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Modelling the drained/undrained transition: effect of the measuring method and the boundary conditions

The dependence of fluid-saturated rocks' elastic properties to the measuring frequency is related to fluid-flow phenomena at different scales. In the frequency range of [10 -3 , 10 6 ] Hz, for fully saturated rocks, two phenomena have been experimentally documented: (i) the drained/undrained transition (i.e., global flow), and (ii) the relaxed/unrelaxed transition (i.e., local flow). When investigating experimentally those effects or comparing different measurements in rocks, one needs to account for both the boundary conditions involved and the method of measurement used. A onedimensional poroelastic model is presented, which aims at calculating the expected poroelastic response during an experiment. The model is used to test different sets of boundary conditions, as well as the role of the measuring setup, i.e., local (strain gauges) or global (linear variable differential transformer) strain measurement. Four properties are predicted and compared with the measurements, i.e., bulk modulus, bulk attenuation, pseudo-Skempton coefficient, and pore pressure phase shift. For the drained/undrained transition, because fluid pressure may not be homogeneous in the sample, local and global measurements are predicted to differ. Furthermore, the existence of a dead volume at both sample's ends is shown to be important. Due to the existence of the dead volume, an interplay between sample's and dead volumes' storage capacity determines both the magnitudes and the frequency dependence of the dispersion/attenuation measurements. The predicted behaviours are shown to be consistent with the measurements recently reported on very compressible and porous sandstone samples.

I N T R O D U C T I O N

. Two complementary methods have been proposed to investigate experimentally rocks' dispersive elastic properties, i.e., the resonant-bar method and the stress-strain method. The resonant-bar method relies on fixing one side of a sample, applying a small displacement to the other side, and observing

the resonance modes of the rock sample (e.g., [START_REF] Winkler | Pore fluids and seismic attenuation in rocks[END_REF][START_REF] Bourbie | Hydraulic and acoustic properties as a function of porosity in fontainebleau sandstone[END_REF]. Depending on the sample's length and diameter, the frequency investigated is of about 10 kHz. However, the method often implies for the sample to be unbounded so that investigating the confining pressure effect is challenging. The stress-strain or sub-resonance method is promising as it allows for measurements over wide frequency ( f ∈ [10 -2 ; 10 3 ] Hz) and pressure ranges (e.g., [START_REF] Subramaniyan | An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks[END_REF]. Depending on the apparatuses' specificity, different elastic properties can be precisely investigated such as the bulk modulus (e.g., [START_REF] Adelinet | Frequency and fluid effects on elastic properties of basalt: experimental investigations[END_REF][START_REF] David | Laboratory measurements of low-and high-frequency elastic moduli in fontainebleau sandstone[END_REF]Pimienta, Fortin, and Gueguen 2015a), the shear modulus (e.g., [START_REF] Jackson | Shear modulus and internal friction of calcite rocks at seismic frequencies: pressure, frequency and grain size dependence[END_REF]), Young's modulus (e.g., [START_REF] Batzle | Fluid mobility and frequency-dependent seismic velocity direct measurements[END_REF][START_REF] Adam | Seismic wave attenuation in carbonates[END_REF][START_REF] Takei | Experimental study of attenuation and dispersion over a broad frequency range: 1. the apparatus[END_REF]; Pimienta et al. Tisato and Madonna 2012;[START_REF] Madonna | A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode[END_REF]Mikhaltsevitch, Lebedev, and Gurevitch 2014;Pimienta et al. 2015b) or Poisson's ratio [START_REF] Pimienta | Effect of fluids and frequencies on Poisson's ratio of sandstone samples[END_REF].
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When measuring these dispersive properties experimentally, one however needs to properly account for the specific boundary conditions brought by the measuring apparatus and method. For the resonant-bar method or stress-strain experiments under ambient pressure (e.g., [START_REF] Paffenholz | Absorption and modulus measurements in the seismic frequency and strain range on partially saturated sedimentary rocks[END_REF][START_REF] Lienert | The relationship between Q-1 E and dispersion in extensional modulus E[END_REF][START_REF] Takei | Experimental study of attenuation and dispersion over a broad frequency range: 1. the apparatus[END_REF], the sample is unbounded so that fluid is allowed to flow laterally. For such experiments, [START_REF] Dunn | Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders[END_REF] has shown that the lateral boundary condition could affect the dispersive properties by creating a lateral fluid flow out of unjacketed samples, i.e., the so-called Biot-Gardner effect. On the contrary, the stress-strain method under confining pressure implies a lateral bounding of the sample by using either epoxy sealing (e.g., [START_REF] Batzle | Fluid mobility and frequency-dependent seismic velocity direct measurements[END_REF]Adam et al. 2006[START_REF] Adam | Seismic wave attenuation in carbonates[END_REF], copper (e.g., [START_REF] Tisato | Attenuation at low seismic frequencies in partially saturated rocks. Measurements and description of a new apparatus[END_REF][START_REF] Madonna | A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode[END_REF], or rubber (e.g., [START_REF] Adelinet | Frequency and fluid effects on elastic properties of basalt: experimental investigations[END_REF][START_REF] David | Laboratory measurements of low-and high-frequency elastic moduli in fontainebleau sandstone[END_REF][START_REF] Fortin | Experimental results on the combined effects of frequency and pressure on the dispersion of elastic waves in porous rocks[END_REF][START_REF] Mikhaltsevitch | A laboratory study of low-frequency wave dispersion and attenuation in watersaturated sandstones[END_REF]Pimienta et al. 2015aPimienta et al. ,b, 2016) ) jacketing. Most of the existing apparatuses have been designed to measure properties on assumed undrained samples, by not allowing for axial fluid flow through the end-platens (e.g., [START_REF] Batzle | Fluid mobility and frequency-dependent seismic velocity direct measurements[END_REF][START_REF] Tisato | Attenuation at low seismic frequencies in partially saturated rocks. Measurements and description of a new apparatus[END_REF][START_REF] Madonna | A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode[END_REF][START_REF] Mikhaltsevitch | A laboratory study of low-frequency wave dispersion and attenuation in watersaturated sandstones[END_REF]. However, because the saturating procedure might not be optimum with such setups and the drained/undrained transition is of interest, a different setup/methodology has been used at ENS (e.g., Pimienta et al. 2015a). The drained conditions have been approached by creating large dead volumes in the drainage system, at the sample's ends, allowing to precisely measure both cause (fluid flow) and consequence (dispersion/attenuation) of the drained/undrained transition (e.g. Pimienta et al. 2014a).

To check experimental data against predictions for this drained/undrained transition, a 1D poroelastic model has been derived from solving the pore pressure diffusion equation with different sets of boundary conditions. The technique used for the measurement (i.e., 'local or global) has also been taken into account. The predictions have been compared to measurements on two porous and compliant sandstone samples.

G E N E R A L 1 D P O R O E L A S T I C M O D E L

Within the framework of linear isotropic poroelastic theory for an homogeneous medium, using the poroelastic relations, the mechanical equilibrium equation, and the mass balance equation, one gets the partial derivative equation satisfied by the pore fluid pressure ( p f ) (e.g. [START_REF] Rice | Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[END_REF][START_REF] Zimmerman | Coupling in poroelasticity and thermoelasticity[END_REF][START_REF] Guéguen | Mechanics of Fluid-Saturated Rocks[END_REF]:

∂ p f ∂t - κ BK d ηα(1 -α B) ∇ 2 p f = BK d 1 -α B ∂ v ∂t .
(1)

Where κ, K d , B, and α are, respectively, the rock's permeability, drained bulk modulus, Skempton coefficient, and Biot coefficient. η is the fluid's intrinsic viscosity, and v is the volumetric strain.

Noting that the volumetric strain is 1) is a diffusion equation with a source term that depends on the condition of stress solicitation P. Two cases of stress solicitation could be considered. The confining pressure oscillations (e.g., [START_REF] Adelinet | Frequency and fluid effects on elastic properties of basalt: experimental investigations[END_REF]) can be considered an "isotropic solicitation", i.e., a stress solicitation equal in all directions. The uniaxial stress oscillation (e.g. [START_REF] Batzle | Fluid mobility and frequency-dependent seismic velocity direct measurements[END_REF]) can be considered a "deviatoric solicitation." Although we focus, in the following, on the "isotropic solicitation" case, the case of a "deviatoric solicitation" can be shown to give very similar results.

v = K -1 d (P -αp f ), equation (

Model derivation: isotropic solicitation

An oscillating confining pressure is applied so that P(t) is a source term that is time dependent. Equation ( 1) is solved in one dimension (1D model) by assuming p f to vary as a function of z only. Finally, the equation is rewritten as follows [START_REF] Zimmerman | Coupling in poroelasticity and thermoelasticity[END_REF]:

∂ p f ∂t - κ BK d ηα ∂ 2 p f ∂z 2 = B ∂ P ∂t . ( 2 
)
Noting that the rock's storage coefficient is S s = α/(BK d ) (K ümpel 1991), the equation is rewritten as follows:

∂ p f ∂t - κ ηS s ∂ 2 p f ∂z 2 = B ∂ P ∂t , (3) 
which is similar to the heat equation with a heat source.

In case of no source term (i.e., P = const), this equation is that used in the "oscillating pulse" method (e.g., [START_REF] Brace | Permeability of granite under high pressure[END_REF][START_REF]Compressible Fluid Flow Through Rocks of Variable Permeability[END_REF][START_REF] Hsieh | A transient laboratory method for determining the hydraulic properties of tight rocks -I. theory[END_REF]Song andRenner 2006, 2007). If P(t) is variable, the source term exists. Here, the applied confining pressure P(t) is supposed to be small variations around a nil value of a sinusoidal form such that P(t) = P 0 e iωt . Accounting for this time dependence, assuming a steady-state solution, and using the method of variables separation with p f (z, t) = f (z)e iωt , the partial derivative equation simplifies to
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Modelling drained/undrained transition 3 with D = κ/(S s η) being the fluid hydraulic diffusivity in the sample. The equation being simplified to a typical differential equation of second order, steady-state solutions can be found analytically. These are of the form:

p f (z, t) = B P 0 + p ± 0 e ±(1+i) √ ω 2D z e iωt , ( 5 
)
with p + 0 and p - 0 being the two constants that are obtained from the chosen problem's boundary conditions. Knowing p f (z, t) (equation ( 5)), the volumetric strain is obtained such that

v (z, t) = K -1 d (P(t) -αp f (z, t)).

Solution for undrained and drained boundary conditions

Theoretical derivation

In the undrained condition, fluid is not allowed to flow out of the sample so that

∂ p f ∂z z=L = ∂ p f ∂z z=0 = 0. ( 6 
)
The undrained boundary condition leads to a solution of p f (t) = B P(t), i.e., an immediate, position-and frequencyindependent response of the pore fluid to the oscillating pressure. Under drained boundary conditions, pore pressure is maintained to the sample upper (i.e., z = L) and lower (i.e., z = 0) ends so that no overpressure can occur and

p f (0, t) = p f (L, t) = 0. ( 7 
)
In the drained boundary condition, the sample's behaviour depends on the frequency of the applied stress oscillation. Due to the simple drained boundary condition, of nil pore overpressure at both ends, an analytical solution can be found such that

p f (z, t) = B P 0 e iωt 1 - sinh(a(L -z)) + sinh(az) sinh(aL) , ( 8 
)
with the parameter a = (1 + i) ω/2D. As shown from this solution, any value of p f (z, t) corresponds to the "local" fluid overpressure created by the stress oscillation P(t). Finally, a "local" volumetric strain can be calculated such that:

v (z, t) = B P 0 K d e iωt × 1 B -α + α sinh(a(L -z)) + sinh(az) sinh(aL) . (9)
Parameter a depends on ω so that, at a given z, both p f and v depend on ω. Moreover, because a is a complex number, p f and v are complex-valued functions. In the following, these are characterized by their amplitude and phase. 1) are chosen to be the ones measured experimentally (e.g., Pimienta et al. 2015a). The rock's drained bulk modulus varies with confining pressure. Its value is K d ∼ 14 GPa at lowest confining pressure (i.e., P ef f = 1 MPa). The sample's Skempton (B) and Biot-Willis (α) coefficients and storage capacity (S s ) are calculated, assuming the skeleton bulk modulus to be the one of quartz (i.e., K qtz = 37 GPa), from usual relations of poroelastic theory [START_REF] Detournay | Fundamentals of Poroelasticity[END_REF]. Finally, the hydraulic diffusivity (D) is directly deduced from the measured sample's permeability (i.e., κ = 4 10 -15 m 2 ) and storage capacity (i.e., S s ), and the fluid's viscosity (η).

The behaviours of the fluid-saturated rock depend on two fluid's intrinsic properties. Viscosity affects the hydraulic diffusivity, thus modifying parameter a and introducing a frequency dependence of p f (equation ( 5)) and v (equation ( 9)). On the other hand, the fluid's compressibility affects the saturated sample's compressibility, the storage capacity, and the Skempton coefficient B, thus affecting the magnitude of the frequency effect (equations ( 8) & ( 9)). Time dependence. Using the same parameters values as above, the time dependence of p f for a given oscillating P(t) is reported (Fig. 1). The local p f is predicted for different frequencies ( f ∈ [10 -2 ; 10 2 ] Hz) and for three sensors' positions using the constants from Table 1 in case of glycerine saturation.

The amplitudes of the induced p f oscillations increase with increasing frequency, up to f ∼ 10 Hz (Fig. 1e), where they become independent of frequency. Beyond this frequency, the maximum amplitude of p f is 0.15 MPa, which consistently relates to case of B = p f /P c = 0.75. The pore pressure response is initially shifted in time (i.e., phase shift) with respect to P(t), by about π/2 at lowest frequency of f = 10 -2 Hz (Fig. 1a). The phase shift decreases, down to zero beyond f ∼ 10 Hz (Fig. 1e).

The frequency-dependent variation occurs over a very large frequency band, of about f ∈ [10 -2 ; 10 1 ] Hz. Owing to the boundary conditions, a large dependence to the position of the strain (or pore pressure) sensor is observed. This point is further investigated below. Spatial dependence. The position (z) dependence of both amplitude and phase of the "local" pore pressure (i.e., p f ) and strain (i.e., v ) is reported in Fig. 2. The properties are calculated for different frequencies of the applied P in the range of f ∈ [10 -2 ; 10 2 ] Hz. Consistently, p f amplitudes are low and v are high (i.e., low bulk modulus), at lowest f . For the fluid pressure p f , amplitude and phase show a similar monotonous behaviour. As frequency increases, the amplitude (Fig. 2a) increases, and the phase (Fig. 2b) decreases. The volumetric strain v amplitude is also monotonous (Fig. 2c), but the phase is not (Fig. 2d). At low frequency, the amplitude decreases and phase increases as frequency increases. However, there exists a critical frequency (i.e., f ∼ 0.1 Hz) beyond which the strain phase decreases when frequency keeps increasing.

At low f , the largest amplitude is observed at the sample's centre. As frequency increases, almost all of the sample shows the same response. Because of the symmetry chosen for the boundary conditions, the variations are symmetric with respect to the sample's center. Note that, for each position, it exists a frequency at which the signal (e.g., p f or v ) exceeds the maximum value obtained at highest frequency. This observation was also reported by [START_REF] Dunn | Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders[END_REF] and [START_REF] Wang | Theory of Linear Poroelasticity: Princeton Series in Geophysics[END_REF]. "Local" versus "Global" predictions. As in (Pimienta et al. 2015a), a local pseudo-Skempton coefficient B * is defined. Similarly, a local pseudo-bulk modulus K * may be directly deduced from the complex volumetric strain:

B * (z, ω) = p f (z, ω) P(ω) , and K * (z, ω) = - P(ω) v (z, ω) . ( 10 
)
The parameters depend on the intrinsic properties (i.e., B and K) of a given rock sample for the specific conditions of the experiment. However, because both parameters bear a dynamic information, those are addressed as "pseudo"-properties. The locally calculated K * and B * can be averaged over the sample's length L to get global (or volume-averaged) properties of the rock (i.e., K g and B g ) such that:

B g (ω) = 1 L L 0 p f (z, ω) dz P(ω)
, and K g (ω) = -P(ω)

1 L L 0 v (z, ω) dz . ( 11 
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Modelling drained/undrained transition 5 Both B g and K g also bear a dynamic information and are "pseudo"-properties. Again, the "local" and "global" predictions can be characterised by their amplitudes (e.g., B * and K * ) and phases (e.g., φ B * and φ K * ). The amplitudes are related to the material constants, i.e., K d and B. The phase φ B * describes the shift in fluid pressure as compared to the applied confining pressure, and depends on the sample hydraulic diffusivity. The phase φ K * is the phase shift between the applied confining pressure and volumetric strain, and Tan(φ K * ) is the bulk modulus attenuation (i.e., Q -1 K ). Both "local" and "global" hydraulic (Figs. 3a and3b) and solid (Figs. 3c and3d) responses to the applied confining pressure oscillation are predicted as a function of frequency using the parameters from Table 1. Three positions have been chosen along the sample's length at z = [L/2; L/4; L/10]. Overall, (i) B * (Fig. 3a) and K * (Fig. 3c) show a consistent increase from drained to undrained domain, (ii) the phase shift φ B * shows large decrease with frequency, from π/2 down to zero, and (iii) a large Q -1 K peak is observed. For all properties, owing to the water intrinsic viscosity, the transition is shifted to higher frequency in comparison to the glycerine saturation.

Consistently, the "local" predictions show no frequency dependence at either very high (i.e., f > 10 2 Hz for glycerine) or very low (i.e., f < 10 -3 Hz) frequencies, i.e., corresponding to the undrained and drained regimes, respectively. In the characteristic frequency domain of the drained/undrained transition, clear dependence to the position is predicted for all properties.

"Experimentally undrained" boundary condition

The two typical boundary conditions most often considered are the "drained" (Fig. 4a) and "undrained" (Fig. 4b) conditions (e.g., [START_REF] Dunn | Acoustic attenuation in fluid-saturated porous cylinders at low frequencies[END_REF][START_REF] Dunn | Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders[END_REF]. They correspond to the extremal cases of fluid either fully blocked or fully unblocked in the sample. A third boundary condition should be addressed, which combines the purely "drained" and "undrained" conditions: the "experimentally undrained" condition described below (Fig. 4c). This last condition is the most realistic one because: (i) it is often difficult to attain experimentally the purely "undrained" (e.g., Ghabezloo and Sulem 2009) experimental conditions, and (ii) it has been shown (e.g., Pimienta et al. 2015a) that measuring precisely attenuations under purely "drained" conditions was technically challenging.

Role of the dead volumes

The "experimentally undrained" boundary condition consists in an undrained system not only constituted of the sample but also of a dead volume at both sample's upper and lower ends. Such boundary condition is also that considered for the "oscillating pulse" technique (e.g., [START_REF] Brace | Permeability of granite under high pressure[END_REF][START_REF]Compressible Fluid Flow Through Rocks of Variable Permeability[END_REF][START_REF] Hsieh | A transient laboratory method for determining the hydraulic properties of tight rocks -I. theory[END_REF]Song andRenner 2006, 2007). Fluid mass continuity at both ends of the sample is imposed, i.e., the change of fluid mass in the sample equals the fluid mass change in the dead volume. Following earlier studies, these boundary conditions are found to be [START_REF] Brace | Permeability of granite under high pressure[END_REF][START_REF]Compressible Fluid Flow Through Rocks of Variable Permeability[END_REF]:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ S 1 ∂ p 1 ∂t z=L + κ A η ∂ p f ∂z z=L = 0 S 2 ∂ p 2 ∂t z=0 - κ A η ∂ p f ∂z z=0 = 0, (12) 
where S 1 and S 2 are respectively the storage capacities of downstream and upstream dead volumes, and p 1 = p f (0, t) and p 2 = p f (L, t) are the fluid pressures in the downstream and upstream dead volumes, respectively. A is the sample's cross-sectional area through which Darcy flow takes place.

From Equation ( 12), the dead volumes contribute through their overall storage capacity. Due to the very low pressure variations applied (i.e., P = 0.2 MPa), leading to even lower pore pressure variations, the tubing's compressibility can consistently be neglected so that only the compressibility of the fluid in the dead volume needs to be accounted for. Knowing the values of lower (i.e., V 1 ) and upper (i.e., V 2 ) dead volumes and the fluid bulk modulus K f , S 1 and S 2 are obtained such that

S 1,2 = V 1,2 K -1
f . The sample's storage capacity is reached from the theoretical relations (e.g., K ümpel 1991). All required parameters are listed in Table 1. The general solution can be obtained for example by solving equation (5) using the Mathematica software. Solving p f (z, t) for this realistic set of boundary conditions would lead to a complex solution that cannot be reported in a simple formula. However, a simple analytical solution is found if S 1 = S 2 (i.e., V 1 ∼ V 2 ). In the case of the setup used by Pimienta et al. (2015a), such assumption can consistently be made as V 1 = 3.4 mL and V 2 = 3.2 mL. Using this assumption, one gets the system:

⎧ ⎨ ⎩ p - 0 (b + 1) = p + 0 (b -1) -B P 0 , p + 0 (b + 1)e aL = p - 0 (b -1)e -aL -B P 0 , ( 13 
)
with b = (1i)A(S s /S) 2D/ω, and S = S 1 + S 2 being the dead volume storage capacity. Subtracting the two above equations, one obtains:

( p - 0 -p + 0 e aL ) (1 + b) - (1 -b) e aL = 0. ( 14 
)
This implies that p - 0 = p + 0 e aL because a, b, and L have fixed values so that the second term differs from zero. Further solving the system (13) and replacing the constants in equation ( 5) leads to the general solution:

p f (z, t) = B P 0 e iωt 1 - cosh(a( L 2 -z)) bsi nh a L 2 + cosh a L 2 , ( 15 
)
Interestingly, recalling that a ∝ √ ω and b ∝ (1/ √ ω), the limiting quasi-static case (i.e., zero frequency) can be reached from equation ( 15) using the Taylor expansion of cosh and sinh to the first order in ω. Further noting that a b (L/2) = (2AS s /S)(L/2) = V s (S s /S), the limiting quasi-static case is:

p f (z, t) P(t) ω=0 = B 0 = B V s S s V s S s + S . ( 16 
)
where V s = AL is the sample's total volume, and B is the Skempton coefficient. The general result (i.e., with V 1 = V 2 ) can further be found from introducing S = S 1 + S 2 in equation ( 16). This solution under quasi-static conditions is
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Figure 7 Comparison of the differences quantified by R (sum of squared residuals through the sample's length), between the analytical and the numerical solutions of the pore-fluid pressure oscillations at different frequencies. The parameters used are the ones of Table 1 in the case of glycerine saturation, under drained boundary conditions. consistent with the results from [START_REF] Ghabezloo | Effect of the volume of the drainage system on the measurement of undrained thermo-poro-elastic parameters[END_REF], and implies that the measured B 0 is equal to the Skempton coefficient B only if

S 1 = S 2 = 0 (i.e., V 1 = V 2 = 0).
As shown by previous authors (e.g., Ghabezloo and Sulem 2010), the idealistic condition of V 1 = V 2 = 0 can seldomly be reached experimentally so that the above result needs to be applied.

"Global" predictions

In order to apply the present model in a simple way to the experiment reported by Pimienta et al. (2015a), the two dead volumes are assumed equal (i.e., V 1 = V 2 ) so that the total dead volume is V meas = 6.6mL. As a consequence, following equation ( 15), the problem is symmetric with respect to L/2. The model's "global" predictions, averaged over the entire sample's length, are first investigated. They are noted K g and Q -1 K g for the predicted elastic response, and B g and φ B g for the hydraulic response. The frequency-dependent hydraulic (Figs. 5a and5b) and elastic (Figs. 5c and5d) model's responses are predicted using the parameters from table (1). In order to check the sensitivity to the total dead volume value, a theoretical dead volume V th is introduced. This parameter is varied from V meas to values of 0, 10 V meas and 10 3 V meas , and even to 10 6 V meas for the p f phase shift.

U N C O R R E C T E D P R O O F
Modelling drained/undrained transition 11 A zero dead volume (i.e., V th = 0) corresponds to the "undrained" boundary condition. In that case, for all frequencies: (i) the predicted B g equals Skempton coefficient B, (ii) there is no phase shift for p f , and (iii) K g = K ud (i.e., undrained bulk modulus) and Q -1 Kg = 0. A very high dead volume (i.e., V th ≥ 10 3 V meas ) corresponds to the "drained" boundary condition (Fig. 3). In that case: (i) at frequencies low enough, there is no Skempton coefficient (i.e., B g = 0) and K g = K d , and (ii) a critical frequency f c exists at which the regime switches from "drained" to "undrained". At

f c , a maximum in Q -1
Kg is predicted. The intermediate dead volumes (i.e., V th = V meas and V th = 10 V meas ) lead to an intermediate case scenario, in between "drained" and "undrained" boundary conditions. In that final case, at frequencies low enough: (i) B g exists but is below B (Fig. 5a), (ii) K d < K g < K ud (Fig. 5c), and (iii) dependence to the fluid bulk modulus K f is observed (Fig. 5a,c,d). Moreover, as for the "drained" boundary condition, a critical frequency f c exists at which a maximum in Q -1

Kg is predicted (Fig. 5d). Beyond f c , B g and K g reach, respectively, the undrained B and K ud . As V th decreases, the magnitudes of the variations between drained and undrained regime decrease, and, consistently, the maximum in Q -1 Kg decreases. Note finally that, as V th decreases, the value for f c slightly increases.

"local" and "locally averaged" predictions

The "locally averaged" predictions can be calculated by averaging over the strain gauge length (i.e., 6 mm) at the sample's center, i.e., (L/2) ± 3 mm. They are noted K la and B la . In case of the pseudo-Skempton coefficient, a second "local" prediction B l is investigated at a position infinitely near to the boundary, so that the frequency-dependent variations measured experimentally in the dead volume (Pimienta et al. 2015a) can be approached. The frequency-dependent variations predicted for K la , B la , and B l under glycerine saturation are reported (Figs. 6a and6b).

A strong effect of the dead volume is again predicted. At lowest and highest frequencies, the values equal the ones of the "global" predictions. However, a sharper increase is predicted for the transition of K la and B la , which is similar to a characteristic transition of a viscoelastic Zener-like material. Interestingly, B l decreases as frequency increases (Fig. 6b). It indicates that fluid can less and less flow out of the sample as frequency increases, i.e., the sample becomes undrained.

Transient regime and numerical solution

The analytical solution obtained (Eq. 8) corresponds to the steady-state response of the pore pressure to an oscillating confining pressure. However, considering the time t 0 = 0 to be the beginning of the oscillation, a transition exists between the initial static state (at t 0 < 0) and the steady-state oscillation. In order to investigate this transient regime, a 1D finite-difference scheme, with imposed initial conditions (i.e., P(t 0 ) = 0, and p f (z, t 0 ) = 0), is used to solve numerically the diffusion equation (Eq. 1). A first-order backward difference for time and a second-order central difference for space has been chosen. The grid used is uniform, with a constant mesh spacing of z for space and a constant time increment of t. The boundary conditions tested correspond to the drained regime, which are taken into account with the two Dirichlet boundary conditions (i.e., p f (0, t) = 0, and p f (L, t) = 0) at both ends of the space grid. For the initial conditions, the pore pressure is zero throughout all the sample (i.e., p f (z, 0) = 0).

A parameter R is introduced to compare analytical and numerical solutions, respectively, p f and p f . R is defined as the sum of the squared residuals through the sample's length, i.e., of the difference between analytic and numerical solutions for a particular position z i = i z. For each time step t j = j t, R is defined as:

R( j) = i p f (z i , t j ) -p f j i . 2 . ( 17 
)
The solutions are compared as a function of time for different oscillating frequencies (Fig. 7). For simplicity, the drained 1D model (Fig. 4a) is used.

For each frequency, the sum of squared residuals R is maximum at the initial conditions (t = 0), then decreases with time to reach a steady state where the difference between the analytical and numerical solutions is negligible. The transient behaviour observed for R relates to the transient behaviour accounted for in the numerical solution. As frequency increases, R decreases. The duration of this transient behaviour is always less than one oscillation period for any frequency. Therefore, the analytical solution can be considered valid after one oscillation.

C O M P A R I S O N W I T H T H E M E A S U R E M E N T S

The above model predictions are used to discuss the measurements on two sandstone (i.e., Fontainebleau and Berea) samples. The dead volume is set to 6.6 mL, with V 1 = V 2 . The other required parameters are: (i) the drained (i.e., dry) bulk
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modulus; (ii) the sample's porosity and permeability; and (iii) the fluid's viscosity. All these parameters are known. Finally, Biot-Willis, Skempton, and storage coefficients are derived from the poroelastic relations. The skeleton bulk modulus is taken as 37 GPa for both rocks. The model's predictions are calculated for the appropriate experimental conditions, i.e., what has been defined as the "experimentally undrained" boundary condition. Moreover, the strains have been recorded at the sample's centre, and the pore pressure measurement has been taken in the dead volume. Accordingly, the "locally averaged" K la and Q -1 K la are predicted at the sample centre, and the "local" B l is calculated very close to the dead volume. In the following, an apparent frequency parameter (i.e., f * = f (η/η 0 ), with η 0 = 10 -3 Pa.s) is introduced to account for the fluid's viscosity.

Results for a Fontainebleau sandstone "Experimentally undrained" boundary conditions

The data are those of Pimienta et al. (2015a), measured on a Fontainebleau sandstone sample of 7% porosity. All parameters for the predictions are the ones of Table 1. Measurements at an effective pressure of P ef f = 1 MPa and model's predictions are compared as a function of apparent frequency f * (Fig. 8). Three properties are investigated: (i) bulk modulus K (Fig. 8a), (ii) bulk modulus dissipation Q -1 K (Fig. 8b), and (iii) pseudo-Skempton coefficient B * (Fig. 8c). The model's predictions are calculated for two extreme values of K d , of 5 GPa and 13 GPa, respectively.

Note first that the frequency range for the transition predicted by the model is very consistent with the measurements and occurs at f * ∼ 10 Hz. A strong effect of the "experimentally undrained" boundary condition is predicted so that, for a K d of 13 GPa, the values of (i) K la at lowest f * overestimates the measurements (Fig. 8a), (ii)

Q -1 K la underestimates the measured Q -1
K peak (Fig. 8b), and (iii) B l at lowest f * underestimates the values of B * measured (Fig. 8c).

Comparisons between measurements and model predictions thus add up and imply that measurements under liquid saturation relate to an initial K d much lower than 13 GPa. A second prediction is thus tested with K d = 5 GPa. The predicted properties are consistent with the measurements under fluid-saturated conditions. For all properties, under water saturation, a good fit is obtained between measurements and model predictions. Under glycerine saturation, both K la (Fig. 8a) and B l (Fig. 8b) gain in consistency with the measurements. Moreover, the peak in Q -1 K la is at about 0.25 (Fig. 8c), which is precisely what has been measured.

Role of the confining cycle

As the measured value under dry conditions is of 13GPa -14 GPa (Fig. 8a), it implies that K d is lower under fluid-saturated conditions. Because glycerine is not a polar fluid and this sample is well cemented, a possible fluid-related elastic weakening (e.g., Pimienta et al. 2014b) may be ruled out. Noting that this K d value was measured after cycling the sample up to high pressure and back (Pimienta et al. 2015a), the effect of cycling is tested on a sample from the same block (Fig. 9a).

For this rock sample, at pressures lower than P ef f = 10 MPa, the K d values after the loading stage are higher than the ones before (Fig. 9a). For the particular case of P ef f = 1 MPa, the cycling introduces a variation from K d = 5 GPa (before cycling) to K d = 13 GPa (after cycling). After unloading the sample, glycerine and then water are injected in the sample, and the drained bulk modulus is measured again under purely drained boundary conditions (Fig. 9b). Under both water and glycerine saturation, the value at 1 MPa is of 5 GPa, which equals the value measured during the (first) loading stage under dry conditions. This is precisely this value of K d = 5 GPa that has been chosen for the 1D model predictions (Fig. 8), under fluid-saturated conditions. It implies that, for this sample, and this experimental protocol, the hysteresis seems to disappear when measuring again (after cycling) under fluid saturation. This hysteresis effect under dry conditions may be caused by grain-grain or cracks internal friction (e.g., [START_REF] David | Sliding crack model for nonlinearity and hysteresis in the uniaxial stress -strain curve of rock[END_REF]) that indeed largely reduces when fluid is present and pressurized.

Results for a Berea sandstone

Berea sandstone

Berea sandstone has been extensively used in experimental rock physics (e.g., [START_REF] Sayers | Stress-induced ultrasonic anisotropy in Berea sandstone[END_REF][START_REF] Seipold | Principle differences in the pressure dependence of thermal and elastic properties of crystalline rocks[END_REF] as a reference rock. As detailed by Pimienta et al. (2014c), it is characterized by: (i) a porosity in the range of φ ∈ [17; 22]%, (ii) a permeability in the range of κ ∈ [1; 10 3 ] mD, (iii) a variable mineralogy, with mean (over 19 Berea sandstone samples) quartz and clay contents of ∼ 75% and ∼ 11% respectively. As shown through microstructural observation (e.g., Prasad and Manghnani 1997), Berea sandstone's pore network is com- discontinuities (flat geometry at two-grain junctions). The latter type of feature is known to be the major contributor to the observed stress sensitivity of various physical properties such as elastic wave velocities (e.g., [START_REF] Christensen | The influence of pore pressure and confining pressure on dynamic elastic properties of berea sandstone[END_REF][START_REF] Sayers | Stress-induced ultrasonic anisotropy in Berea sandstone[END_REF][START_REF] Seipold | Principle differences in the pressure dependence of thermal and elastic properties of crystalline rocks[END_REF].

The Berea sandstone sample chosen has a porosity of φ = 19.3 % and a permeability of κ ∼ 10 mD (i.e., 10 -14 m 2 ). The experimental measurements are similar to that for Fo7 (Pimienta et al. 2015a), except that the data for the dry sample have also been obtained under loading conditions. This has been done to discard any possible hysteresis effect (Fig. 9a). The parameters used as model input are essentially very similar to that of Table 1. The sample's length and diameter are the same, and porosity (φ = 19.3 %), permeability (κ = 10 -14 m 2 ), and drained bulk modulus (K d ∼ 6.5 GPa) differ. As for before, φ, κ, and K d are used to calculate the other properties/parameters using the theory of poroelasticity.

"Experimentally undrained" boundary conditions

Again, predictions are made according to the experimental conditions. The 1D model with "experimentally undrained" boundary conditions is used, and the "locally averaged" K la and Q -1 K la and the "local" B l are predicted. The dependence to f * of the measured and modelled elastic (Fig. 10a,b) and hydraulic (Fig. 10c) responses are compared for an effective pressure of P ef f = 1 MPa.

At lowest frequencies, the measured K (Fig. 10a) under fluid saturation is much higher than K d . This is precisely what is predicted by K la . This difference results from the interplay between dead volume's and sample's storage capacity, and is theoretically expected. Although the measurement under water saturation remains higher than the model's predictions, an overall good fit is obtained between measurements and predictions for all properties. As f * increases, both predicted and measured K slightly increase, by about 2 GPa, to reach the value of K ud . A good fit is observed under glycerine saturation. Because the experimental dead volume V meas is small as compared with the Berea pore volume, the measured dispersion/attenuation is much lower than the one expected in case of the transition from K d to K ud .

The attenuation is strongly controlled by the dead volume effect. Both measurements and predictions indicate a peak of 0.1 (Fig. 10b). A good fit is also obtained between B * and predicted B l (Fig. 10c) at lowest frequencies. The magnitude of the measured B * is well predicted by the model for both water and glycerine saturations. Yet, the frequency-dependent variations of the "local" prediction are spread out as compared with the measurements. These results further indicate that, even for dead volumes much smaller than the one of the present experiment, the drained/undrained transition may be "seen" experimentally for highly porous and compressible rocks.

C O N C L U S I O N

To better understand the experimental conditions involved in the measurement of the drained/undrained transition, a 1D model has been developed by solving analytically the partial derivative equation for pressure diffusion. Different boundary conditions have been analysed. The "undrained" and "drained" boundary conditions assume that fluid is either locked in or free to flow out of the sample. A more realistic "experimentally undrained" boundary condition has been investigated by assuming that a dead volume is present at both ends of the sample. Four properties may be predicted by the model, i.e., the pseudo-Skempton coefficient B * , the pore pressure phase shift φ B * , the bulk modulus K, and the attenuation Q -1 K . The 1D model is used to test two main aspects, i.e., the the role of the measuring condition and the role of the dead volume. Interestingly, the frequency range for the drained/undrained transition is expected to strongly differ if the measuring method is global (e.g., linear variable differential transformer) or local (e.g. strain gauge). Furthermore, the position of the local measurement is also expected to play a dominant role. Finally, introducing a dead volume at both sample's ends appears to strongly affect the drained/undrained transition. The measured dispersion/attenuation for this effect are expected to be strongly damped if the dead volume is small in comparison with the rock pore volume. Because it originates from an interplay between dead volume's and sample's storage capacity, this effect increases as the rock's compliance and porosity increases.

Comparison between the model's predictions and measurements on a Fontainebleau and a Berea sandstone shows a good fit and an overall consistency. The rock's storage capacity has an important effect. It could result in a non-negligible attenuation even with a very small dead volume if the storage capacity is high.
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Figure 1

 1 Figure1Time dependence of the applied confining pressure oscillations and predicted pore pressure response for different frequencies in the range of f ∈ [10 -2 ; 10 2 ] Hz. The parameters values are the ones from Table1in case of glycerine saturation.

Figure 2

 2 Figure 2 Position dependence of the predicted (a-b) pore pressure and (c-d) mean strain (i.e., v /3) response to the applied confining pressure oscillations for different frequencies in the range of f ∈ [10 -2 ; 10 2 ] Hz. Both signals' amplitudes and phases are investigated. The properties for the prediction are the ones fromTable 1 in case of glycerine saturation.
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Figure 3

 3 Figure 3 Predicted drained to undrained transition of the frequency-dependent (a-b) hydraulic and (c-d) elastic properties of a representative sandstone sample saturated by water (i.e., thin curves) or glycerine (i.e., thick curves). Both "local" (i.e. dashed colour curves) and "global" (i.e. continuous black curves) predictions are compared. The two cases of water and glycerine saturating conditions are tested.

Figure 4 Figure 5

 45 Figure 4 Schematic view of the sample associated with the three possible boundary conditions. The theoretical (a) "drained" and (b) "undrained" boundary conditions are complemented with the more realistic (c) "experimentally undrained" boundary condition, which in fact combines the two theoretical ones.
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Figure 6

 6 Figure 6Predicted frequency dependence of K la , B la , and B l for the glycerine-saturated sandstone sample. Different values of dead volume V th are chosen, starting from zero, up to a value a thousand times higher than the one measured (V th = V meas ).

Figure 8

 8 Figure 8 Comparison between predicted and measured frequency-dependent properties for a 7%-porosity Fontainebleau sandstone. The measured (a) bulk modulus and (b) attenuation have been measured locally at the sample centre, and (c) the pseudo-Skempton coefficient has been measured in the dead volume. These data are compared with the corresponding model predictions with "experimentally undrained" boundary conditions. Two values of K d of 5 GPa (i.e., dashed curves) and 13 GPa are chosen for the predictions.

Figure 9

 9 Figure9(a) Measured dry bulk modulus as a function of effective pressure for two Fontainebleau sandstone samples of 7% porosity. K d is measured under both loading and unloading stages. (b) Measured drained bulk modulus under loading stage for the three fluid-saturated conditions. The first "loading stage" is the one under dry conditions, where the sample is measured under loading then unloading. The second "loading stage" comes after. During this stage, the rock is fully-saturated by glycerine and then water. For each saturating fluid, the rock is measured under loading only. Note the greyish area corresponding to the effective pressure at which the frequency effects are investigated.

Q2Figure 10

 10 Figure 10 Comparison between predicted and measured (a-b) elastic and (c) hydraulic properties as a function of apparent frequency for the Berea sample saturated by different fluids. The "experimentally undrained" model is used for the predictions, with the measured dead volume.
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Table 1

 1 Parameters values used for the model predictions. The rock parameters and dead volume values are those reported fromPimienta et al. (2015a) 

	Parameter	Estimated value
	Sample length	L = 80 mm
	Sample diameter	d = 40 mm
	Sample's porosity	φ = 7 %
	Sample's drained bulk modulus	K d = 14 GPa
	Sample's permeability	κ = 4 10 -15 m 2
	Confining oscillation amplitude	P = 0.2 MPa
	Lower Dead volume (1)	V 1 = 3.4 mL
	Upper Dead volume (2)	V 2 = 3.2 mL
	Glycerine bulk modulus	K gly = 4.36 GPa
	Glycerine viscosity	η gly = 1.087 Pa.s
	Lower (1) storage capacity	S 1 = 7.80 10 -4 L.GPa -1
	Upper (2) storage capacity	S 2 = 7.34 10 -4 L.GPa -1
	Sample's storage capacity	S s = 5.86 10 -2 GPa -1
	Sample's hydraulic diffusivity	D gly = 6.28 10 -5 m 2 .s -1
	Water bulk modulus Water viscosity Lower (1) storage capacity	K wat = 2.25 GPa η wat = 0.89 10 -3 Pa.s S 1 = 1.51 10 -3 L.GPa -1
	Upper (2) storage capacity	S 2 = 1.42 10 -3 L.GPa -1
	Sample's storage capacity	S s = 7.36 10 -2 GPa -1
	Sample's hydraulic diffusivity	D wat = 6.10 10 -2 m 2 .s -1
	Discussion of the analytical 1D solution
	Values of the different physical parameters. The different
	parameters used (Table	
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