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ABSTRACT
The dependence of fluid-saturated rocks’ elastic properties to the measuring fre-
quency is related to fluid-flow phenomena at different scales. In the frequency range
of [10−3, 106] Hz, for fully saturated rocks, two phenomena have been experimen-
tally documented: (i) the drained/undrained transition (i.e., global flow), and (ii)
the relaxed/unrelaxed transition (i.e., local flow). When investigating experimentally
those effects or comparing different measurements in rocks, one needs to account for
both the boundary conditions involved and the method of measurement used. A one-
dimensional poroelastic model is presented, which aims at calculating the expected
poroelastic response during an experiment. The model is used to test different sets
of boundary conditions, as well as the role of the measuring setup, i.e., local (strain
gauges) or global (linear variable differential transformer) strain measurement. Four
properties are predicted and compared with the measurements, i.e., bulk modulus,
bulk attenuation, pseudo-Skempton coefficient, and pore pressure phase shift. For
the drained/undrained transition, because fluid pressure may not be homogeneous in
the sample, local and global measurements are predicted to differ. Furthermore, the
existence of a dead volume at both sample’s ends is shown to be important. Due to
the existence of the dead volume, an interplay between sample’s and dead volumes’
storage capacity determines both the magnitudes and the frequency dependence of
the dispersion/attenuation measurements. The predicted behaviours are shown to be
consistent with the measurements recently reported on very compressible and porous
sandstone samples.

INTRODUCT I ON

Dispersive elastic properties in porous fluid-saturated rocks
originate from the presence and mechanical effect of fluid
(e.g., Biot 1956; O’Connell and Budiansky 1974). The
characteristic frequency of those effects are related to fluid
pressure equilibration during the passing of the seismic wave
(e.g., O’Connell and Budiansky 1974; Cleary 1978). Two
complementary methods have been proposed to investigate
experimentally rocks’ dispersive elastic properties, i.e., the
resonant-bar method and the stress–strain method. The
resonant-bar method relies on fixing one side of a sample,
applying a small displacement to the other side, and observing

∗E-mail: lucas.xan.pimienta@gmail.com

the resonance modes of the rock sample (e.g., Winkler and
Nur 1979; Bourbie and Zinszner 1985). Depending on the
sample’s length and diameter, the frequency investigated
is of about 10 kHz. However, the method often implies
for the sample to be unbounded so that investigating the
confining pressure effect is challenging. The stress–strain or
sub-resonance method is promising as it allows for measure-
ments over wide frequency ( f ∈ [10−2; 103] Hz) and pressure
ranges (e.g., Subramaniyan et al. 2014). Depending on the
apparatuses’ specificity, different elastic properties can be
precisely investigated such as the bulk modulus (e.g., Adelinet
et al. 2010; David et al. 2013; Pimienta, Fortin, and Gueguen
2015a), the shear modulus (e.g., Jackson and Paterson 1987),
Young’s modulus (e.g., Batzle, Han, and Hofmann 2006;
Adam et al. 2009; Takei, Fujisawa, and McCarthy 2011;

1C© 2016 European Association of Geoscientists & Engineers
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2 L. Pimienta et al.

Tisato and Madonna 2012; Madonna and Tisato 2013;
Mikhaltsevitch, Lebedev, and Gurevitch 2014; Pimienta et al.

2015b) or Poisson’s ratio (Pimienta et al. 2016).
When measuring these dispersive properties experimen-

tally, one however needs to properly account for the specific
boundary conditions brought by the measuring apparatus and
method. For the resonant-bar method or stress–strain experi-
ments under ambient pressure (e.g., Paffenholz and Burkhardt
1989; Lienert and Manghnani 1990; Takei et al. 2011), the
sample is unbounded so that fluid is allowed to flow later-
ally. For such experiments, Dunn (1987) has shown that the
lateral boundary condition could affect the dispersive proper-
ties by creating a lateral fluid flow out of unjacketed samples,
i.e., the so-called Biot–Gardner effect. On the contrary, the
stress–strain method under confining pressure implies a lat-
eral bounding of the sample by using either epoxy sealing
(e.g., Batzle Han, and Hofmann 2006; Adam et al. 2006,
2009), copper (e.g., Tisato and Madonna 2012; Madonna
and Tisato 2013), or rubber (e.g., Adelinet et al. 2010; David
et al. 2013; Fortin et al. 2014; Mikhaltsevitch et al. 2014;
Pimienta et al. 2015a,b, 2016) jacketing. Most of the existing
apparatuses have been designed to measure properties on as-
sumed undrained samples, by not allowing for axial fluid flow
through the end-platens (e.g., Batzle et al. 2006; Tisato and
Madonna 2012; Madonna and Tisato 2013; Mikhaltsevitch
et al. 2014). However, because the saturating procedure might
not be optimum with such setups and the drained/undrained
transition is of interest, a different setup/methodology has
been used at ENS (e.g., Pimienta et al. 2015a). The drained
conditions have been approached by creating large dead vol-
umes in the drainage system, at the sample’s ends, allowing
to precisely measure both cause (fluid flow) and consequence
(dispersion/attenuation) of the drained/undrained transition
(e.g. Pimienta et al. 2014a).

To check experimental data against predictions for this
drained/undrained transition, a 1D poroelastic model has been
derived from solving the pore pressure diffusion equation with
different sets of boundary conditions. The technique used for
the measurement (i.e., ‘local or global) has also been taken
into account. The predictions have been compared to mea-
surements on two porous and compliant sandstone samples.

GENERAL 1D POR OE LA ST I C MODE L

Within the framework of linear isotropic poroelastic theory
for an homogeneous medium, using the poroelastic relations,
the mechanical equilibrium equation, and the mass balance
equation, one gets the partial derivative equation satisfied

by the pore fluid pressure (pf ) (e.g. Rice and Cleary 1976;
Zimmerman 2000; Guéguen and Bouteca 2004:

∂ pf

∂t
− κ BKd

ηα(1 − αB)
∇2 pf = BKd

1 − αB
∂εv

∂t
. (1)

Where κ, Kd, B, and α are, respectively, the rock’s perme-
ability, drained bulk modulus, Skempton coefficient, and Biot
coefficient. η is the fluid’s intrinsic viscosity, and εv is the
volumetric strain.

Noting that the volumetric strain is εv = K−1
d (P − αpf ),

equation (1) is a diffusion equation with a source term that
depends on the condition of stress solicitation P. Two cases of
stress solicitation could be considered. The confining pressure
oscillations (e.g., Adelinet et al. 2010) can be considered an
“isotropic solicitation”, i.e., a stress solicitation equal in all
directions. The uniaxial stress oscillation (e.g. Batzle et al.

2006) can be considered a “deviatoric solicitation.” Although
we focus, in the following, on the “isotropic solicitation” case,
the case of a “deviatoric solicitation” can be shown to give
very similar results.

Model derivation: isotropic solicitation

An oscillating confining pressure is applied so that P(t) is a
source term that is time dependent. Equation (1) is solved
in one dimension (1D model) by assuming pf to vary as a
function of z only. Finally, the equation is rewritten as follows
(Zimmerman 2000):

∂ pf

∂t
− κ BKd

ηα

∂2 pf

∂z2
= B

∂ P
∂t

. (2)

Noting that the rock’s storage coefficient is Ss = α/(BKd)
(Kümpel 1991), the equation is rewritten as follows:

∂ pf

∂t
− κ

ηSs

∂2 pf

∂z2
= B

∂ P
∂t

, (3)

which is similar to the heat equation with a heat source.
In case of no source term (i.e., P = const), this equa-

tion is that used in the “oscillating pulse” method (e.g., Brace,
Walsh, and Frangos 1968; Lin 1977; Hsieh et al. 1981; Song
and Renner 2006, 2007). If P(t) is variable, the source term
exists. Here, the applied confining pressure P(t) is supposed to
be small variations around a nil value of a sinusoidal form such
that P(t) = �P0 eiωt. Accounting for this time dependence, as-
suming a steady-state solution, and using the method of vari-
ables separation with pf (z, t) = f (z)eiωt, the partial derivative
equation simplifies to

f (z) + i
(

D
ω

)
d2

dz2 [ f (z)] = B�P0, (4)

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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Modelling drained/undrained transition 3

with D = κ/(Ssη) being the fluid hydraulic diffusivity in the
sample. The equation being simplified to a typical differential
equation of second order, steady-state solutions can be found
analytically. These are of the form:

pf (z, t) =
[
B�P0 + p±

0 e±(1+i)
√

ω
2D z

]
eiωt, (5)

with p+
0 and p−

0 being the two constants that are obtained
from the chosen problem’s boundary conditions. Knowing
pf (z, t) (equation (5)), the volumetric strain is obtained such
that εv(z, t) = K−1

d (P(t) − αpf (z, t)).

Solution for undrained and drained boundary conditions

Theoretical derivation

In the undrained condition, fluid is not allowed to flow out of
the sample so that(

∂ pf

∂z

)
z=L

=
(

∂ pf

∂z

)
z=0

= 0. (6)

The undrained boundary condition leads to a solution of
pf (t) = B P(t), i.e., an immediate, position- and frequency-
independent response of the pore fluid to the oscillating pres-
sure. Under drained boundary conditions, pore pressure is
maintained to the sample upper (i.e., z = L) and lower (i.e.,
z = 0) ends so that no overpressure can occur and

pf (0, t) = pf (L, t) = 0. (7)

In the drained boundary condition, the sample’s behaviour
depends on the frequency of the applied stress oscillation.

Due to the simple drained boundary condition, of nil pore
overpressure at both ends, an analytical solution can be found
such that

pf (z, t) = B�P0eiωt

[
1 − sinh(a(L − z)) + sinh(az)

sinh(aL)

]
, (8)

with the parameter a = (1 + i)
√

ω/2D. As shown from this
solution, any value of pf (z, t) corresponds to the “local” fluid
overpressure created by the stress oscillation P(t). Finally, a
“local” volumetric strain can be calculated such that:

εv(z, t) = B�P0

Kd
eiωt

×
[(

1
B

− α

)
+ α

sinh(a(L − z)) + sinh(az)
sinh(aL)

]
. (9)

Parameter a depends on ω so that, at a given z, both pf and εv

depend on ω. Moreover, because a is a complex number, pf

and εv are complex-valued functions. In the following, these
are characterized by their amplitude and phase.

Table 1 Parameters values used for the model predictions. The rock
parameters and dead volume values are those reported from Pimienta
et al. (2015a)

Parameter Estimated value

Sample length L = 80 mm
Sample diameter d = 40 mm
Sample’s porosity φ = 7 %
Sample’s drained bulk modulus Kd = 14 GPa
Sample’s permeability κ = 4 10−15 m2

Confining oscillation amplitude �P = 0.2 MPa
Lower Dead volume (1) V1 = 3.4 mL
Upper Dead volume (2) V2 = 3.2 mL

Glycerine bulk modulus Kgly = 4.36 GPa
Glycerine viscosity ηgly = 1.087 Pa.s
Lower (1) storage capacity S1 = 7.80 10−4 L.GPa−1

Upper (2) storage capacity S2 = 7.34 10−4 L.GPa−1

Sample’s storage capacity Ss = 5.86 10−2 GPa−1

Sample’s hydraulic diffusivity Dgly = 6.28 10−5 m2.s−1

Water bulk modulus Kwat = 2.25 GPa
Water viscosity ηwat = 0.89 10−3 Pa.s
Lower (1) storage capacity S1 = 1.51 10−3 L.GPa−1

Upper (2) storage capacity S2 = 1.42 10−3 L.GPa−1

Sample’s storage capacity Ss = 7.36 10−2 GPa−1

Sample’s hydraulic diffusivity Dwat = 6.10 10−2 m2.s−1

Discussion of the analytical 1D solution

Values of the different physical parameters. The different
parameters used (Table 1) are chosen to be the ones mea-
sured experimentally (e.g., Pimienta et al. 2015a). The rock’s
drained bulk modulus varies with confining pressure. Its
value is Kd ∼ 14 GPa at lowest confining pressure (i.e., Pef f =
1 MPa). The sample’s Skempton (B) and Biot–Willis (α) co-
efficients and storage capacity (Ss) are calculated, assuming
the skeleton bulk modulus to be the one of quartz (i.e.,
Kqtz = 37 GPa), from usual relations of poroelastic theory
(Detournay and Cheng 1993). Finally, the hydraulic diffu-
sivity (D) is directly deduced from the measured sample’s per-
meability (i.e., κ = 4 10−15 m2) and storage capacity (i.e., Ss),
and the fluid’s viscosity (η).

The behaviours of the fluid-saturated rock depend on
two fluid’s intrinsic properties. Viscosity affects the hydraulic
diffusivity, thus modifying parameter a and introducing a fre-
quency dependence of pf (equation (5)) and εv (equation (9)).
On the other hand, the fluid’s compressibility affects the sat-
urated sample’s compressibility, the storage capacity, and the
Skempton coefficient B, thus affecting the magnitude of the
frequency effect (equations (8) & (9)).

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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4 L. Pimienta et al.

Figure 1 Time dependence of the applied confining pressure oscillations and predicted pore pressure response for different frequencies in the
range of f ∈ [10−2; 102] Hz. The parameters values are the ones from Table 1 in case of glycerine saturation.

Time dependence. Using the same parameters values as above,
the time dependence of pf for a given oscillating P(t) is re-
ported (Fig. 1). The local pf is predicted for different frequen-
cies ( f ∈ [10−2; 102] Hz) and for three sensors’ positions using
the constants from Table 1 in case of glycerine saturation.

The amplitudes of the induced pf oscillations increase
with increasing frequency, up to f ∼ 10 Hz (Fig. 1e), where
they become independent of frequency. Beyond this frequency,
the maximum amplitude of pf is 0.15 MPa, which consistently
relates to case of B = pf /Pc = 0.75. The pore pressure re-
sponse is initially shifted in time (i.e., phase shift) with respect
to P(t), by about π/2 at lowest frequency of f = 10−2 Hz
(Fig. 1a). The phase shift decreases, down to zero beyond
f ∼ 10 Hz (Fig. 1e).

The frequency-dependent variation occurs over a very
large frequency band, of about f ∈ [10−2; 101] Hz. Owing to
the boundary conditions, a large dependence to the position
of the strain (or pore pressure) sensor is observed. This point
is further investigated below.
Spatial dependence. The position (z) dependence of both am-
plitude and phase of the “local” pore pressure (i.e., pf ) and
strain (i.e., εv) is reported in Fig. 2. The properties are calcu-
lated for different frequencies of the applied P in the range of
f ∈ [10−2; 102] Hz. Consistently, pf amplitudes are low and
εv are high (i.e., low bulk modulus), at lowest f . For the fluid
pressure pf , amplitude and phase show a similar monotonous
behaviour. As frequency increases, the amplitude (Fig. 2a)
increases, and the phase (Fig. 2b) decreases. The volumetric
strain εv amplitude is also monotonous (Fig. 2c), but the phase
is not (Fig. 2d). At low frequency, the amplitude decreases and

phase increases as frequency increases. However, there exists
a critical frequency (i.e., f ∼ 0.1 Hz) beyond which the strain
phase decreases when frequency keeps increasing.

At low f , the largest amplitude is observed at the sam-
ple’s centre. As frequency increases, almost all of the sample
shows the same response. Because of the symmetry chosen for
the boundary conditions, the variations are symmetric with
respect to the sample’s center. Note that, for each position,
it exists a frequency at which the signal (e.g., pf or εv) ex-
ceeds the maximum value obtained at highest frequency. This
observation was also reported by Dunn (1987) and Wang
(2000).
“Local” versus “Global” predictions. As in (Pimienta et al.

2015a), a local pseudo-Skempton coefficient B∗ is defined.
Similarly, a local pseudo-bulk modulus K∗ may be directly
deduced from the complex volumetric strain:

B∗(z, ω) = pf (z, ω)

P(ω)
, and K∗(z, ω) = − P(ω)

εv(z, ω)
. (10)

The parameters depend on the intrinsic properties (i.e., B and
K) of a given rock sample for the specific conditions of the ex-
periment. However, because both parameters bear a dynamic
information, those are addressed as “pseudo”-properties. The
locally calculated K∗ and B∗ can be averaged over the sam-
ple’s length L to get global (or volume-averaged) properties
of the rock (i.e., Kg and Bg) such that:

Bg(ω) =
1
L

∫ L
0 pf (z, ω) dz

P(ω)
, and Kg(ω) = − P(ω)

1
L

∫ L
0 εv(z, ω) dz

.

(11)

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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Modelling drained/undrained transition 5

Figure 2 Position dependence of the predicted (a-b) pore pressure and (c-d) mean strain (i.e., εv/3) response to the applied confining pressure
oscillations for different frequencies in the range of f ∈ [10−2; 102] Hz. Both signals’ amplitudes and phases are investigated. The properties for
the prediction are the ones from Table 1 in case of glycerine saturation.

Both Bg and Kg also bear a dynamic information and are
“pseudo”-properties.

Again, the “local” and “global” predictions can be char-
acterised by their amplitudes (e.g., ‖B∗‖ and ‖K∗‖) and phases
(e.g., φB∗ and φK∗ ). The amplitudes are related to the material
constants, i.e., Kd and B. The phase φB∗ describes the shift in
fluid pressure as compared to the applied confining pressure,
and depends on the sample hydraulic diffusivity. The phase
φK∗ is the phase shift between the applied confining pressure
and volumetric strain, and Tan(φK∗ ) is the bulk modulus at-
tenuation (i.e., Q−1

K ).
Both “local” and “global” hydraulic (Figs. 3a and 3b)

and solid (Figs. 3c and 3d) responses to the applied confining
pressure oscillation are predicted as a function of frequency
using the parameters from Table 1. Three positions have been
chosen along the sample’s length at z = [L/2; L/4; L/10].
Overall, (i) ‖B∗‖ (Fig. 3a) and ‖K∗‖ (Fig. 3c) show a con-
sistent increase from drained to undrained domain, (ii) the

phase shift φB∗ shows large decrease with frequency, from
π/2 down to zero, and (iii) a large Q−1

K peak is observed.
For all properties, owing to the water intrinsic viscosity, the
transition is shifted to higher frequency in comparison to the
glycerine saturation.

Consistently, the “local” predictions show no frequency
dependence at either very high (i.e., f > 102 Hz for glycerine)
or very low (i.e., f < 10−3 Hz) frequencies, i.e., correspond-
ing to the undrained and drained regimes, respectively. In
the characteristic frequency domain of the drained/undrained
transition, clear dependence to the position is predicted for all
properties.

“Experimentally undrained” boundary condition

The two typical boundary conditions most often considered
are the “drained” (Fig. 4a) and “undrained” (Fig. 4b) con-
ditions (e.g., Dunn 1986, 1987). They correspond to the

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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6 L. Pimienta et al.

Figure 3 Predicted drained to undrained transition of the frequency-dependent (a-b) hydraulic and (c-d) elastic properties of a representative
sandstone sample saturated by water (i.e., thin curves) or glycerine (i.e., thick curves). Both “local” (i.e. dashed colour curves) and “global” (i.e.
continuous black curves) predictions are compared. The two cases of water and glycerine saturating conditions are tested.

Figure 4 Schematic view of the sample associated with the three possible boundary conditions. The theoretical (a) “drained” and (b) “undrained”
boundary conditions are complemented with the more realistic (c) “experimentally undrained” boundary condition, which in fact combines the
two theoretical ones.

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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Modelling drained/undrained transition 7

Figure 5 Predicted frequency dependence of the (a-b) hydraulic and (c-d) elastic response of the fluid-saturated sandstone sample. The “global”
prediction are reported, i.e., the response averaged over the sample’s length.

extremal cases of fluid either fully blocked or fully un-
blocked in the sample. A third boundary condition should
be addressed, which combines the purely “drained” and
“undrained” conditions: the “experimentally undrained” con-
dition described below (Fig. 4c). This last condition is the most
realistic one because: (i) it is often difficult to attain experi-
mentally the purely “undrained” (e.g., Ghabezloo and Sulem
2009) experimental conditions, and (ii) it has been shown
(e.g., Pimienta et al. 2015a) that measuring precisely atten-
uations under purely “drained” conditions was technically
challenging.

Role of the dead volumes

The “experimentally undrained” boundary condition consists
in an undrained system not only constituted of the sample
but also of a dead volume at both sample’s upper and lower
ends. Such boundary condition is also that considered for
the “oscillating pulse” technique (e.g., Brace et al. 1968; Lin
1977; Hsieh et al. 1981; Song and Renner 2006, 2007). Fluid
mass continuity at both ends of the sample is imposed, i.e.,
the change of fluid mass in the sample equals the fluid mass
change in the dead volume. Following earlier studies, these

boundary conditions are found to be (Brace et al. 1968; Lin
1977):⎧⎪⎪⎪⎨⎪⎪⎪⎩

S1

(
∂ p1

∂t

)
z=L

+ κ A
η

(
∂ pf

∂z

)
z=L

= 0

S2

(
∂ p2

∂t

)
z=0

− κ A
η

(
∂ pf

∂z

)
z=0

= 0,

(12)

where S1 and S2 are respectively the storage capacities of
downstream and upstream dead volumes, and p1 = pf (0, t)
and p2 = pf (L, t) are the fluid pressures in the downstream
and upstream dead volumes, respectively. A is the sample’s
cross-sectional area through which Darcy flow takes place.

From Equation (12), the dead volumes contribute
through their overall storage capacity. Due to the very low
pressure variations applied (i.e., �P = 0.2 MPa), leading to
even lower pore pressure variations, the tubing’s compress-
ibility can consistently be neglected so that only the compress-
ibility of the fluid in the dead volume needs to be accounted
for. Knowing the values of lower (i.e., V1) and upper (i.e., V2)
dead volumes and the fluid bulk modulus K f , S1 and S2 are
obtained such that S1,2 = V1,2 K−1

f . The sample’s storage ca-
pacity is reached from the theoretical relations (e.g., Kümpel
1991). All required parameters are listed in Table 1.
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8 L. Pimienta et al.

Figure 6 Predicted frequency dependence of Kla ,
Bla , and Bl for the glycerine-saturated sand-
stone sample. Different values of dead volume
Vth are chosen, starting from zero, up to a value
a thousand times higher than the one measured
(Vth = Vmeas ).

The general solution can be obtained for example by solv-
ing equation (5) using the Mathematica software. Solving
pf (z, t) for this realistic set of boundary conditions would
lead to a complex solution that cannot be reported in a sim-
ple formula. However, a simple analytical solution is found
if S1 = S2 (i.e., V1 ∼ V2). In the case of the setup used by
Pimienta et al. (2015a), such assumption can consistently be
made as V1 = 3.4 mL and V2 = 3.2 mL. Using this assump-
tion, one gets the system:⎧⎨⎩p−

0 (b + 1) = p+
0 (b − 1) − B�P0,

p+
0 (b + 1)eaL = p−

0 (b − 1)e−aL − B�P0,
(13)

with b = (1 − i)A(Ss/S)
√

2D/ω, and S = S1 + S2 being the
dead volume storage capacity. Subtracting the two above
equations, one obtains:

(p−
0 − p+

0 eaL)
[
(1 + b) − (1 − b)

eaL

]
= 0. (14)

This implies that p−
0 = p+

0 eaL because a, b, and L have fixed
values so that the second term differs from zero. Further solv-
ing the system (13) and replacing the constants in equation
(5) leads to the general solution:

pf (z, t) = B�P0eiωt

[
1 − cosh(a( L

2 − z))

bsinh
(
a L

2

) + cosh
(
a L

2

)]
, (15)

Interestingly, recalling that a ∝ √
ω and b ∝ (1/

√
ω), the

limiting quasi-static case (i.e., zero frequency) can be reached
from equation (15) using the Taylor expansion of cosh and
sinh to the first order in ω. Further noting that a b (L/2) =
(2ASs/S)(L/2) = Vs(Ss/S), the limiting quasi-static case is:(

pf (z, t)

P(t)

)
ω=0

= B0 = B
Vs Ss

Vs Ss + S
. (16)

where Vs = AL is the sample’s total volume, and B is the
Skempton coefficient. The general result (i.e., with V1 
=
V2) can further be found from introducing S = S1 + S2 in
equation (16). This solution under quasi-static conditions is

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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Modelling drained/undrained transition 9

Figure 7 Comparison of the differences quantified
by R (sum of squared residuals through the sample’s
length), between the analytical and the numerical so-
lutions of the pore-fluid pressure oscillations at dif-
ferent frequencies. The parameters used are the ones
of Table 1 in the case of glycerine saturation, under
drained boundary conditions.

Figure 8 Comparison between predicted and measured frequency-dependent properties for a 7%-porosity Fontainebleau sandstone. The
measured (a) bulk modulus and (b) attenuation have been measured locally at the sample centre, and (c) the pseudo-Skempton coefficient
has been measured in the dead volume. These data are compared with the corresponding model predictions with “experimentally undrained”
boundary conditions. Two values of Kd of 5 GPa (i.e., dashed curves) and 13 GPa are chosen for the predictions.

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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10 L. Pimienta et al.

Figure 9 (a) Measured dry bulk modulus as a function of effective pressure for two Fontainebleau sandstone samples of 7% porosity. Kd

is measured under both loading and unloading stages. (b) Measured drained bulk modulus under loading stage for the three fluid-saturated
conditions. The first “loading stage” is the one under dry conditions, where the sample is measured under loading then unloading. The second
“loading stage” comes after. During this stage, the rock is fully-saturated by glycerine and then water. For each saturating fluid, the rock is
measured under loading only. Note the greyish area corresponding to the effective pressure at which the frequency effects are investigated.

consistent with the results from Ghabezloo and Sulem (2010),
and implies that the measured B0 is equal to the Skempton co-
efficient B only if S1 = S2 = 0 (i.e., V1 = V2 = 0). As shown
by previous authors (e.g., Ghabezloo and Sulem 2010), the
idealistic condition of V1 = V2 = 0 can seldomly be reached
experimentally so that the above result needs to be applied.

“Global” predictions

In order to apply the present model in a simple way to the
experiment reported by Pimienta et al. (2015a), the two dead
volumes are assumed equal (i.e., V1 = V2) so that the total

dead volume is Vmeas = 6.6mL. As a consequence, following
equation (15), the problem is symmetric with respect to L/2.
The model’s “global” predictions, averaged over the entire
sample’s length, are first investigated. They are noted Kg and
Q−1

Kg
for the predicted elastic response, and Bg and φBg

for
the hydraulic response. The frequency-dependent hydraulic
(Figs. 5a and 5b) and elastic (Figs. 5c and 5d) model’s re-
sponses are predicted using the parameters from table (1). In
order to check the sensitivity to the total dead volume value,
a theoretical dead volume Vth is introduced. This parameter is
varied from Vmeas to values of 0, 10 Vmeas and 103 Vmeas , and
even to 106 Vmeas for the pf phase shift.

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15
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Modelling drained/undrained transition 11

A zero dead volume (i.e., Vth = 0) corresponds to the
“undrained” boundary condition. In that case, for all fre-
quencies: (i) the predicted Bg equals Skempton coefficient B,
(ii) there is no phase shift for pf , and (iii) Kg = Kud (i.e.,
undrained bulk modulus) and Q−1

Kg = 0. A very high dead
volume (i.e., Vth ≥ 103 Vmeas) corresponds to the “drained”
boundary condition (Fig. 3). In that case: (i) at frequencies
low enough, there is no Skempton coefficient (i.e., Bg = 0)
and Kg = Kd, and (ii) a critical frequency fc exists at which
the regime switches from “drained” to “undrained”. At fc, a
maximum in Q−1

Kg is predicted.
The intermediate dead volumes (i.e., Vth = Vmeas and

Vth = 10 Vmeas) lead to an intermediate case scenario, in be-
tween “drained” and “undrained” boundary conditions. In
that final case, at frequencies low enough: (i) Bg exists but
is below B (Fig. 5a), (ii) Kd < Kg < Kud (Fig. 5c), and (iii)
dependence to the fluid bulk modulus K f is observed (Fig. 5a,
c, d). Moreover, as for the “drained” boundary condition, a
critical frequency fc exists at which a maximum in Q−1

Kg is pre-
dicted (Fig. 5d). Beyond fc, Bg and Kg reach, respectively, the
undrained B and Kud. As Vth decreases, the magnitudes of the
variations between drained and undrained regime decrease,
and, consistently, the maximum in Q−1

Kg decreases. Note
finally that, as Vth decreases, the value for fc slightly
increases.

“local” and “locally averaged” predictions

The “locally averaged” predictions can be calculated by aver-
aging over the strain gauge length (i.e., 6 mm) at the sample’s
center, i.e., (L/2) ± 3 mm. They are noted Kla and Bla . In
case of the pseudo-Skempton coefficient, a second “local”
prediction Bl is investigated at a position infinitely near to
the boundary, so that the frequency-dependent variations
measured experimentally in the dead volume (Pimienta
et al. 2015a) can be approached. The frequency-dependent
variations predicted for Kla , Bla , and Bl under glycerine
saturation are reported (Figs. 6a and 6b).

A strong effect of the dead volume is again predicted.
At lowest and highest frequencies, the values equal the ones
of the “global” predictions. However, a sharper increase is
predicted for the transition of Kla and Bla , which is simi-
lar to a characteristic transition of a viscoelastic Zener-like
material. Interestingly, Bl decreases as frequency increases
(Fig. 6b). It indicates that fluid can less and less flow out
of the sample as frequency increases, i.e., the sample becomes
undrained.

Transient regime and numerical solution

The analytical solution obtained (Eq. 8) corresponds to the
steady-state response of the pore pressure to an oscillating
confining pressure. However, considering the time t0 = 0 to be
the beginning of the oscillation, a transition exists between the
initial static state (at t0 < 0) and the steady-state oscillation. In
order to investigate this transient regime, a 1D finite-difference
scheme, with imposed initial conditions (i.e., P(t0) = 0, and
pf (z, t0) = 0), is used to solve numerically the diffusion equa-
tion (Eq. 1). A first-order backward difference for time and
a second-order central difference for space has been chosen.
The grid used is uniform, with a constant mesh spacing of �z

for space and a constant time increment of �t. The boundary
conditions tested correspond to the drained regime, which are
taken into account with the two Dirichlet boundary condi-
tions (i.e., pf (0, t) = 0, and pf (L, t) = 0) at both ends of the
space grid. For the initial conditions, the pore pressure is zero
throughout all the sample (i.e., pf (z, 0) = 0).

A parameter R is introduced to compare analytical and
numerical solutions, respectively, pf and p̃ f . R is defined as
the sum of the squared residuals through the sample’s length,
i.e., of the difference between analytic and numerical solutions
for a particular position zi = i�z. For each time step tj = j�t,
R is defined as:

R( j) =
∑

i

∣∣pf (zi , tj ) − p̃ f
j
i
.
∣∣2

. (17)

The solutions are compared as a function of time for different
oscillating frequencies (Fig. 7). For simplicity, the drained 1D
model (Fig. 4a) is used.

For each frequency, the sum of squared residuals R is
maximum at the initial conditions (t = 0), then decreases with
time to reach a steady state where the difference between the
analytical and numerical solutions is negligible. The transient
behaviour observed for R relates to the transient behaviour ac-
counted for in the numerical solution. As frequency increases,
R decreases. The duration of this transient behaviour is al-
ways less than one oscillation period for any frequency. There-
fore, the analytical solution can be considered valid after one
oscillation.

COMPARISON W ITH T HE MEASUREMENTS

The above model predictions are used to discuss the mea-
surements on two sandstone (i.e., Fontainebleau and Berea)
samples. The dead volume is set to 6.6 mL, with V1 = V2. The
other required parameters are: (i) the drained (i.e., dry) bulk
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modulus; (ii) the sample’s porosity and permeability; and (iii)
the fluid’s viscosity. All these parameters are known. Finally,
Biot–Willis, Skempton, and storage coefficients are derived
from the poroelastic relations. The skeleton bulk modulus is
taken as 37 GPa for both rocks.

The model’s predictions are calculated for the appropri-
ate experimental conditions, i.e., what has been defined as the
“experimentally undrained” boundary condition. Moreover,
the strains have been recorded at the sample’s centre, and
the pore pressure measurement has been taken in the dead
volume. Accordingly, the “locally averaged” Kla and Q−1

Kla
are

predicted at the sample centre, and the “local” Bl is calculated
very close to the dead volume. In the following, an apparent
frequency parameter (i.e., f ∗ = f (η/η0), with η0 = 10−3 Pa.s)
is introduced to account for the fluid’s viscosity.

Results for a Fontainebleau sandstone

“Experimentally undrained” boundary conditions

The data are those of Pimienta et al. (2015a), measured on a
Fontainebleau sandstone sample of 7% porosity. All parame-
ters for the predictions are the ones of Table 1. Measurements
at an effective pressure of Pef f = 1 MPa and model’s predic-
tions are compared as a function of apparent frequency f ∗

(Fig. 8). Three properties are investigated: (i) bulk modulus
K (Fig. 8a), (ii) bulk modulus dissipation Q−1

K (Fig. 8b), and
(iii) pseudo-Skempton coefficient B∗ (Fig. 8c). The model’s
predictions are calculated for two extreme values of Kd, of
5 GPa and 13 GPa, respectively.

Note first that the frequency range for the transition
predicted by the model is very consistent with the measure-
ments and occurs at f ∗ ∼ 10 Hz. A strong effect of the
“experimentally undrained” boundary condition is predicted
so that, for a Kd of 13 GPa, the values of (i) Kla at low-
est f ∗ overestimates the measurements (Fig. 8a), (ii) Q−1

Kla

underestimates the measured Q−1
K peak (Fig. 8b), and (iii)

Bl at lowest f ∗ underestimates the values of B∗ measured
(Fig. 8c).

Comparisons between measurements and model predic-
tions thus add up and imply that measurements under liq-
uid saturation relate to an initial Kd much lower than 13
GPa. A second prediction is thus tested with Kd = 5 GPa.
The predicted properties are consistent with the measure-
ments under fluid-saturated conditions. For all properties,
under water saturation, a good fit is obtained between mea-
surements and model predictions. Under glycerine saturation,
both Kla (Fig. 8a) and Bl (Fig. 8b) gain in consistency with the

measurements. Moreover, the peak in Q−1
Kla

is at about 0.25
(Fig. 8c), which is precisely what has been measured.

Role of the confining cycle

As the measured value under dry conditions is of 13GPa − 14
GPa (Fig. 8a), it implies that Kd is lower under fluid-saturated
conditions. Because glycerine is not a polar fluid and this
sample is well cemented, a possible fluid-related elastic weak-
ening (e.g., Pimienta et al. 2014b) may be ruled out. Noting
that this Kd value was measured after cycling the sample up
to high pressure and back (Pimienta et al. 2015a), the effect
of cycling is tested on a sample from the same block (Fig. 9a).

For this rock sample, at pressures lower than Pef f =
10 MPa, the Kd values after the loading stage are higher than
the ones before (Fig. 9a). For the particular case of Pef f =
1 MPa, the cycling introduces a variation from Kd = 5 GPa
(before cycling) to Kd = 13 GPa (after cycling). After unload-
ing the sample, glycerine and then water are injected in the
sample, and the drained bulk modulus is measured again
under purely drained boundary conditions (Fig. 9b). Under
both water and glycerine saturation, the value at 1 MPa is of
5 GPa, which equals the value measured during the (first)
loading stage under dry conditions. This is precisely this value
of Kd = 5 GPa that has been chosen for the 1D model predic-
tions (Fig. 8), under fluid-saturated conditions. It implies that,
for this sample, and this experimental protocol, the hystere-
sis seems to disappear when measuring again (after cycling)
under fluid saturation. This hysteresis effect under dry condi-
tions may be caused by grain–grain or cracks internal friction
(e.g., David et al. 2012) that indeed largely reduces when fluid
is present and pressurized.

Results for a Berea sandstone

Berea sandstone

Berea sandstone has been extensively used in experimental
rock physics (e.g., Sayers, Van Munster, and King 1990;
Seipold, Mueller, and Tuisku 1998) as a reference rock. As
detailed by Pimienta et al. (2014c), it is characterized by: (i)
a porosity in the range of φ ∈ [17; 22]%, (ii) a permeabil-
ity in the range of κ ∈ [1; 103] mD, (iii) a variable mineral-
ogy, with mean (over 19 Berea sandstone samples) quartz
and clay contents of ∼ 75% and ∼ 11% respectively. As
shown through microstructural observation (e.g., Prasad and
Manghnani 1997), Berea sandstone’s pore network is com- Q2

posed of: (i) relatively equant pores, and (ii) intergranular thin
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Modelling drained/undrained transition 13

Figure 10 Comparison between predicted and measured (a-b) elastic and (c) hydraulic properties as a function of apparent frequency for the
Berea sample saturated by different fluids. The “experimentally undrained” model is used for the predictions, with the measured dead volume.

discontinuities (flat geometry at two-grain junctions). The lat-
ter type of feature is known to be the major contributor to the
observed stress sensitivity of various physical properties such
as elastic wave velocities (e.g., Christensen and Wang 1985;
Sayers et al. 1990; Seipold et al. 1998).

The Berea sandstone sample chosen has a porosity of
φ = 19.3 % and a permeability of κ ∼ 10 mD (i.e., 10−14 m2).
The experimental measurements are similar to that for Fo7
(Pimienta et al. 2015a), except that the data for the dry
sample have also been obtained under loading conditions.
This has been done to discard any possible hysteresis effect
(Fig. 9a). The parameters used as model input are essentially
very similar to that of Table 1. The sample’s length and di-
ameter are the same, and porosity (φ = 19.3 %), permeabil-
ity (κ = 10−14 m2), and drained bulk modulus (Kd ∼ 6.5 GPa)
differ. As for before, φ, κ, and Kd are used to calculate the
other properties/parameters using the theory of poroelasticity.

“Experimentally undrained” boundary conditions

Again, predictions are made according to the experimental
conditions. The 1D model with “experimentally undrained”
boundary conditions is used, and the “locally averaged” Kla

and Q−1
Kla

and the “local” Bl are predicted. The dependence
to f ∗ of the measured and modelled elastic (Fig. 10a, b) and
hydraulic (Fig. 10c) responses are compared for an effective
pressure of Pef f = 1 MPa.

At lowest frequencies, the measured K (Fig. 10a) under
fluid saturation is much higher than Kd. This is precisely what
is predicted by Kla . This difference results from the interplay
between dead volume’s and sample’s storage capacity, and is
theoretically expected. Although the measurement under wa-
ter saturation remains higher than the model’s predictions, an
overall good fit is obtained between measurements and pre-
dictions for all properties. As f ∗ increases, both predicted and
measured K slightly increase, by about 2 GPa, to reach the
value of Kud. A good fit is observed under glycerine satura-
tion. Because the experimental dead volume Vmeas is small as
compared with the Berea pore volume, the measured disper-
sion/attenuation is much lower than the one expected in case
of the transition from Kd to Kud.

The attenuation is strongly controlled by the dead volume
effect. Both measurements and predictions indicate a peak of
0.1 (Fig. 10b). A good fit is also obtained between B∗ and
predicted Bl (Fig. 10c) at lowest frequencies. The magnitude
of the measured B∗ is well predicted by the model for both

C© 2016 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–15



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

UN
CO

RRECTED
PR

O
O

F

14 L. Pimienta et al.

water and glycerine saturations. Yet, the frequency-dependent
variations of the “local” prediction are spread out as com-
pared with the measurements. These results further indicate
that, even for dead volumes much smaller than the one of
the present experiment, the drained/undrained transition may
be “seen” experimentally for highly porous and compressible
rocks.

CONCLUSION

To better understand the experimental conditions involved
in the measurement of the drained/undrained transition, a
1D model has been developed by solving analytically the
partial derivative equation for pressure diffusion. Different
boundary conditions have been analysed. The “undrained”
and “drained” boundary conditions assume that fluid is
either locked in or free to flow out of the sample. A more
realistic “experimentally undrained” boundary condition has
been investigated by assuming that a dead volume is present
at both ends of the sample. Four properties may be predicted
by the model, i.e., the pseudo-Skempton coefficient B∗, the
pore pressure phase shift φB∗ , the bulk modulus K, and the
attenuation Q−1

K .
The 1D model is used to test two main aspects, i.e.,

the the role of the measuring condition and the role of
the dead volume. Interestingly, the frequency range for the
drained/undrained transition is expected to strongly differ if
the measuring method is global (e.g., linear variable differ-
ential transformer) or local (e.g. strain gauge). Furthermore,
the position of the local measurement is also expected to play
a dominant role. Finally, introducing a dead volume at both
sample’s ends appears to strongly affect the drained/undrained
transition. The measured dispersion/attenuation for this effect
are expected to be strongly damped if the dead volume is small
in comparison with the rock pore volume. Because it origi-
nates from an interplay between dead volume’s and sample’s
storage capacity, this effect increases as the rock’s compliance
and porosity increases.

Comparison between the model’s predictions and mea-
surements on a Fontainebleau and a Berea sandstone shows a
good fit and an overall consistency. The rock’s storage capac-
ity has an important effect. It could result in a non-negligible
attenuation even with a very small dead volume if the storage
capacity is high.
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Pimienta L., Fortin J. and Guéguen Y. 2015a. Bulk modulus dispersion
and attenuation in sandstones. Geophysics 80, D111–D127.
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