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A B S T R A C T
The Cache Pollution Attack (CPA) is a recent threat that poses a significant risk to Named

Data Networks (NDN). This attack can impact the caching process in various ways, such as
causing increased cache misses for legitimate users, delays in data retrieval, and exhaustion of
resources in NDN routers. Despite the numerous countermeasures suggested in the literature for
CPA, many of them have detrimental effects on the NDN components. In this paper, we introduce
Q-ICAN, a novel intelligent technique for detecting and mitigating cache pollution attacks in
NDN. More specifically, Q-ICAN uses Q-Learning as an automated CPA prediction mechanism.
Each NDN router integrates a reinforcement learning agent that utilizes impactful metrics such
as the variation of the Cache Hit Ratio (CHR) and the interest inter-arrival time to learn how
to differentiate between malicious and legitimate interests. We conducted several simulations
using NDNSim to assess the effectiveness of our solution in terms of Cache Hit Ratio (CHR),
Average Retrieval Delay (ARD) and multiple artificial intelligence evaluation metrics such as
accuracy, precision, recall, etc. The obtained results confirm that Q-ICAN detects CPA attacks
with a 95.09% accuracy rate, achieves a 94% CHR, and reduces ARD by 18%. Additionally,
Q-ICAN adheres to the security policy of the NDN architecture and consumes fewer resources
from NDN routers compared to existing state-of-the-art solutions.

1. Introduction and Motivation
The primary focus in network delivery has always been on content, rather than on the identification of endpoints

and representation of hosts. Additionally, a recent white paper from Cisco (1) highlights that by 2024, multimedia
content consumption, such as video streams, is projected to account for up to 96% of Internet data usage. This shift
in Internet usage patterns is anticipated to have a significant impact on the existing Internet performance, rendering
traditional host-based communication models inadequate to meet the demands of this extensive content distribution.
Consequently, various strategies have emerged, with the Content Distribution Network (CDN) (2)(3)(4) being a
prominent solution. CDN was specifically designed to distribute data across a network of servers. It ensures that
content is stored in proximity to the requester by utilizing nearby servers that hold the most frequently requested
data by neighboring users.

Another architecture known as Peer-to-Peer (P2P) was introduced to facilitate faster content delivery. The P2P
architecture operates as a network overlay, enabling direct communication among users for sharing content without
relying on centralized servers (5) (6) (7). While CDN and P2P systems improve upon the traditional TCP/IP
architecture, they do possess certain vulnerabilities, particularly in terms of lacking robust security measures. Several
notable attacks include Man-in-the-Middle (MiTM) attacks, replay attacks, spoofing attacks, sniffing attacks, and data
hijacking (8) (9).
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On the other hand, achieving efficient P2P systems remains a significant challenge for researchers. Additionally,
ensuring seamless interconnection among nodes in the CDN architecture poses difficulties for developers and
researchers (10). In recent years, the Information-Centric Networking (ICN) paradigm has emerged as a result of
extensive research aimed at developing a scalable and efficient approach to content delivery over the Internet. This
architectural concept emphasizes a content-centric model, decoupling named content items from the specific hosts on
which they are stored. Various ICN architectures have been proposed in the literature, with the Named Data Networking
(NDN) project being widely acknowledged as a highly promising ICN architecture capable of addressing the limitations
of the current Internet architecture.

NDN represents a significant paradigm shift towards a revolutionary Internet that prioritizes the content itself rather
than relying solely on endpoint identification. The NDN architecture excels in identifying the source and destination
of content without encountering any difficulties, thanks to its robust content naming scheme (11). In NDN, every piece
of content is identified uniquely using a hierarchical naming system, establishing a robust foundation for security,
integrity, and scalability.

Moreover, compared to the traditional TCP/IP architecture, NDN achieves lower content retrieval delay thanks
to its caching mechanism. In NDN, each router has the capability to store a copy of the requested content. This
feature allows for faster response times and helps reduce network congestion. This caching mechanism also improves
content availability by allowing consumers to access content even when the content producer is offline or unavailable
(12; 13). Another important feature of NDN is its built-in security mechanism. In NDN, content producers employ
digital signatures to sign their content objects, ensuring that only legitimate requesters (Consumers) can access the
specific data content (14). This security measure guarantees that content retrieval is only possible using shared public
keys, while the private key remains with the content provider (15).

Since its proposal in 2010, the NDN architecture has been receiving considerable attention, and the research
community is consistently exploring its potential in various network environments, including Wireless Sensor
Networks (WSNs) (19), IoT (20; 21), VANET (22) and for several applications such as Web (24; 25), Big Data
delivery (23) and edge cloud computing (26). Over the past five years, numerous trial deployments have been initiated
to accelerate the adoption of NDN by the industry. Examples of these prototypes were showcased during the NDN
Community Meeting in 2023 (27). The deployments mentioned are driven by the intrinsic functionalities of NDN,
especially its caching and security capabilities, which underscore the significance of secure communications in NDN.
These prototypes include initiatives such as Genomics datasets access based on NDN, as well as the N-DISE project
for a petascale data distribution system in NDN catering to significant science programs.

Numerous efforts have been made to improve NDN’s fundamental functionalities, such as naming, forwarding, and
interest rate control (28; 29). However, it is worth noting that the security aspect of NDN is still in its early stages, as the
architecture is designed with security in mind. While NDN has shown promise in enhancing content distribution, it has
also given rise to several security concerns. In recent times, multiple attacks have specifically targeted this architecture,
highlighting the need for robust security measures. Indeed, one of the significant attacks that has impacted NDN is
the Cache Pollution Attack (CPA) (16) (17) (18), which can be easily developed and manipulated, and poses a serious
threat to the main components of NDN, particularly the Content Store (CS) cache, which can result in an increased
number of retransmissions, which ultimately leads to a reduction in network throughput.

To address the challenges of security in NDN, we propose a novel Q-Learning mitigation mechanism called
Q-ICAN (Q-learning based Intrusion prevention system for CPA Attack in NDN). Q-ICAN represents a significant
improvement over our previous solution, ICAN (30), which was based on statistical measures. While ICAN was
effective in identifying some types of cache pollution attacks, it was not a real-time or dynamic solution. In contrast,
Q-ICAN, being an RL-based approach, is highly adaptable and able to learn in real-time, making it a more dynamic
and robust solution for detecting and preventing cache pollution attacks in NDN. The Q-Learning algorithm enables
Q-ICAN to continuously update its comprehension of the network environment and adapt to changing conditions. This
enables Q-ICAN to achieve optimal performance and security by making informed decisions based on the knowledge
acquired through Q-Learning. The main novelties and contributions of our paper can be summarized as follows:

• As far as our knowledge extends, we are the first to design a scheme to detect and mitigate CPA attacks using
the Q-Learning algorithm. Our online and light-weighted Q-Learning strategy allows us to collect the data in
real-time and train the model without burdening the resources of the NDN routers.

• Our AI model introduces a unique approach in which the Action is based on handling interests rather than
potentially malicious data packets. From the initialization phase, our approach involves discarding interests
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that our trained model identifies as malicious, while legitimate data packets are stored based on a pre-designed
caching strategy. This approach provides a higher level of security for NDN by preventing potential attacks at
an early stage.

• To model the State of our Q-Learning agent, we have carefully selected four parameters that have not been used
in previous literature. These parameters include the Cache Hit Ratio (CHR), Average Interest Inter-arrival Time
(IAT), Hop Count Variation, and Prefix Variation. By incorporating these specific parameters, our model can
more accurately identify potential cache pollution attacks and improve the overall security of NDN.

• We conducted extensive simulations on two of the largest and most realistic topologies, considering the number
of nodes and communication between them. Additionally, our model distinguishes itself as one of the pioneering
approaches to address both the Locality-Disruption Attack (LDA) and False Locality Attack (FLA) scenarios.

• Our model has demonstrated exceptional performance in detecting the presence of CPA attacks, achieving an
impressive accuracy rate of 95.09%. Additionally, our model can be seen as a caching replacement strategy that
enhances the effectiveness of the CS caching mechanism.

The rest of this paper is organized as follows. Section 2 presents an introduction to the basic NDN forwarding
mechanism. Section 3 focuses on the essential security aspects of NDN. In Section 4, we provide a brief overview of
the related work relevant to our paper. In Section 5, we provide a detailed explanation of our proposed CPA detection
scheme. The performance evaluation of Q-ICAN and qualitative comparison with ICAN are presented in Section 6.
Finally, we conclude by summarizing our findings and discussing future directions in Section 7.

2. Basic NDN Forwarding Mechanism
In NDN, the delivery of content relies on two types of packets: (1) Interest Packets and (2) Data Packets. The Interest

Packet, which is responsible for initiating a request for specific content, while the Data Packet carries the requested
content in response to a received Interest. The Data packet is typically cryptographically signed, ensuring that only the
consumer who initiated the request can verify and manipulate its contents (31). The forwarding process in NDN relies
on three main essential components:

• The Content Store (CS) : It acts as a temporary cache, storing requested content for future use and enabling
faster content delivery by serving it locally instead of retrieving it from the original provider.

• The Pending Interest Table (PIT) : It saves the information of each interface in relation to the corresponding
interest received.

• The Forwarding Information Base (FIB) : It is responsible for storing the content names and their correspond-
ing forwarding strategy and route.

In the NDN architecture, a node performs several checks and actions when it receives an interest packet, as
illustrated in Figure 1. Firstly, the node checks the CS, if it finds a match, it returns the requested content to the
incoming interface. If there is no match, it performs a PIT lookup. If the same content is already requested in the
PIT, the interface from which the interest is received will be appended to the PIT entry. If there is no matching PIT
entry, the node creates a new one and then looks up the FIB to find a suitable node that can forward the interest. If a
suitable forwarder is found, the interest packet is transmitted via the optimal path according to the forwarding strategy.
However, if there is no available forwarder node, the interest packet is discarded.

Next, when a data packet arrives at the NDN node, it first searches the PIT to check if any interest requests were
made for the received data. If there is a matching PIT entry, the Data packet is sent back through the recorded reverse
path to the interface that made the initial interest request. According to the caching policy, the data packet could be
stored in the content store (CS) for quick retrieval in future interest requests. If there is no matching PIT entry, the
incoming Data packet is discarded (32).
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Figure 1: Interest and Data packets forwarding in NDN.

3. Security in NDN
In this section, we will provide an overview of the fundamental security mechanisms employed in NDN. We will

also identify several threats to NDN network, with a particular focus on the emerging threat of Cache Pollution Attacks
(CPA). We will delve into the principle behind CPA and explore the different types of CPA that can occur. By analyzing
these threats in detail, we can gain a better understanding of the challenges facing NDN security and design effective
countermeasures to mitigate these risks.
3.1. Basic NDN Security Mechanims

NDN incorporates several security measures, including cryptographic verification, access control, and trust
management, to guarantee the confidentiality, integrity, and authenticity of data. Data packets are signed by the
producer using their private key, and the resulting signature is included in the packet’s Signature field, which
comprises two sub-fields: SignatureInfo and SignatureValue. SignatureInfo identifies the publisher’s public
key, and SignatureValue is decrypted using this key. Upon receiving a Data packet, the consumer verifies its
authenticity and integrity by checking the Signature field and using the identified public key to authenticate the
signature. While the use of signature fields in NDN helps prevent data tampering and ensures trust in received data,
intermediate routers may not necessarily need to verify the content due to the substantial overhead it can impose, as
verifying the signature requires access to numerous public key certificates to trust the validating public key (33) (34).
3.2. Cache Pollution Attacks in NDN

The NDN architecture is gaining attention as a potential replacement for the traditional Internet architecture that
relies on TCP/IP. NDN is designed to focus on content rather than carriers, and researchers have been investigating
various aspects of this new architecture, particularly forwarding, caching, and recently security. While NDN is not
vulnerable to traditional attacks that target TCP/IP, such as DoS, DDoS, relay, MiTM, or flooding attacks (35), it is
still susceptible to new types of attacks, including Cache Pollution Attack (CPA), Cache Poisoning Attack, Interest
Flooding Attack (IFA), and Cache Privacy Attack (36). A wider survey of potential attacks in Named Data Networks
can be found in (16) (17). The proposed mechanism in the current study specifically targets the Cache Pollution Attack,
so in this subsection, we closely investigate the principles and sub-types of CPA.

CPA is one of the most impactful and easy-to-manipulate attacks in NDN. The attacker’s goal is to store unpopular
items in the CS, thus preventing regular users from accessing the cache. This attack mainly targets cache hits on NDN
routers. To manipulate the content’s priority in the CS of nearby routers, the attacker node sends a large number of
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intensive interest packets. This causes a significant amount of malicious packets to be cached in the router’s CS, making
it more difficult for legitimate users to access the content they need.

MConsumer 1

LConsumer 1

MConsumer 2

LConsumer 2

Data packet Interest Packet

Legitimate ConsumerMalicious Consumer

Infected NDN Router NDN Router Producer

Cache of the CS

Set of Legitimate content
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2nd set of Malicious content

3rd set of Malicious content

Figure 2: LDA attacks in NDN.
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Figure 3: FLA attacks in NDN.
In CPA, there are two main types of attacks: Locality Disruption Attack (LDA) and False Locality Attack (FLA).
In an LDA attack, the attacker generates a continuous stream of requests for new and unpopular contents,

intentionally disrupting the correlation structure of the original request stream. These less popular contents are then
cached in the NDN gateway and nearby routers. However, since these cached contents are not frequently requested by
legitimate consumers, the overall hit ratio experienced by regular consumers decreases. On the other hand, in FLA,
the attacker manipulates the popularity of already cached contents by repeatedly requesting the same set of unpopular
contents. This strategy artificially inflates the overall hit ratio of the cache, as the attacker keeps requesting the same
contents. However, the hit ratio for legitimate consumers is negatively affected since a portion of the cache becomes
occupied by the repeatedly requested.

In our previous work (18), we conducted simulations to assess the impact of CPA attacks on the consumer side.
We observed that these attacks led to increased wait times for consumers trying to obtain the required content, reduced
bandwidth for legitimate consumers, and even Time-Outs. The aforementioned negative effects collectively impact
user experience. It is crucial for researchers in the network security community to acknowledge and address the impact
of CPA attacks.

4. Related Works
Recently, the literature has seen a significant amount of work proposed to tackle the issue of Cache Pollution Attacks

in NDN. These solutions can generally be categorized into statistical and Machine Learning (ML) based approaches.
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Our approach falls under the ML-based category. Therefore, in this section, we present a concise review of recent ML-
based solutions for mitigating CPA. Further details and a comprehensive review of both categories of CPA mitigation
techniques can be found in the referenced work by (16). In Table 1, we provide an overview of the ML-based CPA
mitigation solutions discussed in this section.

Nasserala et al. proposed the Cache nFace mechanism in (39). This mechanism employs the CS cache clustering
technique to detect the presence of CPA attacks. The mechanism divides the cache of the CS into sub-caches based
on the frequency of receiving different contents and assigns them labels corresponding to the associated interface
numbers. As a result, if a CPA attack occurs, it affects only one sub-cache, while the other sub-caches continue serving
requested contents to legitimate consumers. However, this mechanism has a potential drawback: if the most requested
content resides in the infected sub-cache, legitimate consumers may encounter difficulties in accessing it. Additionally,
the authors did not address the scenario involving low-popularity contents.

Yang et al. (40) recently proposed a novel CPA mitigation mechanism based on Support Vector Machine (SVM).
This approach utilizes various parameters to detect the occurrence of CPA attacks, including the number of interests
received per second, the number of content requesters, the distribution of requesters, the core network traffic, and the
Cache Hit Ratio of legitimate users. The proposed pre-trained SVM model leverages the aforementioned parameters
to classify all received contents and determine their legitimacy or maliciousness. However, this mechanism is subject
to a few limitations. Firstly, if the pattern of malicious content differs from what the model was trained on, the attack
may go undetected. Secondly, both malicious and legitimate interests are processed, without differentiation, which can
lead to unnecessary processing of malicious interests. Lastly, this mechanism may have higher storage requirements
for NDN routers due to the inclusion of the SVM model.

Buvanesvari R. et al. (41) proposed a detection mechanism based on a combination of multi-classifier and meta-
heuristic approaches. This mechanism comprises two main phases. In the first phase, features such as the number of
nodes, frequency of sending interests, pattern of interests, and execution time of the attack are extracted. These features
are then used as input to a Deep Convolutional Neural Network (CNN). However, instead of using the traditional CNN
functionality, the authors optimize it by incorporating a Fuzzy Decision Tree (FDT). This mechanism exhibits a certain
level of greediness in terms of NDN resource consumption, including storage space and CPU usage.

Gini impurity (GI) is a mechanism proposed by Vishwa et al. (42). This mechanism utilizes the decision tree
technique and incorporates two main metrics: interest probability and time interval of receiving the interest.

The mitigation technique employed in this mechanism involves adding the suspected malicious interface, from
which the malicious interest originates, to a blacklist. However, there are certain drawbacks associated with this
approach. One drawback is the heavy resource consumption it imposes on the NDN router, including high CPU usage
and potential space storage exhaustion. Additionally, this mechanism may encounter limitations when dealing with
malicious content that is influenced by low-popularity content, as it may fall outside the scope of detection.

Lin Yao et al. (43) proposed a mechanism for popularity prediction based on three main metrics: the frequency of
interest demand, the standard deviation of request intervals, and the request ratio. These metrics are used to calculate
the popularity of content. The calculated values are then incorporated into the Grey Model prediction model (GMP).
However, since the mitigation occurs in the later stages of the attack, there is a possibility of the CS cache being
polluted even before determining the authenticity of the content. Therefore, this mechanism could be further improved
if the decision-making process takes place at an earlier stage.

Gradient Boosting Decision Tree (GBDT) is a mechanism proposed by Dapeng Man et al. in (44). This mechanism
involves a learning process that utilizes specific features, including the node status and the information along the
path. However, this mechanism has the potential to deplete the limited resources of NDN routers. The authors in (45)
proposed a mechanism based on the Radial Basis Function Neural Network (RBFNN). This mechanism utilizes a
dataset as input, which includes various features such as the durability of content in the cache over a time interval,
the content density, the standard deviation of content, the least recapture of processing content, the hit ratio, and the
interface from which the content originates. The output of the model is classified as either 0 (indicating a FLA type
of attack), 0.5 (indicating an LDA type of attack), or 1 (indicating a healthy content). However, it is worth noting that
this mechanism also faces the challenge of resource greediness within the limited NDN environment.

Hybrid Heterogeneous Multi-classifier Ensemble learning, proposed by Lin Yao et al. (46), is a novel mechanism
that utilizes two key parameters: the request frequency for a specific content from the Content Store (CS) cache and
the hit ratio of a content in the CS cache. However, it is important to note that this mechanism has a limitation in that
it can only effectively identify highly popular content while struggling to detect low-popularity malicious content.
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Vimala Rani et al. (47) proposed a defense mechanism designed to counter CPA attacks. The mechanism utilizes
Fuzzy C-Means Clustering (FuCL) for detecting these attacks and employs Active Queue Management (AQM) to
manage content delivery time. The mechanism makes a decision to either revoke or permit suspected content from
the cache. Vimala Rani et al. (48) further investigated the application of the Fuzzy Restricted Boltzmann Machine
(FuRBM) learning framework for the detection of CPA attacks. Their proposed mechanism comprises three key
steps: the construction of a consumer reward table, the provision of rewards to consumers, and the mitigation of
attacks. The system assigns ranks to each content, with low-priority content being revoked from the reward table as a
countermeasure. Both the mechanisms presented in (47) and (48) can potentially impose a significant negative impact
on NDN resource consumption, resulting in increased bandwidth usage, storage space requirements, CPU overload,
and potentially higher false positive rates.

Lin Yao et al. (49) recently introduced a new method to mitigate NDN networks against CPA attack based on
Non-Cooperative Game theory (NCG). This technique explores scenarios where the benefits of each agent depend
not only on their own actions but also on the actions of other agents. The mechanism involves collecting suspicious
requests and storing them in a dedicated suspicious list, a process carried out by all nodes in the network. Each node
then determines its utility and caching strategy, utilizing the Non-Cooperative Game technique to achieve balance and
equitable utility distribution among the nodes while eliminating suspected malicious nodes. This solution tends to be
resource-intensive but can effectively reduce the delivery time caused by constant verifications.

Recently, Liang Liu et al. (50) proposed a novel detection mechanism for identifying CPA attacks based on Bayesian
optimization and CatBoost. This mechanism utilizes features extracted by Bayesian optimization, including the cache
miss rate during the attack phase and the number of cache misses within the time interval of the CPA attack. BO-
CatBoost is employed to predict the network state. However, this mechanism faces certain challenges. One of them
is the lack of persistence due to the limited amount of network behavior data available for accurate attack detection.
Additionally, this mechanism focuses solely on the detection phase and does not introduce any mitigation strategies.
Babu et al. proposed in (51) a signature-based solution to mitigate abnormal behaviors in the NDN network. This
mechanism utilizes supervised artificial intelligence techniques, specifically the Dynamic Forest of Random Subsets
(DRF). However, this approach has a few performance limitations. Firstly, it exhibits greediness in terms of space
storage requirements. Additionally, the mechanism can increase the retrieval delay for content in the network.

Ref. Year Machine Learning technique Attack Category
Yang Cao et al. (40) 2023 SVM FLA

Babu et al. (51) 2023 DRF FLA
Liu et al. (50) 2022 BO-CatBoost FLA

Lin Yao et al. (49) 2022 NCG LDA and FLA
Buvanesvari R. et al. (41) 2022 CNN and FDT LDA and FLA

Lin Yao et al. (46) 2022 HHMCEL FLA
Dapeng Man et al. (44) 2021 GBDT LDA and FLA
Vimala Rani et al. (47) 2021 FuCL LDA and FLA

Vishwa et al. (42) 2020 GI LDA and FLA
Lin Yao et al. (43) 2020 GMP LDA and FLA

Buvanesvari et al. (45) 2020 RBFNN LDA and FLA
Vimala Rani et al. (48) 2020 FuRL LDA and FLA

Andre Nasserala et al. (39) 2018 Clustering FLA
Table 1: Machine learning based CPA detection and mitigation mechanisms.

5. The Proposed CPA Detection Scheme
In this section, we present our proposed solution for mitigating CPA in NDNs. Our solution is based on the

utilization of Machine Learning (ML) techniques, which harness the capabilities of ML algorithms to understand
the traffic patterns within the network. By analyzing these patterns, our solution can detect and flag any abnormal
behavior that may indicate the occurrence of a CPA. More specifically, our proposed solution utilizes a Q-Learning-
based approach to make informed decisions regarding packet filtering in order to prevent the propagation of CPA.
We opted for Q-Learning due to its ability to learn the optimal policy for decision-making based on the observed
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system state. In the case of CPA detection, this means that Q-Learning can learn the best strategy for identifying
malicious interests based on observed network traffic patterns (52). This ability to learn from experience and adjust the
policy accordingly makes Q-Learning an attractive choice for CPA detection. Moreover, Q-Learning is a model-free
approach, meaning that it does not require prior knowledge of the underlying system dynamics. This property makes
it well-suited for non-stationary environments. This is particularly important in the context of CPA detection since the
behavior of the attacker and the patterns of malicious traffic are constantly evolving and changing. Q-Learning can
adapt to these changes in real-time without requiring updates to the model or knowledge of the precise attack patterns.
Overall, Q-ICAN’s Q-Learning-based detection strategy is a powerful tool for detecting cache pollution attacks, and
its ability to adapt to changing circumstances makes it a valuable addition to any NDN security system.

The main idea of our proposed solution involves integrating a Q-Learning agent into each NDN router. These
agents learn the traffic patterns of interest packets by monitoring key metrics such as the average Cache Hit Ratio
(AVG-CHR), average Inter-Arrival Time (AVG-IAT), and Hop Count of received Interests. When a notable deviation
is detected in these metrics, it indicates a potential cache pollution attack. Consequently, the corresponding interest
packet is identified as malicious and subsequently discarded (refer to Figure 4).
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Figure 4: Q-ICAN global system model.
As shown in Figure 5, four key components need to be carefully selected for the implementation of the Q-Learning

agent: the state, the action, the reward function, and the transition between the exploration and exploitation phases.
The next subsections delve into greater detail regarding the selection process for these components.
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Figure 5: Interaction process between Q-ICAN and the NDN environment.
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Figure 6: Cache Hit Ratio variation under CPA.
5.1. The state representation

The state in Q-Learning specifies the data that the agent needs to make decisions and update its Q-values.
The selection of an appropriate state representation is crucial as it directly impacts the agent’s performance in the
environment. Mathematically, the state in Q-Learning is represented by equation (1), where 𝑉 𝜋(𝑠) denotes the state
value. It represents the estimated total reward starting from state 𝑠 and following the policy 𝜋. When an agent chooses
actions based on a particular policy 𝜋, the corresponding value function can be expressed as follows:

𝑉 𝜋(𝑠) = 𝔼 [
𝑇
∑

𝑖=1
𝛾 𝑖−1 𝑟𝑖] ; ∀𝑠 ∈ 𝕊 (1)

The highest possible value function for all states compared to other value functions is referred to as the optimal
state value function, represented by the function (2) :

𝑉 ∗(𝑠) = 𝑚𝑎𝑥
𝜋

𝑉 𝜋(𝑠); ∀𝑠 ∈ 𝕊 (2)

If we are aware of the optimal value function, then the policy that it relates to is the best policy, denoted as 𝜋∗ as
represented by the function (3) :

𝜋∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎

𝑉 𝜋(𝑠) ; ∀𝑠 ∈ 𝕊 (3)
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In order to use Q-Learning effectively for CPA detection, the state parameters should capture the relevant features of
the network traffic that enable the NDN router to detect and respond to intrusions effectively. In our previous work (30),
we conducted a study to analyze the impact of CPA on NDN routers’ performance and studied the evolution of different
parameters under the attack. Our findings revealed that the variation of the Cache Hit Ratio (CHR), interest inter-arrival
time, and interest hop count could serve as good indicators of the presence of cache pollution attacks. For example,
Figure 6 illustrates the variation of CHR under CPA, with the periods of attack highlighted by red dotted lines. It is
evident from the figure that the CHR experiences a significant decline and reaches below 5% during the attack periods.
Based on the results of this study (30), we choose to represent the state in Q-ICAN by the tuple Average Cache Hit
Ratio, Average Inter-Arrival Time, and the Hop Count:

𝑆(𝐴𝑉 𝐺_𝐶𝐻𝑅,𝐴𝑉 𝐺_𝐼𝐴𝑇 ,𝐻𝐶).

Where:
• AVG_CHR represents the average, on each time period, of the Cache Hit Ratio (CHR). The value of CHR is

computed as follows:

𝐶𝐻𝑅 = (
∑

𝐶𝑎𝑐ℎ𝑒𝐻𝑖𝑡𝑠
∑

𝐶𝑎𝑐ℎ𝑒𝐻𝑖𝑡𝑠 +
∑

𝐶𝑎𝑐ℎ𝑒𝑀𝑖𝑠𝑠𝑒𝑠
) × 100

Where CacheHits refers to the number of interests that are successfully served from the cache server (CS), and
CacheMisses refers to the number of interests that are not served from the cache and must be sent to the content
producer for retrieval.

• AVG_IAT refers to the average, on each time period, of the IAT. As shown in Figure 7 the IAT represents the
inter-arrival time, at the NDN router, of two consecutive interest packets requesting the same prefix.

• In our model, the variation of the Hop Count (HC) refers to the number of nodes, typically NDN routers, that a
piece of data traverses. Specifically, in our model, the HC is measured at the targeted NDN router. This metric
is evaluated for each prefix and denoted as 𝐻𝐶𝑝𝑟𝑒𝑓𝑖𝑥(𝑖).

MConsumer

Legitimate NDN packet 

Average Inter-Arrival Time 
(η)

Malicious NDN packet 

Producer

ηi ηi+1 ηi+2 ηi+3 ηn

Legitimate NDN packet 

Malicious NDN packet 

ηi  ≈  ηi+1

ηi+2  <  ηi & ηi+2 < ηi+1

Figure 7: Average Inter-Arrival Time model under CPA attack.
In addition to selecting the best parameters to represent the state, reducing the number of states in Q-Learning

is also crucial in order to reduce the computational complexity of the algorithm and improve its ability to generalize
to new situations. When there are too many states, the Q-learning algorithm may converge slowly or fail to converge
altogether. One effective approach to reducing the number of states in Q-Learning is through a technique called state
aggregation. By grouping similar states together, the algorithm can learn more efficiently and generalize better to novel
scenarios. In the context of Q-ICAN, we employ the following steps to reduce the number of states:
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As illustrated in Figure 8, we have implemented a technique to reduce the variation of the Average CHR by grouping
its values into ranges of 10% each. For instance, if the CHR value falls between 0% and 10%, we assign the value of
0.1 to the corresponding metric in the current state.
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Figure 8: Reducing the variation of the AVG-CHR paramter.
As shown in Figure 9, we have implemented a technique to reduce the number of values for each Inter-Arrival Time.
This reduction is achieved by defining four main values, denoted as 𝑉 1, 𝑉 2, 𝑉 3, and 𝑉 4, based on the values of
(𝐼𝐴𝑇𝑚𝑖𝑛, 𝐼𝐴𝑇𝑚𝑜𝑦, 𝐼𝐴𝑇𝑚𝑎𝑥). For example, if an IAT value falls within the range of 0𝑠 to 𝐼𝐴𝑇𝑚𝑖𝑛, it will be set to 𝑉 1,
and so on.

V1 V2 V3 V4

IATmin IATmoy IATmax

Figure 9: Reducing the variation of the the AVG-IAT parameter.
5.2. The Action Modelling

In Q-Learning, the action value function, denoted as 𝑄(𝑠, 𝑎), represents an estimate of the expected reward an agent
will receive by taking action 𝑎 in state 𝑠 and following the optimal policy thereafter. The optimal policy is the one that
maximizes the expected return over time. In a given state, there may be multiple available actions, each leading to a
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different estimate of the Q-value. The agent typically selects the action with the highest Q-value as the optimal action
to take in the current state. Mathematically, the optimal value function 𝑉 ∗(𝑠), as defined in equation (1), is defined as
the maximum value of 𝑄∗(𝑠, 𝑎) for all actions 𝑎 in state 𝑠. In other words, 𝑉 ∗(𝑠) represents the highest predicted total
reward an agent can achieve when starting from state 𝑠 and following the optimal policy. The relationship between
𝑄∗(𝑠, 𝑎) and 𝑉 ∗(𝑠) can be expressed straightforwardly as follows:

𝑉 ∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) ; ∀𝑠 ∈ 𝕊 (1)

Thus, by selecting the action 𝑎 that produces the highest 𝑄∗(𝑠, 𝑎) for a given state 𝑠, we can determine the optimal
policy. This can be expressed as shown in equation (2), assuming that we have knowledge of the maximum action-value
function 𝑄∗(𝑠, 𝑎).

𝜋∗(𝑠) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎) ; ∀𝑠 ∈ 𝕊 (2)

In practice, it is essential to carefully design the action values to ensure that they accurately represent the reward
structure of the environment and the agent’s goals. In the context of CPA in NDN, we have to choose between two
possible directions: (1) Actions applied to data packets, i.e. whether to cache or not the Data packet (2) Actions applied
to interest packets, i.e. whether to discard or to process the interest packet.

In Q-ICAN, we chose the action that is most appropriate in terms of conserving the NDN router’s CPU usage and
storage space. Using the first type of action can overload intermediate routers and waste network bandwidth, compared
to the second action, which involves discarding malicious interests at the beginning without forcing the NDN routers
to unnecessarily forward and satisfy attackers’ interests. Hence, in our solution, we set the action as follows:

𝐴 =

⎧

⎪

⎨

⎪

⎩

→ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

→ 𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

5.3. The Reward Modelling
The reward specification is crucial in reinforcement learning, since it serves as a signal for the direction of training.

The reward signal informs the agent how well it is performing during a specific state and action. Consequently, A
well-designed reward function can speed up the agent’s convergence to an optimal policy.

To model the reward in Q-ICAN, we follow the following logic. When an action 𝐴𝑖 has been taken in step 𝑖, the
reward needs to be calculated in the step 𝑖 + 1, in this period of time as shown in Figure 10, two situations only can
lead to an increase of the 𝐴𝑉 𝐺_𝐶𝐻𝑅 such as :

• If the attack appears and the decision is correct
• If there is no attack and the decision is correct
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Figure 10: Reward modelling.
This variation of the CHR (𝐴𝑉 𝐺_𝐶𝐻𝑅) leads us to model the Reward as follows :

𝑅𝑒𝑤𝑎𝑟𝑑 =
{

𝐴𝑉 𝐺_𝐶𝐻𝑅𝑡+1 − 𝐴𝑉 𝐺_𝐶𝐻𝑅𝑡
}

where;
𝑆𝑡𝑒𝑝(𝑡) = 𝑅𝑇𝑇𝑚𝑜𝑦

5.4. The Q-Function Modelling
In Q-learning, equation (1) is used to calculate the Q-value for an action taken from state 𝑠. This value is determined

by summing the immediate rewards obtained using a behaviour policy, such as an 𝜖-greedy policy. At state 𝑠𝑡+1,
the policy starts acting greedily. The value iteration in Q-learning, as shown in equation(2), involves updating the
𝑂𝑙𝑑 𝑄 𝑣𝑎𝑙𝑢𝑒 with the addition of the 𝑇𝐷 𝑒𝑟𝑟𝑜𝑟 term to create a 𝑛𝑒𝑤 𝑄 𝑣𝑎𝑙𝑢𝑒. This new value reflects the difference
between the predicted Q-value and the actual Q-value obtained from taking action 𝑎 at state 𝑠.

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠′, 𝑎) (1)

𝑄(𝑠, 𝑎) ← 𝑜𝑙𝑑 𝑄 𝑣𝑎𝑙𝑢𝑒 + 𝑇𝐷 𝑒𝑟𝑟𝑜𝑟 (2)
The 𝑛𝑒𝑤 𝑄 𝑣𝑎𝑙𝑢𝑒 is subtracted from the previous Q value to calculate the 𝑇𝐷 𝑒𝑟𝑟𝑜𝑟 as demonstrated in (3) and

(4).

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑜𝑙𝑑 𝑄 𝑣𝑎𝑙𝑢𝑒 + (𝑛𝑒𝑤 𝑄 𝑣𝑎𝑙𝑢𝑒 − 𝑜𝑙𝑑 𝑄 𝑣𝑎𝑙𝑢𝑒) (3)

𝑛𝑒𝑤 𝑄 𝑣𝑎𝑙𝑢𝑒 = [𝑟𝑡 + 𝛾 𝑚𝑎𝑥 𝑄(𝑠𝑡+1, 𝑎𝑡)] (4)
The Q-Function that insures the Q-Value updates is represented as follows:

𝑞𝑛𝑒𝑤(𝑠, 𝑎) = (1 − 𝛼) × 𝑞(𝑠, 𝑎)
⏟⏟⏟
Old Value

+𝛼 ×

Learned Value
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑅𝑡+1 + 𝛾 × 𝑚𝑎𝑥

𝑎′
𝑞(𝑠′, 𝑎′)) (5)
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Where, 𝛾 represents the discount factor and 𝛼 the learning rate.
In Q-ICAN, we have introduced a new structure called the Q-table, which is used to store the Q-values associated

with each state-action pair. This Q-table is an essential component of the Q-ICAN algorithm. To illustrate this concept,
we have provided an example of the contents of the Q-table in Figure 11. This table shows the Q-values for different
state-action pairs and is used to determine the best action to take from each state.

                                   Actions
States                                      

Process Discard

.

.

.

.

.

.

.

.

.

(0.2, V1, 5) 0.2 0.8

(0.9, V4, 3) 0.9 0.1

(0.1, V1, 5) 0.4 0.6

(0.7, V3, 8) 1 0.2

(0.9, V4, 1) 0.1 1

(0.1, V2, 5) 0.9 0.1

.

.

.

.

.

.

.

.

.

Interest with prefix i

(AVG-IAT, AVG-CHR, HC)                                  

Time step t

Time step t + 1

Figure 11: Q-ICAN associated Q-Table.
5.5. The Exploration and Exploitation Phases

In Q-Learning, the exploitation phase refers to the process of selecting the action with the highest Q-value based on
the Q-Table. On the other hand, the exploration phase involves randomly selecting actions to explore new possibilities.
By striking a balance between exploitation and exploration, the Q-Learning algorithm can effectively learn and improve
its decision-making capabilities.

In Q-ICAN, during the exploration phase, the agent attempts to discover new features of the NDN network
environment by selecting sub-optimal action (see Figure (a) 12). The Q-ICAN agent starts by receiving an interest
𝑖,and takes an action randomly. For each action, the Q-Value of 𝑄(𝑠, 𝑎) is calculated, representing the expected future
rewards associated with taking the action 𝑎 in state 𝑠. Once the Q-Value is obtained, a reward is assigned based on the
observed outcome of the action. This reward is used to update the Q-Table. The agent iteratively updates the Q-Table
until it reaches the optimal Q-Value for each state-action couple (𝑠, 𝑎).
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Receive Interest i

Take the Action Randomly

Calculate the Q-Value of
Q(S,A) and apply the Reward

Update the Q-Table

Exploitation Phase

Receive Interest i

Select the Action for interest i
with max Q-Value 

Process interest i

Return Data

Discard interest i

Matching Data in
CS

Yes

Matching name
in the PIT

No

Matching name
in the FIB

Add incoming interfaceYes

No

Drop interest i

Yes

No

(a) Exploration phase. (b) Exploitation phase.
Figure 12: Q-ICAN exploration and exploitation phases.

During the exploitation phase, the Q-ICAN agent uses the knowledge that has been learned about the NDN network
environment. As shown in Figure (b) 12, upon receiving an interest 𝑖, Q-ICAN selects the Action associated with the
maximum Q-Value. If the interest is malicious, the associated action basically is to discard the interest. If the interest
is legitimate, the associated action is to process the interest and the normal NDN forwarding mechanism is applied.

Achieving optimal performance in Q-Learning depends on finding the right balance between exploration and
exploitation phases. In the literature (54), several strategies have been suggested to achieve this trade-off, including:

• Epsilon-greedy strategy.
• Decaying Epsilon-greedy.
• Optimistic initialization
• Upper Confidence Bound
• Thompson Sampling
• etc.

Our choice has been made based on the usability of the Epsilon-greedy strategy in the state of the art. This method
introduces a hyperparameter "epsilon" that determines the probability of selecting a random action during the
exploration phase. The value of epsilon is usually gradually reduced over time to prioritize exploitation as the Q-Table
becomes more accurate. Recent works have shown that Epsilon-greedy strategy is suitable for named data networks
(55)(56)(57), as it yields better performance in terms of time consumption and the switching between the exploration
and the exploitation phases. The algorithm of the Epsilon-greedy strategy is given in Algorithm 1.

6. Performance Evaluation
In this section, we will first discuss the simulation settings that were used in our performance evaluation. Next, we

present and analyse the experimental results we obtained. Finally, we conduct a comparative analysis of Q-ICAN with
state-of-the-art solutions including our previous ICAN solution.
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Algorithm 1 Epsilon-greedy strategy algorithm
𝐸𝑝𝑠𝑖𝑙𝑜𝑛 ← 1
𝑅𝑎𝑛𝑑 ← [0..1]
if 𝑅𝑎𝑛𝑑 ≤ 𝐸𝑝𝑠𝑖𝑙𝑜𝑛 then

𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛()
else

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛()
end if

𝑈𝑝𝑑𝑎𝑡𝑒(𝐸𝑝𝑠𝑖𝑙𝑜𝑛)

6.1. Simulation Settings
In this subsection, we provide detailed information about the simulation settings used in our investigation. We

conducted our simulations using the official ndnSIM module of Network Simulator 3 (NS-3). We used two real-world
topologies: the DFN topology (see Figure 13.a) and the larger AT&T topology, with up to 80 nodes (see Figure 13.b).
We explored various settings within each topology to capture a wide range of scenarios. During the total simulation
time, we alternated between the attack period and the non-attack period (normal state). The attack period lasted for
7 seconds, while the normal state lasted for 6 seconds. To investigate the effectiveness of Q-ICAN, we varied several
parameters, including the number of the attackers, the frequency of malicious interests, the cache size. Additionally,
we tested different caching policies, such as LRU and LFU, which are commonly used in NDN. A summary of the
simulation parameters is presented in Table 2.

Simulation time 106s
Number of Nodes DFN:29 / AT&T:80
Number of Legitimate Consumers DFN:8 / AT&T : 42
Number of Attackers DFN: 1, 2, 3, 4 /AT&T: 14
Consumer type ConsumerZipfMandelbrot
Attackers Interest rate 120, 160, 200, 220, 260
Legitimate Consumers Interest rate 120
Time of Launching the Attack 5-12, 18-25, 31-38, 44-51, 57-60, 67-74, 80-87, 93-100s
Router CS size DFN : 50, 100, 150 / AT&T : 100
Cache policy DFN : LRU and LFU / AT&T : LRU

Table 2: Simulation parameters.

15

(a) DFN topology. (b) AT&T topology.
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Figure 13: Simulation topologies.
6.1.1. Setting the Hyperparameters for Q-Learning

Setting the hyperparameters in Q-Learning plays a crucial role in determining the performance of the algorithm,
and it is particularly important for achieving optimal results with the Q-ICAN agent. There are three key parameters
that need to be appropriately configured to achieve the optimal performance of the Q-ICAN agent.

1. Epsilon (𝜖): It is used to balance exploration and exploitation in the Q-ICAN agent. As explained in section 5.5,
we consider using a decaying schedule for epsilon. By gradually reducing epsilon over time, the agent starts with
a higher exploration rate in the initial stages of learning, allowing it to explore various actions and learn about
the environment. As the learning progresses, the agent shifts its focus toward exploitation.

2. The learning rate (𝛼): It determines the speed at which the Q-ICAN agent learns from new experiences. Selecting
an appropriate learning rate is crucial for achieving optimal learning and convergence in the Q-Learning process.

3. The Discount factor (𝛾): It determines the trade-off between immediate and future rewards. A value of 0 indicates
that the agent is fully short-sighted and only considers immediate rewards, while a value of 1 indicates that the
agent considers all potential future rewards equally.

In order to determine the most suitable hyperparameter settings for our specific problem, we conducted experiments
involving various combinations of 𝜖, 𝛼, and 𝛾 values. The performance of the Q-ICAN agent was evaluated using these
different hyperparameter settings, and the results are depicted in Figure 14. Figure 14.(a) demonstrates that when the
hyperparameters are set to (0.1, 0.1, 0.1) respectively, the achieved Cache Hit Ratio (CHR) stabilizes at episode 910.
However, by increasing the values to (0.6, 0.1, 0.5), as shown in Figure 14.(b), the CHR stabilizes faster, reaching
stability at episode 780. Furthermore, by further increasing the hyperparameters to (0.99, 0.1, 0.9) as depicted in
Figure 14.(c), the stabilization time is reduced to 605 episodes, with a 1% improvement in the CHR compared to
Figure 14.(b). Based on the analysis of these results, we have selected the hyperparameters 𝜖 = 0.99, 𝛼 = 0.1, and
𝛾 = 0.9, as summarized in Table 3.
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(a) 𝜀 = 0.1, 𝛼 = 0.1, 𝛾 = 0.1 (b) 𝜀 = 0.6, 𝛼 = 0.1, 𝛾 = 0.5 (c) 𝜀 = 0.99, 𝛼 = 0.1, 𝛾 = 0.9
Figure 14: Performance of CHR under the variation of the Q-learning settings.

Epsilon (𝜀) Learning Rate (𝛼) Discount Factor (𝛾)
0.99 0.1 0.9

Table 3: Q-ICAN agent settings.
6.2. Simulations Results

To assess the effectiveness of our proposed method, we studied various performance metrics, namely (1) the score
values, (2) the Cache Hit Ratio, (3) the Average Retrieval Delay, and (4) the efficiency in terms of several AI-related
performance parameters (i.e. Accuracy, Precision, Recall, Specificity, and F1 Score). In the following subsections, we
present and analyse the obtained results.
6.2.1. Evaluation of the Score values

To evaluate the performance of our Q-ICAN agent in the presence of CPA attacks, we have, first, measured the
Score values to track when the rewarding values converge and stabilize. We model the Score as the sum of the reward
or penalty value 𝑅 on each episode 𝑒 :

𝑆𝑐𝑜𝑟𝑒 =
∑

𝑅𝑒
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Our evaluation of the Score metric reveals that the score stabilizes after 580 episodes for the DFN topology and
after 590 episodes for the AT&T topology (see Figure 15.) These results demonstrate that the Q-ICAN agent performs
well in both topologies, as evidenced by the stable convergence of the Score. The agent effectively learns to navigate the
environment without making any critical mistakes, highlighting its ability to exploit the environment while avoiding
erroneous judgments.
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Figure 15: Q-ICAN score under DFN and AT&T topology.

6.2.2. Evaluation of the Cache Hit Ratio (CHR)
In addition to the Score metric, we have evaluated, in a second step, the Cache Hit Ratio (CHR) metric, where the

Cache Hit Ratio (CHR) is the percentage of data requests that were successfully supplied by the cache. This indicates
that a consumer received the content requested from the cache without having to request it from the producer. Moreover,
the decease of the value of the CHR refers to a suspected attack state.

• The CHR while varying the network size we first examined the impact of network size on CHR using two
real-world topologies: the DFN topology, which consists of 29 nodes, and the AtT topology, which has 80 nodes.
As shown in Figure 16.a, in the DFN topology, an attack can cause significant damage to the CHR if Q-ICAN
is not implemented. In most cases during the attack, the CHR drops to under 20%, as outlined in Table 2, and
in some instances, it reaches 0%. However, with the implementation of Q-ICAN, as depicted in Figure 16.b, the
CHR stabilizes at 94% during the exploitation phase (Episode = 520).
Similarly, in the AT&T topology, the CHR decreases to under 23% in most cases during the attack state, as
shown in Figure 17.a. However, with the presence of our agent, as depicted in Figure 17.b, the CHR stabilizes
at almost 92% by the end of the 500𝑡ℎ time episode.
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Figure 16: Evaluation of the CHR with and without Q-ICAN in the DFN topology.
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Figure 17: Evaluation of the CHR with and without Q-ICAN in the AT&T topology.
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• The CHR while varying the number of attackers : The performance of Q-ICAN is not significantly affected
by the number of attackers, as confirmed by the obtained results. In the case of one or two attackers, Q-ICAN can
easily detect and mitigate them, as shown in Figure 18.a and Figure 18.b at episodes 263 and 520, respectively.
With three or four attackers, as depicted in Figure 18.c and Figure 18.d, the detection episode typically falls
between 615 and 790, consecutively. Despite the high stress that Q-ICAN experiences when the number of
attackers varies, the CHR remains stable and typically ranges between 91% and 94%.
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Figure 18: Performance of CHR under the variation of the number of the attackers.

• The CHR while varying the rate of malicious interests : As the rate of attacker interests increases,
distinguishing between legitimate and malicious traffic becomes increasingly challenging for any mitigation
solution. Hence, it is crucial for CPA mitigation solutions to be capable of handling high rates of attacker interests
while maintaining performance and preventing legitimate traffic from being blocked. This study examines the
impact of varying the sending rate of malicious interests on the CHR using Q-ICAN. The study employs five
main frequencies, as shown in Figure 19. The results confirm that Q-ICAN’s performance remains unaffected
by an increase in the malicious interest rate, and it efficiently detects and blocks malicious interests even under
stressful scenarios of up to 260 interests per second. This resistance to a malicious traffic increase ensures that
the Q-ICAN solution can continue to function optimally even under high-stress scenarios. In all cases, our agent
successfully detects this impactful attack, and the CHR exceeds the threshold of 90%.
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Figure 19: Performance of CHR with a frequency variation of requesting malicious content.

• The CHR while varying the cache size : The variation of such parameter is important, where it shows that the
attack still damaging the main cache resources and reduces the recover of such Data content. In our simulation,
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3 cases are under our study such as the cache size of 50,100 and 150. Despite the high impact of CPA in the
cache of the CS, Q-ICAN is able to mitigate and improve the CS cache from CHR = 0% to CHR = 94% as
demonstrated in Figure 20.a, 20.b, 20.c consecutively.
Varying the cache size is a critical parameter as it demonstrates the extent to which an attack can damage the main
cache resources and reduce data content recovery. In our simulation, we examine three cases with cache sizes of
50, 100, and 150. Despite the significant impact of CPA on the cache of the CS, Q-ICAN can improve the CHR
from 0% to 94%, as illustrated in Figure 20.a, 20.b, and 20.c. This improvement in CHR shows that Q-ICAN
can effectively identify and block malicious interests, preventing them from damaging the cache resources of
the CS.
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(a) CS = 50. (b) CS = 100. (c) CS = 150.
Figure 20: Performance of CHR under the variation of the CS cache size.

• The CHR using different caching policies : The caching policy has a huge impact on the caching mechanism,
where variating this metric can set Q-ICAN into a challenging position of detecting the attack upon the variation
of such important metric that has a direct relation with the CHR. Q-ICAN is able to detect the CPA attack in
both LRU and LFU caching strategies. The CHR increased from 0% to above 90% as shown in Figure 21.a and
21.b. The choice of caching policy has a significant impact on the caching mechanism, and varying this setting
can pose a challenge for Q-ICAN to detect the attack since it has a direct impact on the CHR. Nevertheless, our
study confirms that Q-ICAN can accurately detect the CPA attack in both LRU and LFU caching strategies. As
shown in Figure 21.a and 21.b, the CHR increases from 0% to above 90%. This increase in CHR demonstrates
Q-ICAN’s ability to detect and block malicious interests effectively, even when the caching policy varies.
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Figure 21: Performance of CHR using different caching policies.

To sum up, our study has demonstrated that Q-ICAN is highly effective in mitigating CPA attacks and optimizing
the CHR to exceed a threshold of 90% in all cases, even under challenging scenarios and stressful conditions.
6.2.3. Evaluation of the Average Retrieval Delay (ARD)

The Average Retrieval Delay (ARD) is a useful evaluation metric that measures the time it takes for a consumer to
retrieve the desired content. Our study, as shown in Figure 22, highlights that a legitimate consumer’s retrieval time in
the presence of a CPA attack is 18.3 ms. However, the introduction of Q-ICAN agent results in a remarkable reduction
of retrieval time to 15.5 ms, demonstrating the Q-ICAN model’s efficiency in conserving and optimizing the ARD
under critical attacks. With an average time difference of 2.8 ms, Q-ICAN effectively detects and mitigates potential
threats in real-time, maintaining a fast and efficient content retrieval operation. These results indicate the significance
of CPA detection solutions such as Q-ICAN in improving user experience and increasing network availability.
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Figure 22: Average Retrieval Delay under CPA.
6.2.4. Q-ICAN efficiency

To assess the effectiveness of our mitigation mechanism Q-ICAN, we measured its efficiency using several AI
performance parameters, namely (1) Accuracy, (2) Precision, (3) Recall, (4) Specificity, and (5) F1 Score. These
parameters are defined mathematically as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 )

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

(3)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
(𝐹𝑃 + 𝑇𝑁)

(4)

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

(5)

Where:
• False Positive (FP) : refers to the number of legitimate packets that are incorrectly classified as malicious.
• False Negative (FN) : refers to the number of malicious packets that are incorrectly classified as legitimate.
• True Positive (TP) : refers to the number of legitimate packets that are correctly classified as legitimate.
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• True Negative (TN) : refers to the number of malicious packets that are correctly classified as malicious.
For a comprehensive evaluation of the effectiveness of the proposed intelligent mechanism, we present in Table

4 and Figure 23 the performance parameters: Accuracy, Precision, Recall, Specificity, and F1 Score, along with the
corresponding confusion matrix for both the DFN and AT&T topologies. These metrics provide valuable insights into
the performance and efficiency of the mechanism in different network scenarios.

In the DFN topology, Q-ICAN achieved an accuracy of 95% with an FP value of 38 and an FN value of 22. The
precision value reached 96.46%, indicating the percentage of correctly identified positive detections. The recall value
was 97.92%, indicating the percentage of truly positive values detected in all CPA states. Specificity refers to the ability
to correctly identify positive results, and in this case, the probability of correctly detecting a positive CPA attack was
measured at 76.82%. Finally, the F1 score, calculated as the harmonic mean of precision and recall, yielded a value
of 293.76% using Q-ICAN. Similarly, in the AT&T topology, Q-ICAN achieves an accuracy of 95% with FP and FN
values of 45 and 18, respectively. The precision reaches 96.33%, confirming the high level of accuracy in identifying
positive detections even in large real-world topologies. The recall value of 97.92% indicates a high percentage of
correctly identified true positive values. However, the specificity and F1 score produce values of 90.13% and 292.96%,
respectively, suggesting the possibility of some false positives in the results.

These results indicate the high efficiency of Q-ICAN’s CPA detection mechanism. Additionally, the lower FN value
and higher FP value in both topologies demonstrate Q-ICAN’s advantage in prioritizing legitimate consumers’ content
retrieval while avoiding excessive blocking that could adversely impact the NDN network’s performance, as shown in
the confusion matrix in Figure 23.a and 23.b.

Topology Accuracy (%) Precision (%) Recall (%) Specificity (%) F1 score (%)
DFN 95,09 96,46 97,92 76,82 97,19

AT & T 95,01 94,33 97,65 90,13 95,97
Table 4: Q-ICAN Efficiency.
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Figure 23: Confusion Matrix of Q-ICAN in DFN and AT&T topologies.

6.3. Comparative Analysis of Q-ICAN and state-of-the-art solutions
In this section, we provide a comparative analysis of Q-ICAN and state-of-the-art solutions. First, we compare

Q-ICAN to the previous solution ICAN, using various metrics, as summarized in Table 5. Firstly, we compare the
two solutions in terms of CHR. Figure 24 illustrates the CHR values under CPA in the DFN Topology without a
CPA mitigation mechanism (24.a), with ICAN (24.b) and with Q-ICAN (24.c). The obtained results reveal that in the
absence of a CPA mitigation mechanism (Figure 24.a), the attack causes a sharp decline in the CHR, reaching 0%
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in multiple time steps. By using ICAN (Figure 24.d), the CHR increases and stabilizes around 56%, while Q-ICAN
(Figure 24.b) significantly improves the CHR, stabilizing at 94%. Throughout the simulation time, Q-ICAN achieves
an average CHR of 72.55%, whereas ICAN is limited to 50.53%.

Secondly, we compare the Accuracy of Q-ICAN and ICAN. The results obtained confirm that Q-ICAN demon-
strates superior accuracy compared to ICAN, even in larger and more complex topologies, with an accuracy of 95.09%,
whereas ICAN averages an accuracy of 92.3%.

AVG-CHR Accuracy Identify leakage Resource usage
CPU Memory Space storage

ICAN (30) 50.53% 92.3% No low low low
Q-ICAN 72.55% 95.09% No low low low

Table 5: Comparative analysis of ICAN and Q-ICAN.
Finally, we conduct a qualitative comparison of the two solutions in terms of Identity Leakage and Resource

Usage. The revelation of node identities in the NDN network can potentially compromise the philosophy of the
architecture. Both ICAN and Q-ICAN successfully mitigate CPA without disclosing the identities of consumers,
routers, or producers, affirming that the two solutions are conservative and respect the security semantics of the NDN
architecture. Furthermore, in terms of Resource Usage, both solutions exhibit low CPU, memory, and space usage.

To summarize, Q-ICAN has demonstrated its efficiency in various performance aspects when compared to the
solutions mentioned in the related work section (see Table 6). It effectively discovers and mitigates attacks without
disclosing the identity of any nodes, compromising CPU usage efficiency, or consuming significant space on NDN
routers. Q-ICAN is a lightweight solution that provides real-time protection to the content store of each NDN router.
It acts as a reliable caching mechanism that selectively allows only legitimate content transmission. In comparison to
state-of-the-art solutions mentioned earlier in Section 4, our solution consistently improves the cache hit ratio (CHR)
to 72.55% (refer to Figure 25). Therefore, Q-ICAN outperforms other solutions in terms of CHR enhancement, making
it a superior choice in the field.
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Figure 24: Comparison of ICAN and Q-ICAN performance in terms of CHR.
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Figure 25: Comparative Analysis of Average CHR: Q-ICAN vs. State-of-the-Art Detection and Mitigation Mecha-
nisms.

Mechanism Memory
Overhead

Computational
Time

Privacy Con-
servation

Detection
Pre/Post
Attack

Accuracy Topology Space
Storage

Q-ICAN Low Low No leakage Pre High DFN/AT&T Low
ICAN Low Low No leakage Pre High DFN Low
SVM (40) Low Low No leakage Post Medium XC/DFN High
DRF (51) High High No leakage Post Medium Self-made High
BO-CatBoost
(50)

High High No leakage Post Medium Tree/DFN High
NCG (49) High High No leakage Post Medium Self Made High
CNN and FDT
(41)

High High No leakage Post Medium Self Made High
HHMCEL (46) High Low No leakage Post High Manhattan

topology
High

GBDT (44) Low High Leakage Post High Self Made Low
FuCL (47) High Medium No Leakage Post Medium Self Made Low
GI (42) High High No leakage Post Medium Self Made High
GMP (43) High High Leakage Post High AS-

3967/DFN
High

RBFNN (45) Low High No leakage Post Medium XC/DFN High
FuRL (48) High High No leakage Post Medium AS-

3967/DFN
High

Clustering (39) Low Low No Leakage Post High Tree/Mesh Medium

Table 6: Comparative Analysis: Q-ICAN and AI-based Solutions in the State-of-the-Art.

7. Conclusion and Future Work
NDN is susceptible to several vulnerabilities that can severely disrupt the functionality of its essential components.

CPA is one of the most harmful attacks, with the highest impact on the availability of contents in the cache of the
CS. Multiple mitigation mechanisms have been suggested by the researcher for such attack, but the question always
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remains: whether the attack is still effective under all these mitigation mechanisms and whether these mechanisms
negatively affect the performance of the essential components of NDN.

In this paper, we propose Q-ICAN, a lightweight detection and mitigation mechanism that relies on the Q-Learning
algorithm to prevent CPA attacks. Through several simulations, Q-ICAN has demonstrated its beneficial effect on
mitigating the cache of the CS, using a variety of metrics that directly relate to the CS and consumers within the same
security path. Furthermore, our real-time detection and mitigation mechanism exhibits high accuracy in detecting the
presence of the attack and defending the core of the CS. Moreover, it improves the cache process, leading to better
performance even in the normal state where no attack is present.

Although Q-ICAN has proven to be an effective countermeasure implemented in each router of the NDN network
to detect and mitigate CPA attacks. our future work entails designing a collaborative communication system among
Q-ICAN agents to provide even greater protection. Specifically, we aim to create a global model of Q-ICAN that can
communicate with the sub-model in each NDN router, facilitating the sharing of information about suspected attacks
and enabling early-stage mitigation. Furthermore, we plan to investigate the use of Deep Reinforcement Learning
(DRL) to optimize the performance of our agents. Our objective is to enhance the detection rate of malicious attacks
through the application of advanced deep learning techniques.

Abbreviations
The following abbreviations are used in this manuscript:
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PIT Pending Interest Table
CS Content Store
FIB Forwarding Information Base
CPA Cache Pollution Attack
CDN Content Delivery Network
P2P Peer to Peer
DDB Distributed Database
LRU Least Recently Used
LFU Least Frequently Used
FLA False Locality Attack
LDA Locality disruption attack
CHR Cache Hit Ratio
ARD Average Retrieval Delay
MiTM Man-in-the-Middle
ICN Information-Centric Networking
RL Reinforcement Learning
CHR Cache Hit Ratio
LDA Locality-Disruption Attack
SVM Support Vector Machine
CNN Convolutional Neural Network
FDT fuzzy decision tree
GBDT Gradient Boost Decision Tree
RBFNN Radial Basis Function Neural Network
HHMCEL Hybrid Heterogeneous Multi-classifier Ensemble learning
FuCL Fuzzy C-Means Clustering
AQM Active Queue Management
FuRL Fuzzy RBM Learning framework
IAT Inter-Arrival Time
AVG-IAT Average Inter-Arrival Time
HC Hop Count
AVG-CHR Average Cache Hit Ratio
ICAN Intrusion detection system for CPA attack in NDN
DRF Dynamic Random Forest
NCG Non-Cooperative Game
GMP Grey Model Prediction
GI Gini Impurity
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