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POINTWISE AND CORRELATION BOUNDS ON
DEDEKIND SUMS OVER SMALL SUBGROUPS

BENCE BORDA, MARC MUNSCH, AND IGOR E. SHPARLINSKI

Abstract. We obtain new bounds, pointwise and on average, for
Dedekind sums spλ, pq modulo a prime p with λ of small multi-
plicative order d modulo p. Assuming the infinitude of Mersenne
primes, the range of our results is optimal. Moreover, we relate
high moments of Lp1, χq over subgroups of characters to some cor-
relations of Dedekind sums, and use recent results of the second
and third author to study these correlations.

1. Introduction

1.1. Dedekind sums and moments of L-functions. Given two in-
tegers a and b with

b ě 1 and gcdpa, bq “ 1,

we define the Dedekind sum

spa, bq “

b´1
ÿ

c“1

´́ c

b

¯̄ ´́ ac

b

¯̄

,

where

ppξqq “

#

tξu ´ 1{2, if ξ P RzZ,
0, if ξ P Z.

Historically, Dedekind sums appeared in the context of modular
forms to describe the transformation formula for the Dedekind eta
function [23]. Since the seminal works of Vardi [24, 25], it is known
that the distribution of the ratio spa, bq{ log b converges to the Cauchy
distribution when averaged over pairs gcdpa, bq “ 1 and 1 ď b ď B,
with B Ñ 8, see also [3, 12]. In particular, Dedekind sums are rel-
atively small on average, but can also seldom take very large values
which are responsible for the asymptotic of the moments, see, for in-
stance, [8–10] and references therein. Both the study of the distribution
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of values of Dedekind sums [1, 7] as well as the study of restricted av-
erages of Dedekind sums [20, 21] regained a lot of interest in recent
years, in particular due to their applications to the analysis of some
number theoretic algorithms. Let us also mention that Lemke Oliver
and Soundararajan [15] have discovered a very interesting link between
Dedekind sums and the distribution of primes.

We first observe that by the Cauchy–Schwarz inequality, we have the
following trivial bound:

|spa, bq| ď sp1, bq “
pb ´ 1qpb ´ 2q

12b
ă

b

12
.

Here we are interested in non-trivial bounds on the sums spλ, pq de-
pending on the multiplicative order of λ modulo a prime p. In par-
ticular, this question is motivated by the connection with the second
moments of Dirichlet L-functions Lp1, χq over multiplicative characters
χ of a given order, as established in [16–19]. A link between the size of
spa, bq and the order of a modulo b was first established by Louboutin
in [16, Lemma 6], which implies that for an odd

(1.1) b “ pad ´ 1q{pa ´ 1q

with an integer a ‰ 0,˘1 and a prime d, we have

spa, bq “
pb ´ 1qpb ´ a2 ´ 1q

12ab
“ O

`

b1´1{pd´1q
˘

.

It is easy to see that d is the order of a modulo b.
More precisely, let F˚

p be the multiplicative group of the finite field
Fp of p elements, and let Xp be the group of multiplicative characters
of F˚

p .
Given an even integerm withm | p´1 and a multiplicative subgroup

Gm Ď F˚
p of index m and thus of order pp ´ 1q{m, we denote by Xp,m

the group of multiplicative characters of F˚
p which are trivial on Gm.

Furthermore, assuming that pp ´ 1q{m is odd, we consider the set of
m{2 odd characters in Xp,m, that is, the set

X´
p,m “ tχ P Xp,m : χp´1q “ ´1u .

We also set
X´

p “ X´
p,p´1.

We now define the moments

M´
ν pp,mq “

2

m

ÿ

χPX´
p,m

|Lp1, χq|
ν , ν “ 1, 2, . . . ,

where Lps, χq is the Dirichlet L-function associated with a multiplica-
tive character χ P Xp.
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By [27, Chapter 4], there is a close connection between the second
moment M´

2 pp,mq and the relative class number of the imaginary sub-
field of the cyclotomic field Q pexpp2πi{pqq of degree m over Q. In turn,
by a result of Louboutin [16, Theorem 2], we have

(1.2) M´
2 pp,mq “

π2

6

ˆ

1 ´
3

p
`

2

p2
`

2

p
Spp,mq

˙

,

where

Spp,mq “
ÿ

λPGm
λ‰1

spλ, pq.

Hence the relation (1.2) and the above connection to the class num-
ber motivates studying the size of spλ, pq on elements λ P F˚

p of given
order as well as the size on average over a subgroup of F˚

p . Moreover,

using asymptotic formulas for M´
2 pp,mq from [22], one immediately

obtains upper bounds for Spp,mq. Here we derive several new results
which go beyond this link.

1.2. Summary of our results and methods. We first improve a
pointwise bound from [19] on Dedekind sums spλ, pq, provided that
λ is of small multiplicative order in F˚

p , see Corollary 2.2 below. It
could be in principle used to improve the error term in the asymptotic
formula for M´

2 pp,mq, provided that m is not too small. However, the
result is now superseded by a much more general result of the second
and third authors [22, Theorem 2.1] obtained via different methods.
It may have other applications, though. Under the assumption of the
infinitude of Mersenne primes , the ranges where these results provide
non-trivial estimates are optimal, see Remark 2.3.

Next, we generalise the formula (1.2) to higher moments relating
M´

2kpp,mq to certain correlations between Dedekind sums (see, for ex-
ample, Theorem 2.4 below), and use the results of [22] to get informa-
tion on these sums.

Our methods involve the connection between Dedekind sums and
continued fractions established independently by Barkan [4] and Hick-
erson [12] (see also a more general result of Knuth [13]).

1.3. Notation and conventions. We adopt the Vinogradov notation
!, that is,

A ! B ðñ B " A ðñ A “ OpBq ðñ |A| ď cB

for some constant c ą 0 which sometimes, where obvious, may depend
on the integer parameter k ě 1, and is absolute otherwise.
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For a finite set S, we use #S to denote its cardinality. We also write
}x} to denote the distance from a real x to the closest integer and, as
usual, φpdq denotes the Euler function.

2. Bounds on Dedekind sums

2.1. Pointwise bounds on Dedekind sums. We are now ready to
present an improvement of [19, Theorem 3.1], which gives the bound

(2.1) spλ, pq ! p1´1{φpdq
plog pq

2

provided that λ is of order d ě 3 in F˚
p . Here we remove the factor

plog pq2, which gives an optimal range with respect to d where one can
hope for getting a non-trivial bound on spλ, pq, see Remark 2.3.

We start with the following result about continued fractions of ratio-
nals with prime denominators, which might be of independent interest.

Theorem 2.1. Let p be a prime, and assume that λ P F˚
p has multi-

plicative order d ě 3 in F˚
p. The continued fraction expansion tλ{pu “

r0; a1, . . . , ans satisfies
n

ÿ

i“1

ai ď 13.44p1´1{φpdq.

Combining Theorem 2.1 with Lemma 3.2 below, we immediately
derive the following bound, which establishes [19, Conjecture 7.1].

Corollary 2.2. Let p be a prime, and assume that λ P F˚
p has multi-

plicative order d ě 3 in F˚
p. Then

|spλ, pq| ď 1.12p1´1{φpdq.

Remark 2.3. A quick computation shows that Theorem 2.1 and Corol-
lary 2.2 are non-trivial (in other words,

řn
i“1 ai “ oppq and spλ, pq “

oppq) in the full range φpdq “ o plog pq, while (2.1) is only non-trivial in
the range φpdq ! log p{ log log p. Moreover, if p “ 2d ´1 is a Mersenne
prime, then by [19, Equation (7.1)] we have sp2, 2d´1q „ p{24, showing
that spλ, pq “ oppq, and thus by Lemma 3.2 we see that

řn
i“1 ai “ oppq,

cannot hold in the range φpdq — log p.

2.2. Correlation of Dedekind sums. We first generalise the for-
mula (1.2) to higher moments, relating M´

2kpp,mq to certain correla-
tions between Dedekind sums.

Theorem 2.4. Let m | p ´ 1 be even. Then,

M´
2kpp,mq “

2π2k

pk

ÿ

λPGm

p´1
ÿ

t1,...,tk´1“1

spt1, pq ¨ ¨ ¨ sptk´1, pqs pλt1 ¨ ¨ ¨ tk´1, pq .
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It may be useful to compare this when Gm “ t1u with a result of
Alkan [2, Theorem 2] on moments of Lp1, χq (rather than their absolute
values) modulo a composite q. See also [5, 28] for works in the same
spirit. Let τk denote the k-fold divisor function, that is,

τkpnq “
ÿ

n1¨¨¨nk“n
niě1

1.

As usual, for k “ 2 we write τ “ τ2 for the usual divisor function.
Let us recall that by [22, Theorem 2.1] we know that for any κ ă 1

we have

(2.2) M´
2kpp,mq “ apkq ` Opp´κ{φpdq

` p´1{4`op1q
q,

where

apkq “

`8
ÿ

n“1

τ 2k pnq

n2
.

Combining Theorem 2.4 with (2.2) in the trivial case of m “ p ´ 1,
that is, for Gm “ t1u, implies

p´1
ÿ

t1,...,tk´1“1

spt1, pq ¨ ¨ ¨ sptk´1, pqs pt1 ¨ ¨ ¨ tk´1, pq

“

ˆ

apkq

2π2k
` op1q

˙

pk.

(2.3)

In the general case, Theorem 2.4 and the relations (2.2) and (2.3),
yield the following result.

Corollary 2.5. Let Gm Ď F˚
p be of index m and of odd order d “

pp ´ 1q{m such that φpdq “ oplog pq. Then,

ÿ

λPGm
λ‰1

p´1
ÿ

t1,...,tk´1“1

spt1, pq ¨ ¨ ¨ sptk´1, pqs pλt1 ¨ ¨ ¨ tk´1, pq “ oppkq.

In fact, we see from (2.2) that the bound of Corollary 2.5 is of mag-
nitude Oppk´κ{φpdq ` pk´1{4`op1qq with any κ ă 1.

In the case k “ 2, it is possible to give an independent proof of
Corollary 2.5 using the pointwise bound of Corollary 2.7 below on cor-
relations, which might be of independent interest. As in the case of
k “ 1, we start with a result on the partial quotients of the continued
fraction expansions of two multiplicatively related rational numbers.
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Theorem 2.6. Let p be a prime and λ, t P F˚
p, and assume that λ

has multiplicative order d ě 3 in F˚
p. Then the continued fraction

expansions tλt{pu “ r0; a1, . . . , ans and tt{pu “ r0; b1, . . . , bℓs satisfy
˜

n
ÿ

i“1

ai

¸ ˜

ℓ
ÿ

j“1

bj

¸

ď 26.88p2´1{φpdq.

As before, combining Theorem 2.6 with Lemma 3.2 below leads to
the following bound.

Corollary 2.7. Let p be a prime and λ, t P F˚
p, and assume that λ has

multiplicative order d ě 3 in F˚
p. Then

|spλt, pqspt, pq| ă
3

16
p2´1{φpdq.

Remark 2.8. The bounds of Theorem 2.6 and Corollary 2.7 are non-
trivial (in other words,

řn
i“1 ai

řℓ
j“1 bj “ opp2q and spλt, pqspt, pq “

opp2q) in the range φpdq “ oplog pq.

Next, for integers k1, k2 mod p, we define the following averaged cor-
relations of Dedekind sums

Sk1,k2ppq “

p´1
ÿ

t“1

spk1t, pqspk2t, pq.

A direct application of the Cauchy–Schwarz inequality shows that

(2.4) |Sk1,k2ppq| ď

p´1
ÿ

t“1

spt, pq
2

! p2,

where we have used that a special case of [29, Theorem 1] gives the
asymptotic formula

(2.5)
p´1
ÿ

t“1

spt, pq
2

“
5

144
p2 ` O

`

p1`op1q
˘

.

By Theorem 2.4 (with k “ 2) and (2.5) we have

M´
4 pp,mq “

2π4

p2

ÿ

λPGm

Sλ,1ppq

“
5

144
p2 `

2π4

p2

ÿ

λPGm
λ‰1

Sλ,1ppq ` O
`

p1`op1q
˘

.

Corollary 2.5 shows that the Dedekind sums spλt, pq and spt, pq do not
correlate in a strong form when averaged over both t P F˚

p and λ P
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Gmzt1u. Indeed, Corollary 2.5 improves the trivial bound dp2 by (2.4)
for Sλ,1ppq on average over λ P Gmzt1u, and gives

ÿ

λPGm
λ‰1

Sλ,1ppq ! p2´1{p2φpdqq
` p7{4`op1q.

On the other hand, we prove that for given integers k1, k2 ě 1 which
are not too large, the Dedekind sums spk1t, pq and spk2t, pq have a large
correlation when averaged over t modulo p, thus the trivial bound (2.4)
is the best possible. This is directly related to the twisted fourth
moment of L-functions over the full group of characters (see the for-
mula (4.4) below).

Theorem 2.9. For any fixed ε ą 0 and arbitrary coprime integers
k1 ě k2 ě 1 with k3

1k
2
2 ď p1´ε we have, as p Ñ 8,

Sk1,k2ppq “ p1 ` op1qq
p2

π4

8
ÿ

n“1

τpk1nqτpk2nq

k1k2n2
.

3. Preliminaries

3.1. Dedekind sums and continued fractions. We recall that by
a result of Barkan [4, Equation (13)] and Hickerson [12, Theorem 1] we
have the following connection between Dedekind sums and continued
fractions.

Lemma 3.1. Let 1 ď a ă b be integers, and let a{b “ r0; a1, . . . , ans be
the continued fraction expansion with an ą 1. Then

spa, bq “
p´1qn ´ 1

8
`

1

12

˜

a

b
` p´1q

n`1
r0; an, . . . , a1s `

n
ÿ

i“1

p´1q
i`1ai

¸

.

In fact, we only need the following upper bound.

Lemma 3.2. Let 1 ď a ă b be integers, and let a{b “ r0; a1, . . . , ans be
the continued fraction expansion with an ą 1. Then

|spa, bq| ď
1

12

n
ÿ

i“1

ai.

Proof. Note that a{b and r0; an, . . . , a1s both lie in the interval r0, 1s.
For even n, Lemma 3.1 gives

spa, bq “
1

12

˜

a

b
´ r0; an, . . . , a1s `

n
ÿ

i“1

p´1q
i`1ai

¸

ď
1

12
pa1 ` a3 ` ¨ ¨ ¨ ` an´1q ,
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and

spa, bq ě
1

12
p´a2 ´ a4 ´ ¨ ¨ ¨ ´ anq ,

which immediately imply the claim. For odd n ě 3, we similarly deduce
from Lemma 3.1 that

spa, bq “ ´
1

4
`

1

12

˜

a

b
` r0; an, . . . , a1s `

n
ÿ

i“1

p´1q
i`1ai

¸

ď
1

12
pa1 ` a3 ` ¨ ¨ ¨ ` anq ,

and

spa, bq ě ´
1

4
`

1

12
pa1 ` a3 ´ a2 ´ a4 ´ ¨ ¨ ¨ ´ an´1q

ě
1

12
p´1 ´ a2 ´ a4 ´ ¨ ¨ ¨ ´ an´1q ,

and the claim follows. Finally, for n “ 1 the assumption a1 ě 2 implies

spa, bq “ ´
1

4
`

1

12

ˆ

1

a1
`

1

a1
` a1

˙

P

”

0,
a1
12

ı

,

as claimed. [\

3.2. Small solutions to linear congruences. We need the follow-
ing result. A similar estimate has been shown in the proof of [18,
Lemma 4.6], but here we give a simple proof which also produces bet-
ter numerical constants.

Lemma 3.3. Assume that λ has multiplicative order d ě 3 in F˚
p.

Then,

mint|m| ` |h| : hλ ” m pmod pq, ph,mq ‰ p0, 0qu ě p1{φpdq.

Proof. Clearly Φdpλq “ 0 (in Fp), where ΦdpXq P ZrXs is the d-th
cyclotomic polynomial.

We now fix an integer pair ph,mq ‰ p0, 0q with hλ ” m pmod pq.
Since d ě 3, the polynomial Φd has no rational roots (as all its roots are
roots of unity of order d). Therefore, A “ hφpdqΦdpm{hq is a non-zero
integer.

On the other hand,

A “ hφpdqΦdpm{hq ” hφpdqΦdpλq ” 0 pmod pq.

Hence

p ď |A| “

d
ź

j“1
gcdpj,dq“1

ˇ

ˇm ´ he2πij{d
ˇ

ˇ ď p|m| ` |h|q
φpdq ,
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which concludes the proof. [\

4. Proofs of results on Dedekind sums

4.1. Proof of Theorem 2.1. Let 1 ď h ď p ´ 1 be any integer,
and let hλ ” m pmod pq with ´pp ´ 1q{2 ă m ď pp ´ 1q{2. Then
}hλ{p} “ |m|{p. By Lemma 3.3, we have

p1{φpdq
ď |h| ` |m| “ |h| ` p

›

›

›

›

hλ

p

›

›

›

›

.

We can certainly assume that 1 ď λ ď p ´ 1. Let pi{qi “ r0; a1, . . . , ais
denote the convergents to λ{p “ r0; a1, . . . , ans. From the general prop-
erties of continued fractions, see, for example, [11, Theorem 164], we
have

ˇ

ˇ

ˇ

ˇ

λ

p
´

pi´1

qi´1

ˇ

ˇ

ˇ

ˇ

ď
1

qi´1qi
“

1

qi´1 paiqi´1 ` qi´2q
ď

1

aiq2i´1

,

hence }qi´1λ{p} ď 1{paiqi´1q. In particular, for any 1 ď i ď n,

(4.1) p1{φpdq
ď qi´1 ` p

›

›

›

›

qi´1λ

p

›

›

›

›

ď qi´1 `
p

aiqi´1

.

Consider the following two cases. If qi´1 ď p1{φpdq{2, then (4.1)
implies that

ai ď
2p1´1{φpdq

qi´1

.

If qi´1 ą p1{φpdq{2, then

ai ď qi{qi´1 ď p{qi´1.

Therefore
n

ÿ

i“1

ai “

n
ÿ

i“1
qi´1ďp1{φpdq{2

ai `

n
ÿ

i“1
qi´1ąp1{φpdq{2

ai

ď

n
ÿ

i“1

2p1´1{φpdq

qi´1

`

n
ÿ

i“1
qi´1ąp1{φpdq{2

p

qi´1

.

Using the inequality
qj`i´1 ě qjFi,

where Fi are the Fibonacci numbers, which is immediate from the
identity qi`2 “ ai`2qi`1 ` qi, we derive

n
ÿ

i“1

ai ď

˜

4
8
ÿ

i“1

1

Fi

¸

p1´1{φpdq
“ 13.4395 . . . p1´1{φpdq,
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which concludes the proof.

4.2. Proof of Theorem 2.4. We recall the formula from [26, Equa-
tion (3)]

(4.2)
p´1
ÿ

r,t“1

ˆ̂

r

p

˙̇ ˆ̂

t

p

˙̇

χprqχptq “

#

p
π2 |Lp1, χq|2, if χp´1q “ ´1,

0, otherwise.

Summing over characters and using orthogonality relations, we de-
rive

pk

π2k

ÿ

χPX´
p,m

|Lp1, χq|
2k

“
ÿ

χPXp,m

p´1
ÿ

x1,...,xk“1
y1,...,yk“1

k
ź

i“1

ˆ̂

xi

p

˙̇ ˆ̂

yi
p

˙̇

χpxiqχpyiq

“ #Xp,m

ÿ

λPGm

p´1
ÿ

x1,...,xk“1
y1,...,yk“1

x1¨¨¨xk”λy1¨¨¨yk mod p

k
ź

i“1

ˆ̂

xi

p

˙̇ ˆ̂

yi
p

˙̇

.

For any 1 ď i ď k ´ 1, we make the change of variables yi “ xiti.
Hence, for every λ P Gm we obtain

p´1
ÿ

x1,...,xk“1
y1,...,yk“1

x1¨¨¨xk”λy1¨¨¨yk mod p

k
ź

i“1

ˆ̂

xi

p

˙̇ ˆ̂

yi
p

˙̇

“

p´1
ÿ

x1,...,xk“1
t1,...,tk´1,yk“1

xk”λt1¨¨¨tk´1yk mod p

ˆ̂

yk
p

˙̇ ˆ̂

xk

p

˙̇ k´1
ź

i“1

ˆ̂

xi

p

˙̇ ˆ̂

xiti
p

˙̇

“

p´1
ÿ

x1,...,xk´1“1
t1,...,tk´1,yk“1

ˆ̂

yk
p

˙̇ ˆ̂

λt1 ¨ ¨ ¨ tk´1yk
p

˙̇ k´1
ź

i“1

ˆ̂

xi

p

˙̇ ˆ̂

xiti
p

˙̇

“

p´1
ÿ

t1,...,tk´1“1

spt1, pq ¨ ¨ ¨ sptk´1, pqs pλt1 ¨ ¨ ¨ tk´1, pq .
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Thus, in accordance with (1.2), we derive

pk

π2k

ÿ

χPX´
p,m

|Lp1, χq|
2k

“ #Xp,m

ÿ

λPGm

p´1
ÿ

t1,...,tk´1“1

spt1, pq ¨ ¨ ¨ sptk´1, pqs pλt1 ¨ ¨ ¨ tk´1, pq ,

which finishes the proof of Theorem 2.4.

4.3. Proof of Theorem 2.6. Let h1, h2 P r1, p ´ 1s be any integers,
and let h1λt ” m1 pmod pq and h2t ” m2 pmod pq with m1,m2 P

p´pp ´ 1q{2, pp ´ 1q{2s. Then }h1λt{p} “ |m1|{p and }h2t{p} “ |m2|{p.
Observe that h2m1 ´ λh1m2 ” 0 pmod pq. Therefore by Lemma 3.3,

p1{φpdq
ď |h2m1| ` |h1m2| “ |h2|p

›

›

›

›

h1λt

p

›

›

›

›

` |h1|p

›

›

›

›

h2t

p

›

›

›

›

.

Let pi{qi “ r0; a1, . . . , ais denote the convergents to tλt{pu, and rpj{rqj “

r0; b1, . . . , bjs the convergents to tt{pu. In particular, for any 1 ď i ď n
and 1 ď j ď ℓ, we derive

p1{φpdq
ď rqj´1p

›

›

›

›

qi´1λt

p

›

›

›

›

` qi´1p

›

›

›

›

rqj´1t

p

›

›

›

›

ď 2pmax

"

rqj´1

aiqi´1

,
qi´1

bjrqj´1

*

.

Taking the reciprocals yields

2p1´1{φpdq
ě min

"

aiqi´1

rqj´1

,
bjrqj´1

qi´1

*

.

Letting

H “

"

pi, jq P r1, ns ˆ r1, ℓs :
aiqi´1

rqj´1

ď
bjrqj´1

qi´1

*

,

we have

n
ÿ

i“1

ai

ℓ
ÿ

j“1

bj “
ÿ

pi,jqPH

aibj `
ÿ

pi,jqRH

aibj

ď
ÿ

pi,jqPH

2p1´1{φpdq rqj´1

qi´1

bj `
ÿ

pi,jqRH

ai2p
1´1{φpdq qi´1

rqj´1

ď 2p1´1{φpdq

˜

n
ÿ

i“1

1

qi´1

ℓ
ÿ

j“1

bjrqj´1 `

n
ÿ

i“1

aiqi´1

ℓ
ÿ

j“1

1

rqj´1

¸

.
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Using that

n
ÿ

i“1

aiqi´1 “ qn ` qn´1 ´ 1 ď 2p and
ℓ

ÿ

j“1

bjrqj´1 “ rqℓ ` rqℓ´1 ´ 1 ď 2p,

we now derive
n

ÿ

i“1

ai

ℓ
ÿ

j“1

bj ď 8p2´1{φpdq

8
ÿ

i“1

1

Fi

“ 26.8790 . . . p2´1{φpdq,

where, as before, Fi are the Fibonacci numbers, which concludes the
proof.

4.4. Proof of Theorem 2.9. For any integers k1, k2 ě 1 let us define
the following twisted fourth moments

M´
4 pp; k1, k2q “

2

p ´ 1

ÿ

χPX´
p

χpk1qχpk2q |Lp1, χq|
4 ,

M4pp; k1, k2q “
1

p ´ 1

ÿ

χPX˚
p

χpk1qχpk2q |Lp1, χq|
4 ,

where X ˚
p “ Xpztχ0u denotes the set of all non-principal characters

modulo p. Then, by [14, Theorem 1.1] uniformly over k1, k2 ě 1, we
have the following asymptotic formula

(4.3) M4pp; k1, k2q “
ÿ

nPZ
n‰0

τpk1nqτpk2nq

k1k2n2
` O

´

a

k1 ` k2p
´1{2`op1q

¯

.

It follows from the proof of [14, Theorem 1.1] that M´
4 pp; k1, k2q satisi-

fies the same asymptotic formula (4.3) as M4pp; k1, k2q. That is,

(4.4) M´
4 pp; k1, k2q “

ÿ

nPZ
n‰0

τpk1nqτpk2nq

k1k2n2
` O

´

a

k1 ` k2p
´1{2`op1q

¯

.

We now recall (4.2). Hence, summing over characters, we derive,
similarly as in the proof of Theorem 2.4,

p2

π4

ÿ

χPX´
p

χpk1qχpk2q |Lp1, χq|
4

“ pp ´ 1q

p´1
ÿ

r,s,t,u“1
k1rt”k2su mod p

ˆ̂

r

p

˙̇ ˆ̂

t

p

˙̇ ˆ̂

s

p

˙̇ ˆ̂

u

p

˙̇

.
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Making the change of variables t Ñ k2st, we have

p2

π4

ÿ

χPX´
p

χpk1qχpk2q |Lp1, χq|
4

“ pp ´ 1q

p´1
ÿ

r,s,t,u“1
k1rt”u mod p

ˆ̂

r

p

˙̇ ˆ̂

s

p

˙̇ ˆ̂

k2st

p

˙̇ ˆ̂

u

p

˙̇

“ pp ´ 1q

p´1
ÿ

r,s,t“1

ˆ̂

r

p

˙̇ ˆ̂

s

p

˙̇ ˆ̂

k2st

p

˙̇ ˆ̂

k1rt

p

˙̇

.

Next, we change s Ñ k´1
2 s, and we derive

p2

π4

ÿ

χPX´
p

χpk1qχpk2q |Lp1, χq|
4

“ pp ´ 1q

p´1
ÿ

r,s,t“1

ˆ̂

r

p

˙̇ ˆ̂

k´1
2 s

p

˙̇ ˆ̂

st

p

˙̇ ˆ̂

k1rt

p

˙̇

“ pp ´ 1q

p´1
ÿ

t“1

spk1t, pqspk2t, pq.

Hence, we obtain

p2

π4

ÿ

χPX´
p

χpk1qχpk2q|Lp1, χq|
4

“ pp ´ 1q

p´1
ÿ

t“1

sptk1, pqsptk2, pq,

which together with (4.4) and using that k1 ě k2, concludes the proof.

5. Comments

Note that when we bound the Dedekind sum from above in terms
of the sum of partial quotients, we ignore the cancellation in the al-
ternating sum of partial quotients in Lemma 3.1. However, we might
speculate that there is no such cancellation in the extremal cases. In-
deed, let us look at the aforementioned example (1.1). For a fixed

prime d, we expect p “ ad´1
a´1

to be prime for infinitely many a. Notice
that the continued fraction expansion is a{p “ r0; a1, a2s with

a1 “
ad´1 ´ 1

a ´ 1
“ ad´2

` ¨ ¨ ¨ ` a ` 1 and a2 “ a.

Thus
a1 ` a2 „ ad´2

„ ppd´2q{pd´1q
“ p1´1{φpdq
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and spa, pq „ 1
12
p1´1{φpdq as a Ñ 8 by Lemma 3.1. In particular, the

best possible constant in the upper bound in Theorem 2.1 is between
1 and 13.44. Numerical evidence in [19, Section 7] suggests that this
example is indeed extremal for Dedekind sums. We thus conjecture
that the best possible constant in the upper bound in Corollary 2.2 is
1{12 instead of 1.12.
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teur Paul Michelon, 42 023 Saint-Etienne Cedex 2, France

Email address: marc.munsch@univ-st-etienne.fr

School of Mathematics and Statistics, University of New South
Wales, Sydney, NSW 2052, Australia

Email address: igor.shparlinski@unsw.edu.au


	1. Introduction
	1.1. Dedekind sums and moments of L-functions
	1.2. Summary of our results and methods
	1.3. Notation and conventions

	2. Bounds on Dedekind sums
	2.1. Pointwise bounds on Dedekind sums
	2.2. Correlation of Dedekind sums

	3. Preliminaries
	3.1. Dedekind sums and continued fractions
	3.2. Small solutions to linear congruences

	4. Proofs of results on Dedekind sums
	4.1. Proof of Theorem ??
	4.2. Proof of Theorem ??
	4.3. Proof of Theorem ??
	4.4. Proof of Theorem ??

	5. Comments
	Acknowledgement
	Data availability statement
	Conflict of Interest statement
	References

