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COMPOUND POISSON DISTRIBUTIONS FOR RANDOM DYNAMICAL SYSTEMS USING PROBABILISTIC APPROXIMATIONS

We obtain quenched hitting distributions to be compound Poissonian for a certain class of random dynamical systems. The theory is general and designed to accommodate non-uniformly expanding behavior and targets that do not overlap much with the region where uniformity breaks. Based on annealed and quenched polynomial decay of correlations, our quenched result adopts annealed Kac-type time-normalization and finds limits to be noise-independent. The technique involves a probabilistic blockapproximation where the quenched hit-counting function up to annealed Kac-normalized time is split into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The theory is made operational due to a result that allows certain hitting quantities to be recovered from return quantities. Our application is to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their usual extremal index formula EI " 1´1{JT p px 0 q, and recovering the Polya-Aeppli case for general Bernoulli-driven systems, but distinct behavior otherwise. Future and on-going investigations aim to produce and accommodate examples of bonafide nonuniformly expanding random systems and targets approaching their neutral points.

Introduction

Limiting hitting distributions and hitting time statistics of dynamical systems, together with their return counterparts, and the related quantitative recurrence questions, have a long history of investigation. This investigation remains active and in the last few years has advanced in many different directions, such as more elaborate targets, nonuniformly hyperbolic behavior, random systems, and connections to extreme behavior, both in theory and real-life applications.

In the deterministic case, the canonical picture is presented for uniformly hyperbolic or expanding systems with singleton targets and Kac-type normalization, where a dichotomy occurs: either the target consists of a non-periodic generic point and the limit behavior is pure Poisson (see e.g., [START_REF] Doeblin | Remarques sur la théorie métrique des fractions continues[END_REF], [START_REF] Pitskel | Poisson limit law for markov chains[END_REF], [START_REF] Hirata | Poisson law for axiom a diffeomorphisms[END_REF], [START_REF] Collet | Some ergodic properties of maps of the interval[END_REF], [START_REF] Galves | Inequalities for hitting times in mixing dynamical systems[END_REF], [START_REF] Denker | A poisson limit theorem for toral automorphisms[END_REF]), or the target consists of a periodic point and the limit behavior is Polya-Aeppli (see e.g., [START_REF] Hirata | Poisson law for axiom a diffeomorphisms[END_REF], [START_REF] Haydn | The compound poisson distribution and return times in dynamical systems[END_REF], [START_REF] Freitas | The compound poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics[END_REF], [START_REF] Kifer | Poisson and compound poisson approximations in conventional and nonconventional setups[END_REF], [START_REF] Carvalho | Extremal dichotomy for uniformly hyperbolic systems[END_REF]). The socalled extremal index (EI) can summarize both cases: in the pure Poisson case EI " 1, whereas in the Polya-Aeppli case EI " 1 ´1{JT p px 0 q P p0, 1q.

A direction of generalization found in the literature is to consider different types of targets, not limited to singletons. In general, this situation exhibits limiting hitting distributions in the compound Poisson class, which includes, but isn't limited to, the pure Poisson and Polya-Aeppli cases. This can be seen most simply in the case of finite targets with pieces of orbits ( [START_REF] Azevedo | Clustering of extreme events created by multiple correlated maxima[END_REF], [START_REF] Holland | Extreme value theory for nonuniformly expanding dynamical systems[END_REF] and [START_REF] Abadi | Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution[END_REF]), but more complicated situations were also studied, such as countable sets ( [START_REF] Azevedo | Extreme value laws for dynamical systems with countable extremal sets[END_REF]), submanifolds ( [START_REF] Faranda | Extreme value theory for synchronization of coupled map lattices[END_REF], [START_REF] Carney | Extremes and extremal indices for level set observables on hyperbolic systems[END_REF]) and fractal sets ( [START_REF] Freitas | Rare events for cantor target sets[END_REF], [START_REF] Mantica | Extreme value laws for fractal intensity functions in dynamical systems: Minkowski analysis[END_REF], [START_REF] Freitas | Rare events for product fractal sets[END_REF]). More abstract approaches to such general target sets were developed in [START_REF] Freitas | Enriched functional limit theorems for dynamical systems[END_REF] and [START_REF] Haydn | Limiting entry and return times distribution for arbitrary null sets[END_REF].

Another main direction of generalization is to handle non-uniformly expanding behavior. Many contributions have been given in the literature, such as [START_REF] Holland | Extreme value theory for nonuniformly expanding dynamical systems[END_REF], [START_REF] Freitas | Rare events for the manneville-pomeau map[END_REF], [START_REF] Freitas | The compound poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics[END_REF], [START_REF] Freitas | Enriched functional limit theorems for dynamical systems[END_REF] and [START_REF] Haydn | Limiting entry and return times distribution for arbitrary null sets[END_REF]. We emphasize that the relation between the target position and the position of the neutral fixed points of such maps plays a major role, because, when they intersect, strong dependence/recurrence around the target occurs, requiring special normalization as to find non-trivial limiting distributions (see, e.g, [START_REF] Freitas | Rare events for the manneville-pomeau map[END_REF]).

Finally, the theory has also been generalized to the realm of random dynamical systems, see, for example [START_REF] Rousseau | Recurrence for random dynamical systems[END_REF], [START_REF] Rousseau | Exponential law for random subshifts of finite type[END_REF], [START_REF] Aytaç | Laws of rare events for deterministic and random dynamical systems[END_REF], [START_REF] Haydn | Return times at periodic points in random dynamics[END_REF], [START_REF] Freitas | Point processes of non stationary sequences generated by sequential and random dynamical systems[END_REF], [START_REF] Crimmins | Quenched poisson processes for random subshifts of finite type[END_REF] and, very recently, [START_REF] Atnip | Compound poisson statistics for dynamical systems via spectral perturbation[END_REF]. Compound Poissonian quenched hitting distributions were also shown in [START_REF] Atnip | Compound poisson statistics for dynamical systems via spectral perturbation[END_REF] with the spectral method. Despite their applications being similar to ours, the main differences are that their theory needs exponential decay of correlations, and their time-normalization is quenched. Quenched time-normalization usually stands with a merely ergodic driving system, which is the case there. However, from an applied point of view, this can be an impractical restriction: quenched time-normalization says that the experimenter will not pre-determine (deterministically) how long to watch the experiment, but will get informed about the complete noise realization (at least until its remote past) and use it to determine the desired watch time.

We now discuss the contributions of this work and some of its features. We show that quenched hitting distributions are compound Poissonian for a certain class of random dynamical systems, using a probabilistic block-approximation approach and generalizing the deterministic theory developed in [START_REF] Haydn | Limiting entry and return times distribution for arbitrary null sets[END_REF] after the approach introduced in [START_REF] Chazottes | Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems[END_REF]. This is the content of theorem 2, our main result.

The probabilistic block-approximation (theorem 4) splits the quenched hit-counting function up to annealed-Kac-normalized into equally sized blocks which are mimicked by an independency of random variables distributed just like each of them. The said approximation goes for any given noise realization ω and ω-dependent leading terms and errors appear. Both of them are tamed by an almost sure convergence statement (lemma 3) based on a Borel-Cantelli argument, which allows for the quenched result to hold.

The limiting compound Poisson distribution, revealed by the asymptotics of the aforementioned leading terms, and its underlying multiplicity distribution are characterized by a set of hitting quantities (λ ℓ 's), which are transparently expressed in terms of the asymptotics of the dynamics, its invariant measure and the target. Hitting quantities are introduced in section 2. [START_REF] Arnold | Random dynamical systems[END_REF] The theory is made operational due to theorem 1, which allows for the latter hitting quantities to be recovered from a set of return quantities (α ℓ 's). Return quantities are introduced in section 2.3. The advantage here is that the return quantities are easier to calculate in concrete examples.

Moreover, our theory is based on a mild set of hypotheses, introduced in section 2.4, designed to accommodate non-uniformly expanding behavior (with polynomial decay) and general targets that do not overlap much with the region where uniformity breaks and that presents well-defined return quantities.

Our assumptions on the quasi-invariant family of measures do not consider their absolute continuity with respect to the Lebesgue measure, but regularity in a dimensional sense.

A drawback of our approach is that results are just along sufficiently fast shrinking neighborhoods of the target set. This is intimately connected with the use of a Borel-Cantelli argument well-adapted to the annealed time normalization and annealed decay of correlations.

We conclude with an application to a class of random piecewise expanding one-dimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their typical extremal index formula EI " 1 ´1{JT p pζq, and recovering the geometric case for general Bernoulli-driven systems, but distinct behavior otherwise. See section 7.

Assumptions and main results

2.1. General setup. Consider M and Ω complete separable metric spaces and pθ, Pq a measurably invertible ergodic system on Ω.

Consider maps T ω : M Ñ M (ω P Ω) which combine to make the a measurable skew product S : Ω ˆM Ñ Ω ˆM , pω, xq Þ Ñ pθω, T ω xq. As usual, for higher-order iterates we denote S n pω, xq " pθ n ω, T n ω pxqq where T n ω " T θ n´1 ω ˝¨¨¨˝T θω ˝Tω pn ě 1q. For E P B Ω ˆBM and ω P Ω, write Epωq " tx P M : pω, xq P Eu. Denote P P pΩ ˆM q " tμ P PpΩ ˆM q : μ, π Ω˚μ " Pu, P P S pΩ ˆM q " tμ P PpΩ ˆM q : S ˚μ " μ, π Ω˚μ " Pu, and

RP pPq pM q " # µ : ω P Ω P-a.s.
Þ Ñ µ ω P PpM q so that:

ω P Ω P-a.s. Þ Ñ µ ω pEpωqq P r0, 1s is pB Ω , B r0,1s q-measurable, @E P B Ω ˆBM + , RP pPq T pM q " $ & % µ : ω P Ω P-a.s.
Þ Ñ µ ω P PpM q so that:

ω P Ω P-a.s.
Þ Ñ µ ω pEpωqq P r0, 1s is pB Ω , B r0,1s q-measurable, @E P B Ω ˆBM P-a.s., @n ě 0 :

T n ω ˚µω " µ θ n ω
, .

-.

Notation. Elements in the latter two sets will be written as µ " pµ ω q ω , where the outer 'ω' subscript (instead of 'ω P Ω') is to identify that the given family if defined P-a.s.. The underlying full measure subset Ω 0 can be assumed to be forward and backward θ-invariant (otherwise we substitute it by

Ş nPZ θ n Ω 0 ).
Any μ in P P pΩ ˆM q (in P P S pΩ ˆM q) rewrites (disintegrates) as μpEq "

ż Ω µ ω pEpωqqdPpωq,
where pµ ω q ω is in RP pPq pM q (in RP pPq T pM q). Conversely, given pµ ω q ω in RP pPq pM q (in RP pPq T pM q), equation (2.1) defines μ in P P pΩ ˆM q (in P P S pΩ ˆM q). See [START_REF] Crauel | Random probability measures on Polish spaces[END_REF] (prop. 3.3) and [START_REF] Arnold | Random dynamical systems[END_REF] (sec. 1.4). Now, consider a given μ " dµ ω dPpωq P P P S pΩ ˆM q, with the associated pµ ω q ω P RP pPq T pM q. Define the marginal measure μ " π M ˚μ " ş Ω µ ω dPpωq P PpM q. Finally, consider Γ P B Ω ˆBM so that, P-a.s, Γpωq is compact and so that µ ω pΓpωqq " 0. The set Γ is the so-called random target. Denote Γ ρ pωq " B ρ pΓpωqq (ρ ą 0) and the corresponding ω-collection by Γ ρ P B Ω ˆBM .

The objects above comprise what we call a 'system', denoted by pθ, P, T ω , µ ω , Γq.

Preliminary definitions.

We now define some working objects.

Let U P B Ω ˆBM be so that µ ω pU pωqq ą 0, P-a.s.. We again can consider that µ θ n ω pU pθ n ωqq ą 0, for all n P Z, P-a.s.. Definition 1. The first hitting time of pθ, P, T ω , µ ω , U q is the family of functions

r ω,1 U : M Ñ N ě1 Y t8u x Þ Ñ infti P N ě1 : T i ω pxq P U pθ i ωqu .
The associated higher-order hitting times are given, for ℓ ě 2, by the family of functions

r ω,ℓ U : M Ñ N ěℓ Y t8u x Þ Ñ r ω,ℓ U pxq " r ω,ℓ´1 U pxq `rω 1 U pT r ω,ℓ´1 U ω pxqq ,
where ω 1 " θ r ω,ℓ´1 U pxq ω.

Definition 2. The hit counting function of pθ, P, T ω , µ ω , U q with noise ω P Ω and up time L ě 1 is given by

Z ω,L ˚U :M ÑN ě0 x Þ Ñ L ÿ i"1 1 U pθ i ωq ˝T i ω pxq , Z ω,L U :M ÑN ě0 x Þ Ñ L´1 ÿ i"0 1 U pθ i ωq ˝T i ω pxq
.

These objects are related, for example, in the sense that tZ ω,L ˚U ě ℓu " tr ω,ℓ U ď Lu, tZ ω,L ˚U " ℓu " tr ω,ℓ U ď L ă r ω,ℓ`1 U u. When U " Γ ρ , we write I ω,ρ i " 1 Γρpθ i ωq ˝T i ω . Definition 3. The hit marking function of pθ, P, T ω , µ ω , U q with noise ω P Ω and up time L ě 1 is given by

Y ω,L U :M ÑM x Þ Ñ L´1 ÿ i"0 δi {L 1 U pθ i ωq ˝T i ω pxq
, where M " t ř κ i"1 δ x i : κ ă 8, px i q κ i"1 Ă r0, 1su 1 . Notation. A R-valued function defined on the product space, f pω, xq, is often rewritten as f ω pxq or f ω pxq and seen as a family of functions defined on M . And vice versa. When integrating a function, we may omit the variable of integration, even if it is a sup/subscript. We leave it for the reader to infer what variables and parameters are being integrated and were omitted.

Notation. Consider non-negative sequences apnq and bpnq (n ě 0). we will write apnq À n bpnq to mean that there exists a quantity C ą 0, independent of n, so that apnq ď Cbpnq p@n ě 0q. When a and b have more arguments, we indicate which of them are controlled uniformly. For example: i) apn, mq À n bpn, mq when there exists C m ą 0 so that apn, mq ď C m bpn, mq (@n, m ě 0), ii) apn, mq À n,m bpn, mq when there exists C ą 0 so that apn, mq ď Cbpn, mq (@n, m ě 0).

When some of the arguments are taken to the limit, we implicitly consider that these are the ones being controlled uniformly and we omit the associated subscripts from the À symbol. We also employ the usual big-O and little-o notation. Definition 4. The compound Poisson distribution with intensity parameter s P R ą0 and cluster size distribution pλ ℓ q ℓPN ě1 P PpN ě1 q, ř 8 ℓ"1 ℓλ ℓ ă 8, denoted CPD s,pλ ℓ q ℓ P PpN ě0 q, is the distribution of a random variable M : pX , X , Qq Ñ N ě0 given by M pξq " ř N pξq j"1 Q j pξq, where N is a N ě0 -valued random variable on pX , X , Qq having Poisson distribution with intensity parameter s and pQ j q jPN ě1 is a sequence of N ě1 -valued random variables on pX , X , Qq which are iid, independent of N and whose entries have distribution QpQ j " ℓq " λ ℓ (j, ℓ P N ě1 ). Denote R l " ř l j"1 Q j . Then the probability mass function of CPD s,pλ ℓ q ℓ is given indirectly by CPD γ,pλ ℓ q ℓ pnq "

n ÿ l"1 PpN " lqPpR l " nq " n ÿ l"1 s l e ´s l! ÿ pn 1 ,...,n l qPN l ě1 n 1 `...`n l "n l ź i"1 λ n i . (1) 
Definition 5. The compound Poisson point process with intensity parameter s P R ą0 and cluster size distribution pλ ℓ q ℓPN ě1 P PpN ě1 q, ř 8 ℓ"1 ℓλ ℓ ă 8, denoted CPPP s,pλ ℓ q ℓ P PpMq, is the distribution of a random variable N : pX , X , Qq Ñ M that satisfies:

-@pF 1 , . . . , F k q Ă B r0,1s mutually disjoint, pN p¨qpF i qq k i"1 is iid, -@F P B r0,1s , N p¨qpF q ˚Q " CP D s LebpF q,pλ ℓ q ℓ . We now introduce a few quantities that play a major role in the theory. Those denoted with a 'λ' are hitting quantities, and those with an 'α' are return quantities. Whenever the following limits exist (and the appropriate ones coincide), denote, for ℓ ě 1 and ω P Ω:

I) λ ω ℓ " lim LÑ8 lim ρÑ0 λ ω ℓ pL, ρq (2) 
where λ ω ℓ pL, ρq " µ ω pZ ω,L Γρ " ℓ|Z ω,L Γρ ą 0q "

µ ω pZ ω,L Γρ " ℓq µ ω pZ ω,L Γρ ą 0q . ( 3 
) II) λ ℓ " lim LÑ8 lim ρÑ0 λ ℓ pL, ρq (4) 
where

λ ℓ pL, ρq " μpZ L Γρ " ℓ|Z L Γρ ą 0q " μpZ L Γρ " ℓq μpZ L Γρ ą 0q " ż Ω λ ω ℓ pL, ρq µ ω pZ ω,L Γρ ą 0q ş Ω µ ω pZ ω,L
Γρ ą 0qdPpωq dPpωq.

(

) III) αω ℓ " lim LÑ8 lim ρÑ0 αω ℓ pL, ρq 2 5 
where

αω ℓ pL, ρq " µ ω pZ ω,L Γρ ě ℓ|I ω,ρ 0 " 1q " µ ω pZ ω,L Γρ ě ℓ, I ω,ρ 0 " 1q µ ω pΓ ρ pωqq (7) IV) α ω ℓ " lim LÑ8 lim ρÑ0 α ω ℓ pL, ρq (8) 
where

α ω ℓ pL, ρq " µ ω pZ ω,L Γρ " ℓ|I ω,ρ 0 " 1q " µ ω pZ ω,L Γρ " ℓ, I ω,ρ 0 " 1q µ ω pΓ ρ pωqq . ( 9 
)
Since tZ ω,L Γρ ě ℓu Ą tZ ω,L Γρ ě ℓ `1u and tZ ω,L Γρ ě ℓuztZ ω,L Γρ ě ℓ `1u " tZ ω,L Γρ " ℓu, then αω ℓ pL, ρq ´α ω ℓ`1 pL, ρq " α ω ℓ pL, ρq. [START_REF] Chazottes | Poisson approximation for the number of visits to balls in non-uniformly hyperbolic dynamical systems[END_REF] which entails that the existence of αω ℓ 's implies that of the α ω ℓ 's with α ω ℓ " αω

ℓ ´α ω ℓ`1 . V) αℓ " lim LÑ8 lim ρÑ0 αℓ pL, ρq 3 , (11) 
where αℓ pL, ρq " μpZ L Γρ ě ℓ|I ρ 0 " 1q "

μpZ L Γρ ě ℓ, I ρ 0 " 1q μpΓ ρ q " ż Ω αω ℓ pL, ρq µ ω pΓ ρ pωqq ş Ω µ ω pΓ ρ pωqqdPpωq dPpωq. (12) VI) α ℓ " lim LÑ8 lim ρÑ0 α ℓ pL, ρq (13) 
where

α ℓ pL, ρq " μpZ L Γρ " ℓ|I ρ 0 " 1q " μpZ L Γρ " ℓ, I ρ 0 " 1q μpΓ ρ q " ż Ω α ω ℓ pL, ρq µ ω pΓ ρ pωqq ş Ω µ ω pΓ ρ pωqqdPpωq dPpωq. ( 14 
)
Since tZ L Γρ ě ℓu Ą tZ L Γρ ě ℓ `1u and tZ L Γρ ě ℓuztZ L Γρ ě ℓ `1u " tZ L Γρ " ℓu, then αℓ pL, ρq ´α ℓ`1 pL, ρq " α ℓ pL, ρq. [START_REF] Doeblin | Remarques sur la théorie métrique des fractions continues[END_REF] which entails that the existence of αℓ 's implies that of the α ℓ 's with α ℓ " αℓ ´α ℓ`1 .

2.4. Working setup. Now we particularize the general setup of section 2.1 to specify our working setup. So we consider a system pθ, P, T ω , µ ω , Γq satisfying the following hypotheses.

H1 (Ambient). Let M be a compact Riemannian manifold and Ω a compact metric space.

H2 (Invertibility features).

2.1 (Degree). @ω P Ω, @n ě 1, @x P M : #pT n ω q ´1ptxuq ă 8 with sup ně0 #pT n ω q ´1ptxuq ď 8 p@ω, xq, sup ωPΩ #pT n ω q ´1ptxuq ď 8 p@n, xq, sup xPM #pT n ω q ´1ptxuq ă 8 p@ω, nq.

(Covering)

. DR ą 0, N ě 1, @ω P Ω, @n ě 1, Dpy ω,n k q kPKω,n Ă M with #K ω,n ă 8 so that pB R py ω,n k qq kPKω,n has at most N overlaps.

Terminology suggests that pB R py ω,n k qq kPKω,n covers M entirely, but a small defect is allowed, in the sense of (H2.5) below.

(Inverse branches

). @ω P Ω, @n ě 1, @k P K ω,n , IB ω,n k " tφ : B R py ω,n k q Ñ M diffeomorphic onto its image with T n ω ˝φ " idu is non-empty, finite 4 and so that φ, ψ P IB ω,n k , φ ‰ ψ ñ φpdompφqq X ψpdompψqq " H. In particular, the set IBpT n ω q " Ť kPKω,n IB ω,n k is finite and so that φ, ψ P IBpT n ω q, dompφq X dompψq " H ñ φpdompφqq X ψpdompψqq " H.

The following item is a consequence of the previous ones, but we list it here for convenience.

2.4 (Cylinders). @ω P Ω, @n ě 1, C ω n " tξ " φpdompφqq : φ P IBpT n ω qu is finite and has at most N overlaps.

(Large covering).

For P-a.e. ω P Ω, @n ě 1, µ ω ´M z Ť ξPC ω n ξ ¯" 0. 2.6 (Big images). Dι ą 0 so that

ess inf ωPΩ inf ně1 inf kPKω,n µ θ n ω pB R py ω,n k qq ą ι.
Next, we consider that the aforementioned (plain) cylinders are refined enough as to split and distinguish regions with different hyperbolic behavior.

H3 (Hyperbolicity and cylinders). Plain cylinders split into acceptable (and unacceptable) cylinders, whereas acceptable cylinders subsplit into good (and bad) cylinders.

Namely: @ω P Ω, @n ě 1 :

C n ω " C ω n \ Ć ω n , C ω n " `C ω n \ `Ć ω n , making measurable Cn pω, xq " # 1, x P Ť ξP Cω n ξ,
0, otherwise p˚P t`, ´, ``, `´uq.

Notation. For ˚P t`, ´, ``, `´u, write I B pT n ω q"tφ P IBpT n ω q : ξ " φpdompφqq P C ω n u.

This splitting distinguishes hyperbolic behavior in the sense of satisfying:

3.1 (Weak hyperbolicity on plain cylinders). @n ě 1 : H4 (Target position).

1 ď inf ωPΩ inf ξPC ω n inf vPTxM }v}"1 |DT n ω pxqv|
4.1 (Uniform inclusion in adequate set). @L ě 1, Dρ sep pLq ą 0, @ρ ď ρ sep pLq, @ω P Ω: 

@1 ď L 1 ď L, @0 ď j ď L 1 ´1 : pT j ω q ´1Γ3 {2ρ pθ j ωq Ă C ω L 1 ´1.
µ θ i ω ˆΓpθ i ωq X " `Ć θ i ω n Y Ć θ i ω n
ȷ˙" 0, P-a.s..

H5 (Lipschitz regularities).

5.1 (Map). sup xPM LippT ¨pxq : Ω Ñ M q ă 8.

(Driving)

. Lippθq ă 8.

(Target)

. LippΓ : Ω Ñ PpM qq ă 8,where PpM q " tA Ă M, A compact, A ‰ Hu is equipped with the Hausdorff distance d H pA, Bq " sup xPA inf yPB dpx, yq_sup yPB inf XPA dpx, yq, which makes it a compact metric space. H6 (Measure regularity).

6.1 (Ball regular). D0 ă d 0 ď d 1 ă 8, DC 0 , C 1 ą 0, Dρ dim ď 1, @ρ ď ρ dim , for P-a.e. ω P Ω:

C 1 ρ d 1 ď µ ω pΓ ρ pωqq ď C 0 ρ d 0 .
6.2 (Annulus regular). Dη ě β ą 0, DE ą 0, Dρ dim ď 1, @ρ ď ρ dim , @r P p0, ρ{2q, for P-a.e. ω P Ω:

µ ω pΓ ρ`r pωqzΓ ρ´r pωqq µ ω pΓ ρ pωqq ď E r η ρ β .
H7 (Decay of correlations). Dp ą 1 so that 7.1 (Quenched). For P-a.e. ω P Ω, @G P Lip d M pM, Rq, @H P L 8 pM, Rq, @n ě 1:

ˇˇˇż M G ¨pH ˝T n ω qdµ ω ´µω pGqµ θ n ω pHq ˇˇˇÀ n ´p}G} Lip d M }H} 8 .
7.2 (Annealed). @G P Lip d ΩˆM pΩ ˆM, Rq, @H P L 8 pΩ ˆM, Rq, @n ě 1:

ˇˇˇż ΩˆM G ¨pH ˝Sn qdμ ´μpGqμpHq ˇˇˇÀ n ´p}G} Lip d ΩˆM }H} 8 .
H8 (Hitting regular).

Dpλ ℓ q ℓě1 , ÿ 8 ℓ"1 λ ℓ " 1, ÿ 8 ℓ"1 ℓ 3 λ ℓ ă 8.

H9 (Return regular).

Dpα ℓ q ℓě1 , α 1 ą 0,

8 ÿ ℓ"1 α ℓ " 1, 8 ÿ ℓ"1 ℓ 2 α ℓ ă 8.
We call α 1 the extremal index.

H9' (Pre return regular). It holds that

Dpα ℓ q ℓě1 , α1 ´α 2 ą 0,

8 ÿ ℓ"1 ℓα ℓ ă 8.
Using the final implication of item VI), it is immediate that (H9') ñ (H9), because α 1 " α1 ´α 2 ą 0, ř 8 ℓ"1 α ℓ " α1 " 1, and

ř 8 ℓ"1 ℓ 2 α ℓ ď 2 ř 8
ℓ"1 ℓα ℓ ă 8. Moreover, for technical conditions, we assume that the quantities appearing in the previous hypotheses harmonize so that the following constraints hold. Mostly, they hold when (polynomial) decay is sufficiently fast.

H10 (Parametric constraints). It holds that

10.1. d 0 pp ´1q ą 2p β`d 1 η _1q`d 1 d 0 {d 1 , 10.2. d 0 d`1 p ą 2 ´β`d 1 η _ 1 ¯`d 1 , 10.3. d ă κd 0 ´1.

Main results.

The first result, although interesting on its own, plays mostly an auxiliary role. Valid in the general setup of section 2.1, it expresses hitting quantities (λ ℓ 's) in terms of return quantities (α ℓ 's). This is providential because the former quantities are the ones central to the theory, but the latter quantities can be computed directly on examples.

Theorem 1. Let pθ, P, T ω , µ ω , Γq be a system as described in section 2.1, with pθ, Pq only assumed invariant. Then (H9') ñ λ ℓ " α ℓ ´αℓ`1 α 1 pℓ ě 1q and (H8).

Theorem 1 generalizes theorem 2 from [START_REF] Haydn | Limiting entry and return times distribution for arbitrary null sets[END_REF] to the random situation. Its proof is basically the same, so we omit it. The interested reader can find the adapted proof in [START_REF] Amorim | Compound Poisson distributions for random dynamical systems[END_REF].

Remark 1. Theorem 1 implies that α 1 " p ř 8 ℓ"1 ℓλ ℓ q ´1. Let us now formulate our main result. It says that the systems prescribed in section 2.4 have compound Poissonian quenched hitting statistics.

Theorem 2. Let pθ, P, T ω , µ ω , Γq be a system satisfying (H1-H7), (H9') and (H10).

Then: @tą0, @ně0, @pρ m q mě1 OE0 with ř mě1 ρ m q ă8 (for some 0ăqăqpd 0 , d 1 , η, β, pq 5 ) one has

µ ω pZ ω,tt{μpΓρ m qu Γρ m " nq P-a.s. ÝÑ mÑ8 CPD tα 1 ,pλ ℓ q ℓ pnq, (16) 
where CPD s,pλ ℓ q ℓ is the compound Poisson distribution with intensity s and multiplicity distribution pλ ℓ q ℓ 6 .

Remark 2. The quantity qpd 0 , d 1 , η, β, pq ą 0 will be introduced explicitly in lemma 2.

Remark 3. The λ ℓ 's in the limit of equation ( 17) are those given in equation ( 4), whose existence follows from (H9') and theorem 1.

Remark 4. If the system has exponential asymptotics in (H7) and (H3.4), the previous conclusion is still true, but, actually, with fewer parametric conditions being required: instead of (H10.1)-(H10.3), only κd 0 ą 1 is needed.

The previous theorem can be strengthened to the following one, which provides an analogous limit theorem for point processes.

Theorem 3. Let pθ, P, T ω , µ ω , Γq be a system satisfying (H1-H7), (H9') and (H10).

Then: @tą0, @pρ m q mě1 OE0 with ř mě1 ρ m q ă8 (for some 0ăqăqpd 0 , d 1 , η, β, pq 7 ) one has

Y ω,tt{μpΓρ m qu Γρ m ˚µω P-a.s. ÝÑ mÑ8 CPPP tα 1 ,pλ ℓ q ℓ in PpMq 8 , (17) 
where CPPP s,pλ ℓ q ℓ is the compound Poisson point process with intensity s and multiplicity distribution pλ ℓ q ℓ 9 .

Structure of the paper. The rest of the paper is organized into two parts: I) Theory: Until section 5 we work to prove theorem 2. Section 3 proves theorem 4. This result provides the skeleton of the proof of theorem 2, by approximating the left side of equation [START_REF] Freitas | Point processes of non stationary sequences generated by sequential and random dynamical systems[END_REF]. Denoting it briefly by µ ω pZ " nq, one splits Z into equally sized blocks and mimics them with an independency of random variables, whose sum forms Z. Theorem 4 bounds |µ ω pZ " nq ´µω p Z " nq| by with a sum of long-range components (terms R 1 and R1 , to appear) and short-range components (terms R 2 and R 3 , to appear). Section 5 proofs theorem 2. To estimate long-range errors, it uses weak hyperbolicity features (H3.1,H3.2), the target uniform inclusion in the adequate set (H4.1), the annulus regularity (H6.2) and quenched decay (H7.1). To estimate short-range errors, it uses structure of the covering system (H2), distortion (H3.3), strong hyperbolicity features (H3.4) and ball regularity (H6.1). Notice annealed decay was not yet used.

To control the newly arranged estimates (still carrying some ω-dependency) and to show that µ ω p Z " nq goes to the desired CPD, thus closing the proof, the missing piece is an almost sure convergence result, which allows for the quenched theorem.

This almost sure convergence result is lemma 3, proved in section 4 after a Borel-Cantelli argument and a variance control (lemma 2). The proof of the variance control finally uses the annealed decay of correlations (H7.2) and the regularity in ω of maps and targets (H5).

Finally, theorem 3 is proved in section 6. Although it implies theorem 2, to make ideas more transparent, we preferred to prove 2 and leverage on this proof to prove theorem 2. This decision can benefit users who wish to upgrade compound Poison distributions limit theorems into compound Poisson point processes limit theorems. II) Applications: In section 7 we consider certain random piecewise expanding onedimensional systems, casting new light on the well-known deterministic dichotomy between periodic and aperiodic points, their typical extremal index formula EI " 1 1{JT p pζq, and recovering the geometric case for general Bernoulli-driven systems, but distinct behavior otherwise.

An abstract approximation theorem

The following theorem approximates the probability distribution of an arbitrary sum of binary variables in terms of the distribution of a suitable sum of independent random variables. More precisely, to build the 'suitable' independent random variables, one splits the first sum into smaller block-sums, and each of them is distributionally mimicked by a new random variable, with the collection of new ones being taken to be independent. Theorem 4. Consider n ě 0, L ě n, N P N ě3 large enough so that L ď t N 3 u, and pX i q N ´1 i"0 arbitrary t0, 1u-valued random variables on pX , X , Qq. Denote N 1 :" N L P N ě3 10 and pZ j q N 1 ´1 j"0 given by Z j :"

ř pj`1qL´1 i"jL X i .
Let p Zj q N 1 ´1 j"0 be an independency of N ě0 -valued random variables on pX, X , Qq satisfying Zj " Z j (j " 0, . . . , N 1 ´1) and p Zj q N 1 ´1 j"0 K pZ j q N 1 ´1 j"0 . Denote W b a :"

ř b j"a Zj (0 ď a ď b ď N 1 ´1) and W :" W N 1 ´1 0 .
Similarly notation without "'s is adopted, in which case W coincides with ř N ´1 i"0 X i . Then, for all ∆ P r1, N 1 s: ˇˇQpW " nq ´Qp W " nq ˇˇÀ R1 pN, L, ∆q `R1 pN, L, ∆q `R2 pN, L, ∆q `R3 pN, L, ∆q, where R1 pN, L, ∆q "

N 1 ´1 ÿ j"0 max qPr0,ns ˇˇQpZ j ě 1qQpW N 1 ´1 j`∆ " qq ´QpZ j ě 1, W N 1 ´1 j`∆ " qq ˇˇ, R 1 pN, L, ∆q" N 1 ´1 ÿ j"0 max qPr1,ns q ÿ u"1 ˇˇQ ´Zj "u, W N 1 ´1 j`∆ "q´u ¯´Q ´Zj "u ¯Q´W N 1 ´1 j`∆ "q´u ¯ˇˇ, R 2 pN, L, ∆q " N 1 ´1 ÿ j"0 Q ´Zj ě 1, W j`∆´1 j`1 ě 1 ¯and R 3 pN, L, ∆q " N ÿ i"0 i ÿ q"0_pi´∆Lq QpX i " 1qQpX q " 1q,
with the convention that, for b ą a, W a b " 0 and QpW a b ě 1q " 0.

Proof. Using a telescopic sum and the given independence, one has ˇˇQpW " nq ´Qp W " nq ˇˇď

N 1 ´1 ÿ j"0 ˇˇQp W j´1 0 `W N 1 ´1 j " nq ´Qp W j 0 `W N 1 ´1 j`1 " nq ˇď N 1 ´1 ÿ j"0 n ÿ l"0 Qp W j´1 0 " lq ˇˇQpW N 1 ´1 j " n ´lq ´Qp Zj `W N 1 ´1 j`1 " n ´lq ˇˇ.
We now estimate

ˇˇQpW N 1 ´1 j " qq ´Qp Zj `W N 1 ´1 j`1 " qq ˇď q ÿ u"0 ˇˇQpZ j " u, W N 1 ´1 j`1 " q ´uq ´Qp Zj " u, W N 1 ´1 j`1 " q ´uq ˇ" q ÿ u"0 ˇˇQpZ j " u, W N 1 ´1 j`1 " q ´uq ´QpZ j " uqQpW N 1 ´1 j`1 " q ´uq ˇˇ": q ÿ u"0 |R j pq, uq|.
We single out u " 0 from the previous sum,

|R j pq, 0q| " ˇˇQpZ j " 0, W N 1 ´1 j`1 " qq ´QpZ j " 0qQpW N 1 ´1 j`1 " qq ˇ" ˇˇ´QpW N 1 ´1 j`1 " qq ´QpZ j ě 1, W N 1 ´1 j`1 " qq QpW N 1 ´1 j`1 " qq ´QpZ j ě 1qQpW N 1 ´1 j`1 " qq ¯ˇ" ˇˇQpZ j ě 1qQpW N 1 ´1 j`1 " qq ´QpZ j ě 1, W N 1 ´1 j`1 " qq ˇˇ.
It follows that ˇˇQpW " nq ´Qp W " nq ˇˇď

N 1 ´1 ÿ j"0 n ÿ q"0 q ÿ u"0 |R j pq, uq| ď n N 1 ´1 ÿ j"0 max qPr0,ns ˇˇQpZ j ě 1qQpW N 1 ´1 j`1 " qq ´QpZ j ě 1, W N 1 ´1 j`1 " qq ˇˇ`N 1 ´1 ÿ j"0 n ÿ q"0 q ÿ u"1 |R j pq, uq| À N 1 ´1 ÿ j"0 max qPr0,ns ˇˇQpZ j ě 1qQpW N 1 ´1 j`1 " qq ´QpZ j ě 1, W N 1 ´1 j`1 " qq ˇˇ`N 1 ´1 ÿ j"0 n ÿ q"0 q ÿ u"1 |R j pq, uq|.
The first summation will be kept on hold. We deal with the second one now. For u " 1, . . . , q, we expand |R j pq, uq| by including intermediate terms with a time gap ∆ and applying the triangular inequality, as follows:

|R j pq, uq| ď ˇˇQpZ j " u, W N 1 ´1 j`1 " q ´uq ´QpZ j " u, W N 1 ´1 j`∆ " q ´uq ˇQ pZ j " u, W N 1 ´1 j`∆ " q ´uq ´QpZ j " uqQpW N 1 ´1 j`∆ " q ´uq ˇQ pZ j " uqQpW N 1 ´1 j`∆ " q ´uq ´QpZ j " uqQpW N 1 ´1 j`1 " q ´uq ˇˇ,
where the entries in the RHS are denoted, respectively, by |R 2 j pq, uq|, |R 1 j pq, uq| and |R 3 j pq, uq| (note the unusual order).

Then the sum of the following three terms bounds the later triple sum. First:

N 1 ´1 ÿ j"0 n ÿ q"0 q ÿ u"1 |R 1 j pq, uq| À N 1 ´1 ÿ j"0 max qPr1,ns q ÿ u"1 |R 1 j pq, uq| " R 1 pN, L, ∆q.
Second:

N 1 ´1 ÿ j"0 n ÿ q"0 q ÿ u"1 |R 2 j pq, uq| À N 1 ´1 ÿ j"0 max qPr1,ns q ÿ u"1 |R 2 j pq, uq| À N 1 ´1 ÿ j"0 QpZ j ě 1, W j`∆´1 j`1 ě 1q " R 2 pN, L, ∆q,
where the step used that

A u :" tZ j " u, W N 1 ´1 j`1 " q ´uu, B u :" tZ j " u, W N 1 ´1 j`∆ " q ´uu ñ A u zB u , B u zA u Ă tZ j " u, W j`∆´1 j`1 ě 1u ñ q ÿ u"1 |R 2 j pq, uq| " q ÿ u"1 |QpA u q ´QpB u q| ď q ÿ u"1 QpZ j " u, W j`∆´1 j`1 ě 1q ď QpZ j ě 1, W j`∆´1 j`1 ě 1q.
Third:

N 1 ´1 ÿ j"0 n ÿ q"0 q ÿ u"1 |R 3 j pq, uq| À N 1 ´1 ÿ j"0 max qPr1,ns q ÿ u"1 |R 3 j pq, uq| À N 1 ´1 ÿ j"0 pj`1qL´1 ÿ l"jL pj`∆`1qL´1 ÿ i"pj`1qL QpX i "1qQpX l "1q " N `∆L`L ÿ i"0 i´L ÿ l"0_pi´L´∆Lq QpX l "1qQpX i "1q ď N ÿ i"0 i ÿ l"0_pi´∆Lq QpX l " 1qQpX i " 1q " R 3 pN, L, ∆q,
where the second À step used the following: (with q 1 " q ´u)

QpW N 1 ´1 j`1 "q 1 q " QpZ j`1 ě1, W N 1 L ´1 j`1 "q 1 q`QpZ j`1 "0, W N 1 ´1 j`1 "q 1 q QpZ j`1 " 0, W N 1 ´1 j`1 " q 1 q " QpZ j`1 " 0, W N 1 ´1 j`2 " q 1 q " QpW N 1 ´1 j`2 " q 1 q ´QpZ j`1 ě 1, W N 1 ´1 j`2 " q 1 q ñ |QpW N 1 ´1 j`1 " q 1 q ´QpW N 1 ´1 j`2 " q 1 q| " |QpZ j`1 ě 1, W N 1 ´1 j`1 " q 1 q ´QpZ j`1 ě 1, W N 1 ´1 j`2 " q 1 q| but, with A :" tZ j`1 ě 1, W N 1 ´1 j`1
" q 1 u and B :"

tZ j`1 ě 1, W N 1 ´1 j`2
" q 1 u, one has AzB, BzA Ă tZ j`1 ě 1u, implying

|QpW N 1 ´1 j`1 " q 1 q ´QpW N 1 ´1 j`2 " q 1 q| ď QpZ j`1 ě 1q ñ |QpW N 1 ´1 j`l " q 1 q ´QpW N 1 ´1 j`l`1 " q 1 q| ď QpZ j`l ě 1q ď pj`l`1qL´1 ÿ i"pj`lqL QpX i " 1q ñ |QpW N 1 ´1 j`1 " q 1 q ´QpW N 1 ´1 j`∆ " q 1 q| ď ∆´1 ÿ l"1 QpZ j`l ě 1q ď pj`∆qL´1 ÿ i"pj`1qL QpX i " 1q ñ q ÿ u"1 |R 3 j pq, uq| ď q ÿ u"1 QpZ j " uq pj`∆qL´1 ÿ i"pj`1qL QpX i " 1q ď pj`1qL´1 ÿ l"jL pj`∆qL´1 ÿ i"pj`1qL
QpX l " 1qQpX i " 1q.

Now we should deal with the summation we left on hold, coming from the singled-out term with u " 0, namely,

N 1 ´1 ÿ j"0 max qPr0,ns ˇˇQpZ j ě 1qQpW N 1 ´1 j`1 " qq ´QpZ j ě 1, W N 1 ´1 j`1 " qq ˇˇ.
Using an analogous triangular inequality trick, by adding two mixed terms that have a gap ∆, and organizing them in the same order used before, one verifies that the second term is bounded by R 2 pN, L, ∆q and the third one is bounded by R 3 pN, L, ∆q. So it suffices to account for the left over term R1 pN, L, ∆q "

N 1 ´1 ÿ j"0 max qPr0,ns ˇˇQpZ j ě 1qQpW N 1 ´1 j`∆ " qq ´QpZ j ě 1, W N 1 ´1 j`∆ " qq ˇˇ,
as desired. ■

Borel-Cantelli type lemmata

The objective of this section is its final lemma 3, which provides the almost sure convergence needed to back the quenched result in the proof of theorem 2. This lemma and its proof strategy was inspired in [START_REF] Rousseau | Exponential law for random subshifts of finite type[END_REF] (lemma 9). To implement the said proof, a Borel-Cantelli argument is used with expectation control given by lemma 1 and variance control given by lemma 2.

Lemma 1. Let pθ, P, T ω , µ ω , Γq be a system satisfying (H9') (and so (H8), by theorem 1). Then:

lim LÑ8 lim ρÑ0 μpZ L Γρ ě 1q LμpΓ ρ q " p ř 8 ℓ"1 ℓλ ℓ q ´1 " α 1 (18) 
and

lim LÑ8 lim ρÑ0 μpZ L Γρ " nq LμpΓ ρ q " p ř 8 ℓ"1 ℓλ ℓ q ´1λ n " α 1 λ n pn ě 1q (19) 
Proof. Using (H9') (for the following items (i.b,ii)) and (H8) (items (i.a,iii-iv)), it holds that: @ϵ ą 0 i) Dℓ 0 pϵq ě 1 so that a)

ř 8 ℓ"ℓ 0 pϵq ℓ 3 λ ℓ ď ϵ, b) @L ě 1: 8 ř ℓ"ℓ 0 pϵq ℓ ὰ ℓ pLq ď 8 ř ℓ"ℓ 0 pϵq ℓα ℓ ď ϵ.
ii) @L ě 1, Dρ 1 pϵ, Lq, @ρ ď ρ 1 pϵ, Lq: άℓ pLq ´ϵ{pL 2 q ď αℓ pL, ρq ď ὰℓ pLq `ϵ{pL 2 q p@ℓ " 1, . . . , Lq

ñ L ÿ ℓ"ℓ 0 pϵq ℓα ℓ pL, ρq ď L ÿ ℓ"ℓ 0 pϵq
ℓ ˆὰ ℓ pLq `ϵ{pL 2 q ˙ď 2ϵ by (i).

iii) @L ě 1, Dρ 3 pϵ, Lq, @ρ ď ρ 3 pϵ, Lq: λℓ pLq ´ϵ{pℓ 0 pϵqq 2 ď λ ℓ pL, ρq ď λℓ pLq `ϵ{pℓ 0 pϵqq 2 p@ℓ " 1, . . . , ℓ 0 pϵqq. iv) DL 0 pϵq ą ℓ 0 pϵq, @L ě L 0 pϵq: |λ ℓ ´λℓ pLq| ď ϵ{pℓ 0 pϵqq 2 , |λ ℓ ´λℓ pLq| ď ϵ{pℓ 0 pϵqq 2 p@ℓ " 1, . . . , ℓ 0 pϵqq ñ | λℓ pLq´λ ℓ pLq| ď 2ϵ{pℓ 0 pϵqq 2 p@ℓ " 1, . . . , ℓ 0 pϵqq. v) (due to items (iv-v)) DL 0 pϵq, @L ě L 0 pϵq, Dρ 3 pϵ, Lq, @ρ ď ρ 3 pϵ, Lq: |λ ℓ pL, ρq´λ ℓ pLq| ď 3ϵ{pℓ 0 pϵqq 2 p@ℓ " 1, . . . , ℓ 0 pϵq, @˚P t´, `uq ñ |λ ℓ pL, ρq ´λℓ | ď 4ϵ{pℓ 0 pϵqq 2 p@ℓ " 1, . . . , ℓ 0 pϵq, @˚P t´, `uq

ñ ˇˇˇˇℓ 0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ pL, ρq ´ℓ0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ ˇˇˇˇď ℓ 0 pϵq ÿ ℓ"1 ℓ 0 pϵq4ϵ{pℓ 0 pϵqq 2 ď 4ϵ.
Now, considering any ϵ ă 1 {5 ř 8 ℓ"1 ℓλ ℓ , L ě L 0 pϵq and ρ ď ρ 1 pϵ, Lq ^ρ2 pϵq ^ρ3 pϵ, Lq, we evaluate the quantity of interest, μpZ L Γρ ě 1q{LμpΓ ρ q, starting with its numerator:

μpZ L Γρ ě 1q " ż Ω µ ω pZ ω,L Γρ ě 1qdPpωq " ż Ω µ ω ˜L´1 ď j"0 pT j ω q ´1Γ ρ pθ j ωq ¸dPpωq p‹q " ż Ω L´1 ÿ j"0 µ ω ppT j ω q ´1Γ ρ pθ j ωqqdPpωq ´żΩ L´1 ÿ ℓ"0 ℓµ ω pZ ω,L Γρ " ℓ `1qdPpωq " LμpΓ ρ q ´żΩ ˜L´1 ÿ ℓ"0 ℓλ ω ℓ`1 pL, ρq ¸µω pZ ω,L Γρ ą 0qdPpωq " LμpΓ ρ q ´żΩ ˜ℓ0 pϵq´1 ÿ ℓ"0 ℓλ ω ℓ`1 pL, ρq ¸µω pZ ω,L Γρ ą 0qdPpωq ´żΩ ¨8 ÿ ℓ"ℓ 0 pϵq ℓλ ω ℓ`1 pL, ρq 'µ ω pZ ω,L Γρ ą 0qdPpωq " LμpΓ ρ q ´ℓ0 pϵq´1 ÿ ℓ"0 ℓμpZ L Γρ " ℓ `1q ´żΩ ¨8 ÿ ℓ"ℓ 0 pϵq ℓλ ω ℓ`1 pL, ρq 'µ ω pZ ω,L Γρ ą 0qdPpωq " LμpΓ ρ q ´˜ℓ 0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ pL, ρq ¸μpZ L Γρ ą 0q ´żΩ ¨8 ÿ ℓ"ℓ 0 pϵq`1 pℓ ´1qλ ω ℓ pL, ρq 'µ ω pZ ω,L Γρ ą 0qdPpωq
where p‹q applied a typical Venn diagram argument using overcounting and correction.

Then we consider the following two estimates.

First, we have that:

ℓ 0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ pL, ρq (v) ď ℓ 0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ `4ϵ ď 8 ÿ ℓ"1
pℓ ´1qλ ℓ `5ϵ and

ℓ 0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ pL, ρq (v) ě ℓ 0 pϵq ÿ ℓ"1 pℓ ´1qλ ℓ ´4ϵ " 8 ÿ ℓ"1 pℓ ´1qλ ℓ ´8 ÿ ℓ"ℓ 0 pϵq`1 pℓ ´1qλ ℓ ´4ϵ (i.a) ě 8 ÿ ℓ"1 pℓ ´1qλ ℓ ´5ϵ.
Second, with υ ω Γρ pxq " inftj ě 0 : T j ω P Γ ρ pθ j ωqu, we have that:

0 ď ż Ω ¨8 ÿ ℓ"ℓ 0 pϵq`1 pℓ ´1qλ ω ℓ pL, ρq 'µ ω pZ ω,L Γρ ą 0qdPpωq ď L ÿ ℓ"ℓ 0 pϵq`1 ℓμpZ L Γρ " ℓq " L ÿ ℓ"ℓ 0 pϵq`1 ℓ L´1 ÿ j"0 μpZ L Γρ " ℓ, υ Γρ " jq ď L ÿ ℓ"ℓ 0 pϵq`1 ℓ L´1 ÿ j"0 μpZ L´j Γρ ˝Sj " ℓ, pS j q ´1Γ ρ q " L ÿ ℓ"ℓ 0 pϵq`1 ℓ L´1 ÿ j"0 α ℓ pL ´j, ρqμpΓ ρ q " ¨L´1 ÿ j"0 L ÿ ℓ"ℓ 0 pϵq`1 ℓα ℓ pL ´j, ρq 'μpΓ ρ q ď » - L´1 ÿ j"0 ¨L ÿ ℓ"ℓ 0 pϵq`1
αℓ pL ´j, ρq '`ℓ 0 pϵqα ℓ 0 pϵq pL ´j, ρq ´Lα L`1 pL ´j, ρq

fi fl μpΓ ρ q ď » - L´1 ÿ j"0 L ÿ ℓ"ℓ 0 pϵq`1 ℓα ℓ pL ´j, ρq fi fl μpΓ ρ q (ii) ď 2ϵLμpΓ ρ q
Combining what we got so far, it follows that:

μpZ L Γρ ě 1q LμpΓ ρ q ď LμpΓ ρ q ´`ř 8 ℓ"1 pℓ ´1qλ ℓ ´5ϵ ˘μpZ L Γρ ě 1q LμpΓ ρ q " 1 ´˜8 ÿ ℓ"1 ℓλ ℓ ´1 ´5ϵ ¸μpZ L Γρ ě 1q LμpΓ ρ q ñ μpZ L Γρ ě 1q LμpΓ ρ q ď 1 ř 8 ℓ"1 ℓλ ℓ ´5ϵ and μpZ L Γρ ě 1q LμpΓ ρ q ě LμpΓ ρ q ´`ř 8 ℓ"1 pℓ ´1qλ ℓ `5ϵ ˘μpZ L Γρ ě 1q ´2ϵLμpΓ ρ q LμpΓ ρ q " 1 ´˜8 ÿ ℓ"1 ℓλ ℓ ´1 `5ϵ ¸μpZ L Γρ ě 1q LμpΓ ρ q ´2ϵ ñ μpZ L Γρ ě 1q LμpΓ ρ q ě 1 ´2ϵ ř 8 ℓ"1 ℓλ ℓ `5ϵ
Considering the final two inequalities and passing lim ϵÑ0 lim LÑ8 lim ρÑ0 we observe that lim

LÑ8 lim ρÑ0 μpZ L Γρ ě 1q LμpΓ ρ q " p ř 8 k"1 kλ k q ´1 " α 1
Alternating between lim sup's and lim inf's lets us reach the first desired conclusion.

Finally, to take care of the second desired conclusion, it suffices to note that μpZ L Γρ " nq LμpΓ ρ q "

μpZ L Γρ ě 1q LμpΓ ρ q μpZ L Γρ " nq μpZ L Γρ ą 0q
, then take the appropriate limits and apply the first conclusion we have just proved (to obtain α 1 ), together with the definition of λ n . ■ Lemma 2. Let pθ, P, T ω , µ ω , Γq be a system satisfying (H1), (H3.1), (H4.1), (H5), (H6.1), (H6.2), (H7.1), (H7.2) and (H10.1).

Then: @t ą 0, @n ě 1, @L ě 1, Dρ var pLq ą 0, @ρ ď ρ var pLq small enough so that N :" t t μpΓρq u ě 3 and N 1 :" N L P N ě3

11

, one has:

var P pW ρ q ď C t,L ¨ρq , @q P `0, qpd 0 , d 1 , η, β, pq ˘,
where W ρ pωq :"

N 1 ´1 ÿ j"0 µ ω pZ ω j " nq, Z ω j :" pj`1qL´1 ÿ l"jL 1 Γρpθ l ωq
˝T l ω and qpd 0 , d 1 , η, β, pq is a positive quantity to be presented in the proof (which can be written explicitly).

Proof. Let t, n and L be as in the statement. Fix α P p0, 1q. Set ρ var pLq ď ρ sep pLq ^ρdim small enough so that N α ă N 1 . Consider ρ ď ρ var pLq as in the statement.

For a given j P r0, N 1 ´1s, write ω 1 " θ jL ω and notice that

E P pW ρ q " N 1 ´1 ÿ j"0 E P `µω pZ ω j " nq ˘" N 1 ´1 ÿ j"0 E P ´µω 1 p ř L´1 i"0 1 Γρpθ i ω 1 q ˝T i ω 1 "nq " N 1 ´1 ÿ j"0 E P pµ ω pZ ω 0 " nqq " N 1 ´1 ÿ j"0 μpZ 0 " nq " N 1 μpZ 0 " nq.
Now fix ∆ :" N α ă N 1 . Then:

E P pW ρ 2 q " N 1 ´1 ÿ i,j"0 ż Ω µ ω pZ ω i " nqµ ω pZ ω j " nqdPpωq " 2 N 1 ´1 ÿ i"0 pi`∆q^pN 1 ´1q ÿ j"i ż Ω µ ω pZ ω i " nqµ ω pZ ω j " nqdPpωq `2 N 1 ´1 ÿ i"0 N 1 ´1 ÿ j"pi`∆q^pN 1 ´1q`1
ż Ω µ ω pZ ω i " nqµ ω pZ ω j " nqdPpωq ": pIq `pIIq.

11 See footnote 10.

Immediately we get that µ ω pZ ω j " nq ď µ ω pZ ω j ě 1q ď pj`1qL´1 ÿ l"jL µ θ l ω pΓ ρ pθ l ωqq (H6.2)

À Lρ d 0 ñ pIq À Lρ d 0 ∆E P pW ρ q " ∆ρ d 0 N μpZ 0 " nq.

Most of the remaining work is to control component pIIq.

Fix ω P Ω and, for a given i P r0, N 1 ´1s, write ω 1 " θ iL ω. Moreover, consider r P p0, ρ{2q, v P r0, L ´1s and denote by

U v,ω 1 " Γ ρ pθ v ω 1 q, Ú v,r,ω 1 " B r pU v,ω 1 c q c , Ù v,r,ω 1 " B r pU v,ω 1 q, (20) 
respectively, the ρ-sized target with noise ω 1 v-steps ahead; its diminishment by radius r;

and its enlargement by radius r. They relate as Ú v,r,ω

1 Ă U v,ω 1 Ă Ù v,r,ω 1 .
Moreover, dynamical counterparts of those in equation ( 20) are denote by

tZ ω 1 0 " nu " U ω 1 " ğ 0ďv 1 ă...ăvnďL´1 ¨n č l"1 pT v l ω 1 q ´1U v l ,ω 1 X č vPr0,L´1s ztv l :l"1,...,nu pT v ω 1 q ´1U v,ω 1 c ‹ ‹ ' , Ú r,ω 1 " ğ 0ďv 1 ă...ăvnďL´1 ¨n č l"1 pT v l ω 1 q ´1 Ú v l ,ω 1 X č vPr0,L´1s ztv l :l"1,...,nu pT v ω 1 q ´1 Ù v,ω 1 c ‹ ‹ ' , Ù r,ω 1 " ğ 0ďv 1 ă...ăvnďL´1 ¨n č l"1 pT v l ω 1 q ´1 Ù v l ,ω 1 X č vPr0,L´1s ztv l :l"1,...,nu pT v ω 1 q ´1 Ú v,ω 1 c ‹ ‹ ' ,
describing -the locus of points which hit the ρ-sized target exactly n times during the time interval r0, L ´1s when given the noise ω 1 ; -the diminishment of the first by radius r, in the sense that hits are considered in a r-stringent way (at least r-inside the ρ-sized target) and non-hits are considered in a r-stringent way (at least r-away from the ρ-sized target); -the enlargement of the first by radius r, in the sense that hits are considered in a r-permissive way (at most r-away from the ρ-sized target) and non-hits are considered in a r-permissive way (at most r-inside the ρ-sized target).

They relate as

Ú r,ω 1 Ă U ω 1 Ă Ù r,ω 1 .
Finally, define

φ ω 1 r pxq" $ ' ' ' & ' ' ' % 1, x P Ú r,ω 1 0, x P U ω 1 c d M px,U ω 1 c q d M px,U ω 1 c q`d M px, Ú r,ω 1 q , x P U ω 1 c z Ú r,ω 1 φ ω 1 r pxq" $ ' ' ' & ' ' ' % 1, x P U ω 1 0, x P Ù r,ω 1 c d M px, Ù r,ω 1 c q d M px, Ù r,ω 1 c q`d M px,U ω 1 q , x P Ù r,ω 1 zU ω 1 . They relate as φ ω 1 r ď 1 U ω 1 ď φ ω 1 r .
Using that Lip d M `dM px, Ù r,ω 1 q ˘, Lip d M `dM px, U ω 1 q ˘ď 1, it can be checked that

Lip d M p φω 1 r q ď 6 diampM q ´min xPM rd M px, Ù r,ω 1 q `dM px, U ω 1 qs ¯2 ď 6 diampM q d min `Uω 1 , Ù r,ω 1 c ˘2 ,
where d min `Uω 1 , Ù r,ω 1 c ˘:" inftd M px, yq : x P U ω 1 , y P Ù r,ω 1 c u.

Notice that for a point x P U ω 1 to be minimally-displaced in such a way as to reach Ù r,ω 1 c , either: a) some of the hits in its finite-orbit is consequently-displaced to an extent which now makes it at least r-away from associated ρ-sized target, or b) some of the non-hits in its finite-orbit is consequently-displaced to an extent which now makes it at least r-inside the associated ρ-sized target. In either case, the associated image point of x has to be consequently-displaced by distance at least r. When the said image point being consequently-displaced happens to be the last one in the orbit of x, i.e., its L´1 iterate, by the expanding feature of the system (H3.1) and since U ω 1 Ă Ť L´1 j"0 pT j ω 1 q ´1Γ 3{2ρ pθ j ω 1 q (H4.1)

Ă C ω 1
L´1 , this is when x would have to be displaced the least: no more than r{a L´1 (use (H4.1) and (H3.2)). Therefore r{a L´1 ď d min `Uω 1 , Ù r,ω 1 c ˘, and so

Lip d M p φ ω 1 r q ď 6 diampM qa L´1 2 {r 2 , } φ ω 1 r } Lip d M " } φ ω 1 r } 8 _ Lip d M p φ ω 1 r q " 1 _ Lip d M p φ ω 1 r q " Lip d M p φ ω 1 r q ď 6 diampM qa L´1 2 {r 2 ,
where the last equality follows from ρ sufficiently small. Now we start looking at pIIq directly:

ˇˇˇż Ω µ ω pZ ω j " nqµ ω pZ ω i " nqdPpωq ´żΩ µ ω pZ ω j " nqµ ω 1 p φ ω 1 r qdPpωq ˇˇ" ˇˇˇż Ω µ ω pZ ω j " nqµ ω 1 p1 U ω 1 qdPpωq ´żΩ µ ω pZ ω j " nqµ ω 1 p φ ω 1 r qdPpωq ˇˇÀ ż Ω µ θ j ω pZ θ j ω 0 " nqL r η ρ β dPpωq " L r η ρ β μpZ 0 " nq, where the À is because µ ω 1 p φ ω 1 r q ď µ ω 1 p Ù r,ω 1 z Ú r,ω 1 q ď L´1 ÿ v"0 µ θ v ω p Ù v,r,ω 1 z Ú v,r,ω 1 q (H6.2) À L r η ρ β .
The approximating term that appeared above is transformed as follows: ˇˇˇż

Ω µ ω pZ ω j " nqµ ω 1 p φ ω 1 r qdPpωq ´żΩ µ ω 1 p1 tZ ω 1 j´i "nu φ ω 1 r qdPpωq ˇˇ" ˇˇˇż Ω µ ω 1 pZ ω 1 j´i " nqµ ω 1 p φ ω 1 r qdPpωq ´żΩ µ ω 1 p1 tZ θ pj´iqL ω 1 0 ˝T pj´iqL ω 1 "nu φ ω 1 r qdPpωq ˇˇ" ż Ω ˇˇˇµ θ pj´iqL ω 1 pZ θ pj´iqL ω 1 0 " nqµ ω 1 p φ ω 1 r q ´µω 1 p1 tZ θ pj´iqL ω 1 0 "nu ˝T pj´iqL ω 1 φ ω 1 r q ˇˇˇd Ppωq pH7.1q À ż Ω ppj ´iqLq ´p} φ ω 1 r } Lip d M dPpωq À 12 ppj ´iqLq ´p a L´1 2 r 2 .
Whereas the new approximating term which appeared above is transformed as follows:

ż Ω µ ω 1 p1 tZ ω 1 j´i "nu φ ω 1 r qdPpωq " ż ΩˆM 1 tZ j´i "nu φ r dμ " ż ΩˆM 1 tZ 0 "nu ˝Spj´iqL φ r dμ and ˇˇˇż ΩˆM 1 tZ 0 "nu ˝Spj´iqL φ r dμ ´żΩˆM 1 tZ 0 "nu dμ ¨żΩˆM φ r dμ ˇˇp H7.2q À ppj ´iqLq ´p} φ r } Lip d ΩˆM À ppj ´iqLq ´p a L´1 2 r 2 ,
where, recalling that φ ω r " φ ω r pn, L, ρq, we have used that

Lip d ΩˆM p φ r q " sup pω 1 ,x 1 q‰pω 2 ,x 2 q | φ ω 1 r px 1 q´φ ω 2 r px 2 q| d Ω pω 1 , ω 2 q _ d M px 1 , x 2 q ď sup x 1 sup ω 1 ‰ω 2 | φ ω 1 r px 1 q´φ ω 2 r px 1 q| d Ω pω 1 , ω 2 q `sup ω 2 sup x 1 ‰x 2 | φ ω 2 r px 1 q´φ ω 2 r px 2 q| d M px 1 , x 2 q ď 13 a L´1 2 r 2 `sup x sup ω 1 ‰ω 2 | φ ω 1 r pxq´φ ω 2 r pxq| d Ω pω 1 , ω 2 q p‹q ď a L´1 2 r 2 `pα L β `γqa L´1 2 r 2 À α L a L´1 2 r 2 ,
with p‹q following from ω Þ Ñ φ ω r pxq being a locally Lipschitz function whose associated local Lipschitz constants are bounded by pα L β`γqa L´1 2 r 2

, where α " Lippθq _ 1, β " LippΓq _ 1, γ " sup xPM LippT ¨pxq : Ω Ñ M q. This is verified in the following paragraph.

Fix x P M and consider ω P Ω. In case x P intpU ω q (or intp Ù r,ω c q), there is u x pωq ą 0 so that ω P B uxpωq pωq implies x P int U ω (or int Ù r,ω c ), so the function of interest 12 Notice that } φ ω 1 r } Lip d M À a L´1 2 {r 2 a.s. is enough to justify the above inequality. However, our hypotheses imply this is true for every ω. This might seem an excess, but later in the proof we will need the inequality for every ω. See the next footnote. 13 Here one needs } φω 1 r } Lip d M ď a L1 2 {r 2 for every ω. See the previous footnote.

is locally constant. In case x P intp Ù r,ω c zU ω q, it boils down to understand how the linear interpolation within φ r varies with ω P B u 1 x pωq pωq, where u 1 x pωq is that for which ω P B u 1

x pωq pωq implies x P intp Ù r,ω c zU ωq. For this purpose, we first evaluate the Lipschitz constant of ω P B u 1

x pωq pωq Þ Ñ dpx, U ωq and ω P B u 1

x pωq pωq Þ Ñ dpx, Ù r,ω c q: i) |dpx, U ω q ´dpx, U ωq| ď d H pU ω , U ωq ď ˜psup ω LippT ´1 ω : PpM q Ñ PpM qq _ 1q L ¨pLippΓq _ 1q ¨pLippθq _ 1q L `sup APPpM q LippT ¨´1 A : Ω Ñ PpM qq ¸dΩ pω, ωq ď pα L β `γqd Ω pω, ωq. since
Lip ´č :PpM qˆPpM qÑPpM q ¯ď1, Lip ´ď :PpM qˆPpM qÑPpM q ¯ď1, Lip pB ρ :PpM qÑPpM qq ď 1,

sup ω Lip `T ´1 ω : PpM q Ñ PpM q ˘ď 1{ inf ωPΩ inf ξPC ω 1 CoLippT ω | ξ : ξ Ñ M q ď 1 and sup APPpM q Lip `T¨´1 A:ΩÑPpM q ˘ď sup xPM LippT ¨pxq : Ω Ñ M q inf ωPΩ inf ξPC ω 1 CoLippT ω | ξ : ξ Ñ M q ď sup xPM LippT ¨pxq:ΩÑM q,
where CoLippTq " inf x‰y dpT x,T yq dpx,yq . ii) Similarly, |dpx, Ù r,ω c q ´dpx, Ù r,ω c q| ď pα L β `γqd Ω pω, ωq, since also LippB r :PpM qÑPpM qq ď 1.

To conclude justifying p‹q, one repeats the calculations for the Lipschitz constant of a quotient and applies (i) and (ii) to get that

Lip d Ω ¨dM px, Ù r,ω 1 c q d M px, Ù r,ω 1 c q `dM px, U ω 1 q ' ď 4 diampM qpα L β `γq d min p Ù r,ω 1 c , U ω 1 q 2 d Ω pω, ωq À pα L β `γqa L´1 2 r 2 d Ω pω, ωq.
Finally, we notice that ˇˇˇμ pZ 0 "nqμp φ r q´μpZ 0 "nq 2 ˇˇˇď μpZ 0 "nq ż Ω µ ω p φ ω r ´1Uω qdPpωq

(H6.2) À L r η ρ β μpZ 0 "nq.
Combining the previous four steps, we arrive at ˇˇˇż

Ω µ ω pZ ω j " nqµ ω pZ ω i " nqdPpωq ´μpZ 0 " nq 2 ˇˇˇÀ L r η ρ β μpZ 0 " nq `ppj ´iqLq ´p α L a L´1 2 r 2 , which implies pIIqÀ N 1 ´1 ÿ i"0 N 1 ´1 ÿ j"pi`∆q^pN 1 ´1q`1 ˆμpZ 0 " nq 2 `L r η ρ β μpZ 0 " nq `ppj ´iqLq ´p α L a L´1 2 r 2 ÀN 1 pN 1 ´∆q ˆμpZ 0 " nq 2 `L r η ρ β μpZ 0 " nq ˙`N 1 α L a L´1 2 r 2 p∆Lq ´p`1 .
Then we can conclude the following about the variance: var P pW ρ q " E P pW ρ 2 q ´pE P pW ρ qq 2

À ∆ρ d 0 N μpZ 0 " nq `N 1 pN 1 ´∆q ˆμpZ 0 "nq 2 `L r η ρ β μpZ 0 "nq ˙`N 1 α L a L´1 2 r 2 p∆Lq ´p`1 ´N 1 2 μpZ 0 " nq 2 . À ∆ρ d 0 N μpZ 0 " nq `N 1 2 L r η ρ β μpZ 0 " nq `N 1 α L a L´1 2 r 2 p∆Lq ´p`1 p‹q À N α Lρ d 0 `N r η ρ β `αL a L´1 2 L ´p N N αp´p`1q r 2 p‹‹q À t α μpΓ ρ q α Lρ d 0 `t μpΓ ρ q ρ wη´β `αL a L´1 2 L ´p t μpΓ ρ q t αp´p`1q μpΓ ρ q αp´p`1q ρ ´2w (H6.1) À Lρ d 0 ´αd 1 `ρwη´β´d 1 `αL a L´1 2 L ´pρ αd 0 pp´1q´2w´d 1 p‹‹‹q À ρ d 0 ´αd 1 `ρwη´β´d 1 `ραd 0 pp´1q´2w´d 1 ,
where p‹q uses N 1 μpZ 0 " nq ď N L ´1 μpZ 0 ě 1q ď N L ´1L μpΓ ρ q À t and t is incorporated into the À sign; p‹‹q uses the choice r :" ρ w for a given w ą 1; and p‹ ‹ ‹q incorporates L dependent quantities on À. Notice that t and L dependent constants being incorporated inside À is associated to the use of a constant C t,L in the statement. Finally, we need to choose pα, wq P p0, 1q ˆp1, 8q so that

$ ' & ' % d 0 ą αd 1 wη ą β `d1 αd 0 pp ´1q ą 2w `d1 i.e. $ ' & ' % α ă d 0 d 1 ^1 " d 0 d 1 w ą β`d 1 η _ 1 w ă αd 0 pp´1q´d 1 2 ,
which admits a solution if, and only if,

β `d1 η _ 1 " d 0 d 1 d 0 pp ´1q ´d1 2 ô d 0 pp ´1q ą 2 ´β`d 1 η _ 1 ¯`d 1 d 0 {d 1 .
This is guaranteed by the parametric constraint (H10.1), so there exists some solution pα ˚, w ˚q to the system. Actually, the space of solutions forms a triangle and one can select pα ˚, w ˚q as its incenter, a function of d 0 , d 1 , η, β and p, whereas the strictly positive margin this choice opens in the inequalities of the original system is denoted by qpd 0 , d 1 , η, β, pq. With such a choice, we obtain that var P pW ρ q ď C t,L ¨ρqpd 0 ,d 1 ,η,β,pq ď C t,L ¨ρq , @q P p0, qpd 0 , d 1 , η, β, pqq .

■

Lemma 3. Let pθ, P, T ω , µ ω , Γq be a system satisfying (H3.1), (H4.1), (H6.1), (H6.2), (H7.1), (H7.2), (H9') and (H10.1). Then: @tą0, @ně1, @pρ m q mě1 OE0 with ř mě1 ρ m q ă8 (for some 0ăqăqpd 0 , d 1 , η, β, pq), denoting N " t t μpΓρ m q u and N 1 " N L 14

, one has:

1) lim LÑ8 lim mÑ8 N 1 ´1 ÿ j"0
µ ω pZ ω j " nq " tα 1 λ n , P-a.s.

2)

lim LÑ8 lim mÑ8 N 1 ´1 ÿ j"0
µ ω pZ ω j ě 1q " tα 1 , P-a.s.

3)

lim mÑ8 N ´1 ÿ j"0
µ θ j ω pΓ ρm pθ j ωqq " t, P-a.s.,

where Z ω j "

ř pj`1qL´1 l"jL 1 Γρ m pθ l ωq ˝T l ω .
Proof. Let t, n and pρ m q mě1 be as in the statement. Consider L ě 1 and m large enough so that ρ m ď ρ var pLq, N ě 3 and N 1 ě 3. Denote also W ρ pωq " ř N 1 ´1 j"0 µ ω pZ ω j " nq. Using Chebycheff's inequality combined with lemma 2, we get that Pp|W ρ ´EP pW ρ q| ą aq ď var P pW ρ q a 2 ď C t,L a 2 ρ q , and therefore, since ř mě1 ρ m q ă 8, Borel-Cantelli lemma let us conclude that lim mÑ8

|W ρm ´EP pW ρm q| " 0, P-a.s.

On the other hand,

E P pW ρm q " 1 L t μpΓ ρm q μpZ 0 " nq " t μpZ L Γρ m ě 1q LμpΓ ρm q μpZ L Γρ m " nq μpZ L Γρ m ě 1q
, so, by lemma 1 and the definition of λ n , we have that lim LÑ8 lim mÑ8 E P pW ρm q " tα 1 λ n and therefore, combining the previous two centered limits, conclusion (1) follows:

lim LÑ8 lim mÑ8 W ρm " tα 1 λ n , P-a.s.
For (2), it suffices to repeat the argument noticing that the new expectation will be driven by t

μpZ L Γρ m ě1q
LμpΓρ m q , whose double limit is tα 1 .

14 See footnote 10.

For (3), it suffices to fix L " 1 and n " 1 in the above argument, and after the Borel-Cantelli step, notice that E P pW ρm q " t μpΓ ρm q μpΓ ρm q mÑ8 Ñ t. ■ 5. Proof of theorem 2 5.1. Applying the abstract approximation theorem. Let t ą 0, n ě 1 (n " 0 is the leftover case) and ω P Ω be any. Fix, once and for all, pρ m q mě1 OE 0 fast enough so that ř mě1 ρ m q ă 8, for some 0 ă q ă qpd 0 , d 1 , η, β, pq.

Consider L ě n, which should not be chosen as a function of previous variables. Define N :"

X t μpΓρ m q \ and N 1 m,L :" Nm L P N ě3 15 
. Let v P p0, d 0 q and set ∆ :" ρ m ´v. We will consider m large enough (depending on L) so that N ě 3, ∆ ě 2, ρ ď ρ var pLq, L ď t N 3 u and ∆ ă N 1 . We want to study

µ ω pZ ω,N Γρ m " nq " µ ω p ř N ´1 i"0 I ω,m i " nq " µ ω ˜N1 ´1 ř j"0 pj`1qL´1 ř i"jL I ω,m i ¸,
where I ω,m i " 1 Γρ m pθ i ωq ˝T i ω . Theorem 4 can be readily applied and gives

ˇˇˇˇµ ω ´Zω,Nm Γρ m " n ¯´µ ω ˜N1 ´1 ÿ j"0 Zω j " n ¸ˇˇˇÀ R1 ω,m pN, L, ∆q `R1 ω,m pN, L, ∆q `R2 ω,m pN, L, ∆q `R3 ω,m pN, L, ∆q, where Zω j mimics Z ω j " ř pj`1qL´1
l"jL I ω,m l . For the next sections, sections 5.2 to 5.7, it is enough to consider ω restricted to a P-full measure set.

Estimating the

error R 1 . Recall that R 1 ω,m pN, L, ∆q " N 1 ´1 ÿ j"0 max qPr1,ns q ÿ u"1 ˇˇˇˇµ ω ˜Zω j "u, N 1 ´1 ÿ k"j`∆ m Z ω k "q´u ¸´µ ω ´Zω j "u ¯µω ˜N1 ´1 ÿ k"j`∆ m Z ω k "q´u ¸ˇˇˇˇ.
Now recycle the construction and notation used in the proof of lemma 2 to control the term pIIq: for a given j P r0, N 1 ´1s, writing ω 1 " θ jL ω and considering r P p0, ρ m {2q, v P r0, L ´1s, we once again have the objects:

U v,ω 1 , Ú v,r,ω 1 , Ù v,r,ω 1 , U ω 1 , Ú r,ω 1 , Ù r,ω 1 , φ ω 1 r and φ ω 1 r . Then: ˇˇˇˇµ ω ˜Zω j "u, N 1 ´1 ÿ k"j`∆ Z ω k "q´u ¸´µ ω ´Zω j "u ¯µω ˜N1 ´1 ÿ k"j`∆ Z ω k "q´u ¸ˇˇˇ" ˇˇˇˇµ ω ¨pj`1qL´1 ÿ i"jL I ω,m i " u, N ´1 ÿ i"pj`∆qL I ω,m i " q ´u' ´µω ˜pj`1qL´1 ÿ i"jL I ω,m i " u ¸µω ¨N´1 ÿ i"pj`∆qL I ω,m i " q ´u' ˇˇˇ" ˇˇˇˇµ ω 1 ˜L´1 ÿ i"0 I ω 1 ,m i " u, pN ´1q´jL ÿ i"∆L I ω 1 ,m i " q ´uμ ω 1 ˜L´1 ÿ i"0 I ω 1 ,m i " u ¸µθ ∆L ω 1 ˜pN´1q´pj`∆qL ÿ i"0 I θ ∆L ω 1 ,m i " q ´u¸ˇˇˇˇˇ. " ˇˇµ ω 1 ´1U ω 1 1 tV ω,∆ j "q´uu ˝T ∆L ω 1 ¯´µ ω 1 `1U ω 1 ˘µθ ∆L ω 1 ´1tV ω,∆ j "q´uu
¯ˇw here we used that V ω,∆ j :" ř pN ´1q´pj`∆qL i"0

I θ ∆L ω 1 ,m i
, and thus ř pN ´1q´jL

i"∆L

I ω 1 ,m i " V ω,∆ j T ∆L ω 1 , ď ˇˇˇµ ω 1 ˆφ ω 1 r 1 tV ω,∆ j "q´uu ˝T ∆L ω 1 ˙´µ ω 1 `1U ω 1 ˘µθ ∆L ω 1 ´1tV ω,∆ j "q´uu

¯ˇˇˇ,

where φ ω 1 r means that either φ ω 1 r or φ ω 1 r will make the inequality true,

ď ˇˇˇµ ω 1 ´φ ω 1 r 1 tV ω,∆ j "q´uu ˝T ∆L ω 1 ¯´µ ω 1 ´φ ω 1 r ¯µθ ∆L ω 1 ´1tV ω,∆ j "q´uu ¯ˇˇ" µ ω 1 ´φ ω 1 r ¯´µ ω 1 `1U ω 1 ˘ȷ µ θ ∆L ω 1 ´1tV ω,∆ j "q´uu

¯ˇˇ"

: pAq `pBq.

Now notice that pAq À p∆Lq ´p› › φ ω 1 r › › Lip d M 1 À p∆Lq ´pa L´1 2 {r 2 ,
where the first estimate used (H7.1) while the later used (H3.1), (H4.1) and (H3.2), as in the quenched argument in the proof of lemma 2 16 .

Moreover,

pBq ď µ θ ∆L ω 1 ´V ω,∆ j "q´u ¯µω 1 p Ù r,ω 1 z Ú r,ω 1 q (H6.2) À µ θ ∆L ω 1 ´V ω,∆ j "q´u ¯L r η ρ m β . Therefore R 1 ω,m pN, L, ∆q À N 1 ´1 ÿ j"0 max qPr1,ns q ÿ u"1 " p∆Lq ´p a L´1 2 r 2 `µθ ∆L ω 1 ´V ω,∆ j "q´u ¯L r η ρ m β ȷ ď N 1 ´1 ÿ j"0 L ÿ u"1 p∆Lq ´p a L´1 2 r 2 `L r η ρ m β N 1 m,L ´1 ÿ j"0 max qPr1,N s µ θ ∆L ω 1 ´V ω,∆ j P r0, qs À N p∆Lq ´p a L´1 2 r 2 `N r η ρ m β ď N p∆Lq ´p a L´1 2 r 2 `LN r η ρ m β
, where V ω,∆ j takes values between 0 and N ´pj `∆qL ď N .

5.3.

Estimating the error R1 . This section is going to follow the lines of the previous one, with minor modifications.

Recall that R1 ω,m pN, L, ∆q "

N 1 ´1 ÿ j"0 max qPr0,ns ˇˇˇˇµ ω ˜Zω j ě1, N 1 ´1 ÿ k"j`∆ Z ω k "q ¸´µ ω ´Zω j ě1 ¯µω ˜N1 ´1 ÿ k"j`∆ Z ω k "q ¸ˇˇˇˇ.
For a given j P r0, N 1 ´1s, writing ω 1 " θ jL and considering r P pρ m {2q, v P r0, Ls, recalling the objects introduced in the proof of lemma 2, we reuse U v,ω 1 , Ú v,r,ω 1 and Ù v,r,ω 1 , whereas U ω 1 , Ú r,ω 1 and Ù r,ω 1 are modified by including a union Ť L n"1 before the original definitions therein (in particular, tZ ω 1 0 ě 1u " U ω 1 ), while φ ω 1 r and φ ω 1 r are kept the same (but considering the previous modification).

Following the same steps and notation from the previous section, we get that ˇˇˇˇµ ω ˜Zω j ě1,

N 1 ´1 ÿ k"j`∆ Z ω k "q ¸´µ ω ´Zω j ě1 ¯µω ˜N1 ´1 ÿ k"j`∆ Z ω k "q ¸ˇˇˇď ˇˇˇµ ω 1 ´φ ω 1 r 1 tV ω,∆ j "qu ˝T ∆L ω 1 ¯´µ ω 1 ´φ ω 1 r ¯µθ ∆L ω 1 ´1tV ω,∆ j "qu ¯ˇˇ" µ ω 1 ´φ ω 1 r ¯´µ ω 1 `1U ω 1 ˘ȷ µ θ ∆L ω 1 ´1tV ω,∆ j "qu

¯ˇˇ"

: pAq `pBq.

As before,

pAq À p∆Lq ´p› › φ ω 1 r › › Lip d M 1 À p∆Lq ´pa L´1 2 {r 2 .
For the first inequality we use (H7.1). For the second, we adapt the previous reasoning as follows. Intuitively, the Lipschitz constant of, say, the modified function φ ω 1 r is bounded by the inverse of d `Ú r,ω 1 , U c ω 1 ˘. For a point to x P U c ω 1 , with no hits, to be minimally displaced to Úr,ω 1 , among x itself being displaced or the consequently-displaced points in its orbit, a) at least one r-stringent hit has to be created while b) the other instances should turned into r-stringent non-hits (if they are not already). The situation where this would occur with minimal displacement is one where (b) starts already fulfilled and only (a) has to be accomplished by displacing x in such that its L ´1 iterate changes from a non-hit to a r-stringent hit. This can be made with a minimum displacement of r{a L´1 , where again we use (H3.1), (H3.2) and (H4.1).

Moreover,

pBq ď µ θ ∆L ω 1 ´V ω,∆ j " q ¯µω 1 p Ù r,ω 1 z Ú r,ω 1 q (H6.2) À µ θ ∆L ω 1 ´V ω,∆ j " q ¯L2 r η ρ m β . Therefore R1 ω,m pN, L, ∆q À N 1 ´1 ÿ j"0 max qPr0,ns " p∆Lq ´p a L´1 2 r 2 `µθ ∆L ω 1 ´V ω,∆ j " q ¯L2 r η ρ m β ȷ ď N 1 ´1 ÿ j"0 p∆Lq ´p a L´1 2 r 2 `L2 r η ρ m β N 1 ´1 ÿ j"0 max qPr0,N s µ θ ∆L ω 1 ´V ω,∆ j P r0, qs À N 1 p∆Lq ´p a L´1 2 r 2 `LN r η ρ m β ď N p∆Lq ´p a L´1 2 r 2 `LN r η ρ m β , where V ω,∆
where i) op1q refers to a function gpω, m, Lq so that lim LÑ8 lim mÑ8 |gpω, m, Lq| " 0, Pa.s.; ii) equality p‹q included 1{l! to account for j i 's not being anymore increasing and used that the error terms that come from different j i 's being equal are small, as one can see in the case when two j i agree; and iii) equality p‹‹q uses that a product of sums distributes as a sum of products.

We then notice that, by lemma 3, lim LÑ8 lim mÑ8 N 1 ´1 ÿ j"0 µ ω pZ ω j " n i q " tα 1 λ n i , P-a.s. Zω j " n ¸´CPD tα 1 ,pλ ℓ q ℓ pnq ˇˇˇˇ" 0, P-a.s.,

where the equivalence is because the former term is precisely the density of such a compound Poisson distribution (see equation ( 1)).

As a consequence, we can conclude the proof with lim mÑ8 ˇˇµ ω pZ ω,N Γρ m " nq ´CPD tα 1 ,pλ ℓ q ℓ ptnuq ˇď

lim LÑ8 lim mÑ8 ˇˇˇˇµ ω pZ ω,N Γρ m " nq ´µω ˜N1 ´1 ÿ j"0 Zω j " n ¸ˇˇˇľ im LÑ8 lim mÑ8 ˇˇˇˇµ ω ˜N1 ´1 ÿ j"0 Zω j " n ¸´CPD tα 1 ,pλ ℓ q ℓ pnq ˇˇˇ"
0, P-a.s.

Proof of theorem 3

By [29] theorem 4.2, it suffices to show that for any kě1, 0ďa 1 ăb 1 ď. . .ďa k ăb k ď1 and n 1 , . . ., n k ě0: [START_REF] Freitas | Rare events for the manneville-pomeau map[END_REF] where N : pX , X , Qq Ñ M with N ˚Q " CP P P tα 1 ,pλ ℓ q ℓ complies with definition 5.

µ ω ˆY ω,t t μpΓρ m q u ρm pra 1 , b 1 qq " n 1 , . . . , Y ω,t t μpΓρ m q u ρm pra k , b k qq " n k Ṗ-a.s. ÝÑ mÑ8 Q ´N pra 1 , b 1 qq " n 1 , . . . , N pra k , b k qq " n k ¯,
To simplify the presentation, we consider k " 2 and that, when needed, fractions divided by μpΓ ρm q or L already make an integer.

Write, for q " 1, 2, A q " a q t μpΓ ρm q B q " b q t μpΓ ρm q N q " pb q ´aq qt μpΓ ρm q N 1 q "

N q L N " t μpΓ ρm q N 1 " N L .

So the left side of equation ( 22) becomes

µ ω ˜B1 ´1 ÿ i"A 1 I ω,m i " n 1 , B 2 ´1 ÿ i"A 2 I ω,m i " n 2 " µ ω ˜N1 1 ´1 ÿ j"0 A 1 `pj`1qL´1 ÿ i"A 1 `jL I ω,m i loooooooomoooooooon Z ω,1 j " n 1 , N 1 2 ´1 ÿ j"0 A 2 `pj`1qL´1 ÿ i"A 2 `jL I ω,m i loooooooomoooooooon Z ω,2 j " n 2 ¸.
With I " tpq, jq : q " 1, 2, j " 0, . . . , N 1 q ´1u, the family of random variables pZ ω,q j q pq,jqPI is mimicked by an independency p Zω,q j q pq,jqPI , pZ ω,q j q pq,jqPI K p Zω,q j q pq,jqPI , Z ω,q j " Zω,q j , for pq, jq P I. In analogy to the approximation theorem, we then want to bound

ˇˇˇˇˇµ ω ˜N1 1 ´1 ÿ j"0 Z ω,1 j " n 1 , N 1 2 ´1 ÿ j"0 Z ω,2 j " n 2 ¸´µ ω ˜N1 1 ´1 ÿ j"0 Zω,1 j " n 1 , N 1 2 ´1 ÿ j"0 Zω,2 j " n 2 ¸ˇˇˇˇˇ. ( 23 
) Denote W ω,q a,b " ř b j"a
Zω,q j and similarly without "'s.

Then eq.p23q ď ˇˇµ ω ´W ω,1

0,N 1 1 ´1 " n 1 , W ω,2 0,N 1 2 ´1 " n 2 ¯´µ ω ´W ω,1 0,N 1 1 ´1 " n 1 , W ω,2 0,N 1 2 ´1 " n 2 ¯ˇμ ω ´W ω,1 0,N 1 1 ´1 " n 1 , W ω,2 0,N 1 2 ´1 " n 2 ¯´µ ω ´W ω,1 0,N 1 1 ´1 " n 1 , W ω,2 0,N 1 2 ´1 " n 2

¯ˇ"

: p△q `p▽q.

We consider p△q first. Repeating the telescoping argument in the proof of theorem 4, we have p△q ď

N 1 1 ´1 ÿ j"0 ˇˇˇˇµ ω p W ω,1 0,j´1 `W ω,1 j,N 1 1 ´1 " n 1 , W ω,2 0,N 1 2 ´1 " n 2 q ´µω p W ω,1 0,j `W ω,1 j`1,N 1 1 ´1 " n 1 , W ω,2 0,N 1 2 ´1 " n 2 q ˇˇˇď N 1 1 ´1 ÿ j"0 n 1 ÿ l"0 µ ω p W ω,1 0,j´1 " lq ˇˇˇˇµ ω pW ω,1 j,N 1 1 ´1 " n 1 ´l, W ω,2 0,N 1 2 ´1 " n 1 q ´µω p Zω,1 j `W ω,1 j`1,N 1 1 ´1 " n 1 ´l, W ω,2 0,N 1 2 ´1 " n 1 q ˇˇˇď N 1 1 ´1 ÿ j"0 n 1 ÿ q"0 q ÿ u"0 ˇˇˇˇµ ω pZ ω,1 j " u, W ω,1 j`1,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ´µω pZ ω,1 j " uqµ ω pW ω,1 j`1,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q
ˇˇˇǑ ne has to single out u " 0 from u P r1, qs. We focus on the principal part u P r1, qs, which can be bounded by the sum of the following three terms (note the unusual order).

p△q 2 ď N 1 1 ´1 ÿ j"0 n 1 ÿ q"1 q ÿ u"1 ˇˇˇˇµ ω pZ ω,1 j " u, W ω,1 j`1,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ´µω pZ ω,1 j " u, W ω,1 j`∆,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ˇˇˇˇ, p△q 1 ď N 1 1 ´1 ÿ j"0 max qPr1,n 1 s q ÿ u"1 ˇˇˇˇµ ω pZ ω,1 j " u, W ω,1 j`∆,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ´µω pZ ω,1 j " uqµ ω pW ω,1 j`∆,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ˇˇˇˇ, p△q 3 À N 1 1 ´1 ÿ j"0 n 1 ÿ q"1 q ÿ u"1 ˇˇˇˇµ ω pZ ω,1 j " uqµ ω pW ω,1 j`∆,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ´µω pZ ω,1 j " uqµ ω pW ω,1 j`1,N 1 1 ´1 " q ´u, W ω,1 0,N 1 2 ´1 " n 2 q ˇˇˇˇ.
The bound of p△q 1 can be handled pretty much as in the proof of theorem 2. Minor modifications are needed and we discuss them now. Notice that the first term inside absolute value in p△q 1 can written as

µ ω ˆ1t ř A 1 `pj`1qL´1 i"A 1 `jL I ω,m i "uu 1 t ř B 1 ´1 i"A 1 `pj`∆qL I ω,m i "q´uu 1 t ř B 2 ´1 i"A 2 I ω,m i "n 2 u ȧnd, with ω 1 " θ A 1 `jL ω, " µ ω 1 ˆ1t ř L´1 i"0 I ω 1 ,m i "uu 1 t ř N 1 ´1´jL i"∆L I ω 1 ,m i "q´uu 1 t ř B 2 ´1´A 1 ´jLq i"A 2 ´A1 ´jLq I ω 1 ,m i "n 2 u " µ ω 1 ˆ1t ř L´1 i"0 I ω 1 ,m i "uu " 1 t ř N 1 ´1´jL´∆L i"0 I θ ∆L ω 1 ,m i "q´uuXt ř B 2 ´1´A 1 ´jL´∆Lq i"A 2 ´A1 ´jL´∆Lq I θ ∆L ω 1 ,m i "n 2 u ȷ ˝T ∆L ω 1 ˙,
where the last step is because

A 2 ´A1 ´jL ě A 2 ´A1 ´pN 1 1 ´1qL ě A 2 ´A1 ´pB 1 ´A1 q " A 2 ´B1
ě ∆L, with the latter inequality following from being ∆L P r1, pA 2 ´B1 q{Ls after choosing ∆ :" ρ m ´v, for some v P p0, d 0 q and considering m large enough (dependent on L) so that the first inequality below holds.

ρ m ´v ď L ´1 pa 2 ´b1 qt Cρ m d 0 ď L ´1 pa 2 ´b1 qt μpΓ ρm q " A 2 ´B1 L .
We conclude (C4) assuming that the target satisfies the dynamical condition that suptm j pωq : ω P Ω, j " 0, . . . , Kpωq ´1u ": M Γ ă 8,

where the convention sup H :" 0 is adopted.

C5. Consider that there exists r ą 0, K, Q ą 1 and β P p0, 1s so that µ ω " h ω Leb forms a quasi-invariant family satisfying: i) pω, xq Þ Ñ h ω pxq is measurable, ii) K ´1 ď h ω | Brpxpωqq ď K a.s., and iii) h ω | Brpxpωqq P Hol β pM q with H β ph ω | Brpxpωqq q a.s.. See remark 8.

The following result says that theorem 2 applies to systems in the class (C1-C5) and, in particular, they have quenched limit entry distributions in the compound Poisson class with the needed statistical quantities presented explicitly.

Theorem 5. Let pθ, P, T ω , µ ω , Γq be a system satisfying conditions (C1-C5). Then the hypotheses of theorem 2 are satisfied with

α ℓ " ż Ω $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % h ω pxpωqq ż Ω h ω pxpωqqdPpωq " ´JT M ℓ´1 pωq ω pxpωqq ¯´1 ´´JT M ℓ pωq ω pxpωqq ¯´1 ȷ , if ℓ ď Kpωq h ω pxpωqq ż Ω h ω pxpωqqdPpωq " ´JT M ℓ´1 pωq ω pxpωqq ¯´1 ȷ , if ℓ " Kpωq `1 0 , if ℓ ě Kpωq `2 dPpωq.
The quantities α ℓ comply with (H9) and theorem 1, allowing for λ ℓ " pα ℓ ´αℓ`1 q{α 1 to hold.

In particular: @tą0, @pρ m q mě1 OE0 with ř mě1 ρ m q ă8 (for some 0ăqă1) one has 

ÝÑ mÑ8

CPPP tα 1 ,pλ ℓ q ℓ in PpMq.

We will prove the theorem after a few remarks on relevant subclasses within (C1-C5) and examples.

Remark 5. When the maps T v are piecewise expanding linear maps, they preserve Lebesgue and conditions (C1)-(C3),(C5) are immediately satisfied.

To illustrate condition (C4), or, better said, condition M Γ ă 8, we can look at deterministic targets xpωq " x. Two noticeable cases occur: i) Pure periodic points x: when there is some m ˚" m ˚pxq ě 1 so that x is (minimally) fixed by any concatenations of m ˚maps in pT v q u´1 v"0 . In this case, mpωq " m ˚, Kpωq " 8, m j pωq " m ˚and M Γ " m ˚.

It is convenient to represent these types of examples with diagrams (that can neglect topological information), where the deterministic target x is highlighted with a green ball, each arrow indicates how each map T v acts, blue cycles indicate cycles that avoid the target, purple paths indicate paths between the blue cycles and the target and yellow cycles indicate cycles that include the target (but are not obtained composing blue cycles with purple paths). ii) Pure aperiodic points x: when x is not fixed by any finite concatenation of maps in pT v q u´1 v"0 . In this case, mpωq " 8, Kpωq " 0 and M Γ " 0. Here are some compatible diagrams in this case: Explicit examples realizing these structures (or exhibiting these sorts of behaviors) can be tricky to construct 22 , especially when the diagram is infinite and one has to control the behavior of infinitely many iterates of the system 23 . Notice, however, that, once the maps are fixed, the set of pure aperiodic x's is generic, because it is given by M z ď pě1 ď pv 0 ,...,v p´1 qPt0,...,u´1u p FixpT v p´1 ˝. . . ˝Tv 0 q, which is co-countable.

For a finite diagram such as the last one in the first row, we can consider the following explicit example: Figure 6. A pure aperiodic system. 22 We are not claiming that every (possible) diagram compatible with (ii) can be realized by examples in the class (C1-C5). 23 In this direction, beta maps with irrational translation and rational (random) targets were studied in [START_REF] Atnip | Compound poisson statistics for dynamical systems via spectral perturbation[END_REF]. They do not fit exactly in the class (C1-C5) because they do not have subjective branches. However, they can be dealt with here by considering their action on S 1 rather than on r0, 1s. See remark 7.

iii) Hybrid. This is the general case. They can combine the behavior in (i) and (ii) while still verifying M Γ ă 8. Here are some possible diagrams in this case: Notice that whenever a purple path occurs arbitrarily large periods can be formed. But this can occur without purple paths as well, as in the first diagram. Moreover, this can occur both with infinite diagrams (the first two) and with finite diagrams (the last two). Remark 6. It is not being claimed that systems as in (iv) are not covered by the theory presented in theorem 2. It is just being said that systems as in (iv) are not treated with the techniques used in this section (to calculate underlying α ℓ 's).

Proof of theorem 5. It is enough to check that conditions (C1)-(C5) imply the hypotheses (H1-H7, H9-H10) of section 2.4.

Here we check just (H9) and the rest are left for the reader (who should choose B R py ω,n k q " p0, 1q, d " 0, Ć ω n , `Ć ω n " H, d 0 , d 1 " 1, κ P R ą1 , p P R ą1 ). We start calculating α ℓ 's. Consider ℓ ě 1 and ω P Ω (eventually taken in a set of full measure).

Consider

L ě M ℓ^Kpωq pωq.

Then take ρ 0 pω, Lq " ρ 0 pπ 0 pωq, . . . , π L pωqq small enough so that ρ ď ρ 0 pω, Lq implies T i ω B ρ pxpωqq X B ρ pxpθ i ωqq " H, @i P r1, LsztM k pωq : k P r1, Kpωqsu,

which can be guaranteed noticing that a) returns occur precisely in the instants tM k pωq : k P r1, Kpωqsu and not in between (by minimality), b) T i ω is continuous on xpωq (@i ě 1), a.s., because, by (C4), one has

xpωq P tx 0 , x 1 u Ă 8 č l"1
A ω l Ă A ω i , a.s.

Because of the previous constraint, one could have started with L's of the form L " M q L ^Kpωq pωq, q L ě ℓ (so still satisfying equation ( 25)), in the sense that other choices of L are superfluous from the viewpoint of the quantity we will study, Z ω,L Γρ . Then one could restrict ρ 0 pω, Lq further so that ρ ď ρ 0 pω, Lq implies:

T M k´k 1 p θ M k 1 pωq ω q hkkkkkikkkkkj M k pωq´M k 1 pωq θ M k 1 pωq ω B ρ pxpθ M k 1 pωq ωqq Ă A θ M k pωq ω
M q L ^Kpωq pωq´M k pωq `xpθ M k pωq ωq ˘, @k 1 , k P r0, q L ^Kpωqs k 1 ď k , The point with condition ( 27) is to say that, ρ is so small that, starting from any pre-intermediary time M k 1 pωq and going to any post-intermediary step M k pωq, the initial ρ-sized ball grows under iteration up to time M k pωq but still fitting inside a partition domain (thus an injectivity domain) of the map evolving from time M k pωq until the end, M q L ^Kpωq . In particular, the image balls won't break injectivity (or wrap around). Most importantly, it is implied that for any z P B ρ pxpωqq: ´Iω,ρ 0 pzq, I ω,ρ M 1 pωq pzq, . . . , I ω,ρ M q L ^Kpωq pωq pzq īs a binary sequence starting with a batch of 1's followed by a (possibly degenerate) batch of 0's (e.g. 11100, 1111 or 10000).

Then, for ω, L and ρ as above, one has: αω ℓ pL, ρqµ ω pΓ ρ pωqq " µ ω pZ ω,L´1 ˚Γρ ě ℓ ´1, I ω,ρ 0 " 1q

" µ ω ¨ÿ jPtM k pωq:kPr1,q L ^Kpωqsu I ω,ρ j ě ℓ ´1, I ω,ρ 0 " 1 '

" # µ ω ´Iω,ρ 0 " 1, I ω,ρ M 1 pωq " 1, . . . , I ω,ρ M ℓ´1 pωq " 1 ¯, if ℓ ´1 ď Kpωq 0 , otherwise

" # µ ω ´Iω,ρ M ℓ´1 pωq " 1 ¯, if ℓ ´1 ď Kpωq 0 , otherwise , Remark 7. As it comes to M " r0, 1s, the use of surjective branches in (C1) was to facilitate as much as possible the presentation of covers and cylinders in (H2) below. But these can be still presented without surjective branches. For example, one could present them for the beta maps T 0 pxq " 1{2 `2x (mod 1) and T 1 pxq " 1{2 `3x (mod 1). On the other hand, to have the type of decay against Lipschitz test functions we will be after in (H7), the interval maps ought to have subjective branches (otherwise the good functional space becomes bounded variation instead of Lipschitz), which is not the case of the previous beta maps. In this situation, one has to resort to seeing these beta maps as acting smoothly in M " S 1 , and cylinders will not anymore mark regions of continuity/differentiability, but will still mark injective regions.

Remark 8. Condition (C5) was included to make transparent what is really used in the argument above. But one should be aware that conditions (C1-C3) suffice to conclude that densities are a.s. bounded away from 0 and 8 and a.s. admit a uniform Holder constant (on the entire manifold M ). See [START_REF] Rousseau | Exponential law for random subshifts of finite type[END_REF] Example 21. This is stronger than (C5), which then can, technically, be omitted from the list of conditions. Now we concentrate on analyzing the these conclusions of theorem 5 refine (or how α ℓ 's in equation ( 29) simplify) when additional conditions are considered.

Corollary 1. Consider the assumptions of theorem 5 and assume further that Kpωq " 0 a.s.. Then

α ℓ " # 1, if ℓ " 1 0, if ℓ ě 2 , (31) 
and CPD in the limit theorem boils down to a standard Poisson. 

2. 3 .

 3 Statistical quantities. Notation. Write lim LÑ8 lim ρÑ0 apL, ρq for the coinciding value of lim LÑ8 lim ρÑ0 apL, ρq and lim LÑ8 lim ρÑ0 apL, ρq, when they do exist and coincide. Denote also àpLq :" lim ρÑ0 apL, ρq and ápLq :" lim ρÑ0 apL, ρq.

  j ě 1q `op1q ¸" e ´tα 1 , P-a.s..

CPD tα 1 ,

 1 pλ ℓ q ℓ pnq p@n ě 0q, and Y ω,tt{μpΓρ m qu Γρ m ˚µω P-a.s.

Figure 1 .

 1 Figure 1. (a) Pure one-periodic diagram.Figure 2. (b) Pure two-periodic diagram.

Figure 2 .

 2 Figure 1. (a) Pure one-periodic diagram.Figure 2. (b) Pure two-periodic diagram.
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 3 Figure 3. (a) A pure one-periodic system. 21

Figure 4 .

 4 Figure 4. (b) A pure two-periodic system.

Figure 5 .

 5 Figure 5. Some pure aperiodic diagrams.

Figure 7 .

 7 Figure 7. Some hybrid diagrams

Figure 8 .

 8 Figure 8. A hybrid system.

Figure 9 .

 9 Figure 9. Some non-examples diagrams.
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 27 which can be guaranteed noticing thata) T M k´k 1 pθ M k 1 pωq ωq θ M k 1 pωq ω xpθ M k 1 pωq ωq " xpθ M k´k 1 pθ M k 1 pωq ωq θ M k 1 pωq ωq " xpθ M k pωq ωq, with the later in tx 0 , x 1 u pC4q Ă Ş 8 l"1 A θ M k pωq ω l Ă A θ M k pωq ω M q L ^Kpωq pωq´M k pωq , b) T M k´k 1 pθ M k 1 pωq ωq θ M k 1 pωq ωis continuous at xpθ M k 1 pωq ωq, because, again by (C4), one has xpθ M k 1 pωq ωq P A θ M k 1 pωq ω M k´k 1 pθ M k 1 pωq ωq .

Proof. Immediate. ■ Corollary 2 .

 2 Consider the assumptions of theorem 5 and assume further that P is Bernoulli, Kpωq " 8 a.s. and h ω pxpωqq K ´JT m j pωq θ M j pωq ω pxpθ M j pωq ωqq ¯j .24 Then α ℓ " pD ´1qD ´ℓ, with D ´1 :"ż Ω rJT m 0 pωq ω xpωqs ´1dPpωq,and the CPD in the limit theorem boils down to a Polya-Aeppli (or geometric) one.Proof. Notice that Kpωq " 8 a.s. and the independence of h ω pxpωqq from the rest implies α ℓ " θ M j pωq ω pxpθ M j pωq ωqq ı ´1 dPpωq,

  ď sup

	3.3 (Distortion on good cylinders). Dd ě 0, DC ą 1, @n ě 1: (denoting ξ " φpdompφqq)
					ess sup ωPΩ	sup φP `ÌBpT n ω q	sup x,yPξ	J φ pxq J φ pyq	ď Cn d ,
	where		J φ pxq "	dφ ˚"µ θ n ω | dompφq dµ ω | φpdompφqq	‰	pxq "	dφ ˚"µ θ n ω | T n ω ξ dµ ω | ξ	‰	pxq.
	3.4 (Backward contraction on good cylinders). Dκ ą 1, DD ą 1, @n ě 1: (denoting
	ξ " φpdompφqq)						
	ess sup ωPΩ	sup φP `ÌB pT n ω q	sup zPdompφq	sup vPTzM }v}"1	|Dφpzqv| ď Dn ´κ, i.e., Dn κ ď ess inf ωPΩ	inf φP `ÌB pT n ω q	inf xPξ	}v}"1 inf vPTxM	|DT n ω pxqv|,
	and, in particular,						
					ess sup	sup		diampξq ď Dn ´κ.
					ωPΩ	φP `ÌBpT n ω q
										ωPΩ	sup ξPC ω n	sup xPξ	sup vPTxM	|DT n ω pxqv| ď 8.
										}v}"1
	3.2 (Bounded derivatives on acceptable cylinders). @n ě 1:
				sup ωPΩ	sup ξPC ω n	sup xPξ	sup vPTxM	|DT n ω pxqv| ": a n ă 8.
								}v}"1	

The set M can be given the vague topology (with C K pr0, 1sq test functions, see[START_REF] Resnick | Extreme values, regular variation, and point processes[END_REF] section 3.4), making it a complete separable metric space, while PpMq is another topological space with the weak topology (with C b pMq test functions, see[START_REF] Resnick | Extreme values, regular variation, and point processes[END_REF] section 3.5).

Notice that, by L-monotonicity, the outer limits always exist provided that the inner ones do.

See footnote 2.

Cardinalities behave as in (H2.1).

See definition 4.[START_REF] Carney | Extremes and extremal indices for level set observables on hyperbolic systems[END_REF] See footnote 1. 9 See definition 5.

Although L need not divide N , we pretend this is the case, for simplification purposes, i.e. to neglect possible remainder terms associated with the fractional part -which should not play a role in the asymptotics (of either the error and leading terms).

See footnote 10.

In the present passage, the a.s. validity of } φω 1 r } Lip d M ď a L´1 2 {r 2 would be enough, but, after recalling the argument of lemma 2 we see that it actually holds for every ω. The validity for every ω was important back then, but not here.

Notice that the initial L 1 -strip of the first component of the original summation has already been singled out inside pII rest q.

Adapting the argument of lemma 3 item (III) to the new term, we see that the new P-expectation is tL α´1 , but the variance lemma used therein, lemma 2, would need to be adapted as well, what we omitted.

This occurs when, for example, when h ω " 1 a.s., or much more generally, when h ω depends only on the past entries of ω (see, e.g.,[START_REF] Ledrappier | Entropy formula for random transformations[END_REF] prop.1.2.3 and [30] prop. 3.3.2).

µ ω pZ ω j ě 1, Z ω k ě 1q

where we reverse the double sum and single out the k " j `1 terms, to get

µ ω pZ ω k´1 ě 1, Z ω k ě 1q ": pIq `pIIq

To estimate pIq we notice that:

µ ω `pT i ω q ´1Γ ρm pθ i ωq X pT l ω q ´1Γ ρm pθ l ωq ˘pl ą iq

µ ω 1 ˆΓρm pω 1 q X pT l´i ω 1 q ´1Γ ρm pθ l´i ω 1 q X `C µ ω 1 ˆΓρm pω 1 q X pT l´i ω 1 q ´1Γ ρm pθ l´i ω 1 q X " `Ć ω 1 l´i Y Ć ω 1 l´i ȷ"

:pI good q `pI bad q

where ω 1 :" θ i ω.

To estimate pI good q we begin evaluating the following:

where, from (H3.3), φ P IBpT l´i ω 1 q implies µ ω 1 | φpdompφqq " J φ ´1 " φ ˚pµ θ l´i ω 1 | dompφq q ‰ , and so ď ÿ ξ as above

φ ˚pµ θ l´i ω 1 | dompφq q ‰‰ `φpdompφqq X pT l´i ω 1 q ´1Γ ρm pθ l´i ω 1 q "J φ ´1"

pl ´iq d ι ´1µ θ l ω pΓ ρm pθ l ωqq ÿ ξ as above

ď pl ´iq d ι ´1µ θ l ω pΓ ρm pθ l ωqqN µ ω 1 ˜ď ξ as above ξ (H3.4)

ď pl ´iq d ι ´1µ θ l ω pΓ ρm pθ l ωqqN C 0 pρ m `Dpl ´iq ´κq d0 À µ θ l ω pΓ ρm pθ l ωqqpl ´iq d " ρ m d0 `pl´iq ´κd0 ‰ .

Then pI good qď

where,

for each l fixed, as i runs, we have l ´i P rkL ´jL ´L `1, kL ´jL `L ´1s, so

where s P rL `1, 3∆Ls 17 , so

where for the first term in the square bracket we have used that, for ζ ą 1, ř 8 n"m n ´ζ À m ´ζ`1 together with d ´κd 0 ă ´1, which is guaranteed by (H10.3), whereas for the second we have used that u d is increasing and the summation interval is bounded above by 3∆L.

We will leave pI bad q to the end.

For pIIq, we consider L 1 ă L and proceed as follows

:pII rest q `pII good q `pII bad q.

The term pII rest q will not be improved, whereas the term pII good q is approached just like pI good q, as follows:

where, for each l fixed, as i runs, we have l ´i P rL 1 `1, 2L ´1s, so

The interval where s ranges has length 2L and it is translated by L when j moves one unit, therefore the original and the new interval overlap by half, so eventual repetitions are more than compensated by a factor of two.

Now we combine pI bad q and pII bad q and their domain of summation 18 to see that

Combining the bounds of pI good q and pII good q, we conclude that

5.5. Estimating the error R 3 . Here we use (H6.1) to see that

which, noticing that ∆L ď p∆Lq d`1 , reveals to be bounded above by R 2 ω,m pN m , L, ∆ m q.

5.6. Controlling the total error. Put r " ρ m w (w ą 1) and

where in the first line of the RHS accounts for both R 1 and R1 . Now we fine-tune parameters v P p0, d 0 q (∆ " ρ m ´v) and w ą 1 (r " ρ m w ). In the last equation, we need the exponents accompanying ρ to be strictly positive. In particular, we need w ą β `d1 η _ 1, pv ´2w ´d1 ą 0 and d 0 ´vpd `1q ą 0.

The space of solutions pw, vq P p1, 8q ˆp0, d 0 q to those inequalities is non-empty triangle

, which is guaranteed by (H10.2). Let's fix any such solution pw, vq.

We will take double limits of the type lim LÑ8 lim mÑ8 on the RHS equation [START_REF] Freitas | Enriched functional limit theorems for dynamical systems[END_REF]. To fist take lim mÑ8 , we use that, by lemma 3,

and, by similar arguments 19 ,

Finally, using hypothesis (H4.2) and noticing that d ´κd 0 `1 ă 0 (by (H10.3)) and α ´1 ă 0 (by design), we conclude that the RHS of equation ( 21) under the double limit lim LÑ8 lim mÑ8 goes to 0. The same thing occurs if we adopt the double limits lim LÑ8 lim mÑ8 , lim LÑ8 lim mÑ8 and lim LÑ8 lim mÑ8 . Therefore lim

¸ˇˇˇˇ" 0, P-a.s..

Convergence of the leading term to the compound Poisson distribution.

It remains to show that µ ω ´řN 1 ´1 j"0 Zω j " n ¯to CPD tα 1 ,pλ ℓ q ℓ pnq. Due to the independence and distributional properties of the Zω j 's (see theorem 4):

With the positive separation ∆L, we can follow the treatment of R 1 ω,m pN, L, ∆q in section 5.2: a) the function not composed with the dynamics should be given a Lipschitz approximation (and it is the same function that appeared before), b) the function composed with the dynamics is more complicated, but we only care about its sup norm, which is 1 anyway, c) quenched decay of correlations can be applied again, proceeding just as before.

To control the singled out term u " 0 one repeats the strategy in the proof of theorem 4 with what we did above to control the principal part. Using the notation from the proof of theorem 4, errors with "'s will appear, only the first of which still matters at the end (the others are dominated by the respective errors without "'s). We omit this part.

The bound of p△q 2 , just like in the proof of theorem 2, is estimated from above by

which is pretty much identical to R 2 ω,m pN, L, ∆q and can be controlled just like we did in section 5.4.

We also omit the discussion of p△q 3 , which should be treated analogously. So the error terms associated with p△q end up being treated just like the errors already controlled in the proof of theorem 2. Now we consider p▽q. Repeating the telescopic argument once more, we have p▽q ď

´1"q´uq ˇˇ.

The latter expression is essentially the same of that encountered at the end of the telescopic argument in the proof of theorem 4. Therefore it can be bounded in the same manner, with errors R1 , R 1 , R 2 and R 3 , which can then be controlled just as in the proof of theorem 2.

Finally, using independency and section 5.7, the leading term appearing on the second part of equation 23 converges, as desired, to CP D pb 1 ´a1 qtα 1 ,pλ ℓ q ℓ pn 1 q ¨CP D pb 2 ´a2 qtα 1 ,pλ ℓ q ℓ pn 2 q.

Application: random piecewise expanding one-dimensional systems

We consider a class of random piecewise expanding one-dimensional systems pθ, P, T ω , µ ω , Γq prescribed by the following conditions. Elements in this class immediately comprise a system as in the general setup of section 2.1 and will check that they also comprise a system as in the working setup of section 2.4 (i.e., satisfying hypotheses (H1-H10)).

C 1. Consider finitely many maps of the unit interval (or circle), T v : M Ñ M , for v P t0, . . . , u ´1u. For ease of exposition, say that u " 2. They carry a family of open intervals A v " pζ v,i q Iv i"1 (I v ă 8) so that M z

For n ě 1, let A ω n " Ž n´1 j"0 pT j ω q ´1A π j pωq . For n " 0, we adopt the convention A ω 0 " tp0, 1qu (@ω P Ω). Write A ω n " Ť ζPA ω n ζ (co-finite) and, for x P A ω n , denote by A ω n pxq the element of A ω n containing x. In particular, x P A ω n implies that x is a point of differentiability for T n ω . C2. Let Ω " t0, 1u Z . Set T ω :" T π 0 pωq , where π j pωq " ω j pj P Zq. Consider θ : Ω Ñ Ω to be the bilateral shift map. Ă N ě1 ), using the conventions m ´1pωq :" 0 and max H :" 0, letting

In particular, writing M j pωq :" ř j´1 k"0 m k pωq for 1 ď j ď Kpωq (with M 0 pωq :" 0), one has:

Þ Ý ÝÝÝÝÝ Ñ xpθ M 3 pωq ωq . . . . 20 The intersection Ş 8 l"1 A ω l is a co-countable set (@ω P Ω).

so that

Notice that

where, given ϵ ą 0 (for ω and L chosen as above), we've considered ρ ď ρ 1 pω,ϵq ă r (see (C5)), with ρ 1 pω, ϵq small enough so that for any ρ ď ρ 1 pω, ϵq:

h ω pzq " h ω pxpωqq `Opϵq, @z P B ρ pxpωqq and `JT M ℓ pωq ω pzq ˘´1 " `JT M ℓ pωq ω pxpωqq ˘´1 `Opϵq, @z P B ρ pxpωqq. We can write

We can use (C1) (finitely many maps and uniformly bounded second derivatives), (C4) (uniformly bounded finite-periods) and (C5) (uniform Holder constants for the densities) to pass to controls that are uniform on ω and then integrate: for any ϵ ą 0, L ě L ˚:" ℓM Γ and ρ ď ρ ˚pL, ϵq :" min pv 0 ,...,v L q P t0,1u L`1 ρ 1 pv 0 , . . . , v L q ^ess inf ω ρ 1 pω, ϵq P p0, 1s, one has

then taking iterated limits of the type lim ϵ lim L lim ρ one finds that

The following diagram helps one to visualize how the integrand in equation ( 29), with the factor hωpxpωqq ş Ω hωpxpωqqdPpωq suppressed, changes a) for ω's with varying amount of periodicity (read the different lines), b) as ℓ grows (read the different columns). 

Having found that α ℓ 's exist and have explicit representation, it remains to check that α 1 ą 0 and ř 8 ℓ"1 ℓ 2 α ℓ ă 8. It holds that α 1 ą 0 because the quantity found in the first column of diagram [START_REF] Kifer | Random dynamics[END_REF] is bounded below by 1 ´1{d min ą 0. Moreover, considering the integrand of equation ( 29), we see that α ℓ is at most p1{d min q ℓ´1 , therefore

This concludes that conditions (C1)-(C4) imply the hypotheses of theorem 2 and that the associated α ℓ 's satisfy (H9) and the hypotheses of theorem 1.

Let us finally notice that in this case, where d 0 , d 1 , η, β " 1 and p " 8 (i.e., can be taken arbitrarily large), qpd 0 , d 1 , η, β, pq, reduces to 1. This is because the system of inequalities appearing at end of proof of lemma 2 reduces to only two (1 ą α and w ą 2 for pα, wq P p0, 1q ˆp1, 8q) which admit a solution that opens a margin of (at least) 1 in both equations. ■ then, after we make the point in I) that ´ω Þ Ñ JT m j pωq θ M j pωq ω pxpθ M j pωq ωqq ¯j is independent under P, we will find that

which, we will argue in II), equals

where D ´1 :" ş Ω rJT m 0 pωq ω xpωqs ´1dPpωq, as desired. Let us make the points that are missing. I) Notice first that Ppm 0 pωq " i 0 , m 1 pωq " i 1 q " Ppm 0 pωq " i 0 , m 0 pθ i 0 ωq " i 1 q " Pp1 Per i 0 pΓq 1 θ ´i0 Per i 1 pΓq q " Pp1 Per i 0 pΓq qPp1 θ ´i0 Per i 1 pΓq q " Ppm 0 pωq " i 0 qPpm 0 pωq " i 1 q, where the first equality in the second line is because pπ j q's are independent under P and the indicator functions can be expressed in terms of disjoint blocks of pπ j q's, namely π 0 , . . . , π i 0 ´1 and π i 0 , . . . , π i 0 `i1 ´1. On the other hand

Ppm 0 pωq " i 0 qPpm 0 pωq " i 1 q " Ppm 0 pωq " i 1 q.

So combining the two previous chains of equality, we find that m 0 and m 1 are independent, i.e., m 0 K m 1 .

Once again, since pπ j q j is an independency under P, whenever two random variables X and Y can be expressed as X " ϕ ˝pπ 0 , . . . , π i 0 ´1q and Y " ψ ˝pπ i 0 , . . . , π i 0 `i1 ´1q, then X K Y . Similarly for π instead of π. This is the case for pJT i 0 ¨pxp¨qq, 1 m 0 p¨q"i 0 q K pJT i 1 θ i 0 ¨px ˝θi 0 p¨qq, 1 m 1 p¨q"i 1 q. Therefore P ´!ω :

On the other hand P ´!ω :

" JT where we have used the last equality in I). ■
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