) t), S(θ (j) t)
because the integer part function is non-decreasing. The formula (6) completes the proof. ■

For any weighted tree t = (t, (w v ) v∈∂t ) and x ∈ [0, 1), we see from Proposition 4.3 and ( 73) that

(82) if k ∅ (t) ̸ = 1, then S(t) ≤ x ⇐⇒ t = ({∅}, w ∅ ) with w ∅ ≤ x.
Lemma 4.4 Let t be a tree and let (W v ) v∈∂t be independent random variables on [0, 1). We set t = (t, (W v ) v∈∂t ). If the law of W v admits a continuous and positive density on (0, 1) for all v ∈ ∂t, then the law of S(t) admits a continuous and positive density on S(t), S(t) + 1 .

Proof. We prove the lemma by induction on |t|. If |t| = 0 then t = ∂t = {∅}, S(t) = 0, and S(t) = W ∅ has a continuous and positive density on (0, 1) by assumption. Now, we assume k ∅ (t) ≥ 1 and we write J = {1 ≤ j ≤ k ∅ (t) : S(θ (j) t) = S(t) -1}. We set

F (x) = P (S(t) ≤ S(t) + x) and F i (x) = P S(θ (i) t) ≤ S(θ (i) t) + x
for all x ∈ [0, 1] and 1 ≤ i ≤ k ∅ (t). We point out that the θ (i) t, for 1 ≤ i ≤ k ∅ (τ ), are independent. We exactly need to show that F is C 1 with positive derivative on (0, 1). By induction hypothesis, the F i are C 1 with positive derivative on (0, 1). There are two cases.

• If there exists 1 ≤ i ≤ k ∅ (t) such that S(θ (i) t) = S(t) then it is unique by Definition 1.1. Since ⌊S(t)⌋ = S(t), we deduce that S(t) = max S(θ (i) t), 1 + max j∈J S(θ (j) t) by Definition 1.2. It follows that F (x) = F i (x) j∈J F j (x) for all x ∈ [0, 1], which yields the result.

• Otherwise, there are at least two elements in J by Definition 1.2. Therefore, we get the identity

S(t) = 1 + max i,j∈J i̸ =j min S(θ (i) t), S(θ (j) t) , which translates into F (x) = j∈J F j (x) + i∈J (1 -F i (x)) j∈J\{i} F j (x) for all x ∈ [0, 1].
Thus, F is C 1 on (0, 1). To obtain the positivity of the derivative, we simply compute that ∀x ∈ (0, 1),

F ′ (x) = i,j∈J i̸ =j F ′ i (x)(1 -F j (x)) k∈J k̸ =i,j F k (x) > 0. ■

The weighted Horton-Strahler number of stable Galton-Watson weighted trees

Recall the law FExp(γ) from ( 9) and γ = ln α α-1 from (8). We still write frac(x) = x -⌊x⌋ for all x ∈ R + . The next result justifies the choice of weights in Definition 2.15 for GW α -weighted trees. Proposition 4.5 Let W be a random variable on [0, 1). Let τ = (τ, (W v ) v∈∂τ ) be a random weighted tree such that τ is GW α -tree and conditionally given τ , the (W v ) v∈∂τ are independent and distributed as W . Then, the following holds.

(i) The law of ⌊S(τ )⌋ = S(τ ) is geometric with parameter 1 α . (ii) The law of frac(S(τ )) is the same as the law of W .

(iii) ⌊S(τ )⌋ = S(τ ) and frac(S(τ )) are independent.

In particular, if τ is GW α -weighted tree then the law of S(τ ) is exponential with mean 1 γ .

Proof. From ( 2) and ( 30), recall the offspring law µ α of τ and its generating function φ α . We set f (x) = P(S(τ ) > x) for all x ∈ R + . We only need to show that for all x ∈ R + , (83)

f (x) = e -γ⌊x⌋ 1 -1 α P(W ≤ x -⌊x⌋) ,
because the integer and fractional parts are measurable. Note that if the law of W is FExp(γ) then (83) becomes f (x) = e -γx . If x ∈ [0, 1) then by (82), and since µ α (1) = 0, we compute that P(S(τ

) ≤ x) = P(k ∅ (τ ) = 0 ; W ∅ ≤ x) = µ α (0)P(W ≤ x)
. This is exactly (83). Now, we assume x ≥ 1. By Definition 1.2 of the weighted Horton-Strahler number, we observe that S(τ ) ≤ x if and only if S(θ u τ ) ≤ x -1 for all children u of ∅ in τ (if any) with the possible exception of one child v, which may satisfy x -1 < S(θ v τ ) ≤ x. More precisely, we have

(84) 1 {S(τ )≤x} = k∅(τ ) j=1 1 {S(θ (j) τ )≤x-1} + k∅(τ ) i=1 1 {x-1<S(θ (i) τ )≤x} 1≤j≤k∅(τ ) j̸ =i 1 {S(θ (j) τ )≤x-1} .
Taking the expectation leads to f (x) = (1 -1/α)f (x -1) by Definition 2.15 of GW α -weighted trees. Finally, we get f (x) = e -γ⌊x⌋ f (x -⌊x⌋) for all x ∈ R + by induction on ⌊x⌋, and so (83). ■

Let τ be a GW α -weighted tree. For all n ∈ N, the event {S(τ ) = n} has nonzero probability so the law of τ conditionally given S(τ ) = n is straightforwardly defined. Our goal for the rest of the section is to properly define the law of τ under the degenerate conditioning {S(τ ) = x} in a sufficiently regular and explicit way to be able to carry out calculations and study convergences. Pleasantly, the natural idea to define P(dτ | S(τ ) = x) as the limit of the conditional laws of τ given |S(τ ) -x| < ε when ε tends to 0 + turns out to work just fine. From [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF], recall the notation S(T) for a weighted tree with edge lengths T. Proposition 4.6 Let T be a GW α -weighted tree with edge lengths as in Definition 2.16. For all x ∈ R + \N, there exists a probability measure Q x on the space T of all trees with edge lengths such that

(85) Q x [g] = lim ε→0 + E g(T ) |S(T ) -x| < ε
for all bounded measurable function g on T. The function

x → Q x [g] is continuous on R + \N, and (86) 
E h(S(T ))g(T ) = E h(S(T ))Q S(T ) [g] = R + h(x)Q x [g]γe -γx dx
for all bounded measurable function h on R + . If the law of T x = (τ x , (L u ) u∈τx ) is Q x , then conditionally given τ x , the (L u ) u∈τx are independent with exponential distribution with mean 1.

Definition 4.7 Let x ∈ R + \N. If T is a GW α -weighted tree with edge lengths, then we denote by P(dT | S(T ) = x) the law Q x defined in Proposition 4.6, and we thus write

P(T ∈ A | S(T ) = x) = Q x (A) and E[g(T ) | S(T ) = x] = Q x [g]
for all measurable subset A ⊂ T and all bounded measurable function g on T. Recall from (34) the measurable map Sha : T → T, where T is the space of all trees. If τ is a GW α -weighted tree, then we denote by P(dτ | S(τ ) = x) the law of Sha(T ) under P(dT | S(T ) = x). Namely,

P(τ ∈ A | S(τ ) = x) = Q x (Sha -1 (A)) and E[g(τ ) | S(τ ) = x] = Q x [g • Sha],
for all subset A ⊂ T and all bounded function g on T. □

Before showing Proposition 4.6, we give ourselves a uniform domination of the laws of τ conditionally given |S(τ ) -x| < ε via the lemma below. This result is also useful to transpose estimates about P(dτ | S(τ ) = n) into bounds for P(dτ | S(τ ) = x). We endow the countable space T bit = (t, (b v ) v∈∂t ) : t a tree and b v ∈ {0, 1} for all v ∈ ∂t with the discrete topology. Lemma 4.8 Let r ∈ (0, 1), let W have law FExp(γ), and let τ = (τ, (W v ) v∈∂τ ) be a GW αweighted tree. We set ξ = 1 {W ≥r} and ξ v = 1 {Wv≥r} for all v ∈ ∂τ . Let g : T bit -→ R + be a nonnegative bounded function. For all x, ε > 0 such that ⌊x⌋ < x -ε < x + ε < ⌊x⌋ + 1, it holds

E g(τ, (ξ v ) v∈∂τ ) |S(τ ) -x| < ε ≤ c α (r) E g(τ, (ξ v ) v∈∂τ )#τ S(τ ) = ⌊x⌋ < ∞,
where c α (r) -1 = min P(W < r), P(W ≥ r) only depends on r and α. Moreover, for all n ∈ N,

(87) E 1 {#τ ≤n} g(τ, (ξ v ) v∈∂τ ) |S(τ ) -x| < ε ≤ c α (r)αne γx E 1 {#τ ≤n} g(τ, (ξ v ) v∈∂τ ) .
Proof of Lemma 4.8. The given upper bound is finite by (78). The space T bit is countable, so we can assume there is Moreover, Proposition 4.3 also ensures that

(t 0 , (b 0 v ) v∈∂t 0 ) ∈ T bit such that g(t, (b v ) v∈∂t ) = 1 {t=t 0 } v∈∂t 0 1 {bv=b 0 v } .
1 {|S(τ )-x|<ε} g(τ, (ξ v ) v∈∂τ ) ≤ 1 {S(τ )=⌊x⌋} 1 {τ =t 0 } u∈∂t 0 1 {|Wu-frac(x)|<ε} v∈(∂t 0 )\{u} 1 {ξv=b 0 v } .
Note that #∂t 0 ≤ #t 0 and P(ξ = b 0 u ) ≥ c α (r) -1 for all u ∈ ∂t 0 . Since the (W v ) v∈∂τ are independent and distributed as W conditionally given τ , taking the expectation then yields that

E 1 {|S(τ )-x|<ε} g(τ, (ξ v ) v∈∂τ ) ≤ c α (r)P(|W -frac(x)| < ε)E 1 {S(τ )=⌊x⌋} g(τ, (ξ v ) v∈∂τ )#τ .
Dividing this inequality by P(|S(τ ) -x| < ε) and using (88) conclude the proof. We get (87) by writing

E[1 {#τ ≤n} g#τ | S(τ ) = ⌊x⌋] ≤ nP(S(τ ) = ⌊x⌋) -1 E[1 {#τ ≤n} g

] and recalling (76). ■

Proof of Proposition 4.6. We write τ = Sha(T ) which is a GW α -weighted tree. Let t be a tree and let (W v ) v∈∂t be independent random variables with law FExp(γ). We set t = (t, (W v ) v∈∂t ).

We denote by f t the density of frac(S(t)) and by f the density of frac(S(τ )). They are positive and continuous on (0, 1) by Lemma 4.4 and Proposition 4.5. Since x / ∈ N, it holds ⌊x⌋ < x -ε and x + ε < ⌊x⌋ + 1 for all ε > 0 small enough. If so, we then find

P(|S(τ ) -x| < ε) = P(S(τ ) = ⌊x⌋) frac(x)+ε frac(x)-ε f (y) dy, P(τ = t ; |S(τ ) -x| < ε) = P(τ = t ; S(τ ) = ⌊x⌋) frac(x)+ε frac(x)-ε f t (y) dy.
by respectively applying Proposition 4.5 and conditioning on {τ = t}. The existence of the limit (89) q x (t) := P τ = t S(τ ) = ⌊x⌋ f t (frac(x)) f (frac(x)) = lim

ε→0 + P τ = t |S(τ ) -x| < ε
and the continuity of x -→ q x (t) on R + \N follow from the continuity of f t and f on (0, 1). Now, let us set F (x) = P(τ = t ; S(τ ) ≤ x) for all x ∈ R (note that F (0) = 0). With the same argument used to get (89), we show that F is C 1 on R + \N with F ′ (x) = q x (t)γe -γx . If h : R + -→ R is C 1 with compact support, then we write h(x) = -∞ x h ′ (x) dx and we obtain

(90) E h(S(τ ))1 {τ =t} = ∞ 0 h(x)q x (t)γe -γx dx.
after an application of Fubini's theorem and an integration by parts. The identity (90) holds in fact for all bounded and measurable function h by the functional monotone class theorem. We finally define the measure

Q x by setting Q x [g] = t∈T q x (t)E[g(T ) | τ = t]
for all bounded and measurable function g on T. Making ε → 0 + in the bound given by Lemma 4.8 leads to q x (t) ≤ c α (1/2)E[1 {τ =t} #τ | S(τ ) = ⌊x⌋] for all tree t and x ∈ R + \N. This domination ensures that the function x -→ Q x [g] is continuous on R + \N. By Definition 2.16, we then have

E g(T ) |S(τ ) -x| < ε = t∈T P τ = t |S(τ ) -x| < ε E g(T ) τ = t .
Thanks to (89) and Lemma 4.8, the dominated convergence theorem yields (85). In particular, Q x is indeed a probability measure. Similarly, (86) is a consequence of Fubini's theorem and (90). ■ 5 The weighted Horton pruning of trees with edge lengths

Definition and invariance

We remind from (8) that δ = ( α α-1 ) α-1 = e γ(α-1) . In this section, we extensively use the notations from (34), [START_REF] Horton | Erosional development of streams and their drainage basins ; hydrophysical approach to quantitative morphology[END_REF], [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF], and (39) to manipulate (weighted) trees with edge lengths. As discussed in the introduction, Kovchegov & Zaliapin [46, Proposition 4] showed that stable Galton-Watson trees with edge lengths are invariant by the Horton pruning R (see Definition 4.1). More precisely, if T is a GW α -tree with edge lengths, then the law of R(T ) under P( • | S(T ) ≥ 1) is the same as the law of δ •T under P. In what follows, we seek to obtain a similar result for the weighted Horton-Strahler number and GW α -weighted trees with edge lengths.

First, we adapt the Horton pruning of Definition 4.1 to the framework of weighted trees with edge lengths. The r-Horton pruning consists in erasing the subtrees with weighted Horton-Strahler numbers smaller than a threshold r, and then removing the vertices with only one child left. The weight of a new leaf is given by the maximal Horton-Strahler number previously achieved on the new parental edge, minus r. See Figure 4 for an example. The formal definition is given below. Definition 5.1 (Weighted Horton pruning) Recall Definition 2.10 of embeddings. Let r ∈ R + and let T = (t, (l u ) u∈t , (w v ) v∈∂t ) be a weighted tree with edge lengths such that S(T) ≥ r. Remark 2.11 ensures that there are a unique tree t ′′ and a unique increasing embedding ψ ′′ : t ′′ → t such that ψ ′′ (t ′′ ) = {u ∈ t : S(θ u T) ≥ r}. Proposition 2.13 then states that there are a unique tree t ′ and a unique increasing embedding ψ ′ : t ′ → t ′′ such that ψ(t ′ ) = {u ∈ t ′′ : k u (t ′′ ) ̸ = 1}. We denote by ψ the embedding ψ ′′ • ψ ′ : t ′ → t and for all u ∈ t ′ and for all v ∈ ∂t ′ , we set

l ′ u = ψ( ← - u )≺u ′ ⪯ψ(u) l u ′ and w ′ v = max ψ( ← -v )≺v ′ ⪯ψ(v) S(θ v ′ T) -r.
Eventually, we define the r-Horton-pruned tree with edge lengths as R r (T) = (t ′ , (l ′ u ) u∈t ′ ) and the r-Horton-pruned weighted tree with edge lengths as R r (T) = (t ′ , (l ′ u ) u∈t ′ , (w ′ v ) v∈∂t ′ ). □ The subtrees that will be erased are dashed and orange. The cross marks represent the vertices that will only have a single child left (and will be removed). Subtracting r from the numbers in green gives the weights assigned to the new leaves. Right : The resulting r-pruned weighted tree with edge lengths. Proposition 5.2 Let r ∈ R + and let T be a weighted tree with edge lengths such that S(T) ≥ r. We set K r (T) = # 1 ≤ i ≤ K(T ) : S(θ (i) T) ≥ r and we denote by i 1 < . . . < i K r (T) all the integers such that S(θ (i) T) ≥ r. The weighted tree with edge lengths R r (T) is well-defined and can be recursively described as follows.

(i)

If K r (T) = 0, then K(R r (T)) = K r (T) = 0 and L(R r (T)) = L(T ). (ii) If K r (T) = 1, then K(R r (T)) = K(R r (θ (i 1 ) T)) and L(R r (T)) = L(T ) + L(R r (θ (i 1 ) T)). Moreover, if K(R r (T)) ≥ 2 then θ (j) R r (T) = θ (j) R r (θ (i 1 ) T) for all 1 ≤ j ≤ K(R r (T)). (iii) If K r (T) ≥ 2, then K(R r (T)) = K r (T) and L(R r (T)) = L(T ). Moreover, it holds θ (j) R r (T) = R r (θ (i j ) T) for all 1 ≤ j ≤ K r (T). Furthermore, K(R r (T)) ̸ = 1 and S(R r (T)) = S(T) -r. In particular, if K(R r (T)) = 0 then R r (T) = ({∅}, L(R r (T)), S(T) -r).
Proof. For all 1 ≤ j ≤ K r (T), let t ′ j be the underlying tree of R r (θ (i j ) T) and let ψ j : t ′ j → θ (i j ) t be the associated embedding as in Definition 5.1. It is elementary to verify that, depending on the corresponding case in the desired proposition, the following construction of t ′ and ψ is suitable:

(i) t ′ = {∅} and ψ(∅) = ∅; (ii) t ′ = t ′ 1 and ψ(u) = (i 1 ) * ψ 1 (u) for all u ∈ t ′ ; (iii) k ∅ (t ′ ) = K r (T), θ (j) t ′ = t ′ j , ψ(∅) = ∅, ψ((j) * u) = (i j ) * ψ j (u) for all u ∈ t ′ j , 1 ≤ j ≤ K r (T)
. By the uniqueness provided by Remark 2.11 and Proposition 2.13, the points (i), (ii), and (iii) readily follow. Thanks to them, a quick induction on the height |t| shows that K(R r (T)) ̸ = 1.

To prove that R r (T) is a weighted tree with edge lengths, we still have to check that its weights are all in [0, 1). By induction on |t|, (ii) and (iii) allow us to only consider the case K(R r (T)) = 0, where then the unique weight of R r (T) is w ′ ∅ = S(T) -r ≥ 0 by assumption. To sum up, it remains to show that if K(R r (T)) = 0 then S(T) < 1 + r, and if K(R r (T)) ≥ 2 then S(R r (T)) = S(T) -r. We do so by induction on |t|. When |t| = 0, we have K(R r (T)) = 0 and S(T) = w ∅ < 1 + r. When |t| ≥ 1, we begin by defining, with the convention max ∅ = 0,

x = max 1≤j,j ′ ≤K r (T) max S(θ (i j ) T), 1 {j̸ =j ′ } + min S(θ (i j ) T), S(θ (i j ′ ) T) , y = max 1≤i,i ′ ≤K(T ) S(θ (i) T)<r max S(θ (i) T), 1 {i̸ =i ′ } + min S(θ (i) T), S(θ (i ′ ) T) .
We see that S(T) = max(x, y) and y < 1 + r. We complete the proof by separating the cases.

• If K(R r (T)) = K r (T) = 0: then S(T) = y < 1 + r. • If K(R r (T)) = 0 and K r (T) = 1: then x = S(θ (i 1 ) T) = S(R r (θ (i 1 )
T)) + r by induction hypothesis. Thanks to (ii), K(R r (θ (i 1 ) T)) = 0 so x < 1 + r by (82), and S(T) < 1 + r. • If K(R r (T)) ≥ 2 and K r (T) = 1: then x = S(R r (θ (i 1 ) T)) + r again, and (ii) yields x = S(R r (T)) + r by Definition 1.2. By (82), x ≥ 1 + r, so S(T) = x = S(R r (T)) + r.

• If K(R r (T)) = K r (T) ≥ 2: then x = S(R r (T)) + r by (iii), Definition 1.

2, and induction

hypothesis. As in the previous case, we get x ≥ 1 + r and S(T) = S(R r (T)) + r. The fact that K(R r (T)) ̸ = 1 and the points (i), (ii), and (iii) ensure that we treated all cases. ■ Recall that R stands for the (classic) Horton pruning as in Definition 4.1. Let r ∈ R + and λ > 0, and let T be a weighted tree with edge lengths. By Definitions 4.1 and 5.1, it is clear that

(91) R(λ • T ) = λ • R(T ) and R r (λ • T) = λ • R r (T).
We also observe that R : {T ∈ T : S(T ) ≥ 1} → T and R r : {T ∈ T w : S(T) ≥ r} → T w are measurable, where T (resp. T w ) is the space of all (resp. weighted) trees with edge lengths. Better still, one does not need all the information in T to determine a particular component of R r (T).

Remark 5.3 Let T = (t, (l u ) u∈t , (w v ) v∈∂t ) be a weighted tree with edge lengths.

(i) The Horton pruning is a specific case of a weighted Horton pruning as R 1 (T) = R(T ).

Indeed, for all weighted tree t, S(t) ≥ 1 if and only if S(t) ≥ 1 by Proposition 4.3. In particular, R(T ) is well-defined and Proposition 5.2 yields the formula (75). (ii) The weighted tree Sha(R r (T)) can be expressed as a measurable function of Sha(T). Indeed, the lengths of T are only used to compute the lengths of R r (T). (iii) If r ∈ [0, 1], the tree with edge length R r (T) can be expressed as a measurable function of (t, (l u ) u∈t , (1 {wv≥r} ) v∈∂t ). Indeed, we do not need to compute the weights to know R r (T), only to observe which vertices u ∈ t are such that S(θ u T) ≥ r. Moreover, by (82), this information in contained in (t, (l u ) u∈t , (1 {wv≥r} ) v∈∂t ) since r ≤ 1. (iv) The weighted tree with edge lengths R 1 (T) can be expressed as a measurable function of (t, (l u ) u∈t\∂t , (w v ) v∈∂t ). Indeed, S(θ v T) < 1 for all v ∈ ∂t, so the parental edges of leaves are erased and the lengths l v do not appear in the expression of R 1 (T). □

We are now ready to present the invariance of a GW α -weighted tree with edge lengths T (recall Definition 2.16) by weighted Horton pruning. Let us explain why we cannot hope for the law of R r (T ) under P( • | S(T ) ≥ r) to be exactly the same as the law of δ r • T under P. If a leaf of R r (T ) has a long parental edge then there is a higher probability that this edge comes from the fusion of many edges of T, which means its weight is more likely to be large. Thus, the weight and the length of the parental edge of such a leaf are not independent. We get around this issue by erasing the leaves with the map R 1 before comparing R r (T ) and δ r • T . Proof. By Remark 5.3 (iv) and Proposition 5.2, we only need to show that the law of F i (R r (T )) under P( • | S(T ) ≥ r) is equal to the law of F i (δ r • T ) under P for all i ∈ {1, 2}, where

F 1 (T) = (t, (l u ) u∈t ) and F 2 (T) = (t, (l u ) u∈t\∂t , (w v ) v∈∂t ).
Note that K(T ) ̸ = 1 by ( 30), and K(R r (T )) ̸ = 1 by Proposition 5.2. Let k ∈ N with k ≥ 2, λ > 0, x ∈ (0, 1), and let g 1 , . . . , g k : T w -→ R be bounded measurable functions. Let us set G(T) = 1 {K(T )=k} e -λL(T ) k j=1 g j (θ (j) T) for all T ∈ T w . Then, by induction on the height, we only need to check the three following identities: 82). Again by ( 82), and since it holds S(R r (T )) = S(T ) -r when S(T ) ≥ r by Proposition 5.2, we find

P(K(T ) = 0 ; S(T ) ≤ x) = P K(R r (T )) = 0 ; S(R r (T )) ≤ x S(T ) ≥ r , (92) E 1 {K(T )=0} e -λδ r L(T ) = E 1 {K(Rr(T ))=0} e -λL(Rr(T )) S(T ) ≥ r , (93) E G(R r (T )) S(T ) ≥ r = E 1 {K(T )=k} e -λδ r L(T ) k j=1 E g j (R r (T )) S(T ) ≥ r . (94) Since x < 1, we have P(K(T ) = 0 ; S(T ) ≤ x) = P(S(T ) ≤ x) by (
P(S(T ) ≥ r ; K(R r (T )) = 0 ; S(R r (T )) ≤ x) = P(r ≤ S(T ) ≤ x + r).
The identity (92) follows because the law of S(T ) is exponential, as stated by Proposition 4.5.

We set χ 2 (T) = 1 {S(T)≥r} 1 {K(Rr(T))=0} e -λL(Rr(T)) to simplify. Proposition 5.2 entails that χ 2 (T ) = e -λL(T )

K(T ) i=1 χ 2 (θ (i) T ) 1≤j≤K(T ) j̸ =i 1 {S(θ (j) T )<r} + K(T ) i=1 1 {S(θ (i) T )<r} -1 {S(T )<r} .
Recall from (2) that φ α stands for the generating function of the offspring law µ α . Thanks to (68) and Definition 2.16 of GW α -weighted trees with edge lengths, we can compute that

E[χ 2 (T )] = φ α (P(S(T ) < r)) -P(S(T ) < r) 1 + λ -φ ′ α (P(S(T ) < r))
.

The identity (93) follows from Proposition 4.5 and from the expression (2) of φ α .

To lighten notations, we set

χ 3 (T) = 1 {S(T)≥r} G(R r (T)) and χ ′ j (T) = 1 {S(T)≥r} g j (R r (T)) for all 1 ≤ j ≤ k. Once again, Proposition 5.2 yields that χ 3 (T )e λL(T ) = K(T ) i=1 χ 3 (θ (i) T ) 1≤j≤K(T ) j̸ =i 1 {S(θ (j) T )<r} + 1≤i 1 <... ...<i k ≤K(T ) k j=1 χ ′ j (θ (i j ) T ) 1≤i≤K(T ) i̸ =i 1 ,...,i k 1 {S(θ (i) T )<r} .
For all s ∈ [0, 1), we know that φ [START_REF] Fac-Beneda | Fractal structure of the Kashubian hydrographic system[END_REF]. With the same arguments as before, we eventually obtain

(k) α (s)/k! = E 1 {K(T )≥k} K(T ) k s K(T )-k = µ α (k)(1 -s) α-k from
E[χ 3 (T )] = P(S(T ) ≥ r) α 1 + λ -φ ′ α (P(S(T ) < r)) µ α (k) k j=1 E g j (R r (T )) S(T ) ≥ r ,
which implies the identity (94). ■

Some applications

Here, we give some useful consequences of Theorem 5.4. Recall Definition 2.10 of embeddings.

Corollary 5.5 Let A : T -→ R have the following monotony property: for all trees t, t ′ ∈ T, if there is an embedding ψ : t ′ → t then A(t ′ ) ≤ A(t). Let τ be a GW α -weighted tree. For all a ∈ R and for all x, y ∈ R + \N such that x ≤ y, it holds that

P A(τ ) ≥ a S(τ ) = x ≤ P A(τ ) ≥ a S(τ ) = y , ( 95 
) P A(τ ) ≥ a S(τ ) = x ≤ P A(τ ) ≥ a S(τ ) = ⌊x⌋ + 1 , ( 96 
) P A(τ ) ≥ a S(τ ) = ⌊y⌋ ≤ P A(τ ) ≥ a S(τ ) = y + 1 . (97)
In particular, the result applies when A is the size A(t) = #t, and when A is the height A(t) = |t|.

Proof. We can assume that τ = Sha(T ), where T is a GW α -weighted tree with edge lengths. Let r ∈ [0, 1] and x > 0 be such that x, x + r / ∈ N. By Definition 5.1, the property of A yields

P A(Sha(R r (T ))) ≥ a ; |S(T ) -(x + r)| < ε ≤ P A(τ ) ≥ a ; |S(T ) -(x + r)| < ε
for all ε ∈ (0, x). Since S(Sha(R r (T ))) = S(T ) -r when S(T ) ≥ r, Theorem 5.4 (ii) entails

P(S(T ) ≥ r)P A(τ ) ≥ a ; |S(T ) -x| < ε ≤ P A(τ ) ≥ a ; |S(T ) -(x + r)| < ε .
Moreover, the law of S(T ) is exponential by Proposition 4.5 so dividing the above inequality by P(|S(T ) -(x + ε)| < ε) and making ε → 0 + gives (95) with y = x + r, by Definition 4.7. We generalize that for any x, y by induction on ⌊y -x⌋. Integrating (95) with respect to y against the conditional law of S(τ ) given ⌊x⌋ + 1 ≤ S(τ ) < ⌊x⌋ + 2 yields (96), by Proposition 4.6. We get (97) similarly by integrating (95) with respect to x. ■ Like Lemma 4.8, but with greater precision, Corollary 5.5 allows controlling P(dτ | S(τ ) = x) with estimates about the nondegenerate conditional law P(dτ | S(τ ) = n). Now, recall from [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] the height function H(T ) of a tree with edge lengths T . The following proposition shows that the height function of a GW α -weighted tree with edge lengths does not change much after r-Horton pruning. Indeed, if r ∈ [0, 1] then only some leaves are erased, and in a uniform manner. Proposition 5.6 Recall d S from [START_REF] Sagar | Effect of DEM source on equivalent Horton-Strahler ratio based GIUH for catchments in two Indian river basins[END_REF]. Let T = (τ, (L u ) u∈τ , (W v ) v∈∂τ ) be a GW α -weighted tree with edge lengths, let r ∈ [0, 1], and let λ > 0. We define two random càdlàg functions with compact support X and Y by setting for all s ∈ R + ,

X s = λ 1-1/α
Hs/λ (T ) and Y s = 1 {S(T )≥r} λ 1-1/α He -γr s/λ (R r (T )).

Then, there are two constants C, c ∈ (0, ∞) that only depend on α such that for all n ≥ 1,

P #T ≤ n ; |T | ≤ n 1-1/α ; d S (X, Y ) ≥ C(λ √ n) 1-1/α ln n + Cλ √ n ln n ≤ Cne -c(ln n) 2 .
Proof. Let (ξ i , L i , W i ) i∈N be independent random variables such that for all i ∈ N, ξ i has the same law as k ∅ (τ ) -1, the law of L i is exponential with mean 1, and the law of W i is FExp(γ). Recall from [START_REF] Eisenberg | On the expectation of the maximum of IID geometric random variables[END_REF] the depth-first exploration u(τ ). By (33) and Definition 2.16, we can assume that

ξ i = k u i (τ ) (τ ) -1, L i = L u i (τ ) , and 
(ξ i = -1) =⇒ (W i = W u i (τ ) )
for all 0 ≤ i ≤ #τ -1. We now define a sequence of stopping times (J i ) i∈N and a random integer N by setting J -1 = -1 and for all i ∈ N, (98)

J i = inf j > J i-1 : ξ j ̸ = -1 or W j ≥ r and N = inf{j ≥ 0 : J j ≥ #τ }.
Since r ≤ 1, we observe by ( 30) and ( 82) that u J 0 (τ ), u J 1 (τ ), . . . , u J N-1 (τ ) are exactly the vertices u ∈ τ such that S(θ u τ ) ≥ r, listed in lexicographic order. Then, for all j ∈ N, we set

s j (X) = λ J j-1 ι=0 L ι = λ j-1 i=0 J i ι=J i-1 +1 L ι and s j (Y ) = λe γr j-1 i=0 L J i .
Note that s 0 (X) = s 0 (Y ) = 0. Thanks to Proposition 2.13 and (37), we identify that

ζ(Y ) = s N (Y ), that s N (X) ≤ ζ(X) < s N+1 (X), and that if s ∈ [s j (Y ), s j+1 (Y )) with 0 ≤ j ≤ N -1 then (99) λ 1-1/α v≺uJ j (τ ) L v = Y s j (Y ) ≤ Y s ≤ Y s j+1 (Y )-= λ 1-1/α v⪯uJ j (τ ) L v .
We write ∆(f ) = sup s≥0 |f (s) -f (s-)| for any càdlàg function f . We claim that

(100) d S (X, Y ) ≤ 6 max 1≤j≤N+1 |s j (X) -s j (Y )| + 3e γ λ max 0≤j≤N L J j + 2λ 1-1/α max u∈τ L u + ∆(Y ).
Proof of (100). Let 1 ≤ j ≤ N -1 and let u ∈ τ such that u J j-1 (τ ) < u ≤ u J j (τ ). By definition of the lexicographic order, we remark that u J j-1 (τ )∧u J j (τ ) is an ancestor of u J j-1 (τ )∧u. Moreover, it either holds u = u J j (τ ), or S(θ u τ ) < r and u is a leaf of τ . The contrapositive of this argument entails that ←u ≤ u J j-1 (τ ), and it further follows that ←u = u ∧ u J j-1 (τ ). In particular, the parent of u J j (τ ) is the most recent common ancestor of u J j-1 (τ ) and u J j (τ ). Hence, we have

proven ← ---- u J j (τ ) ⪯ ← - u ⪯ u J j-1 (τ )
, and (99) then yields that

(101) Y s j (Y ) ≤ λ 1-1/α v≺u L v ≤ Y s j (Y )-.
Now, we choose an increasing and bijective ψ : R + -→ R + such that ψ(s j (Y )) = s j (X) for all 0 ≤ j ≤ N and ψ(s N (Y ) + s) = s N (X) + s for all s ≥ 0. The facts preceding (99) give that

|ζ(X) -ζ(Y )| ≤ 2|s N (X) -s N (Y )| + |s N+1 (X) -s N+1 (Y )| + λe γr L JN . Let s ∈ [s j (Y ), s j+1 (Y )) with 1 ≤ j < N, we have ψ(s) ∈ [s j (X), s j+1 (X)) so |ψ(s) -s| ≤ 2|s j (X) -s j (Y )| + |s j+1 (X) -s j+1 (Y )| + 2λe γr L J j .
Plus, there is u ∈ τ such that u J j-1 (τ ) < u ≤ u J j (τ ) and v≺u L v ≤ λ 1/α-1 X ψ(s) < v⪯u L v , by definition [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] of the height function. The inequalities (99) and ( 101) then entail that

|X ψ(s) -Y s | ≤ λ 1-1/α L u + λ 1-1/α L uI j (τ ) + |Y s j (Y ) -Y s j (Y )-|.
We treat the cases where s ∈ [0, s 1 (Y )) or s ≥ s N (Y ) similarly. This completes the proof. □ From (98), we observe that the sequence (J j ) j∈N is independent of (L i ) i∈N , which is a sequence of independent and identically distributed random variables, thus (L J j ) j∈N has the same law as (L j ) j∈N . Moreover, the random variables (J j -J j-1 -1) j∈N are independent and geometric with parameter P(ξ 0 ̸ = -1 or W 0 ≥ r) = P(S(T ) ≥ r) = e -γr , and jointly independent from (L i ) i∈N . A well-known fact then asserts that the random sequence e -γr J j-1 <ι≤J j L ι j∈N has also the same law as (L j ) j∈N . For all j ∈ N, we thus have

P |s j (X) -s j (Y )| ≥ e γr λ √ n ln n ≤ 2 P i - j-1 i=0 L i ≥ √ n ln n .
It is clear from (98) that N ≤ #τ almost surely, so Lemma 3.10 entails that (102)

P #τ ≤ n ; max 1≤j≤N+1 |s j (X) -s j (Y )| ≥ e γr λ √ n ln n ≤ 8ne -c uni (ln n) 2
for all n large enough. Then, a simple union bound together with N ≤ #τ gives us

(103) P #τ ≤ n ; λ max 0≤j≤N L I j + λ 1-1/α max u∈τ L u ≥ λ(ln n) 2 + λ 1-1/α (ln n) 2 ≤ 3ne -(ln n) 2 .
By Definition 5.1, we observe that if S(T ) ≥ r then #R r (T ) ≤ #τ and |R r (T )| ≤ |τ |. Hence,

χ := P #R r (T ) ≤ n ; |R r (T )| ≤ n 1-1/α ; e -γr ∆(Y ) ≥ 2C(λ √ n) 1-1/α ln n + 2Cλ √ n ln n ≥ P #τ ≤ n ; |τ | ≤ n 1-1/α ; e -γr ∆(Y ) ≥ 2C(λ √ n) 1-1/α ln n + 2Cλ √ n ln n
for any C > 0. Plus, if S(T ) < r then ∆(Y ) = 0. Using (37), Theorem 5.4 (i) then yields that

χ = P(S(T ) ≥ r) P #τ ≤ n ; |τ | ≤ n 1-1/α ; ∆(X) ≥ 2C(λ √ n) 1-1/α ln n + 2Cλ √ n ln n .
Recalling the expression ( 17) of d S , we see that if f and g are respectively càdlàg and continuous with compact support, then ∆(f ) ≤ ∆(g) + 2d S (f, g) = 2d S (f, g). Therefore, according to Proposition 3.9, there are C, c ∈ (0, ∞) that only depend on α such that

P #τ ≤ n ; |τ | ≤ n 1-1/α ; ∆(Y ) ≥ 2C(λ √ n) 1-1/α ln n + 2Cλ √ n ln n ≤ Cne -c(ln n) 2
because the height function ( 27) of a tree (without edge lengths) is continuous. Combining this last estimate with the inequalities (100), (102), and (103) completes the proof. ■ 6 Proof of Theorem 1.3

In this section, we extensively use the topological tools and the notations presented in Section 2.1, so recall the spaces C K and D K , the Skorokhod distance d S from ( 17), the Prokhorov metric ρ S associated with d S from [START_REF] Chung | Excursions in Brownian motion[END_REF], and Notation 2.2. Furthermore, recall the height function H(t) of a tree t from [START_REF] Esparza | History of Strahler Numbers -with a Preface[END_REF], and the law of a GW α -tree conditioned on its weighted Horton-Strahler number from Definition 4.7. Our goal here is to prove the following result.

Theorem 6.1 Let τ be a GW α -weighted tree. The law of the process e -γ(α-1)x H e γαx s (τ ) s≥0 under P(dτ | S(τ ) = x) weakly converges on C K , when x ∈ R + \N tends to ∞.

Indeed, Theorem 6.1 implies Theorem 1.3 by Proposition 2.18 and Skorokhod's representation theorem. Moreover, the estimates (79) and ( 81), together with Corollary 5.5, entail that the limit law is not degenerate: see Section 7 for details. We even give a somewhat speed of convergence for Theorem 6.1 via the following theorem, whose we postpone the proof for later.

Theorem 6.2 Let τ be a GW α -weighted tree. For all x ∈ R + \N, we denote by ν x the law on C K of e -γ(α-1)x H e γαx s (τ ) s≥0 under P(dτ | S(τ ) = x). Then, there are two constants C, c ∈ (0, ∞) that only depend on α such that it holds ρ S (ν x , ν y ) ≤ Ce -c min(x,y) for all x, y ∈ R + \N.

One might be tempted to see Theorem 6.1 as a direct consequence of Theorem 6.2, arguing the function x -→ ν x is Cauchy so it must converge. Unfortunately, we have to remind from Remark 2.5 that ρ S is not a complete metric. Nevertheless, it is not a hard challenge to overcome.

Proof of Theorem 6.1 from Theorem 6.2. We keep the notations of Theorem 6.2. We claim that we only need to show that the family (ν x ) x∈R + \N is tight on C K . Indeed, there would then exist an increasing sequence of points x n ∈ R + \N that tends to ∞ such that the sequence (ν xn ) weakly converges on C K by Prokhorov's theorem. Together with Proposition 2.4, Theorem 6.2 would then yield that the family (ν x ) x∈R + \N converges with respect to ρ S when x tends to ∞. Since the ν x are laws on C K , they would also weakly converge on C K by Proposition 2.1. □ We thus aim to apply Proposition 2.3. Firstly, we readily get Proposition 2.3 (a) because it holds H 0 (τ ) = 0 almost surely. Secondly, we know that ζ(H(τ )) = 1 {#τ ≥2} #τ from [START_REF] Evans | Probability and Real Trees: École d'Été de Probabilités de Saint-Flour XXXV-2005[END_REF]. Next, we apply Corollary 5.5 followed by Markov's inequality to find that for all m ≥ 1 and x ∈ R + \N,

ν x (ζ ≥ m) ≤ P #τ ≥ e γαx m S(τ ) = ⌊x⌋ + 1 ≤ 1 m e -γαx E #τ S(τ ) = ⌊x⌋ + 1 .
Therefore, (78) yields Proposition 2.3 (b). It only remains to show that for all ε > 0,

+ lim sup x→∞,x / ∈N ν x (ω η ≥ 2ε) = 0. (104) lim η→0 
But before, we instead work under the discrete conditioning {S(τ ) = n}. For all n ∈ N, we denote by ν ′ n the law on C K of the process e -γ(α-1)n H e γαn s (τ ) s≥0 under P( • | S(τ ) = n). We fix ℓ > 0 for now, we write N n = e γ(α-1)n , and we note that N αβ n = e γαn , where recall from (8) that β(α -1) = 1. Using (28), we write the rough bound

ν ′ n (ω η ≥ ε, sup ≥ ℓ) ≤ P(|τ | ≥ ℓe γ(α-1)n ) P(S(τ ) = n) P ω η ( 1 Nn H N αβ n s (τ ) ; s ≥ 0) ≥ ε |τ | ≥ ℓN n .
We apply (66) in Theorem 3.7, in conjunction with ( 60) and ( 76), and we eventually obtain that

lim η→0+ lim sup n→∞ ν ′ n (ω η ≥ ε) ≤ lim sup n→∞ P |τ | ≤ ℓe γ(α-1)n S(τ ) = n
for all ε, ℓ > 0. By making ℓ tend to 0 + , the estimate (79) entails that for all ε > 0, it holds that (105) lim

η→0 + lim sup n→∞ ν ′ n (ω η ≥ ε) = 0.
Let ε, η > 0 and let n ∈ N be large enough so that 2Ce -cn ≤ max(ε, η), where C and c are as in Theorem 6.2. For all x, y ∈ (n, n + 1), we get ν x (ω η ≥ 2ε) ≤ ν y (ω 2η ≥ ε) + Ce -cn by Theorem 6.2. According to Proposition 4.6, integrating this inequality with respect to y against the law of S(τ 1) ε + Ce -cn . We point out that we made the factors e γα and e γ(α-1) appear inside the right-hand side to compensate for the ratio of the scalings H(τ ) is subject to, depending on whether it is observed under ν y or ν ′ n . Finally, the desired condition (104) follows from (105), which concludes the proof. ■

) under P( • | S(τ ) = n) yields that ν x (ω η ≥ 2ε) ≤ ν ′ n ω 2e γα η ≥ e γ(α-
The rest of the section is devoted to the proof of Theorem 6.2. We begin by applying the invariance by weighted Horton pruning stated in Theorem 5.4 (together with Proposition 5.6) to bound the Prokhorov distance between the laws of the rescaled height function (as defined by ( 36)) of a GW α -weighted tree with edge lengths T respectively under P(dT | S(T ) = x) or under P(dT | S(T ) = x -r). Lemma 6.3 Let T be a GW α -weighted tree with edge lengths. For all x ∈ R + \N, we denote by νx the law on D K of the process e -γ(α-1)x

He γαx s (T ) s≥0 under P(dT | S(T ) = x). Then, there are two constants C, c ∈ (0, ∞) that only depend on α such that ρ S (ν x , νx-r ) ≤ Ce -cx , for all r ∈ [1/10, 9/10] and all x > r with x, x -r / ∈ N.

Proof. The Prokhorov distance between two probability measures is always bounded by 1, so we can assume x ≥ 2 > r + 1 without loss of generality. We define five random càdlàg functions with compact support X, Y, Z, X ′ , Y ′ by setting for all s ∈ R + , X s = e -γ(α-1)x He γαx s (T ), Y s = 1 {S(T )≥r} e -γ(α-1)x He -γr e γαx s (R r (T )),

Z s = 1 {S(T )≥r,S(Rr(T ))≥1} e -γ(α-1)x He -γ(1+r) e γαx s (R 1 • R r (T )), X ′ s = e -γ(α-1)(x-r) He γα(x-r) s (T ), Y ′ s = 1 {S(T )≥1} e -γ(α-1)(x-r)
He -γ e γα(x-r) s (R 1 (T )).

The law of X under P(dT | S(T ) = x) is νx , and the law of X ′ under P(dT | S(T ) = x -r) is νx-r . Informally, the first step of the proof is to show that X and X ′ are respectively close to Z and Y ′ with high probability by using Proposition 5.6. Then, we prove with Theorem 5.4 that the 'conditional law of Z given S(T ) = x' is the same as the law of Y ′ under P(dT | S(T ) = x -r). However, Z is not measurable with respect to T , since we need the weights to determine R r (T ), so Definition 4.7 does not make sense of its law under P(dT | S(T ) = x). We avoid this issue by instead working conditionally given |S(T ) -x| < ε, with a small ε > 0.

Let us set n = e 3γαx/2 . Applying Proposition 5.6 with λ = e -γαx and with λ = e -γα(x-r) , we justify that there exist two constants C 0 , c 0 ∈ (0, ∞) only depending on α such that

P #T ≤ n ; |T | ≤ n 1-1/α ; d S (X, Y ) ≥ C 0 xe -γ(α-1)x/4 ≤ C 0 e 3γαx/2-c 0 x 2 , (106) 
P #T ≤ n ; |T | ≤ n 1-1/α ; d S (X ′ , Y ′ ) ≥ C 0 xe -γ(α-1)x/4 ≤ C 0 e 3γαx/2-c 0 x 2 . (107)
Then, Remark 5.3 (i) ensures that the couple (Y, Z) can be expressed as a measurable function of R r (T ) when S(T ) ≥ r. Hence, by [START_REF] Janson | Conditioned Galton-Watson trees do not grow[END_REF] and (91), Theorem 5.4 (i) yields that the law of (Y, Z) under P( • | S(T ) ≥ r) is the same as the law of (X ′ , Y ′ ) under P. Since it always holds that

#R r (T ) ≤ #T and |R r (T )| ≤ |T |, (107) still holds even if we replace (X ′ , Y ′ ) by (Y, Z).
Combining this new version of (107) with (106) entails that (108)

P #T ≤ n ; |T | ≤ n 1-1/α ; d S (X, Z) ≥ 2C 0 xe -γ(α-1)x/4 ≤ 2C 0 e 3γαx/2-c 0 x 2 .
Let us set η = e γ(3α+1)x-c 0 x 2 to lighten the notations. By Remark 5.3 (i) and (ii), the only information about the weights of T we need to determine X ′ , Y ′ , X, Z is if they are smaller than r or not. Thus, we can use (87) in Lemma 4.8 to deduce from (107) and (108) that there is a constant C 1 ∈ (0, ∞), that only depends on α, such that for all ε > 0 small enough (according to x and r),

P #T ≤ n ; |T | ≤ n 1-1/α ; d S (X ′ , Y ′ ) ≥ C 1 xe -1 4 γ(α-1)x |S(T ) -x+r| < ε ≤ C 1 η, (109) 
P #T ≤ n ; |T | ≤ n 1-1/α ; d S (X, Z) ≥ C 1 xe -1 4 γ(α-1)x |S(T ) -x| < ε ≤ C 1 η. (110) 
We stress that C 1 does not depend on r because we restrict ourselves to the case r ∈ [1/10, 9/10], which ensures c α (r) ≤ c α (1/10) with the notations of Lemma 4.8. It remains to control the conditional probabilities that #T ≥ n or |T | ≥ n. We successively use Corollary 5.5 and (86), then a rough bound, and finally (76) with (61) (resp. with (60)) to write that for all small enough ε,

P #T ≥ n |S(T ) -x| < ε ≤ P(#T ≥ n) P(S(T ) = ⌊x⌋ + 1) ≤ C 2 e -γx/2 , (111) 
P |T | ≥ n 1-1/α |S(T ) -x| < ε ≤ P(|T | ≥ n 1-1/α ) P(S(T ) = ⌊x⌋ + 1) ≤ C 2 e -γx/2 , ( 112 
)
where C 2 ∈ (0, ∞) is a constant that only depends on α. The same bounds hold for the conditional probabilities given |S(T ) -(x-r)|. Recalling (109) and (110), we conclude that there is a constant C 3 ∈ (0, ∞) only depending on α such that for all ε > 0 small enough (according to x and r),

P d S (X ′ , Y ′ ) ≥ C 3 e -γ(α-1)x/8 |S(T ) -(x-r)| < ε ≤ C 3 e -γx/2 , (113) 
P d S (X, Z) ≥ C 3 e -γ(α-1)x/8 |S(T ) -x| < ε ≤ C 3 e -γx/2 . ( 114 
)
Let us prove that the conditional law of Y ′ given |S(T )-(x-r)| < ε is equal to the conditional law of Z given |S(T ) -x| < ε, for all small enough ε > 0. More precisely, let ε ∈ (0, x -r -1) and let A be a measurable subset of D K . By the choice of ε, if |S(T ) -x| < ε then S(T ) ≥ r + 1. Moreover, if S(T ) ≥ r+1 then we know from Proposition 5.2 that S(R 1 •R r (T )) = S(T )-r-1:

P |S(T ) -x| < ε ; Z ∈ A = P S(T ) ≥ r + 1 ; |S(R 1 • R r (T )) -(x-r-1)| < ε ; Z ∈ A .
Then, (37), (91), Theorem 5.4 (iii), and a similar argument as above yield

P(S(T ) ≥ 1)P |S(T ) -x| < ε ; Z ∈ A = P(S(T ) ≥ r + 1)P |S(T ) -(x-r)| < ε ; Y ′ ∈ A).
Furthermore, we know from Proposition 4.5 that the law of S(T ) is exponential, so we get (115)

P Z ∈ A |S(T ) -x| < ε = P Y ′ ∈ A |S(T ) -(x-r)| < ε
as desired. Thanks to (85) and ( 115), making ε → 0 + inside ( 113) and (114) completes the proof. ■ Proof of Theorem 6.2. We use the notations of Lemma 6.3 and of Theorem 6.2, and we can assume τ = Sha(T ) as in [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF]. Let x ∈ R + \N, we define two random càdlàg functions with compact support X, Y by setting for all s ∈ R + ,

X s = e -γ(α-1)x
He γαx s (T ) and Y s = e -γ(α-1)x H e γαx s (τ ).

The laws of X and Y under P(dT | S(T ) = x) are respectively νx and ν x . By Proposition 3.9 with n = e 3γαx/2 and λ = e -γαx , there are C 0 , c 0 ∈ (0, ∞) only depending on α such that (116)

P #τ ≤ n ; |τ | ≤ n 1-1/α ; d S (X, Y ) ≥ C 0 xe -γ(α-1)x/4 ≤ C 0 ne 3γαx/2-c 0 x 2 .
Thanks to (87) in Lemma 4.8, we combine (116) with ( 111) and (112) to obtain that (117)

P d S (X, Y ) ≥ C 3 e -γ(α-1)x/8 S(T ) = x ≤ C 3 e -γx/2 ,
where C 3 ∈ (0, ∞) only depends on α. Then, Lemma 6.3 and (117) ensure the existence of two constants C 4 , c 4 ∈ (0, ∞) only depending on α such that ρ S (ν x , νx ) ≤ C 4 e -c 4 x and ρ S (ν x , νy ) ≤ C 4 e -c 4 min(x,y) for all x, y ∈ R + \N with 1/10 ≤ |x -y| ≤ 9/10. By triangular inequality (see Proposition 2.4), it follows that ρ S (ν x , ν y ) ≤ 3C 4 e -c 4 min(x,y) for all x, y ∈ R + \N with 1/10 ≤ |x -y| ≤ 9/10. For all x, y ∈ R + \N, we can find a finite sequence (x i ) 0≤i≤n of positive non-integers such that 1/2 ≤ x i -x i-1 ≤ 9/10 for all 1 ≤ i ≤ n, x 0 = min(x, y), and 1/10 ≤ x n -max(x, y) ≤ 9/10. We complete the proof with the triangular inequality by writing

ρ S (ν x , ν y ) ≤ ρ S (ν xn , ν max(x,y) ) + n-1 i=0 ρ S (ν x i+1 , ν x i ) ≤ e -c 4 min(x,y) • 6C 4 i∈N e -c 4 i/2 .
■ 7 A first description of the limit tree in Theorem 1.3

In this section, we begin to study the limit objects of Theorems 1.3 and 6.1. Recall Notation 2.6 from Section 2.1, and that K m stands for the space of (GHP-isometry classes of) rooted measured compact metric spaces, endowed with the rooted Gromov-Hausdorff-Prokhorov distance [START_REF] Drmota | The Register Function for T-Ary Trees[END_REF].

Definition 7.1 A random variable ( H, ζ) on C K is a HS α -excursion when it has the limit distribution in Theorem 6.1. A random rooted measured compact metric space T (in other words, a random variable on K m ) is a HS α -real tree when it has the limit distribution in Theorem 1.3. □ By Proposition 2.18 and Skorokhod's representation theorem, if ( H, ζ) is a HS α -excursion, then it is in E K and the real tree T H, ζ it codes, as defined by [START_REF] Khanfir | Time and place of the maximum for one-dimensional diffusion bridges and meanders[END_REF], is a HS α -real tree. In particular, a HS α -real tree is almost surely a real tree in the sense of Definition 2.17. Now, we give ourselves some estimates for the mass and height (23) of a HS α -real tree.

Proposition 7.2 Let T be a HS α -real tree. Then, E[m(T )] < ∞ and there exists a constant y 0 ∈ (0, ∞) that only depends on α such that for all x ≥ 0 and y ≥ y 0 , it holds that (118) P(h(T ) < x) ≤ 1 -e -4x and P(h(T ) > y) ≤ e -y/40 .

Proof. For all n ∈ N, let τ n have the same law as τ under P(dτ | S(τ ) = x n ), where x n = n+ 1 2 and τ is GW α -weighted tree. We can assume that e -γαxn #τ n -→ m(T ) and e -γ(α-1)xn |τ n | -→ h(T ) almost surely by continuity of m and h. Fatou's lemma, Corollary 5.5, and (78) then imply that E[m(T )] < ∞. Similarly, the Portmanteau theorem, Corollary 5.5, and the bounds (79) and ( 81) yield (118) -because δ

√ δ ≤ 4 and 20 √ δ ≤ 40 where δ = ( α α-1 ) α-1 ∈ (1, 2]. ■
The two estimates (118) ensure that the law of h(T ) is nondegenerate, so the same holds for the law of T . Next, we show how to construct a HS α -real tree by rescaling (recall from [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF] the notation ⊙ α ) and grafting (recall from Definition 2.22 the notation ⊛) a countable number of independent HS α -trees. This self-similarity is our main tool to prove Theorem 1.4 (ii). Because of the diversity of the random variables involved in the construction, the theorem is both technical to state and to prove. Nevertheless, it is not surprising nor difficult to understand. Indeed, it is just based on the idea to focus on the subtrees with large weighted Horton-Strahler numbers, to apply Definition 2.15, and to take the scaling limit. The formal proof, that we postpone to the end of the section, gives little intuition and may be skipped at first reading. Recall from (8) that β = 1 α-1 , γ = ln α α-1 and δ = e γ(α-1) . We work on the product topological space

Ω = R + ×[1, ∞)×K m × i≥2 ([0, 1]×K m )
and we write each of its element ω ∈ Ω as ω = ℓ(ω) , ξ(ω) , T 1 (ω) , (λ i (ω), T i (ω)) i≥2 . Theorem 7.3 Let T g , T d be two HS α -real trees. Let L have exponential law with mean δ -1 and let U have law 1 [1,δ] (s)s β-1 ds. Let (T i ) i≥1 be a sequence of independent HS α -real trees. Let (Λ i ) i≥2 be a sequence of independent random variables on [0, 1] with laws respectively given by Λ i = 0 almost surely when α = 2, or by

P(Λ i ∈ dλ i ) = 1 [0,1] (λ i )β(i -α)λ β(i-α)-1 i dλ i when α ∈ (1, 2).
Let N be a Poisson point process on Ω with intensity measure

δdℓ × 1 [1,∞) (ξ)dξ × P(T g ∈ dT 1 ) × i≥2 P(Λ i ∈ dλ i ) × P(T g ∈ dT i ) .
We assume that L, U, T g , T d , (T i ) i≥2 , (Λ i ) i≥2 , N are jointly independent. We denote by L ∈ K m the real segment [0, L] rooted at 0 and endowed with the null measure. Then, there exists a HS α -real tree T * such that it almost surely holds

(119) T * = L ⊛ L, 1 U ⊙ α T g ⊛ L, 1 δ ⊙ α T d ⊛ i≥2 L, 1 δ i j=2 Λ j ⊙ α T i ⊛ i≥1,ω∈N ℓ(ω)≤L ℓ(ω), 1 δξ(ω) i j=2 λ j (ω) ⊙ α T i (ω) . Remark 7.4 If α ∈ (1, 2), we compute E[Λ q i ] = 1 - q q+β(i-α)
for all q > 0 and i ≥ 2. We thus get (120)

(α = 2 or q > β) =⇒ E i≥1 i j=2 Λ q j = i≥1 i j=2 E Λ q j < ∞,
after an elementary asymptotic study. This will be useful for proving Theorem 7.3 for example. □

In the specific case where α = 2, Theorem 7.5 takes the following simpler form.

Corollary 7.5 Let T g , T d be two HS 2 -real trees. Let L have exponential law with mean 1 2 and let U have uniform law on [START_REF] Abraham | Local limits of conditioned Galton-Watson trees: the infinite spine case[END_REF][START_REF] Abraham | β-coalescents and stable Galton-Watson trees[END_REF]. Let N ′ be a Poisson point process on [0, ∞) × [1, ∞) × K m with intensity measure 2dℓ × 1 [1,∞) (ξ)dξ × P(T g ∈ dT ). We assume that L, U, T g , T d , N ′ are jointly independent. We denote by L ∈ K m the real segment [0, L] rooted at 0 and endowed with the null measure. Then, there exists a HS 2 -real tree T * such that it almost surely holds

T * = L ⊛ L, 1 U ⊙ 2 T g ⊛ L, 1 2 ⊙ 2 T d ⊛ (ℓ,ξ,T )∈N ′ ℓ≤L ℓ, 1 2ξ ⊙ 2 T .
The following result gathers some other properties of HS α -excursions. In particular, it allows saying that H is a HS α -excursion instead of ( H, ζ) in accordance with Notation 2.2. We check that the two series i≥1 i j=2 Λ αβ j and ω∈N i≥1 1 {ℓ(ω)≤L} ξ(ω) -αβ i j=2 λ j (ω) αβ are integrable by (120), since the first moment measure of the Poisson Point process is its intensity measure. For all n ∈ N * , it follows that there exists a random variable T * n on K m such that

T * n = L ⊛ L, 1 U ⊙ α T g ⊛ L, 1 δ ⊙ α T d ⊛ i≥2 i j=2 Λ j ≥1/n L, 1 δ i j=2 Λ j ⊙ α T i ⊛ ω∈N ,i≥1 ℓ(ω)≤L , i j=2 λ j (ω)≥ξ(ω)/n ℓ(ω), 1 δξ(ω) i j=2 λ j (ω) ⊙ α T i (ω)
almost surely. Indeed, the above grafting procedure involves an almost surely finite number of random variables on K m , so the measurability comes from Proposition 2.24. As α α-1 = αβ > β, we similarly check with (120) and Proposition 7.2 that these two series are integrable:

i≥2 m δ -1 i j=2 Λ j ⊙ α T i + ω∈N i≥1 1 {ℓ(ω)≤L} m δ -1 ξ(ω) -1 i j=2 λ j (ω) ⊙ α T i (ω) , i≥2 h δ -1 i j=2 Λ j ⊙ α T i αβ + ω∈N i≥1 1 {ℓ(ω)≤L} h δ -1 ξ(ω) -1 i j=2 λ j (ω) ⊙ α T i (ω) αβ .
It follows that the conditions ( 50) and ( 51) are almost surely satisfied, so the right-hand side of (119) is almost surely an element of K m by Proposition 2.23. Let us denote it by (T ′ , d ′ , ρ ′ , µ ′ ). Plus, if [START_REF] Lyons | Conceptual Proofs of L Log L Criteria for Mean Behavior of Branching Processes[END_REF] and ( 51) are satisfied, then we get sup σ ′ ∈T ′ ,σn∈T * n d ′ (σ ′ , σ n ) → 0 and µ ′ (T ′ \T * n ) → 0 thanks to the dominated convergence theorem. Recalling [START_REF] Drmota | The Register Function for T-Ary Trees[END_REF], we thus obtain that T * n -→ T ′ almost surely on K m . For the rest of the proof, we choose a random variable T * on K m such that (122)

T * = lim n→∞ T * n almost surely. This is possible as a limit of measurable functions is measurable. By construction, we know that T * verifies (119) almost surely. It only remains to show that T * is a HS α -real tree.

We work with a countable and closed subset of K m defined as follows:

K m dsc = (E, d, ρ, µ) ∈ K m : E finite such that d(x, y) ∈ N and µ({x}) ∈ N for all x, y ∈ E .
For all n ∈ N * and for all weighted tree t, we define an element of K m dsc by setting

D n (t) = u ∈ t : S(θ u t) = S(t) or ∃v ∈ t with v ⪯ u, 0 < S(t) -S(θ v t) ≤ 1 + log δ n ,
which we see as a metric subspace of τ , also endowed with the graph distance ( 43), rooted at ∅, and equipped with its counting measure. Let τ be a GW α -weighted tree. Our proof requires us to show the three following points.

(I) For all n ∈ N * and for all x ∈ R + \N with x > 1 + log δ n, there is a random variable D 

ε→0 + P d GHP (δ -x ⊙ α τ, δ -x ⊙ α D n (τ )) ≥ η |S(τ ) -x| < ε .
These three assertions and (122) entail that δ -x ⊙ α τ under P(dτ | S(τ ) = x) converges in law to T * under P. By Definition 7.1, Theorem 7.3 eventually follows. Before getting down to the proof of (I), (II), and (III), let us describe the law of D x n via the following lemma. Recall from (2) that φ α stands for the generating function of the offspring distribution of GW α -trees. Lemma 7.7 We fix x ∈ R + \N and n ∈ N * such that x > 1+log δ n. Let L x be a geometric random variable with parameter δ 1-x and let us denote by L x ∈ K m dsc the metric space {0, . . . , L x } rooted at 0 and endowed with its counting measure. Let τ x g be distributed as τ under P( • | x-1 < S(τ ) < x). Let τ x d be distributed as τ under P(dτ | S(τ ) = x-1). Let ( T x i ) 2≤i≤ Jx be a random finite sequence with random length Jx -1 ≥ 0 (that may be 0) such that for all m ≥ 2 and for all bounded measurable functions f 2 , . . . , f m : K m -→ R,

δ 1-x e γ(x-1) e -γ 1 -e -γ E 1 { Jx ≥m} m i=2 f i ( T x i ) = [0,∞) m-1 1 {x-1>y 2 >...>ym>x-log δ (δn)} φ (m+1) α (1 -e -γym ) m i=2 E[f i (τ ) | S(τ ) = y i ]γe -γy i dy i .
Let (N x p ) p≥0 be a random walk on Z started at N x 0 = -1 whose jump law is such that N x p+1 -N x p -1 is geometric with parameter δ(n -1)/(δ x -δ) for all p ≥ 0. Let (T x i,p ) 1≤i≤J x p p≥1 be a sequence of independent random finite sequences with random lengths J x p ≥ 1 such that for all p, m ≥ 1 and for all bounded measurable functions f 1 , . . . , f m : K m -→ R,

δ(n -1)δ -x E 1 {J x p ≥m} m i=1 f i (T x i,p ) = [0,∞) m 1 {x-1>y 1 >...>ym>x-log δ (δn)} φ (m+1) α (1 -e -γym ) m i=1 E[f i (τ ) | S(τ ) = y i ]γe -γy i dy i .
We assume that all these random variables are independent. For all E ∈ K m dsc , we denote by ϖ ⊛ E the rooted measured compact metric space {0, 1} ⊛ (1, E) where {0, 1} ∈ K m dsc is rooted at 0 and endowed with the null measure. We define

D x n = L x ⊛ (L x , ϖ ⊛ τ x g ) ⊛ (L x , ϖ ⊛ τ x d ) ⊛ 2≤i≤ Jx (L x , ϖ ⊛ T x i ) ⊛ p,i≥1 N x p <L x , i≤J x p (N x p , ϖ ⊛ T x i,p ).
Let {o} ∈ K m dsc stands for the compact metric space reduced to a single point o and equipped with its Dirac measure. If D is an independent random variable on K m dsc such that it holds

(123) E F (D) = δ 1-x E F ({o} ⊛ (o, ϖ ⊛ τ x g ) ⊛ (o, ϖ ⊛ τ x d ) ⊛ 2≤i≤ Jx (o, ϖ ⊛ T x i )) +(n-1)δ 1-x E F ({o}⊛(o, ϖ⊛D)⊛ 1≤i≤J x 1 (o, ϖ⊛T x i,1 )) +(1-nδ 1-x )E F ({o}⊛(o, ϖ⊛D))]
for all bounded and measurable F : K m dsc → R, then D has the same law D x n .

Proof of Lemma 7.7. It is not difficult to check that an independent copy of D x n satisfies (123): the three terms of the right-hand side respectively correspond to the events {L x = 0}, {N x 1 = 0 < L x }, and {1 ≤ N dsc . We can thus assume that (τ, D n (τ )) under P • |S(τ )-x| < ε converges in law to a random variable (t, D) ∈ (K m dsc ) 2 . Then, we only need to prove that D satisfies (123) thanks to Lemma 7.7. In this proof, we extensively use the fact that for all y, z > 0,

(124) E 1≤i,j≤k∅(τ ) i̸ =j 1 {|S(θ (i) τ )-y|<ε} 1 {|S(θ (j) τ )-z|<ε} |S(τ ) -x| < ε -→ ε→0 + 0.
Indeed, this expectation is smaller than 4γ 2 ε 2 P(|S(τ ) -x| < ε) -1 φ ′′ α (P(S(τ ) ≤ x + 1)) which goes to 0 when ε → 0 + by Proposition 4.5. □ Let us denote by τ 0 , τ 1 , . . . , τ k∅(τ )-1 the weighted subtrees of τ stemming from the children of ∅ listed in the decreasing order of their weighted Horton-Strahler numbers. Namely, S(τ 0 ) > . . . > S(τ k∅(τ )-1 ) and

τ i : 0 ≤ i ≤ k ∅ (τ ) -1} = {θ (j) τ : 1 ≤ j ≤ k ∅ (τ ) .
We also define K n (τ ) as follows:

K n (τ ) = -1 + # 1 ≤ i ≤ k ∅ (τ ) : S(θ (i) τ ) ≥ S(τ ) -1 -log δ n .
From Definition 1.2, we observe that if k ∅ (τ ) ≥ 1 then K n (τ ) ≥ 0, and if S(τ 0 ) < S(τ ) then K n (τ ) ≥ 1. In particular, the conditional probability that K n (τ ) < 0 given |S(τ ) -x| < ε goes to 0 as ε → 0 + , since x > 1. Moreover, we observe that D n (τ ) can be expressed as follows.

(a)

If K n (τ ) = 0, then D n (τ ) = {o} ⊛ (o, ϖ ⊛ D n (τ 0 )). (b) If S(τ 0 ) = S(τ ) and K n (τ ) ≥ 1, then D n (τ ) = {o} ⊛ (o, ϖ ⊛ D n (τ 0 )) ⊛ 1≤i≤Kn(τ ) (o, ϖ ⊛ τ i ). (c) If S(τ 0 ) < S(τ ), then D n (τ ) = {o} ⊛ (o, ϖ ⊛ τ 0 ) ⊛ 1≤i≤Kn(τ ) (o, ϖ ⊛ τ i ).
We deduce from Definition 1.2 and from (124) (with y = x and z = x -1 -log δ n) that outside an event of negligible probability compared to P(|S(τ ) -x| < ε) as ε → 0 + , it holds that

1 {|S(τ )-x|<ε ; Kn(τ )=0} = k∅(τ ) i=1 1 {|S(θ (i) τ )-x|<ε} 1≤j≤k∅(τ ) j̸ =i 1 {S(θ (j) τ )<x-1-log δ n)} .
We compute φ ′ α (P(S(τ ) < x -1 -log δ n) = 1 -nδ 1-x thanks to (29) and Proposition 4.5. Let g 1 , g 2 : K m dsc -→ R be bounded, it follows from Definition 2.15 of the law of τ that (125

) E 1 {Kn(τ )=0} g 1 (D n (τ 0 ))g 2 (τ 0 ) |S(τ ) -x| < ε -→ ε→0 + (1 -nδ 1-x )E g 1 (D)g 2 (t) .
Let m ∈ N * . Again with an application of (124), we find that outside an event of negligible probability compared to P(|S(τ ) -x| < ε) as ε → 0 + , the variable 1 {|S(τ )-x|<ε ; S(τ 0 )=S(τ ) ; Kn(τ )≥m} is equal to 1≤i 0 ,...,im≤k∅(τ ) distinct

1 {|S(θ (i 0 ) τ )-x|<ε} 1 {x-1>S(θ (i 1 ) τ )>...>S(θ (im) τ )>x-log δ (δn)} 1≤j≤k∅(τ ) j̸ =i 0 ,...,im 1 {S(θ (j) τ )<S(θ (im) τ )} .
Let g 1 , g 2 , f 1 , . . . , f m : K m dsc -→ R be bounded. Thanks to Definition 2.15 and the identity (86) in Proposition 4.6, we recognize that

(126) E 1 {S(τ 0 )=S(τ ) ; Kn(τ )≥m} g 1 (D n (τ 0 ))g 2 (τ 0 ) m j=1 f j (τ j ) |S(τ ) -x| < ε -→ ε→0 + (n -1)δ 1-x E g 1 (D)g 2 (t) E 1 {J x 1 ≥m} m j=1 f j (T x j,1
) .

Note from Proposition 4.5 that P(|S(τ ) -x| < ε) = e -γ P(|S(τ ) -x + 1| < ε) and also that P(x -1 < S(τ ) < x) = e -γ(x-1) (1 -e -γ ). The same method used to find (126) yields that

(127) E 1 {S(τ 0 )<S(τ ) ; Kn(τ )≥m} g 2 (τ 0 ) m j=1 f j (τ j ) |S(τ ) -x| < ε -→ ε→0 + δ 1-x E g 2 (τ ) x -1 < S(τ ) < x E f 1 (τ ) S(τ ) = x -1 E 1 { Jx ≥m} m j=2 f j ( T x j ) .
The convergences (125), (126), and (127) together with the observations (a), (b), and (c) entail that D satisfies (123), which completes the proof of (I) as announced. ■

Proof of (II). We keep the notations of Lemma 7.7. We begin by showing that each component involved in the construction of D x n converges in law after scaling to its continuum counterpart involved in Theorem 7.3. First, it holds δ

-x ⊙ α τ x d d -→ δ -1 ⊙ α T d on K m by Definition 7.1.
Next, we have P(x -1 < S(τ ) < x) = 1 α e -γ(x-1) by Proposition 4.5. Let f 0 : K m → R be continuous and bounded, we apply Proposition 4.6 and make y = x -log δ s to get

E f 0 (δ -x ⊙ α τ x g ) = αe γ(x-1) x x-1 E f 0 (δ -x ⊙ α τ S(τ ) = y γe -γy dy = δ 1 s β-1 E f 0 (s -1 δ -x+log δ s ⊙ α τ ) S(τ ) = x -log δ s ds.
Thus, we have δ

-x ⊙ α τ x g d -→ U -1 ⊙ α T g on K m by dominated convergence. It is clear that δ -x L x d
-→ L and this yields δ -x ⊙ α L x d -→ L on K m . For all p ≥ 1, (δ -x N x 1 , . . . , δ -x N x p ) similarly converges jointly in distribution to the first p points of a Poisson process with intensity δ(n -1), such as {ℓ(ω) : ω ∈ N , 1 ≤ ξ(ω) ≤ n}. Now, let m ≥ 1 and let f 1 , . . . , f m : K m -→ R be continuous and bounded. Recall that φ (m+1) (s) = (1 -s) α-m-1 (α -1) m i=2 (i -α) for all s ∈ [0, 1) from ( 29) and [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]. The change of variables ξ = δ x-1-y 1 and λ i = δ y i -y i-1 for all 2 ≤ i ≤ m reveal after some computations that

E 1 {J x 1 ≥m} m i=1 f i (δ -x ⊙ α T x i,1 ) -→ 1 n -1 n 1 E 1 { m i=2 Λ i ≥ξ/n} m i=1 f i 1 δξ i j=2 Λ j ⊙ α T i dξ.
Setting λ 2 = δ y 2 -x+1 and λ i = δ y i -y i-1 for all 3 ≤ i ≤ m similarly leads to

E 1 { Jx ≥m} m i=2 f i (δ -x ⊙ α T x i ) -→ E 1 { m i=2 Λ i ≥1/n} m i=2 f i 1 δ i j=2 Λ j ⊙ α T i .
By independence, all those convergences in distribution happen jointly. In particular, the numbers of components involved in the construction of the D x n by grafting are tight as x ∈ R + \N tends to ∞, because it converges in distribution to the number of components involved in the construction of T * n by grafting. Hence, we complete the proof of (II) thanks to Proposition 2.24. ■ Proof of (III). Let η > 0, we observe that we only need to show the two following estimates: 

0 = lim sup n→∞ lim sup x→∞,x / ∈N lim sup ε→0 + E min e -γαx #(τ \D n (τ )), 1 |S(τ ) -x| < ε , (128 
d gr (u, v) ≥ ηe γ(α-1)x |S(τ ) -x| < ε , (129) 
where we recall from (43) that d gr is the graph distance on the set U of words. Let x ∈ R + \N and n ∈ N * with x > 1 + log δ n. Let t be a weighted tree. To lighten the notations, we set

F m
x,n (t) = min e -γαx #(t\D n (t)), 1 and F h x,n (t) = 1 {∃u∈t,v∈Dn(t) : dgr(u,v)≥ηe γ(α-1)x } , f m x (t) = e -γαx #t and f h x (t) = 1 {|t|+1≥ηe γ(α-1)x } , where recall from (25) that |t| stands for the height of t. As in the proof of (I), we denote by τ 0 the weighted subtree of τ stemming from a child of ∅ with maximal weighted Horton-Strahler number. From the definition of D n (τ ), we deterministically observe that for both a ∈ {m, h},

F a x,n (τ ) ≤ 1 {S(τ 0 )=S(τ )} F a x,n (τ 0 ) + k∅(τ ) i=1 1 {S(θ (i) τ )<S(τ )-1-log δ n} f a x (θ (i) τ ).
Let us also set E a x,n = lim sup ε→0+ E F a x,n (τ ) |S(τ ) -x| < ε . We obviously have E a x,n ≤ 1. By tightness, an elementary argument based on the convergences (125) and (126) yields that lim sup

ε→0 + E 1 {S(τ 0 )=S(τ )} F a x,n (τ 0 ) |S(τ ) -x| < ε ≤ (1 -δ 1-x )E a x,n . Let ε ∈ (0, 1). If |S(τ ) -x| < ε then there is 1 ≤ j ≤ k ∅ (τ ) such that |S(θ (j) τ ) -x| < ε or |S(θ (j) τ ) -x + 1| < ε.
Moreover, it would also hold that S(θ (i) τ ) ≤ x + 1 for all other 1 ≤ i ≤ k ∅ (τ ). Since S(τ ) ≤ S(τ ) and the law of S(τ ) is exponential with mean 1/γ, we get

E a x,n ≤ (1 -δ 1-x )E a x,n + (e γ + 1)E 1 {S(τ )≤x-log δ n} f a x (τ ) φ ′′ α (P(S(τ ) ≤ x + 1)
). We deduce from (29) that there is a constant c ∈ (0, ∞) that only depends on α such that E a

x,n ≤ ce γx E 1 {S(τ )≤x-log δ n} f a x (τ ) . With a = m, (128) follows from (77). With a = h, the estimates ( 60) and (80) entail (129). ■

The Strahler dilation of rooted compact real trees

In this section, we prove Theorem 1.4. Therefore, we construct and study the Strahler dilation, which corresponds to the weighted Horton-Strahler number for rooted compact real trees.

Definition and properties of the Strahler dilation

Recall the notations needed to work on the set of words U from Section 2.2. Here, we focus on the subset of U of all the words written in the alphabet {1, 2}. For all n ∈ N, we denote by 

(resp. W n ) into T is an injective map φ from W (resp. W n ) to T such that φ(u ∧ v) = φ(u) ∧ φ(v) for all u, v ∈ W (resp. W n ).
In that case, we write φ : W → T (resp. φ : W n → T ). □ For all k ∈ N, we also write s k d (T ) = lim n→∞ s k,n d (T ), so that s d (T ) = lim k→∞ s k d (T ). □

We fix d > 1 throughout this section. Let us first prove that the Strahler dilation is well-defined. Let (T, d, ρ) be a rooted compact real tree. As a supremum of infima of nonnegative numbers,

s k,n d (T ) is well-defined in [0, ∞]. Moreover, if φ n : W n → T and v ∈ W n , then φ n ( ← -v ) ⪯ φ n (v) and so d φ n ( ← -v ), φ n (v) ≤ h(T )
, where h is as in [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]. Hence, we have the following inequality.

(130)

If k ≤ n then s k,n d (T ) ≤ d d k+1 -1 (k + 1)(d -1) h(T ) < ∞.
Since an embedding of W n+1 into T induces an embedding of W n into T by restriction, we observe 

(T ) ≤ d d k+1 -1 (k + 1)(d -1) h(T ) < ∞.
Therefore, s d (T ) is well-defined in [0, ∞] as the limit of a non-decreasing sequence.

At the moment, it might be unclear why the Strahler dilation does enjoy the desired properties in Theorem 1.4 or why it is indeed analogous to the Horton-Strahler number. Nevertheless, we will later give another expression for s d that may be more insightful. The main benefit of that first definition is that it only involves a countable number of operations. Thus, we will use it to show the measurability of s d and to upper-bound the Strahler dilation of a random rooted compact real tree. Proposition 8.4 Recall that T R stands for the space of (rooted-isometry classes of) rooted compact real trees, endowed with the rooted Gromov-Hausdorff distance [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF]. For all k, n ∈ N, the function

s k,n d : T R -→ [0, ∞] is lower semicontinuous. Thus, s k,n d , s k d , s d : T R -→ [0, ∞] are measurable.
Proof. We fix k, n ∈ N. Let (T 0 , d 0 , ρ 0 ) be a rooted compact real tree and let φ 0 be an embedding of W n into T 0 . We set ε = min u,v∈Wn u̸ =v

d 0 φ 0 (u), φ 0 (v) > 0.
Let (T, d, ρ) be a rooted compact real tree at rooted Gromov-Hausdorff distance less than ε/10 from T 0 . There is a rooted correspondence R between T and T 0 such that dis(R) < ε/3, as in [START_REF] Curien | The stable trees are nested[END_REF]. For all u ∈ W n such that |u| = n, we choose a point of T denoted by φ(u) such that (φ(u), φ 0 (u)) ∈ R. We are going to show that φ extends into an embedding from W n into T . We begin by proving that the following statement is true.

(

) For all u, v 1 , v 2 ∈ W n \W n-1 , if u ∧ v 1 ≺ u ∧ v 2 then φ(u) ∧ φ(v 1 ) ≺ φ(u) ∧ φ(v 2 ). 133 
Indeed, thanks to [START_REF] Kovchegov | Invariant Galton-Watson trees: metric properties and attraction with respect to generalized dynamical pruning[END_REF], we only need to show that d(ρ, φ(u

) ∧ φ(v 1 )) < d(ρ, φ(u) ∧ φ(v 2 )) since φ(u) ∧ φ(v 1 ) and φ(u) ∧ φ(v 2 ) are ancestors of φ(u). To do this, we check from (48) that 2d(ρ, σ 1 ∧ σ 2 ) = d(ρ, σ 1 ) + d(ρ, σ 2 ) -d(σ 1 , σ 2 )
for all σ 1 , σ 2 ∈ T , and we use the rooted correspondence R to obtain

(134) d(ρ, φ(u) ∧ φ(v i )) -d 0 (ρ 0 , φ 0 (u) ∧ φ 0 (v i )) ≤ 3 2 dis(R)
for all i ∈ {1, 2}. Moreover, [START_REF] Kovchegov | Invariant Galton-Watson trees: metric properties and attraction with respect to generalized dynamical pruning[END_REF] implies that d 0 (ρ 0 , φ 0 (u) ∧ φ 0 (v 1 )) < d 0 (ρ 0 , φ 0 (u) ∧ φ 0 (v 2 )) because we have φ 0 (u) ∧ φ 0 (v 1 ) ≺ φ 0 (u) ∧ φ 0 (v 2 ) by Definition 8.1 of embeddings. By choice of ε, we even have d 0 (ρ 0 , φ 0 (u) ∧ φ 0 (v 1 )) + ε ≤ d 0 (ρ 0 , φ 0 (u) ∧ φ 0 (v 2 )). The statement (133) follows from (134) because 3 dis(R) < ε. □ Then, we complete (133) with the following implication.

(135) For all u, v 1 , v 2 ∈ W n \W n-1 , if u ∧ v 1 = u ∧ v 2 then φ(u) ∧ φ(v 1 ) = φ(u) ∧ φ(v 2 ).
Indeed, this is obvious when u, v 1 , v 2 are not distinct, so we assume they are. As such, we have

u ∧ v 1 ∈ W n-1 . In particular, u ∧ v 1 = u ∧ v 2 has exactly two children in W n : one is an ancestor of u, the other is an ancestor of v 1 and v 2 . Therefore, u ∧ v 1 = u ∧ v 2 ≺ v 1 ∧ v 2 so two applications of (133) entail φ(u) ∧ φ(v 1 ) ⪯ φ(v 2 ) and φ(u) ∧ φ(v 2 ) ⪯ φ(v 1 ). We compute φ(u) ∧ φ(v 1 ) ∧ φ(v 2 )
with the associative property of ∧ to conclude the proof of (135).

□ Let u 1 , v 1 , u 2 , v 2 ∈ W n \W n-1 with u 1 ∧ v 1 = u 2 ∧ v 2 . We may assume u 1 ∧ v 2 ⪯ u 1 ∧ u 2
without loss of generality, as the ancestral lineage of u 1 is totally ordered by ⪯. This yields that u

1 ∧ v 1 = u 2 ∧ v 2 = u 1 ∧ u 2 ∧ v 2 = u 1 ∧ v 2 . We use (135) twice to obtain that φ(u 1 ) ∧ φ(v 1 ) = φ(u 2 ) ∧ φ(v 2 )
. Hence, we have justified that there exists a unique extension φ :

W n -→ T such that φ(u ∧ v) = φ(u) ∧ φ(v) for all u, v ∈ W n \W n-1 . Now, let u, v ∈ W n be arbitrary and let us choose u 1 , u 2 , v 1 , v 2 ∈ W n \W n-1 such that u = u 1 ∧ u 2 and v = v 1 ∧ v 2 . The set of ancestors of u 1 is totally ordered by ⪯ so there is u ′ ∈ {u 2 , v 1 , v 2 } such that u 1 ∧ u ′ ⪯ u 1 ∧ u 2 , u 1 ∧ v 1 , u 1 ∧ v 2 , and so u 1 ∧ u ′ = u 1 ∧ u 2 ∧ v 1 ∧ v 2 = u ∧ v. It then follows from (133) and (135) that (136) ∀u, v ∈ W n , φ(u) ∧ φ(v) = φ(u ∧ v),
because they are both equal to φ(u 1 ) ∧ φ(u ′ ). Combining (133) and (136

) shows that if u ≺ v then φ(u) ̸ = φ(v). Finally, if φ(u) = φ(v) then φ(u ∧ v) = φ(u) = φ(v) by (136) and u = u ∧ v = v.
Hence, φ is indeed an embedding from W n into T as claimed.

Definition 8.1 gives that d(φ( ← -v ), φ(v)) = d(ρ, φ(v)) -d(ρ, φ( ← -v ))
for all v ∈ W n . This formula together with the bound (134) yields that for all v ∈ W n , we have

d(φ( ← -v ), φ(v)) -d 0 (φ 0 ( ← -v ), φ 0 (v)) ≤ 3 dis(R).
As φ is an embedding from W n into T , this inequality leads to inf u∈Wn k≤|u|

1 |u| + 1 v⪯u d |v|+1 d 0 φ 0 ( ← -v ), φ 0 (v) ≤ 3d d n+1 -1 (k + 1)(d -1) dis(R) + s k,n d (T ).
We take the infimum over all rooted correspondences R between T and T 0 , then we make T tend towards T 0 for the rooted Gromov-Hausdorff distance, and we finish by taking the supremum over all embeddings φ 0 of W n into T 0 . We obtain s k,n d (T 0 ) ≤ lim inf 

s d (T, φ) = lim inf n→∞ 1 n + 1 inf u∈W |u|=n v⪯u d |v|+1 d φ( ← -v ), φ(v) .
Then, the Strahler dilation of T can be expressed as follows:

(137)

s d (T ) = sup φ:W →T s d (T, φ).
The formula (137) is similar in spirit to the expression (74) of the Horton-Strahler number. Indeed, let us explain why we may understand log d s d (T, φ) as a continuum counterpart for the height of an embedded perfect binary tree. If t is a perfect binary tree, then θ (1) t and θ (2) t are also perfect binary trees such that |t| = 1 + |θ (1) t| = 1 + |θ (2) t|. For some φ : W → T , we set φ i (u) = φ((i) * u) for all u ∈ W and i ∈ {1, 2} and we point out that φ 1 and φ 2 are two embeddings of W into T such that s d (T, φ) = d min(s d (T, φ 1 ), s d (T, φ 2 )). Of course, it is not reasonable to require that s d (T, φ 1 ) = s d (T, φ 2 ), so that the embedding into the real tree T would be truly perfect, nevertheless the involved min penalizes unbalanced embeddings of W into T . In very informal words, the quantity s d (T ) measures the largest scaling we can apply to the dyadic tree with edge lengths (W, (d -|u|-1 ) u∈W ) to essentially embed it into T without contracting its distances. Finally, we use limits of means both to only focus on the asymptotic ramifications of the real tree and to obtain a deterministic result with the HS α -real tree thanks to a law of large numbers.

Proof of the identity (137). An embedding φ : W → T induces embeddings of W n into T by restriction, for all n ∈ N. For all k, n ∈ N with k ≤ n, it thus holds that

inf j≥k 1 j + 1 inf u∈W |u|=j v⪯u d |v|+1 d φ( ← -v ), φ(v) ≤ s k,n d (T ).
We first let n → ∞ then k → ∞ to find that s d (T, φ) ≤ s d (T ) holds for all embedding φ of W into T . As a result, we proved s d (T ) ≥ sup φ:W →T s d (T, φ). Now, we assume s d (T ) > 0, because the result is obvious otherwise, and we fix k ∈ N such that s k d (T ) > 0. The fact (131) ensures that for all n ≥ k, we can choose an embedding φ k n : W n → T such that inf u∈Wn k≤|u|

1 |u| + 1 v⪯u d |v|+1 d φ k n ( ← -v ), φ k n (v) ≥ 1 - 1 n + 2 s k,n d (T ) > 0.
Thanks to the compactness of T , we can assume there exist φ k (u) ∈ T such that φ k n (u) -→ φ k (u) for all u ∈ W, by using a diagonal extraction argument. By making n tend to ∞, it is then clear that (138)

0 < s k d (T ) ≤ 1 |u| + 1 v⪯u d |v|+1 d φ k ( ← -v ), φ k (v)
for all u ∈ W with |u| ≥ k. That uniform lower bound implies that any vertex u ∈ W has a descendant u + = u * (1, . . . , 1) such that φ k ( ← -

u + ) ̸ = φ k (u + ). Plus, it holds d(φ k ( ← - u ), φ k (u + )) ≥ d(φ k ( ← - u + ), φ k (u +
)) > 0 because the φ k n are embeddings. Applying this observation to u * (1) and u * (2) yields the existence of some u

1 , u 2 ∈ W with u = u 1 ∧ u 2 such that φ k (u) ̸ = φ k (u i ) for both i ∈ {1, 2}. It follows that when n is large enough, the point φ k n (u i ) is closer to φ k (u i ) than to φ k n (u) = φ k n (u 1 ) ∧ φ k n (u 2
) for all i ∈ {1, 2}. Then, Lemma 2.20 yields that the convergent sequence (φ k n (u)) n≥k is eventually constant equal to φ k (u 1 ) ∧ φ k (u 2 ). Hence, we have φ k n (u) = φ k (u) as soon as n is large enough, for all u ∈ W. It is then straightforward to show the map φ k : u ∈ W -→ φ k (u) ∈ T is an embedding. To conclude the proof, we deduce from (138) that

s k d (T ) ≤ sup φ:W →T s d (T, φ)
for all large enough k ∈ N, and we let k tend to ∞. ■

Although measurable, the Strahler dilation is not continuous. Nonetheless, it enjoys some other regularity properties. Recall Definition 2.21 of subtrees of a rooted compact real tree (T, d, ρ). We remind from ( 22) that if λ ≥ 0, then λ • T = (T, λd, ρ). Proof. We begin with gathering some useful facts. We use the convention W = W ∞ and we write ℓ i 0 = ℓ. Let n ∈ N * ∪{∞}, w ∈ W n , j ∈ I, and let φ : W n → T . When φ(w * u) ∈ T j for all defined by φ n+1 (∅) = L, φ n+1 ((1) * u) = φ g (u) and φ n+1 ((2) * u) = φ d (u) for all u ∈ W n . We easily check the requirements (a-c) thanks to Theorem 7. Then, g(s) ≤ ln A, and taking the infimum over b and A gives that g(s) ≤ max(g(rs), ln a(s)) for all s ∈ R + . We remark that a(rs) ≤ a(s) because r > 1, so we obtain by induction that (151) ∀m ∈ N, ∀s ∈ R + , g(s) ≤ max g(r m s) , ln 1 + P(rU > δ) 1 + s .

j ∈ [0, ℓ] for all j ∈ I\{i 0 } =: J. If (T, d, ρ) = L ⊛ (ℓ, T i 0 ) ⊛ j∈J (ℓ j , T j ), then for all n ∈ N * , it holds that (n + 1)s n,n d (T ) ≤ dℓ + max (n + 1)s n,n d (T i 0 ), d sup j∈J ns n-1,n-1 d (T j ) , (139) 
Since U ≤ δ almost surely and f n is non-increasing, (149) yields that f n+1 (s) ≤ 2 1+s f n (s) for all n ∈ N and s ∈ R + . This implies that g(s) ≤ ln(2) -ln(1 + s), so we have lim ∞ g(s) = -∞. Therefore, making m tend to ∞ in (151) entails that g(s) ≤ ln(1 + P(rU > δ)) -ln(1 + s) for all s > 0 and r ∈ (1, δ). It follows that g(s) ≤ -ln(1 + s) for all s > 0 by making r tend to 1, because U < δ almost surely. Let ε > 0. Our upper bound for g ensures that there exists s 0 > 0 such that g(s 0 ) < -(1 -ε)s 0 . It then holds s 0 (1 -2ε)(n + 1) + ln f n (s 0 ) ≤ -s 0 ε(n + 1) for all large enough n, by definition of g. Whenever n is large enough, a Chernoff bound thus entails P inf By the Borel-Cantelli lemma and (148), we get E[s δ (T )] ≥ 1 -2ε for all ε > 0. ■

To show E[s δ (T )] ≤ 1 when T is a HS α -real tree, we need a technical lemma.

Lemma 8.10 Let X, Y, Z be three almost surely finite nonnegative random variables. We assume that X and Y are independent, E[Y ] < 1, and Z is integrable. If there exists a random variable X ′ distributed as X such that X ′ ≤ Y X + Z almost surely, then X is integrable and

E[X] ≤ E[Z] 1 -E[Y ]
.

Proof. We choose a ∈ (E[Y ], 1) and we give ourselves a sequence (Y n ) n∈N * of independent random variables distributed as Y and jointly independent from (X ′ , X, Y, Z). The almost sure inequality X ′ ≤ Y X + Z implies that P(X > x) ≤ P(XY n > ax) + P(Z > (1 -a)x) for all x > 0 and all n ∈ N * . By conditioning on (Y 1 , . . . , Y n-1 ), we prove by induction that

P(X > x) ≤ P X n i=1 Y i > a n x + n i=1 P Z i-1 j=1 Y j > (1 -a)a i-1 x
for all x > 0 and n ∈ N. The Y i are independent and E[Y i /a] = E[Y /a] < 1, so the random variables n i=1 Y i /a converge in mean to 0. As X is almost surely finite, it follows that X n i=1 Y i /a -→ 0 in probability, which yields

P(X > x) ≤ i≥1 P 1 1-a Z i-1 j=1 1 a Y j > x
for all x > 0 by making n tend to ∞. Now, we integrate over x ∈ (0, ∞) to find ln E e aSn(T ) .

E[X] ≤ i≥1 E 1 1-a Z i-1 j=1 1 a Y j = aE[Z] (1 -a)(a -E[Y ]) < ∞.
Moreover, the estimate (118) ensures that E[e aS 0 (T ) ] = E[e aδh(T ) ] < ∞ as soon as a > 0 is small enough. Let us fix for now a ∈ (0, 1) and n ∈ N such that e aSn(T ) is integrable. In this proof, we shall use the notations of Theorem 7.3. Furthermore, we define the set E as Before proceeding, let us give ourselves some parameters. We choose ε ∈ (0, 1) such that 2ε < 1 -a. We can pick out η ∈ (0, ε 1+ε ) such that P((1 -η)U ≤ 1) ≤ ε and P(Λ 2 ≥ 1 -η) ≤ ε because Λ 2 < 1 < U almost surely. Recall from (8) that β(α -1) = 1. There is c ∈ (e a , ∞) that does not depend on n (but on α, a, ε, η) such that (1+(1+x)x β+1 )e a(1-η)x ≤ εe ax +c for all x ≥ 0. Moreover, for all x ≥ 0 and all λ ∈ [0, 1], we see that e aλx ≤ 1 {λ≥1-η} e ax + 1 {λx≥1} e a(1-η)x + c. Applying these inequalities to bound each term of the supremum in (153), we obtain that it holds (154) e aS n+1 (T * ) ≤ 1 {1≥(1-η)U } + ε e aδL × e aS n+1 (Tg) + e aδL 2c + e aSn(T d ) + Z + + Z - almost surely, where we have denoted

1 δ ⊙ α T d ∪ 1 δ i j=2 Λ i ⊙ α T i : i ≥ 2 ∪
Z + = i≥1 1 { i+1 j=2 Λ j ≥1
-η} e aSn(T i+1 ) + ω∈N ℓ(ω)≤L 1 { i j=2 λ j (ω)≥(1-η)ξ(ω)} e aSn(T i (ω)) , Z -= i≥1 1 {Sn(T i+1 ) i+1 j=2 Λ j ≥1} e a(1-η)Sn(T i+1 ) + ω∈N ℓ(ω)≤L

1 {Sn(T i (ω)) i j=2 λ j (ω)≥ξ(ω)} e a(1-η)Sn(T i (ω)) . Now, we want to use Lemma 8.10 to bound E[e aS n+1 (T ) ] by an affine function of E[e aSn(T ) ], that was already assumed to be finite. Indeed, S n+1 (T g ) has the same law as S n+1 (T * ), is independent of (L, U ), and is almost surely finite by (130). Moreover, δL is exponentially distributed with mean 1 and is independent from U , so (68) and the choice of ε and η ensure that (155) E 1 {(1-η)U ≤1} + ε e aδL ≤ 2ε 1-a < 1. Since L is also independent of T d , it only remains to control the means of e aδL Z + and e aδL Z -. Using the independence, we average first on the Poisson point process N to compute that E e aδL Z + = i≥1 E e aSn(Tg) e aδL 1 { i+1 j=2 Λ j ≥1-η} + δL where C ∈ (0, ∞) is a constant only depending on α, and c ′ ∈ (0, ∞) does not depend on n (but on α, a, ε, η). An elementary study yields that for all a ∈ (0, 1) small enough and all ε ∈ (0, 1-a 2 ), lim inf n→∞ 1 a(n + 1)

ln E e aSn(T ) ≤ 1 a ln 1 + C 1-a ε 1 -a -2ε .

Thanks to (152), we conclude the proof by making ε → 0 + and then a → 0 + . ■ 9 Proofs of Theorems 1.5 and 1.6

In all this section, let τ stand for a GW α -weighted tree. Recall from ( 27) that H(τ ) is its height function. Recall from Section 2.1 the space C K of continuous functions with compact support and endowed with lifetimes, and from [START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF] its subspace E K of continuous excursions. We will follow Notation 2.2. As in [START_REF] Khanfir | Time and place of the maximum for one-dimensional diffusion bridges and meanders[END_REF], we denote by T f the real tree coded by f ∈ E K . We use the objects N α , H, and N α (dH | ζ = 1) presented in Section 2.5. Recall from ( 8) and ( 11) the notations β = 1 α-1 , γ = ln α α-1 , δ = e γ(α-1) , and a n = α -1/α n 1/α for all n ∈ N.

Of course, it is important to remember Definition 8.3 of the Strahler dilation s δ with base δ. Furthermore, if F : C K → R + and g : [0, ∞] → R + are bounded and nonnegative, then

N α F (H)g(s δ (T H )) = α -β α -1 R + E F x Hs(αx α ) -β ; s ≥ 0 g(x) dx x 1+β , (159) 
E F ( H) N α g(s δ (T H )) = N α F 1 s δ (T H ) H α β s δ (T H ) αβ s ; s ≥ 0 g(s δ (T H )) .

(160) Proof. Let ℓ, z > 0 and let F : C K → R + be nonnegative, bounded, and continuous. For all y > 0 and n ∈ N * , we set x n (y) = 1 γα ln(ny), f n (y) = 0 when x n (y) ∈ N, and f n (y) = E 1 {y#τ ≥ℓe γαxn(y) } F y 1-1/α α 1/α e -γ(α-1)xn(y) H e γαxn(y) s/y (τ ) ; s ≥ 0 S(τ ) = x n (y) when x n (y) / ∈ N. The functions f n are uniformly bounded, nonnegative, and measurable by Proposition 4.6. We apply the identity (86) and we make the change of variable γαx = ln(ny) to get for all bounded and continuous functions g : K → R and h : R + → R. To lighten the notations, we write p(n) = P(#τ = n + 1) and q(n) = P(#∂τ = n) for all n ∈ N. Let (t i ) i≥1 be the sequence of random weighted trees constructed by Algorithm 3.1. For all n ∈ ⌊α⌋N, we define J n = inf{i ≥ 1 : #t i ≥ n + 1}, T n = t Jn , and ξ n = 1 {#Tn=n+1} .

The random integer J n is finite and the tree T n has exactly J n leaves by Proposition 3.2 (i). Let t be a tree with n+1 vertices, the sequence (#t i ) i≥1 is strictly increasing so T n = t if and only if t ∈ {t i : i ≥ 1}. However, the trees t and t i have the same number of leaves only when i = #∂t. Thus, T n = t if and only if t #∂t = t, in which case J n = #∂t and T n = t #∂t . By Proposition 3.2 (iii), we get that for all bounded measurable function f on the space T w of weighted trees, it holds

(165) E ξ n f (T n ) = E p(n) q(#∂τ ) f (τ ) #τ = n + 1 .
When α = 2, p(n) = q(#∂τ ) under P( • | #τ = n + 1) by Proposition 3.4 (i), so ξ n = 1 almost surely. However, T n is not a GW α -tree conditioned to have n vertices when α ∈ (1, 2), because it is biased by its number of leaves. Nonetheless, we show that this bias disappears as n tends to ∞:

(166) E p(n) q(#∂τ ) -χ #τ = n + 1 ---------→ n→∞,n∈⌊α⌋N 0, where χ = α -1 if α ∈ (1, 2), 1 if α = 2.
Indeed, by Proposition 3.2 (i), it holds J n ≤ xn if and only if #t ⌊xn⌋ ≥ n + 1, for all x ≥ 1/n.

Thanks to Proposition 3.4, we get that the convergence #t i /i P -→ α happens in probability, and this implies that the following convergence also holds in probability: Then, the estimate (64) or (63) yields that p(n)/q(#J n ) P -→ χ in probability. Next, we use (165) and we obtain the following uniform integrability: (168) E p(n) q(#∂τ )

1 {p(n)≥10χ q(#∂τ )} #τ = n + 1 ≤ P p(n) q(J n ) ≥ 10χ ---------→ n→∞,n∈⌊α⌋N 0.

Moreover, Proposition 3.4, together with (64) or (63), yields that the desired convergence in L 1 happens in probability, so (168) completes the proof of (166). □ From Theorem 3.3, we know that there is an α-stable tree T nr such that i 1/α-1 • t i -→ α • T nr almost surely on K. It follows that J 1/α-1 n

• T n -→ α • T nr almost surely on K. Then, we apply the convergence in probability (167) and we write αa n /n = (αJ n /n) 1-1/α × J 1/α-1 n to deduce that the following convergence holds in probability on K: For all n ∈ ⌊α⌋N, let Λ n be a random variable independent of (t i ) i≥1 and T nr , and distributed as #∂τ under P( • | #∂τ ≥ n/2α). Thanks to (62) and by Kolmogorov's representation theorem, we can then assume that there is a random variable Λ ≥ 0, independent of (t i ) i≥1 and T nr , such that (170) α n Λ n 1-1/α a.s.

---------→ n→∞,n∈⌊α⌋N Λ, and P (Λ > λ) = min 1, 2 -1/α λ -β for all λ > 0.

( 3 )

 3 E[S(T n )] = log 4 n + D(log 4 n) + o(1)

Figure 2 :

 2 Figure 2: A weighted tree t with S(t) = 3.2. The leaves and their weights are in green. Next to each node is written the weighted Horton-Strahler number of the subtree stemming from it.

  u∈τ δ u under P(dτ | S(τ ) = x) d ------→ x→∞,x / ∈N (T , d, ρ, µ)holds for the rooted Gromov-Hausdorff-Prokhorov distance.

Theorem 1 . 4

 14 The Strahler dilation s δ , as in Definition 8.3, is measurable and satisfies: (i) s δ (T, λ d, ρ, µ) = λs δ (T, d, ρ, 0) for all λ ∈ (0, ∞) and all (T, d, ρ, µ) ∈ T m R , (ii) s δ (T ) = 1 almost surely, where T is the limit tree in Theorem 1.3.

( 23 )

 23 h(E, d, ρ) = sup x∈E d(ρ, x) and m(E, d, ρ, µ) = µ(E).

  0) and we denote by µ f,ℓ the image measure by p f,ℓ of the Lebesgue measure on [0, ℓ]. We call (41) T f,ℓ , d f,ℓ , ρ f,ℓ , µ f,ℓ the (rooted measured compact) real tree coded by (f, ℓ). Still in accordance with Notation 2.2, if ℓ = ζ(f ) then we shall simply write

  g.Le Gall [34, Section 2]. Let λ, b > 0, we define a continuous excursion f ∈ E K and a rooted measured compact metric space T ∈ K m by setting f : s ∈ R + -→ λC 2s/b (t) and T = t, λd gr , ∅, b u∈t δ u . Thanks to[START_REF] Kortchemski | Invariance principles for Galton-Watson trees conditioned on the number of leaves[END_REF], it is straightforward to check that d GH (T f , T ) ≤ λ and d GHP (T f , T ) ≤ λ + b. Then, (42) completes the proof. ■

)

  Proof. By[START_REF] Bertoin | Lévy Processes[END_REF], Duquesne & Le Gall [24, Theorem 2.3.2 and Proposition 2.5.2] assert that the convergence (66) holds for the Skorokhod topology on D(R + , R). In fact, their proof of [24, Proposition 2.5.2] also contains the joint convergence of the lifetimes (see the last paragraph, page 66), so (66) also holds on C K . The same methodology yields (67): see the concluding remark of Duquesne & Le Gall[START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] Section 2.6].■

  ), (71), and (72), an application of Lemma 3.11 (ii) completes the proof. ■ 4 The weighted Horton-Strahler number 4.1 The classic Horton-Strahler number

  Thanks to the assumption on x and ε, Proposition 4.3 entails that |S(τ ) -x| < ε if and only if S(τ ) = ⌊x⌋ and |frac(S(τ )) -frac(x)| < ε. Thus, Proposition 4.5 gives (88) P(|S(τ ) -x| < ε) = P(S(τ ) = ⌊x⌋)P(|W -frac(x)| < ε).

Figure 4 :

 4 Figure 4: An example of r-Horton pruning with r = 0.5. Left : A weighted tree with edge lengths before pruning. Each number indicates the weighted Horton-Strahler number of the subtree stemming from the respective vertex. The subtrees that will be erased are dashed and orange. The cross marks represent the vertices that will only have a single child left (and will be removed). Subtracting r from the numbers in green gives the weights assigned to the new leaves. Right : The resulting r-pruned weighted tree with edge lengths.
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 54 Let T be a GW α -weighted tree with edge lengths and let r ∈ R + . (i) The law of R r (T ) under P( • | S(T ) ≥ r) is the same as the law of δ r • T under P. (ii) The law of Sha(R r (T )) under P( • | S(T ) ≥ r) is the same as the law of Sha(T ) under P. (iii) The law of R 1 • R r (T ) under P( • | S(T ) ≥ r + 1) is the same as the law of δ r • R 1 (T ) under P( • | S(T ) ≥ 1).

Proposition 7 . 6 7 . 1

 7671 Recall from[START_REF] Bruss | On the Maximum and Its Uniqueness for Geometric Random Samples[END_REF] that if f : R + → R is a càdlàg function, then ζ(f ) stands for its lifetime. Recall Definition 2.19 of a planted rooted compact real tree. The following holds.(i) If (T , d, ρ, µ) is HS α -real tree, then µ({ρ}) = 0 almost surely.(ii) If ( H, ζ) is a HS α -excursion, then ζ = ζ( H) almost surely. (iii) If T is HS α -real tree, then T is almost surely planted.Proof. We use the notations of Theorem 7.3. We begin by observing that almost surely,(121) L > 0 and N ∩ {ω ∈ Ω : ℓ(ω) = 0} = ∅.Thus, the root of T * is almost surely not an atom of the measure of T * by Definition 2.22, which yields (i). Since ( H, ζ) is a random variable on C K , we have ζ( H) ≤ ζ and Hs = 0 for all s ≥ ζ( H). By definition (41) of T H, ζ , it follows that ζ -ζ( H) ≤ µ H, ζ ({ρ H, ζ }). Then, (i) implies (ii). Proposition 2.25 and (121) entail that T * is almost surely planted, which gives (iii). ■ Proof of Theorem 7.3

  x n on K m dsc such that D n (τ ) under P • |S(τ ) -x| < ε converges in law to D x n under P, on K m , as ε → 0 + . (II) For all n ∈ N * , δ -x ⊙ α D x n converges in law to T * n on K m as x ∈ R + \N tends to ∞. (III)Recall the rooted Gromov-Hausdorff-Prokhorov distance d GHP as in[START_REF] Drmota | The Register Function for T-Ary Trees[END_REF], then for all η > 0

x 1 ,

 1 L x }. Using (123), we can show that P(D = E) = P(D x n = E) for all E ∈ K m dsc by induction on the number of points of E. This completes the proof since K m dsc is countable. ■ Proof of (I). We fix n ∈ N * and x ∈ R + \N with x > 1 + log δ n. With the notations of Lemma 7.7, we show that D n (τ ) under P • |S(τ ) -x| < ε converges in law to D x n under P. By Proposition 4.6, the laws of D n (τ ) under P( • |S(τ )-x| < ε) are tight on K m dsc as ε → 0 + because D n (τ ) is a subset of τ ∈ K m

Definition 8 . 1

 81 2} k and W n = {u ∈ W : |u| ≤ n} the perfect binary trees rooted at ∅ respectively of infinite height and of height equal to n. Moreover, recall from Section 2.3 the genealogical order on a rooted compact real tree. Let (T, d, ρ) be a rooted compact real tree. An embedding of W

Notation 8 . 2 Definition 8 . 3 dd

 8283 If φ is an embedding of W or W n into a rooted compact real tree (T, d, ρ), then we set φ( ← -∅ ) = ρ. We stress that we still allow φ(∅) = ρ nonetheless. □ We set sup ∅ = 0 and inf ∅ = ∞. For all d ∈ (1, ∞) and all rooted compact real tree (T, d, ρ), we call the Strahler dilation with base d of T the quantity in [0, ∞] defined bys d (T ) = lim |v|+1 d φ n ( ←v ), φ n (v) .Moreover, we define for all k, n ∈ N, |v|+1 d φ n ( ←v ), φ n (v) .

  ∀k, n ∈ N, s k,n+1 d (T ) ≤ s k,n d (T ) and s k,n d (T ) ≤ s k+1,n d (T ). Hence, s k d (T ) is well-defined in [0, ∞) as the limit of a non-increasing sequence of finite terms. Making n tend to ∞ in (130) and (131) yields that (132) ∀k ∈ N, s k d (T ) ≤ s k+1 d (T ) and s k d

Proposition 8 . 5

 85 The function s d is monotone and homogeneous, which means the following. (i) If T 1 is a subtree of a rooted compact real tree T 2 , then s d (T 1 ) ≤ s d (T 2 ), (ii) If T is a rooted compact real tree and if λ ≥ 0, then s d (λ • T ) = λs d (T ).

  s d (T ) ≤ max s d (T i 0 ), d sup j∈J s d (T j ) .

  Furthermore, if T i is planted for all i ∈ I, as in Definition 2.19, then it holds that (141)s d L ⊛ i∈I (ℓ, T i ) = sup i,j∈I max s d (T i ), s d (T j ), d 1 {i̸ =j} min s d (T i ), s d (T j ) .

  3 and Proposition 2.[START_REF] Duquesne | Hereditary tree growth and Lévy forests[END_REF]. □ We find that E[s k,k δ (T )] < ∞ by (130) and (118). Moreover, our previous claim yields that E s all n, k ∈ N. On both sides of the equality, we first apply the dominated convergence theorem as n tends to ∞, and then we use the monotone convergence theorem as k tends to ∞. We thus get (148)E s δ (T ) ≥ E lim infIt remains to study the right-hand side of (148). For all n ∈ N and s ∈ R + , we setf n (s) = E u∈W,|u|=n exp -sδ v⪯u L v w * (1)⪯v δ U w and g(s) = lim sup n→∞ 1 n + 1 ln f n (s).The function f n is positive, non-increasing on R + , and bounded by 2 n . So, we have g ≤ ln 2. From now, we write U = U ∅ to lighten the notations. The two independent families (L (1) * u , U (1) * u ) u∈W and (L (2) * u , U (2) * u ) u∈W have the same law as (L u , U u ) u∈W , and they are jointly independent from (L ∅ , U ). Since L ∅ and U are independent and since E[e -sδL∅ ] = 1/(1 + s) by (68), we compute(149) ∀n ∈ N, ∀s ∈ R + , f n+1 (s) = f n (s) + E[f n (sδ/U )] 1 + s .Let us fix r ∈ (1, δ). Then, we use the monotony of f n and the almost sure inequality U ≤ δ to find (150) f n+1 (s) ≤ a(s)f n (s) + f n (rs), where a(s) = 1 + P(rU > δ) 1 + s , from the relation (149). Let b > exp(g(rs)). By definition of g, there exists c ∈ R + such that f n (rs) ≤ cb n for all n ∈ N. If A > max(a(s), b), then we can choose some C ∈ (1, ∞) such that Ca(s) + c ≤ CA, and thus (150) entails by induction that f n (s) ≤ CA n for all n ∈ N.

( 1 -

 1 2ε)(n + 1) ≤ e -s 0 ε(n+1) .

  The upper bound for E[X] is obtained by rearrangingE[X] ≤ E[Y X + Z] = E[Y ]E[X] + E[Z]. ■Proposition 8.11 Let T be a HS α -real tree. The inequality E[s δ (T )] ≤ 1 holds. Proof. With the notations of Definition 8.3, we set S n (T ) = (n+1)s n,n δ (T ) for any rooted compact real tree T and all n ∈ N. Recalling (131), it is clear that s δ (T ) ≤ lim inf 1 n+1 S n (T ). Therefore, Fatou's lemma and Jensen's inequality entail that (152) ∀a > 0, E[s δ (T )] ≤ lim inf n→∞ 1 a(n + 1)

  ω) ⊙ α T i (ω) : i ≥ 1, ω ∈ N , ℓ(ω) ≤ L .Then, (139) in Proposition 8.6 ensures that the following inequality holds almost surely:(153) S n+1 (T * ) ≤ δL + max S n+1 U -1 ⊙ α T g , sup T ∈EδS n (T ) .

EE 1 E.

 1 e aδL Z -= i≥1 E e a(1-η)Sn(Tg) e aδL 1 {Sn(Tg) i+1 j=2 Λ j ≥1} + δL Sn(Tg) i j=2 Λ j 1 dξ .The Λ j are all smaller than 1 and η ≤ ε 1+ε ≤ 1/2, so it holds1 1-η i j=2 Λ j ≤ 1+ε for all i ≥ 1. Plus, if i+1 j=2 Λ j ≥ 1-η, then Λ 2 ≥ 1-η and i j=3 Λ j ≥ 1/2.Arguments of this type lead toE e aδL Z + ≤ i≥1 {Λ 2 ≥1-η} + ε (1 + δL)e aδL e aSn(Tg) 1 { i j=3 Λ j ≥1/2} , E e aδL Z -≤ i≥1 E (1 + δL)e aδL (1 + S n (T g ))e a(1-η)Sn(Tg) 1 {Sn(Tg) i j=2 Λ j ≥1} .Now, we use Markov's inequality on the i j=3 Λ β+1 j and we apply the joint independence to getE e aδL Z + ≤ P(Λ 2 ≥ 1 -η) + ε E (1 + δL)e aδL E e aSn(T ) e aδL Z -≤ E (1 + δL)e aδL E (1 + S n (T ))S n (T ) β+1 e a(1-η)Sn(T )We easily compute E[(1 + δL)e aδL ] = 2-a (1-a) 2 . Finally, (120) and the choice of η and c yield thatE e aδL Z + ≤ 2 β+3 (1 -a) 2 i≥1 i j=3 E Λ β+1 j × εE e aSn(T ) < ∞, (156) E e aδL Z -≤ 2 (1 -a) 2 i≥1 i j=2 E Λ β+1 j × εE e aSn(T ) + c < ∞. (157)Recall the inequality (154). Lemma 8.10, (155), (156), and (157) entail that E e aS n+1 (T ) ≤ 1 + C 1-a ε 1 -a -2ε E e aSn(T ) + c ′ < ∞

9. 1 5 Recall Definition 7 . 1 .Theorem 9 . 1

 157191 Proof of Theorem 1.To show the identity[START_REF] Nicholas | Regular Variation. Number 27 in Encyclopedia of Mathematics and its Applications[END_REF], we describe the law of a HS α -excursion in terms of the Strahler dilation and N α . Along the lines of the proof, we obtain a result similar to the desired Theorem 1.6 for the tail conditioning {#τ ≥ n}. Let H be a HS α -excursion. Recall the quantity base s defined by (145). Then it holds thatN α (s δ (T H ) = 0) = N α (s δ (T H ) = ∞) = N α (base s T H ̸ = δ) = 0 and (158)∀x > 0, N α (s δ (T H ) > x) = (αx) -β .

E 1 {

 1 #τ ≥ℓn ; δ S(τ ) >zn/an} F a n n H ns (τ ) ; s ≥ 0 = 1 αn 1/α ∞ (αz α ) β 1 y 1+1/α f n (y) dy.Proof of Theorem 9.4. The convergence in distribution of the first component is already known from Theorem 3.8. Proposition 2.18 and a tightness argument ensure that we only need to show(164) E g a n n • τ h a n n δ S(τ ) #τ = n + 1 ---------→ n→∞,n∈⌊α⌋N N α g(T H )h(s δ (T H )) ζ = 1

  , Chapter VI]. Then, (iv) follows from [36, Proposition 1.17, Chapter VI].

■

Notation 2.2 We identify any càdlàg function with compact support f with (f, ζ(f )) ∈ D K . Hence, a sequence (f n ) of càdlàg functions with compact support converges to (f, ℓ) on D K if and only if f n -→ f for the Skorokhod topology and ζ(f n ) -→ ℓ. We point out that ℓ and ζ(f ) do not need to be equal a priori. However, we will say that (f n ) converges to f on D K when f n -→ f for the Skorokhod topology and ζ

  entails that N α -almost everywhere, it holds ζ(H) = ζ and H ∈ E K , where the space E K ⊂ C K is defined by[START_REF] Kesten | Subdiffusive behavior of random walk on a random cluster[END_REF].

	See [24,
	Chapter 1] for a precise proof.
	A classic result of fluctuation theory (see e.g. [11, Chapter VIII.4]) asserts N α (ζ = 0) = 0 and
	(53)

  T →T 0 s k,n d (T ), which is the lower semicontinuity of s k,n d . The measurability of s k,n d , s k d , s d follows by classic results.

■

Let (T, d, ρ) be a rooted compact real tree. When φ is an embedding of W into T , we define

  Let (T i , d i , ρ i ) i∈I be a countable family of rooted compact real trees such that (50) holds. Let i 0 ∈ I and let ℓ

This proposition is clear, either by Definition 8.3 or by using the formula (137). Monotony is not surprisingly enjoyed as it is shared with the Horton Strahler number: if ψ : t 1 → t 2 is an embedding between two (discrete) trees, then we observe S(t 1 ) ≤ S(t 2 ) by (74). Homogeneity was one of the needed properties and is indicative of the metric nature of the Strahler dilation. In particular, Propositions 8.4 and 8.5 (ii) entails the point (i) of Theorem 1.4 (simply setting s d (T, d, ρ, µ) = s d (T, d, ρ) for all rooted measured compact real trees). The following proposition exhibits another similarity between the Strahler dilation and the Horton-Strahler number. Proposition 8.6 Let ℓ ≥ 0 and let L ∈ T R be the real segment [0, ℓ] rooted at 0.
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u ∈ W n-|w| , Proposition 2.25 justifies that φ w j : u ∈ W n-|w| → φ(w * u) ∈ T j is an embedding of W n-|w| into T j . We also deduce from Proposition 2.25 the following sufficient condition.

(142)

If φ(w) ∈ T j \{ρ j }, then φ(w * u) ∈ T j for all u ∈ W n-|w| .

When φ(W n ) ⊂ T j , then φ(u) = φ ∅ j (u) for all u ∈ W n , but we stress that φ( ← -∅ ) = ρ = 0 and φ ∅ j ( ← -∅ ) = ρ j = ℓ j by Notation 8.2. Still, if φ(W n ) ⊂ T j then ℓ j ⪯ φ(∅), so we compute that

Here, we assume that |w| = 1. If φ(w) ∈ T j \{ρ j } and φ(∅) = ℓ j , then we readily see that

We then show that at least one of the following assertions holds true: (a) there is j ∈ I such that φ(W n ) ⊂ T j , (b) there are j ∈ I\{i 0 } and w ∈ W with |w| = 1 such that φ(w) ∈ T j \{ρ j } and φ(∅) = ℓ j . Indeed, let us assume that (b) does not hold. Since L = ρ, ℓ is totally ordered by ⪯ and (φ(1) ∧ ℓ) ∧ (φ(2) ∧ ℓ) = φ(∅) ∧ ℓ, we have w ∈ W with |w| = 1 such that φ(w) ∧ ℓ = φ(∅) ∧ ℓ. In particular, φ(w) / ∈ L because it would imply φ(w) ⪯ φ(∅) otherwise. Thus, there is j ∈ I such that φ(w) ∈ T j \{ρ j }. Then, Proposition 2.25 entails that either φ(∅) ∈ T j \{ρ j } or φ(∅) ⪯ ℓ j = φ(w) ∧ ℓ. In the first case, (142) yields that (a) is satisfied. In the second case, we get φ(∅) = φ(∅) ∧ ℓ = ℓ j . Thus, j = i 0 , and so φ(∅) = ℓ, because (b) would hold otherwise. Since ℓ ≺ φ(1), φ(2), we get φ(1), φ(2) / ∈ L and φ(1) ∧ ℓ = φ(2) ∧ ℓ = ℓ = φ(∅). Similarly as before, this implies that φ(1), φ(2) ∈ T i 0 \{ρ i 0 }. Finally, (a) is verified with j = i 0 thanks to (142). □

We are now ready to prove the desired relations. First, recall that d > 1 and ℓ j ≤ ℓ for all j ∈ I. Then, combining the previous alternative with the identities (143) and (144) readily gives (139). Relying on (137), the same method with n = ∞ yields (140).

To prove (141), we focus on the case where n = ∞ and ℓ j = ℓ for all j ∈ I. When (a) is satisfied, (143) yields s d (T, φ) = s d (T j , φ ∅ j ). Conversely, if φ j is an embedding of W into T j then we can also see it as an embedding φ : W → T such that φ ∅ j = φ j . When (b) is satisfied, φ(∅) = ℓ, so φ(1) ∈ T i \{ρ i } and φ(2) ∈ T j \{ρ j } for some i, j ∈ I. In fact, i ̸ = j by Definition 2.19 of planted real trees. Then, (144) entails s d (T, φ) = d min s d (T i , φ (1) i ), s d (T j , φ (2) j ) . Conversely, if φ i , φ j are two embeddings of W respectively into T i , T j , we check with Proposition 2.25 that we can construct φ :

= φ i and φ

(2) j = φ j . Note that φ is indeed injective because T i and T j are planted. Taking the supremum over all φ completes the proof. ■

We have constructed a family of functions (s d ) d>1 which is parametrized by (1, ∞). However, a rooted compact real tree T admits at most one parameter d > 1 such that its Strahler dilation with base d is not trivial. We define this critical parameter as its Strahler base:

We can write the easy inequality

for all k, n ∈ N. In that precise order, we make n, k, m tend to ∞. We thus obtain the inequality

, which yields the result. ■ 8.2 Proof of Theorem 1.4 (ii)

Recall δ = e γ(α-1) = ( α α-1 ) α-1 and δ ∈ (1, 2] from [START_REF] Aldous | Tree-valued Markov chains derived from Galton-Watson processes[END_REF]. Here, our goal is to prove Theorem 1.4 (ii), namely that the Strahler dilation with base δ of a HS α -real tree T is almost surely equal to 1.

Recall their Definitions 7.1 and 8.3. We divide the proof into three steps: showing s δ (T ) is almost surely constant, showing its mean is not smaller than 1, and showing its mean is not bigger than 1.

Proposition 8.8 Let T be a HS α -real tree. The random variable s δ (T ) is almost surely constant.

Proof. We set F (x) = P(s δ (T ) ≤ x) for all x ∈ R and we set a = sup{x ∈ R : F (x) = 0}. We have a ≥ 0. If a = ∞ then s δ (T ) = ∞ almost surely. Thus, we now assume that a < ∞ and we only need to show that F (a) = 1 to conclude that s δ (T ) = a almost surely. In this proof, we use the notations of Theorem 7.3. In that manner, we define G(x) = P(δ s δ (T g ) ≤ xU ) for all x ≥ 0.

We also have G(x) = E[F (xU/δ)] by independence between T g and U . By Proposition 7.6 (iii), we can apply (141) in Proposition 8.6 together with Proposition 8.5 to learn that

almost surely. Since T * , T g , T d are HS α -real trees, this leads to the inequality

for all x ≥ 0. As cumulative distribution functions, F and G are nonnegative, bounded by for all x > a. If a = 0 then F (δx) -F (x) -→ F (0) -F (0) = 0 as x tends to a+. If a > 0 then P(xU ≥ δa) -→ P(U ≥ δ) = 0 as x tends to a + . We thus obtain that G(δa) = 1 by making x → a + in (147), whatever the case. It follows that F (aU ) = 1 almost surely because F ≤ 1. We recall that U admits a positive density on [1, δ] so we get F (a) = F (a+) = 1 as desired. ■ Proposition 8.9 Let T be a HS α -real tree. The inequality E[s δ (T )] ≥ 1 holds.

Proof. Let (L u , U u ) u∈W be a family of independent random variables such that for all u ∈ W, the law of L u is exponential with mean δ -1 and the law of

We denote by u n 1 , . . . , u n 2 n+1 -1 the vertices of W n in the lexicographic order. We claim that for all n ∈ N, there is a random

)) u∈Wn has the same law as (δL u v * (1)⪯u δU -1 v ) u∈Wn . Indeed, we prove this by induction while using the notations of Theorem 7.3. We get the case n = 0 by endowing T * with φ 0 (∅) = L. By induction, we can assume that T g (resp. T d ) is endowed with an almost sure embedding φ g (resp. φ d ) from W n into T g (resp. T d ) such that (c) is satisfied. Then, we construct T n+1 by endowing T * with its points (φ n+1 (u)) u∈W n+1 , that are There is at most a countable number of points y > 0 such that P(yζ( H) = ℓ) > 0 or such that x n (y) ∈ N for some n ∈ N * . For all other y > 0, Theorem 6.1 and Proposition 7.6 (ii), with [START_REF] Evans | Probability and Real Trees: École d'Été de Probabilités de Saint-Flour XXXV-2005[END_REF], entail that

Then, also by ( 53) and ( 61), the dominated convergence theorem yields that

Hs/y ; s ≥ 0 dy for all z ∈ (0, ∞). Let us show that (161) still holds when z = 0. Indeed, by the monotone convergence theorem, the limit of the right-hand side of (161) as z → 0 + keeps the same expression after replacing z with 0. Thus, we only need to check that (162) lim

To do this, we recall that |τ | = sup H(τ ) stands for the height of τ from ( 25) and ( 28), and that S(τ ) ≤ S(τ ) from Proposition 4.3. For all η > 0, we then write the rough bound

By the estimates ( 60), [START_REF] Vladimir | More exact statements of several theorems in the theory of branching processes[END_REF], and (80), it follows that for all η > 0,

The right-hand side is bounded by N α (sup H < η | ζ > ℓ) by Theorem 3.7. By [START_REF] Bruss | On the Maximum and Its Uniqueness for Geometric Random Samples[END_REF], if ζ > ℓ then sup H > 0, so making η → 0 + gives (162) and completes the proof of (161) with z = 0. □ Observe that if z = 0 then the left-hand side of (161) is also given by Theorem 3.7. Hence,

α 1/α Hs/y ; s ≥ 0 dy.

We multiply both sides of the previous identity by N α (ζ > ℓ) and we make ℓ tend to 0 + . Recall from Section 2.5 that N α (ζ = 0) = 0. We also have P(ζ( H) = 0) = P(sup H = 0) = 0 by (118). Thus, the monotone convergence theorem yields that

Hs/y ; s ≥ 0 dy, for all nonnegative, bounded, and continuous function F : C K → R + . Therefore, (163) also holds for all nonnegative and measurable functions. Theorem 1.4 ensure that the measurable function

for all λ, y > 0. Eventually, applying (163) with the function F • g • Υ and making the change of variable x = α -1/α y 1-1/α entail (159). Using again that Υ(λ H s/y ; s ≥ 0) = λ, (160) becomes a consequence of (159). The rest of the proposition, including (158), follows from (159) by taking F = 1, and g = 1 {0}∪{∞} or g = 1 (x,∞) (also recall Proposition 8.7). ■

We get desired identity (13) by applying (160), then [START_REF] Scott | New Results for Self-Similar Trees with Applications to River Networks[END_REF], then Fubini's theorem, and finally (159). This completes the proof of Theorem 1.5. Theorem 9.1 justifies the intuition that a HS αexcursion is (a multiple of) an excursion of the α-stable height process conditioned on its coded real tree having fixed Strahler dilation. Remark 9.2 Theorem 9.1 (ii) and the identity [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] entail that there is equality between the two image measures of N α by the respective functions sup H = h(T H ) and αβ s δ (T H ).

□

Finally, we recognize thanks to the identity (159) (or (163) equivalently) that the right-hand side of (161) is equal to

We readily obtain the following result. Theorem 9.3 Let τ be a GW α -weighted tree and let (a n ) be as in [START_REF] Bertoin | Lévy Processes[END_REF]. For all ℓ > 0, the following joint convergence holds in distribution on C K × R + :

9.2 Proof of Theorem 1.6

Here, our goal is to deduce from Theorem 9.3 the following result.

Theorem 9.4 Let τ be a GW α -weighted tree and let (a n ) be as in [START_REF] Bertoin | Lévy Processes[END_REF]. The following joint convergence holds in distribution on C K × R + :

Observe that Theorem 1.6 would then readily follow, thanks to Proposition 2.18. The fact that N α (ζ = 1) = 0 prevents us to mimic the proof of Theorem 9.3. To avoid this issue, we take advantage of the monotony of the weighted Horton-Strahler number. Let us give an overview of our strategy for the case α = 2. It is well-known from Rémy's algorithm [START_REF] Rémy | Un Procédé Itératif de Dénombrement d'Arbres Binaires et son Application à leur Génération Aléatoire[END_REF] that removing the parental edge of a random leaf from a uniform n-Catalan tree τ n results in a uniform (n-1)-Catalan tree τ n-1 . In the same spirit, we can embed a weighted tree τ n with the same law as τ under P( • | #τ = 2n-1) into a weighted tree τ ′ n with the same law as τ under P( • | #τ ≥ 2n-1), so that S(τ n ) ≤ S(τ ′ n ). Then, Theorem 9.3 yields an asymptotic upper bound for 2 S(τ n) . However, this proof might not work without alteration when α ∈ (1, 2). Indeed, Janson [START_REF] Janson | Conditioned Galton-Watson trees do not grow[END_REF] exhibited an example of a critical offspring distribution such that there are no embeddings τ n → τ n+1 for some n ≥ 1.

Nevertheless, as presented in Section 3.1, Marchal [START_REF] Marchal | A note on the fragmentation of a stable tree[END_REF] have constructed a sequence of nested GW α -trees conditioned on their number of leaves, instead of their number of vertices. In order to use it, we first transform Theorem 9.3 into a result about the tail conditioning on the number of leaves #∂τ . Recall from Section 2.1 that K stands for the space of (rooted-isometry classes of) rooted compact metric spaces, endowed with the rooted Gromov-Hausdorff distance [START_REF] Devroye | A note on the Horton-Strahler number for random trees[END_REF]. As discussed in Section 2.3, we identify the tree τ with the element (τ, d gr , ∅) of K, where d gr is the graph distance given by [START_REF] Khezeli | Metrization of the Gromov-Hausdorff (-Prokhorov) topology for boundedlycompact metric spaces[END_REF]. As in [START_REF] Duquesne | A limit theorem for the contour process of conditioned Galton-Watson trees[END_REF], we write λ • τ = (τ, λd gr , ∅) for all λ > 0.

Corollary 9.5 Let τ be a GW α -weighted tree and let (a n ) be as in [START_REF] Bertoin | Lévy Processes[END_REF]. For all ℓ ∈ (0, 1], the following joint convergence holds in distribution on K × R + :

Proof. If α = 2, Proposition 3.4 (i) yields that the result directly follows from Theorem 9.3 and Proposition 2.18. If α ∈ (1, 2), observe that m n = ⌈ℓn/α -(ℓn) 3/4 ⌉ takes all integer values large enough, because ℓ < α, and that a ⌈ℓn/α⌉ m n /(⌈ℓn/α⌉a mn ) -→ 1. Lemma 3.5 then entails the result from Theorem 9.3 and Proposition 2.18. ■ Moreover, using similar arguments as before, the almost sure convergences i 1/α-1 • t i -→ α • T nr and (170) entail that the following convergence also holds almost surely on K:

---------→ n→∞,n∈⌊α⌋N Λ • T nr , where τ n = t Λn for all n ∈ ⌊α⌋N.

By Proposition 3.2 (iii), it is clear that τ n is distributed as τ under P( • | #∂τ ≥ n/2α), so we may and will apply Corollary 9.5 with ℓ = 1/2 to it. Now, let us prove that (a n δ S(Tn) /n) n∈⌊α⌋N is tight. Indeed, we begin by using the independence between T n and Λ n to write

for all x > 0. We remind that T n = t Jn and τ n = t Λn , so Proposition 3.2 (ii) implies that

an for all x > 0. While making n → ∞, we use the convergence (167) on the left-hand side, and we apply Corollary 9.5 together with (170) on the right-hand side. As such, we find that for all x > 0, lim sup n→∞,n∈⌊α⌋N

By making x → ∞, the desired tightness follows from Theorem 9.1 (ii). □ Also thanks to (170), (169), and Corollary 9.5, the family (Θ n ) n∈⌊α⌋N of the random variables

is therefore tight on the product space

Let us consider a subsequence (Θ n k ), with n k ∈ ⌊α⌋N for all k ∈ N, that converges in distribution. By (170), (169), and (171), there are some random variables ξ ∈ {0, 1} and U, V ≥ 0 such that it holds

in distribution. Corollary 9.5 yields that (Λ • T nr , V ) has the same law as (T H , s δ (T H )) under

). Thus, it holds V = Λs δ (T nr ) almost surely, thanks to Proposition 8.5. Moreover, Λ n is independent of T n for all n ∈ ⌊α⌋N, so Λ is independent of (ξ, T nr , U ). Hence, we have

for all ε > 0. Indeed, recall from (170) that Λ is absolutely continuous, and that its density is positive and continuous at λ = 1. The Portmanteau theorem entails that

By Proposition 3.2 (ii), if S(T n ) > S(τ n ) and (1+ε) αβ n < αΛ n then (1+ε) αβ n < αJ n . Thanks to the convergence in probability (167), we get that U ≤ (1 + 2ε)s δ (T nr ) almost surely. We show that U ≥ (1 -2ε)s δ (T nr ) for all ε > 0 in the same manner. Therefore, we have U = s δ (T nr ) almost surely. Let us now focus on the conditional law of ξ given T nr . Let g : K → R be a bounded and continuous function. We apply Theorem 3.8, together with Proposition 2.18, and we use the estimate (166) on the right-hand side of (165) to get

This means that ξ is independent of T nr , and has Bernoulli law with success probability χ. Hence, we have proved that (Θ n ) n∈⌊α⌋N converges to (Λ, ξ, T nr , s δ (T nr ), Λ • T nr , Λs δ (T nr )) in distri- bution, where Λ, ξ, T nr are independent and ξ is a Bernoulli random variable with success probability χ. In particular, the following convergence holds in distribution on the product space {0, 1} × K × R + :

(ξ, T nr , s δ (T nr ))

The desired convergence (164) then follows from (165) and (166). This completes the proof. ■

10 The Strahler dilation of the Brownian tree: proof of Theorem 1.7

We restrict ourselves to the case α = 2 in all this section. Then, ( 8) and ( 30) become

We denote by τ a GW 2 -weighted tree. By [START_REF] Françon | Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique[END_REF], τ can be equal to a tree t with positive probability if and only if t is binary, meaning that all its vertices have either 0 or 2 children. We are interested in the joint law of the size #τ and the weighted Horton-Strahler S(τ ) of τ . Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and Kemp [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF] have independently characterized the law of (#τ, S(τ )). Written with our notations, for all p, n ∈ N and z ≥ 0, the formers have set R p,n = #{t binary tree : S(t) = p and #t = 2n + 1} and R p (z) = n≥0 R p,n z n .

We stress that if t is a binary tree then µ 2 (k u (t)) = 1 2 for all u ∈ t, so P(τ = t) = 2 -#t . By Proposition 3.4 (i), we hence obtain that E[1 {S(τ )=p} s #τ ] = s 2 R p (s 2 /4) for all s ≥ 0. From Definition 1.1 of the Horton-Strahler number, Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] found a recurrence relation on the R p . Moreover, they solved it exactly thanks to a trigonometric change of variable: R p (z) = sin ϕ sin 2 p ϕ where cos 2 ϕ 2 = 1 4z .

Recalling that the law of S(τ ) is known from [START_REF] Addario-Berry | The scaling limit of the minimum spanning tree of the complete graph[END_REF], it follows that for all p ∈ N and all s ∈ (0, 1),

, where cosh a(s) = 1 s .

A similar phenomenon happens during the computation of the generating function of #τ under the law P(dτ | S(τ ) = x) given by Definition 4.7.

Proposition 10.1 Let τ be a GW 2 -weighted tree. For all p ∈ N, y ∈ (0, 1), and s ∈ (0, 1), it holds

Proof. We set F x (s) = E[1 {S(τ )≤x} s #τ ] for all x ∈ R + and s ∈ (0, 1). Let us fix s ∈ (0, 1) for now. Using the assertion (82), Proposition 4.5 implies that for all y ∈ [0, 1), it holds (173) F y (s) = P(S(τ ) ≤ y)s = (1 -2 -y )s.

We assume x ≥ 1. Recall from (2) that φ 2 (r) = r + 1 2 (1 -r) 2 is the generating function of the offspring law µ 2 . By Definition 2.15, the decompositions #τ = 1 + k∅(τ ) i=1 #θ (i) τ and (84) lead to

After some easy manipulations, this identity becomes

This allows us to recognize the double-angle formula for the hyperbolic cotangent:

Furthermore, we can verify via (173) and an elementary analysis that if y ∈ [0, 1) then G y > 1 because s > 0. In particular, there exists a unique a y (s) > 0 such that G y = coth a y (s). We obtain by induction on the integer part ⌊x⌋ that G x = coth 2 ⌊x⌋ a x-⌊x⌋ (s) for all x ∈ R + . Therefore,

for all s ∈ (0, 1), all x ∈ R + , and all y ∈ [0, 1). For all s ∈ (0, 1), Proposition 4.6 entails that the function x -→ F x (s) is C 1 on R + \N, and that (ln 2)2 -x E[s #τ | S(τ ) = x] is equal to its derivative at x ∈ R + \N. Derivating (174) with respect to x completes the proof. ■

Making n → ∞ in Proposition 10.1 leads to a description of the law of the mass of the HS 2 -real tree, and then of the Strahler dilation of the 2-stable tree. This results in a proof of Theorem 1.7. Recall h and m from [START_REF] Duquesne | An elementary proof of Hawkes's conjecture on Galton-Watson trees[END_REF]. We remind from (41) that if f is a continuous excursion then T f stands for the real tree coded by f , so that h(T f ) = sup f and m(T f ) = ζ(f ). Furthermore, recall from Section 2.5 that if e is a standard Brownian excursion then T e , which is a Brownian tree, has the same law as (T H , 1 An elementary asymptotic study of the formula given by Proposition 10.1 entails that ∀λ > 0, E exp(-λm(T )) =

Thanks to [START_REF] Slack | A branching process with mean one and possibly infinite variance[END_REF], we then identify that E exp(-λm(T )) = N 2 exp(-2λm(T H )) sup H = 1 for all λ > 0. For all λ > 0 and all measurable and bounded g : [0, ∞] → R, we recall Proposition 7.6 (ii) and we apply the identities ( 56) and (159) to check that The height h(T e ) of the Brownian tree T e is equal to the maximum of the Brownian excursion e. Its cumulative distribution function has been computed by Chung [START_REF] Chung | Excursions in Brownian motion[END_REF] and Kennedy [START_REF] Kennedy | The Distribution of the Maximum Brownian Excursion[END_REF]. Also by computing generating functions, Flajolet, Raoult & Vuillemin [START_REF] Flajolet | The number of registers required for evaluating arithmetic expressions[END_REF] and Kemp [START_REF] Kemp | The average number of registers needed to evaluate a binary tree optimally[END_REF] have already found a link between the Horton-Strahler number and the log 2 of the height for discrete trees. Their statements do not exactly coincide because of a small miscalculation, but Françon [START_REF] Françon | Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique[END_REF] found the correct result with a purely combinatorial method, which we reformulate as follows.