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We obtain new bounds, pointwise and on average, for Dedekind sums spλ, pq modulo a prime p with λ of small multiplicative order d modulo p. Assuming the infinitude of Mersenne primes, the range of our results is optimal. Moreover, we relate high moments of Lp1, χq over subgroups of characters to some correlations of Dedekind sums, and use recent results of the second and third author to study these correlations.

# tξu ´1{2, if ξ P RzZ, 0, if ξ P Z.

Historically, Dedekind sums appeared in the context of modular forms to describe the transformation formula for the Dedekind eta function [START_REF] Rademacher | Dedekind sums[END_REF]. Since the seminal works of Vardi [START_REF] Vardi | A relation between Dedekind sums and Kloosterman sums[END_REF]25], it is known that the distribution of the ratio spa, bq{ log b converges to the Cauchy distribution when averaged over pairs gcdpa, bq " 1 and 1 ď b ď B, with B Ñ 8, see also [3,12]. In particular, Dedekind sums are relatively small on average, but can also seldom take very large values which are responsible for the asymptotic of the moments, see, for instance, [8-10] and references therein. Both the study of the distribution of values of Dedekind sums [START_REF] Aistleitner | On the distribution of partial quotients of reduced fractions with fixed denominator[END_REF][START_REF] Bettin | Limit laws for rational continued fractions and value distribution of quantum modular forms[END_REF] as well as the study of restricted averages of Dedekind sums [START_REF] Minelli | Bias in the number of steps in the Euclidean algorithm and a conjecture of Ito on Dedekind sums[END_REF]21] regained a lot of interest in recent years, in particular due to their applications to the analysis of some number theoretic algorithms. Let us also mention that Lemke Oliver and Soundararajan [START_REF] Lemke Oliver | The distribution of consecutive prime biases and sums of sawtooth random variables[END_REF] have discovered a very interesting link between Dedekind sums and the distribution of primes.

We first observe that by the Cauchy-Schwarz inequality, we have the following trivial bound: |spa, bq| ď sp1, bq " pb ´1qpb ´2q 12b ă b 12 .

Here we are interested in non-trivial bounds on the sums spλ, pq depending on the multiplicative order of λ modulo a prime p. In particular, this question is motivated by the connection with the second moments of Dirichlet L-functions Lp1, χq over multiplicative characters χ of a given order, as established in [16][START_REF] Louboutin | Mean square value of L-functions at s " 1 for non-primitive characters, Dedekind sums and bounds on relative class numbers[END_REF][START_REF] Conrey | Mean values of Dedekind sums[END_REF][19]. A link between the size of spa, bq and the order of a modulo b was first established by Louboutin in [16, Lemma 6], which implies that for an odd

(1.1) b " pa d ´1q{pa ´1q
with an integer a ‰ 0, ˘1 and a prime d, we have spa, bq " pb ´1qpb ´a2 ´1q 12ab " O `b1´1{pd´1q ˘.

It is easy to see that d is the order of a modulo b. More precisely, let F p be the multiplicative group of the finite field F p of p elements, and let X p be the group of multiplicative characters of F p .

Given an even integer m with m | p´1 and a multiplicative subgroup G m Ď F p of index m and thus of order pp ´1q{m, we denote by X p,m the group of multiplicative characters of F p which are trivial on G m . Furthermore, assuming that pp ´1q{m is odd, we consider the set of m{2 odd characters in X p,m , that is, the set X ṕ,m " tχ P X p,m : χp´1q " ´1u .

We also set X ṕ " X ṕ,p´1 . We now define the moments

M ν pp, mq " 2 m ÿ χPX ṕ,m |Lp1, χq| ν , ν " 1, 2, . . . ,
where Lps, χq is the Dirichlet L-function associated with a multiplicative character χ P X p .

By [START_REF] Washington | Introduction to cyclotomic fields[END_REF]Chapter 4], there is a close connection between the second moment M 2 pp, mq and the relative class number of the imaginary subfield of the cyclotomic field Q pexpp2πi{pqq of degree m over Q. In turn, by a result of Louboutin [16, Theorem 2], we have

(1.2) M 2 pp, mq " π 2 6 ˆ1 ´3 p `2 p 2 `2 p Spp, mq ˙,
where Spp, mq "

ÿ λPGm λ‰1
spλ, pq.

Hence the relation (1.2) and the above connection to the class number motivates studying the size of spλ, pq on elements λ P F p of given order as well as the size on average over a subgroup of F p . Moreover, using asymptotic formulas for M 2 pp, mq from [START_REF] Munsch | Moments and non-vanishing of L-functions over subgroups[END_REF], one immediately obtains upper bounds for Spp, mq. Here we derive several new results which go beyond this link.

1.2. Summary of our results and methods. We first improve a pointwise bound from [19] on Dedekind sums spλ, pq, provided that λ is of small multiplicative order in F p , see Corollary 2.2 below. It could be in principle used to improve the error term in the asymptotic formula for M 2 pp, mq, provided that m is not too small. However, the result is now superseded by a much more general result of the second and third authors [22, Theorem 2.1] obtained via different methods. It may have other applications, though. Under the assumption of the infinitude of Mersenne primes, the ranges where these results provide non-trivial estimates are optimal, see Remark 2.3.

Next, we generalise the formula (1.2) to higher moments relating M 2k pp, mq to certain correlations between Dedekind sums (see, for example, Theorem 2.4 below), and use the results of [START_REF] Munsch | Moments and non-vanishing of L-functions over subgroups[END_REF] to get information on these sums.

Our methods involve the connection between Dedekind sums and continued fractions established independently by Barkan [4] and Hickerson [12] (see also a more general result of Knuth [START_REF] Knuth | Notes on generalized Dedekind sums[END_REF]).

1.3. Notation and conventions. We adopt the Vinogradov notation !, that is,

A ! B ðñ B " A ðñ A " OpBq ðñ |A| ď cB
for some constant c ą 0 which sometimes, where obvious, may depend on the integer parameter k ě 1, and is absolute otherwise.

For a finite set S, we use #S to denote its cardinality. We also write }x} to denote the distance from a real x to the closest integer and, as usual, φpdq denotes the Euler function. provided that λ is of order d ě 3 in F p . Here we remove the factor plog pq 2 , which gives an optimal range with respect to d where one can hope for getting a non-trivial bound on spλ, pq, see Remark 2.3. We start with the following result about continued fractions of rationals with prime denominators, which might be of independent interest. Theorem 2.1. Let p be a prime, and assume that λ P F p has multiplicative order d ě 3 in F p . The continued fraction expansion tλ{pu " r0; a 1 , . . . , a n s satisfies

n ÿ i"1 a i ď 13.44p 1´1{φpdq .
Combining Theorem 2.1 with Lemma 3.2 below, we immediately derive the following bound, which establishes [ It may be useful to compare this when G m " t1u with a result of Alkan [2, Theorem 2] on moments of Lp1, χq (rather than their absolute values) modulo a composite q. See also [START_REF] Bayad | Mean values of L-functions and Dedekind sums[END_REF]28] for works in the same spirit. Let τ k denote the k-fold divisor function, that is,

τ k pnq " ÿ n 1 ¨¨¨n k "n n i ě1 1.
As usual, for k " 2 we write τ " τ 2 for the usual divisor function.

Let us recall that by [START_REF] Munsch | Moments and non-vanishing of L-functions over subgroups[END_REF]Theorem 2.1] we know that for any κ ă 1 we have (2.2) M 2k pp, mq " apkq `Opp ´κ{φpdq `p´1{4`op1q q, where apkq "

`8 ÿ n"1 τ 2 k pnq n 2 .
Combining Theorem 2.4 with (2.2) in the trivial case of m " p ´1, that is, for G m " t1u, implies p´1 ÿ t 1 ,...,t k´1 "1 spt 1 , pq ¨¨¨spt k´1 , pqs pt 1 ¨¨¨t k´1 , pq " ˆapkq 2π 2k `op1q ˙pk .

(2.3)

In the general case, Theorem 2.4 and the relations (2.2) and (2.3), yield the following result.

Corollary 2.5. Let G m Ď F p be of index m and of odd order d " pp ´1q{m such that φpdq " oplog pq. Then,

ÿ λPGm λ‰1 p´1 ÿ t 1 ,...,t k´1 "1 spt 1 , pq ¨¨¨spt k´1 , pqs pλt 1 ¨¨¨t k´1 , pq " opp k q.
In fact, we see from (2.2) that the bound of Corollary 2.5 is of magnitude Opp k´κ{φpdq `pk´1{4`op1q q with any κ ă 1.

In the case k " 2, it is possible to give an independent proof of Corollary 2.5 using the pointwise bound of Corollary 2.7 below on correlations, which might be of independent interest. As in the case of k " 1, we start with a result on the partial quotients of the continued fraction expansions of two multiplicatively related rational numbers.

Theorem 2.6. Let p be a prime and λ, t P F p , and assume that λ has multiplicative order d ě 3 in F p . Then the continued fraction expansions tλt{pu " r0; a 1 , . . . , a n s and tt{pu " r0; b 1 , . . . , b ℓ s satisfy

˜n ÿ i"1 a i ¸˜ℓ ÿ j"1 b j ¸ď 26.88p 2´1{φpdq .
As before, combining Theorem 2.6 with Lemma 3.2 below leads to the following bound.

Corollary 2.7. Let p be a prime and λ, t P F p , and assume that λ has multiplicative order d ě 3 in F p . Then |spλt, pqspt, pq| ă 3 16 p 2´1{φpdq .

Remark 2.8. The bounds of Theorem 2.6 and Corollary 2.7 are nontrivial (in other words, ř n i"1 a i ř ℓ j"1 b j " opp 2 q and spλt, pqspt, pq " opp 2 q) in the range φpdq " oplog pq.

Next, for integers k 1 , k 2 mod p, we define the following averaged correlations of Dedekind sums S λ,1 ppq ! p 2´1{p2φpdqq `p7{4`op1q .

S k 1 ,k 2 ppq " p´1 ÿ t"
On the other hand, we prove that for given integers k 1 , k 2 ě 1 which are not too large, the Dedekind sums spk 1 t, pq and spk 2 t, pq have a large correlation when averaged over t modulo p, thus the trivial bound (2.4) is the best possible. This is directly related to the twisted fourth moment of L-functions over the full group of characters (see the formula (4.4) below).

Theorem 2.9. For any fixed ε ą 0 and arbitrary coprime integers

k 1 ě k 2 ě 1 with k 3 1 k 2 2 ď p 1´ε we have, as p Ñ 8, S k 1 ,k 2 ppq " p1 `op1qq p 2 π 4 8 ÿ n"1 τ pk 1 nqτ pk 2 nq k 1 k 2 n 2 .

Preliminaries

3.1. Dedekind sums and continued fractions. We recall that by a result of Barkan [4,Equation (13)] and Hickerson [12, Theorem 1] we have the following connection between Dedekind sums and continued fractions.

Lemma 3.1. Let 1 ď a ă b be integers, and let a{b " r0; a 1 , . . . , a n s be the continued fraction expansion with a n ą 1. Then

spa, bq " p´1q n ´1 8 `1 12 ˜a b `p´1q n`1 r0; a n , . . . , a 1 s `n ÿ i"1 p´1q i`1 a i ¸.
In fact, we only need the following upper bound.

Lemma 3.2. Let 1 ď a ă b be integers, and let a{b " r0; a 1 , . . . , a n s be the continued fraction expansion with a n ą 1. Then |spa, bq| ď 1 12

n ÿ i"1 a i .
Proof. Note that a{b and r0; a n , . . . , a 1 s both lie in the interval r0, 1s. For even n, Lemma 3. Proof. Clearly Φ d pλq " 0 (in F p ), where Φ d pXq P ZrXs is the d-th cyclotomic polynomial. We now fix an integer pair ph, mq ‰ p0, 0q with hλ " m pmod pq. Since d ě 3, the polynomial Φ d has no rational roots (as all its roots are roots of unity of order d). Therefore, A " h φpdq Φ d pm{hq is a non-zero integer.

On the other hand,

A " h φpdq Φ d pm{hq " h φpdq Φ d pλq " 0 pmod pq. 

p 1{φpdq ď |h| `|m| " |h| `p › › › › hλ p › › › › .
We can certainly assume that 1 ď λ ď p ´1. Let p i {q i " r0; a 1 , . . . , a i s denote the convergents to λ{p " r0; a 1 , . . . , a n s. From the general properties of continued fractions, see, for example, [11, Theorem 164], we have ˇˇˇλ p ´pi´1 q i´1 ˇˇˇď 1 q i´1 q i " 1 q i´1 pa i q i´1 `qi´2 q ď 1 a i q 2 i´1 , hence }q i´1 λ{p} ď 1{pa i q i´1 q. In particular, for any 1 ď i ď n, (4.1)

p 1{φpdq ď q i´1 `p › › › › q i´1 λ p › › › › ď q i´1 `p a i q i´1 .
Consider the following two cases. If q i´1 ď p 1{φpdq {2, then (4.1) implies that

a i ď 2p 1´1{φpdq q i´1 .
If q i´1 ą p 1{φpdq {2, then a i ď q i {q i´1 ď p{q i´1 .

Therefore

n ÿ i"1 a i " n ÿ i"1 q i´1 ďp 1{φpdq {2 a i `n ÿ i"1 q i´1 ąp 1{φpdq {2 a i ď n ÿ i"1 2p 1´1{φpdq q i´1 `n ÿ i"1 q i´1 ąp 1{φpdq {2 p q i´1 .
Using the inequality q j`i´1 ě q j F i , where F i are the Fibonacci numbers, which is immediate from the identity q i`2 " a i`2 q i`1 `qi , we derive Summing over characters and using orthogonality relations, we derive For any 1 ď i ď k ´1, we make the change of variables y i " x i t i . Hence, for every λ P G m we obtain 

n ÿ i"1 a i ď ˜4 8 ÿ i"1
p k π 2k ÿ χPX ṕ,m |Lp1, χq| 2k " ÿ χPXp,m p´1 ÿ x 1 ,...,x k "1 y 1 ,...,y k "1 k ź i"1 ˆxi p ˙ˆy i p ˙χpx i qχpy i q " #X p,m
p 1{φpdq ď |h 2 m 1 | `|h 1 m 2 | " |h 2 |p › › › › h 1 λt p › › › › `|h 1 |p › › › › h 2 t p › › › › .
Let p i {q i " r0; a 1 , . . . , a i s denote the convergents to tλt{pu, and r p j {r q j " r0; b 1 , . . . , b j s the convergents to tt{pu. In particular, for any 1 ď i ď n and 1 ď j ď ℓ, we derive

p 1{φpdq ď r q j´1 p › › › › q i´1 λt p › › › › `qi´1 p › › › › r q j´1 t p › › › › ď 2p max " r q j´1 a i q i´1 , q i´1 b j r q j´1
* .

Taking the reciprocals yields 2p 1´1{φpdq ě min " a i q i´1 r q j´1 , b j r q j´1 q i´1 * .

Letting

H " " pi, jq P r1, ns ˆr1, ℓs :

a i q i´1 r q j´1 ď b j r q j´1 q i´1 * , we have n ÿ i"1 a i ℓ ÿ j"1 b j " ÿ pi,jqPH a i b j `ÿ pi,jqRH a i b j ď ÿ pi,jqPH
2p 1´1{φpdq r q j´1 q i´1 b j `ÿ pi,jqRH a i 2p 1´1{φpdq q i´1 r q j´1 ď 2p 1´1{φpdq ˜n ÿ

i"1 1 q i´1 ℓ ÿ j"1 b j r q j´1 `n ÿ i"1 a i q i´1 ℓ ÿ j"1 which together with (4.4) and using that k 1 ě k 2 , concludes the proof.

Comments

Note that when we bound the Dedekind sum from above in terms of the sum of partial quotients, we ignore the cancellation in the alternating sum of partial quotients in Lemma 3.1. However, we might speculate that there is no such cancellation in the extremal cases. Indeed, let us look at the aforementioned example (1.1). For a fixed prime d, we expect p " a d ´1 a´1 to be prime for infinitely many a. Notice that the continued fraction expansion is a{p " r0; a 1 , a 2 s with a 1 " a d´1 ´1 a ´1 " a d´2 `¨¨¨`a `1 and a 2 " a.

Thus a 1 `a2 " a d´2 " p pd´2q{pd´1q " p 1´1{φpdq

1 . Introduction 1 . 1 .

 111 Dedekind sums and moments of L-functions. Given two integers a and b with b ě 1 and gcdpa, bq " 1, we define the Dedekind sum spa, bq "

2.

  Bounds on Dedekind sums 2.1. Pointwise bounds on Dedekind sums. We are now ready to present an improvement of [19, Theorem 3.1], which gives the bound (2.1) spλ, pq ! p 1´1{φpdq plog pq 2

Hence p ď |A| " d ź j" 1 1 .

 11 gcdpj,dq"1 ˇˇm ´he 2πij{d ˇˇď p|m| `|h|q φpdq , which concludes the proof. [ \ 4. Proofs of results on Dedekind sums 4.Proof of Theorem 2.1. Let 1 ď h ď p ´1 be any integer, and let hλ " m pmod pq with ´pp ´1q{2 ă m ď pp ´1q{2. Then }hλ{p} " |m|{p. By Lemma 3.3, we have

ÿ λPGm p´1 ÿ x 1

 1 ,...,x k "1 y 1 ,...,y k "1 x 1 ¨¨¨x k "λy 1 ¨¨¨y k mod p k ź

  in the full range φpdq " o plog pq, while (2.1) is only non-trivial in the range φpdq ! log p{ log log p. Moreover, if p " 2 d ´1 is a Mersenne prime, then by [19, Equation (7.1)] we have sp2, 2 d ´1q " p{24, showing that spλ, pq " oppq, and thus by Lemma 3.2 we see that ř n i"1 a i " oppq, cannot hold in the range φpdqlog p.2.2. Correlation of Dedekind sums.We first generalise the formula (1.2) to higher moments, relating M 2k pp, mq to certain correlations between Dedekind sums.

	Remark 2.3. A quick computation shows that Theorem 2.1 and Corol-
	lary 2.2 are non-trivial (in other words, i"1 a Theorem 2.4. Let m | p ´1 be even. Then, ř n
	M 2k pp, mq "	p k 2π 2k	λPGm ÿ	p´1 ÿ

19, Conjecture 7.1]. Corollary 2.2. Let p be a prime, and assume that λ P F p has multiplicative order d ě 3 in F p . Then |spλ, pq| ď 1.12p 1´1{φpdq . i " oppq and spλ, pq " oppq) t 1 ,...,t k´1 "1 spt 1 , pq ¨¨¨spt k´1 , pqs pλt 1 ¨¨¨t k´1 , pq .

  1 spk 1 t, pqspk 2 t, pq. Indeed, Corollary 2.5 improves the trivial bound dp 2 by (2.4) for S λ,1 ppq on average over λ P G m zt1u, and gives ÿ

		λPGm					
		λ‰1					
	A direct application of the Cauchy-Schwarz inequality shows that
						p´1
	(2.4)	|S k 1 ,k 2 ppq| ď	ÿ	spt, pq 2 ! p 2 ,
						t"1
	where we have used that a special case of [29, Theorem 1] gives the
	asymptotic formula					
	(2.5)	p´1 ÿ t"1	spt, pq 2 "	5 144	p 2 `O `p1`op1q	˘.
	By Theorem 2.4 (with k " 2) and (2.5) we have
		M 4 pp, mq "	2π 4 p 2	ÿ λPGm	S λ,1 ppq
		"	5 144	p 2 `2π 4 p 2	λPGm ÿ	S λ,1 ppq	`O `p1`op1q	˘.
							λ‰1

Corollary 2.5 shows that the Dedekind sums spλt, pq and spt, pq do not correlate in a strong form when averaged over both t P F p and λ P G m zt1u.

  ,...,x k "1 t 1 ,...,t k´1 ,y k "1 x k "λt 1 ¨¨¨t k´1 y k mod p Proof of Theorem 2.6. Let h 1 , h 2 P r1, p ´1s be any integers, and let h 1 λt " m 1 pmod pq and h 2 t " m 2 pmod pq with m 1 , m 2 P p´pp ´1q{2, pp ´1q{2s. Then }h 1 λt{p} " |m 1 |{p and }h 2 t{p} " |m 2 |{p. Observe that h 2 m 1 ´λh 1 m 2 " 0 pmod pq. Therefore by Lemma 3.3,

	Thus, in accordance with (1.2), we derive
	p k π 2k	χPX ṕ,m ÿ	|Lp1, χq| 2k		
						p´1	
			ÿ		ÿ	
	" #X p,m					spt 1 , pq ¨¨¨spt k´1 , pqs pλt 1 ¨¨¨t k´1 , pq ,
			λPGm	t 1 ,...,t k´1 "1
	which finishes the proof of Theorem 2.4.
	4.3.							
		p´1		k	ˆxi	˙ˆy	"
		ÿ		ź				i
	y 1 ,...,y k "1 x 1 ,...,x k "1	i"1		p		p
	x 1 ¨¨¨x k "λy 1 ¨¨¨y k mod p					
		p´1 ÿ x 1 ˆyk p	p ˙ˆx k	i"1 ˙k´1 ź	p ˆxi	p ˙ˆx i t i	"
		p´1 ÿ		ˆyk	˙ˆλ t 1 ¨¨¨t k´1 y k	˙k´1 ź	ˆxi	˙ˆx	i t i	"
		x 1 ,...,x k´1 "1		p			p	i"1	p	p
		t 1 ,...,t k´1 ,y k "1				

p´1 ÿ t 1 ,...,t k´1 "1 spt 1 , pq ¨¨¨spt k´1 , pqs pλt 1 ¨¨¨t k´1 , pq .

  Making the change of variables t Ñ k 2 st, we have

	p 2 π 4	ÿ χPX ṕ χpk 1 qχpk 2 q |Lp1, χq| 4
				" pp ´1q	p´1 ÿ r,s,t,u"1	ˆr p	p ˙ˆs	p 2 st ˙ˆk	p ˙ˆu	"
						k 1 rt"u mod p
				pp ´1q	p´1 ÿ r,s,t"1 ˆr p	p ˙ˆs	p 2 st ˙ˆk	p 1 rt ˙ˆk	˙.
	Next, we change s Ñ k ´1 2 s, and we derive
		p 2 π 4	ÿ χPX ṕ χpk 1 qχpk 2 q |Lp1, χq| 4
				" pp ´1q	p´1 ÿ r,s,t"1 ˆr p	p ˙ˆk ´1 2 s	p ˙ˆs t	p 1 rt ˙ˆk	"
					p´1	
					ÿ	
				pp ´1q		spk 1 t, pqspk 2 t, pq.
					t"1	
	Hence, we obtain			
	p 2		ÿ			
	π 4	χPX			
								¸.
								1
								r q j´1

ṕ χpk 1 qχpk 2 q|Lp1, χq| 4 " pp ´1q

p´1 ÿ t"1 sptk 1 , pqsptk 2 , pq,
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Using that n ÿ i"1 a i q i´1 " q n `qn´1 ´1 ď 2p and ℓ ÿ j"1 b j r q j´1 " r q ℓ `r q ℓ´1 ´1 ď 2p, we now derive

where, as before, F i are the Fibonacci numbers, which concludes the proof.

4.4. Proof of Theorem 2.9. For any integers k 1 , k 2 ě 1 let us define the following twisted fourth moments

where X p " X p ztχ 0 u denotes the set of all non-principal characters modulo p. Then, by [14, Theorem 1.1] uniformly over k 1 , k 2 ě 1, we have the following asymptotic formula

¯.

It follows from the proof of [14, Theorem 1.1] that M 4 pp; k 1 , k 2 q satisifies the same asymptotic formula (4.3) as M 4 pp; k 1 , k 2 q. That is,

¯.

We now recall (4.2). Hence, summing over characters, we derive, similarly as in the proof of Theorem 2.4,

and spa, pq " 1 12 p 1´1{φpdq as a Ñ 8 by Lemma 3.1. In particular, the best possible constant in the upper bound in Theorem 2.1 is between 1 and 13.44. Numerical evidence in [19,Section 7] suggests that this example is indeed extremal for Dedekind sums. We thus conjecture that the best possible constant in the upper bound in Corollary 2.2 is 1{12 instead of 1.12.
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