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The thickness of freshly made soap films is usually in the micron range, and interference colors
make thickness fluctuations easily visible. Circular patterns of constant thickness are commonly
observed, either a thin film disc in a thicker film or the reverse. In this Letter, we evidence the line
tension at the origin of these circular patterns. Using a well controlled soap film preparation, we
produce a piece of thin film surrounded by a thicker film. The thickness profile, measured with a
spectral camera, leads to a line tension of the order of 10−10 N which drives the relaxation of the
thin film shape, initially very elongated, toward a circular shape. A balance between line tension
and air friction leads to a quantitative prediction of the relaxation process. Such a line tension is
expected to play a role in the production of marginal regeneration patches, involved in soap film
drainage and stability.

The stability of liquid foams and soap bubbles is
controlled by the evolution of liquid film thickness, in-
duced by evaporation [1] and capillary and gravitational
drainage, until the film bursts. Drainage is associated
with fast in-plane motion in films and thickness hetero-
geneities [2–6], often spatially organized as discs of thin
film embedded in a thicker film, or the reverse. In films
less than 100 nm thick, both interfaces interact through
short-range forces of various origins, resulting into a dis-
joining pressure. Nonmonotonic variations of the disjoin-
ing pressure with the film thickness are known to induce a
line tension along the boundary of film domains of differ-
ent thicknesses [7, 8]. This phenomenon has been charac-
terized for the transition between a very thin suspended
film and a meniscus [9], or for the transition between two
black films [10].

In this Letter, we show that the boundary between two
domains of different thicknesses, both thicker than 100
nm, also generates a line tension, despite the negligible
value of the disjoining pressure. In the transition between
the two domains, the interface is slightly tilted and the
excess area produces by this tilt, multiplied by the surface
tension of the solution, is the excess energy at the origin
of this capillary line tension, of purely geometric nature.

Marginal regeneration spontaneously generates film
domains of different thicknesses [2] and this line tension
has already been assumed, qualitatively, to play a role in
such foam film instabilities [11, 12].

To produce and evidence this original line tension, we
prepare an elongated pattern of thin film surrounded by
a thicker film and measure the relaxation of the pattern
to a circular shape, under the effect of the line tension.
Its value, deduced from the thickness profile we measure,
is of the order of 10−10 N and the relaxation lasts a few
seconds, with velocities of the order of 10 mm/s. The
very low interfacial shear viscosity of our foaming solu-
tion [13], rules it out as a significant friction mechanism.
Considering the viscous friction of air only, and using the
analytical prediction established in [14, 15], we are able
to predict the relaxation rate as a function of the mea-
sured line tension, without adjustable parameter. This

FIG. 1. Experimental setup and notations used in the text.
(A) Image of the film recorded by the top camera. (B)
Schematic view of the setup. The black and green thick
lines represent respectively the static and mobile edges of the
frame. The thin film (colored domain in (A), light blue in
(B)) is separated from the light gray thick film by the red
contour C. (C) Schematic thickness profile along L, in the
vicinity of C, on the right-hand side of Fig. 1B.

good agreement validates our line tension measurement.

The line tension revealed by this work, and more gen-
erally the anisotropic interfacial stress induced by thick-
ness gradients, whose tensor is given in this study, should
therefore be taken into account in film drainage models,
and potentially in experiments where foam films are used
to investigate 2D turbulence [16, 17].

Using a deformable horizontal frame of inner area w a,
with w = 62 mm and a a variable width (see Fig. 1), we
produce a thickness pattern in a foam film. The (x, y)
plane is the midplane of the film. We use a mixture of
sodium dodecyl sulfate (SDS, concentration 5.6 g/L, i. e.
2.4 CMC) and glycerol (15% in volume), of surface ten-
sion γ0 = 35 mN/m (measured with the pendent drop
method) and bulk viscosity ηl = 1.5 mPa · s. The inter-
facial shear viscosity ηs is shown to be below 10−8 kg/s
in [13].

Top views of the film, recorded with a color camera
used at 30 frames per second, are shown in Fig. 2 at
different times. The frame is first set at its smallest area
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FIG. 2. Top view of the film before, during and after de-
formation, at times [−1,−0.6, 0, 1, 3, 6] s. The colored central
part is the thin film, the gray part is the thick film. The black
boundary is the meniscus.

(a = 2.1 mm) and bathed in the foaming solution to pro-
duce the thin part of the film (Fig. 2A), called the thin
film hereafter. We let the film drain close to 3 min until
its interference colors are mainly blue and yellow, indi-
cating a thickness comprising between 100 and 300 nm.
Then we move the mobile edge of the frame at a velocity
V mot = 10 mm/s during 1 s (Fig.1B) and a much thicker
piece of film, appearing gray, is extracted from the menis-
cus surrounding the film (hereafter, the thick film). The
relaxation of the thin film toward a circular shape (Fig.2
(C-F)) is studied after the motor stops, taken as time
reference t = 0. The amplitude of the initial thickness
fluctuations in the thin film is much smaller than the
thickness difference between the thin film and the thick
film and does not play any role in this relaxation. The
thickness profile of the transition between the thin and
the thick parts of the film is measured with a hyperspec-
tral camera (Resonon Pika L), at a rate of 50 frames per
second, along a line L shown in Fig. 2C, as explained in
[18].

The boundary C of the thin film is detected automat-
ically and characterized by its length 2L measured in
the x direction, its area A and its width, defined as
2R = A/(2L) (see Fig. 1A). At the beginning of the
relaxation, the elongated shape is very regular and can
be described as a rectangle 2L × 2R with a hemidisc of
radius R at both ends, with R ≪ L. At longer times, it
becomes more fluctuating and a roughly circular shape
is eventually obtained at t ≈ 6 s. Good reproducibility
of the shape is obtained for t < 1.5 s and the relaxation
process it quantitatively analyzed up to this time.

The thin film area varies by at most 10% during the
measurement time range (see Fig. 3B). Moreover, the
whole thickness distribution in the thin film, indicated
by the interference colors, remains qualitatively constant,
thus excluding local compression or dilation in the thin
film.

The film profiles are shown in Fig. 3C, with h(x, y) half
the thickness of the film. The thickness of the thick and

FIG. 3. Shape of the thin film as a function of time. (A) L is
half its diameter measured in the x direction, and (B) A is its
area. As for the other figures, the data are averaged over 13
experiments, and the shaded area represents the standard de-
viation. (C) Example of thickness profiles at times 0 s (blue),
0.5 s (green), 1 s (yellow) and 1.5 s (red). The experimen-
tal resolution is indicated by the gray zone, and the width of
the thin film is indicated by the continuous line at thickness
0. The dotted lines are parabolic interpolations between the
measured domains.

thin films are respectively of the order of 7 µm and below
the resolution obtained with our current signal analysis,
based on maxima detection in the spectrum of the light
reflected by the film. Near the thin film, the thickness
profile is steep enough to blur the interference pattern
and the thickness is also not measurable. However, the
light patterns corresponding to the thin, flat film and
to the steepest part of the thick film clearly differ, and
the boundary C between the two is well defined, even if
the thickness is not. To reconstruct the missing part of
the thick film profiles, we interpolate the thickness pro-
file by a parabola, imposing continuity of thickness and
thickness derivative at the edge of the measured part of
the thick film profile, and zero thickness at the boundary
with the thin film. This choice of a parabola is arbitrary
and other choices, e. g. a linear or order 3 interpolation,
would lead to similar results.

The capillary forces governing the dynamics can be de-
duced from these profiles. The thickness varies on char-
acteristic horizontal distances of the order of ℓ ∼ 1 mm,
yielding ∇h ∼ 10−2 (where ∇ is the gradient operator in
the (x,y) plane). In this small slope limit, the pressure
in the film, controlled by the Laplace pressure, scales as
γ0h/ℓ

2 and the associated Poiseuille flow velocity scales
as (γ0/ηl)h

3/ℓ3 ∼ 10 µm/s, which is negligible in the pro-
cess. Moreover, as the flow occurs with negligible area
variations (see Fig. 3B), we assume incompressible in-
terfaces, as classically made for spontaneous soap film
dynamics [2]. In this frame each elementary film element
of volume hdS is a closed system of constant thickness
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and constant area dS, moving at the uniform velocity
v(x, y). We define δγ as the difference between the local
surface tension γ and the reference value γ0, chosen in
the middle of the film. This tension variation δγ ensures
the constraint of incompressibility ∇ ·v(x, y) = 0.
The 2D stress tensor acting on such film elements is

computed in [19], in the local basis Be = (n, t), defined
in the (x, y) plane so that ∇h = |∇h|n (adapting to our
specific case the general theory developed in [20]). At
order 2 in ∇h, this tensor can be expressed as σcap =
σ∗
cap + σfI, with I the identity matrix. The isotropic

term is, using δγ ≪ γ0,

σf = 2 (γ0 + δγ) + 2γ0h∆h , (1)

where ∆ indicates the 2D Laplacian operator. The devi-
atoric part is, as determined in [19],

σ∗
cap = γ0

(
−(∇h)2 0

0 (∇h)2

)
Be

(2)

and comes from the projection of the surface tension force
in the (x, y) plane. The dominant term in the stress ten-
sor is the surface tension γ0 which is positive, thus in-
dicating a traction. However, the contribution of σ∗

cap

shows that this traction is slightly smaller in the direc-
tion of the thickness gradient, and slightly larger in the
perpendicular direction, which is at the origin of the line
tension.

The damping forces (per unit film area) are the friction
on the gas phase 2 fg and on the surrounding film ηf∆v
with ηf = 2ηs + hηl the film shear viscosity. It results
from [15] that the air friction dominates if ηf < 4× 10−8

kg/s, which is verified here, as ηs < 10−8 kg/s and hηl ∼
10−8 kg/s. However, ηs depends on the foaming solution
and may be much larger. In order to provide a general
prediction, valid for a wide range of foaming solutions,
we thus keep the air friction and the interfacial viscosity
in the model.

The equation of motion is finally, as already established
in [21] using another approach,

2γ0h∇(∆h) + 2∇δγ + 2ηs∆v + 2fg = 0 , (3)

with the first two terms equal to ∇ ·σcap, as derived in
[19].

As the capillary forces are localized along the thin film
boundary C, they can be interpreted as arising from a
line tension, which considerably simplifies the problem.
To this end, we define the local coordinates (ξ, s), in the
vicinity of C. The variable ξ is zero on C, and varies in
the normal direction n whereas s varies in the tangential
direction t. The definition of a line tension requires the
localization condition ℓ ≪ 1/κ with κ the curvature of C
: this is verified on the straight parts of C, but not at the
tips, where the curvature radius is R ∼ ℓ. For sake of
generality, the tension is determined below for a generic
curve C of small curvature, and will eventually be used
in our case for the straight parts of C only.

The line tension is defined as the excess of capillary
stress, with respect to the surface tension γ0, integrated
along a line perpendicular to the thickness transition. It
can thus be written as, for each interface,

T =
1

2

∫ ℓ∞

ℓ−∞

t · (σcap − 2γ0I) · tdξ . (4)

with ℓ−∞ and ℓ∞ the lower and upper bounds of the
integration domain, larger than the transition width.
This integral depends on h but also on δγ, which is

determined below using Eq. (3) in the domain |ξ| < ℓ.
There, the first term in Eq. (3) scales as γ0h

2/ℓ3. In the
limit of small ℓ, it is much larger than the viscous forces
which vary smoothly across the transition domain. Eq.
(3) thus becomes ∂δγ/∂ξ = −γ0h∂

3h/∂ξ3. By integra-
tion, we obtain at first order in ℓκ and for small ξ,

δγ = γ0

(
1

2

(
∂h

∂ξ

)2

− h
∂2h

∂ξ2

)
. (5)

Inserting this expression into Eq. (4) we obtain

T = γ0

∫ ℓ∞

ℓ−∞

(
∂h

∂ξ

)2

dξ . (6)

Note that the tension value is twice the energy excess per
unit length of line associated to the thickness gradient.
The experimental line tension values shown in Fig. 4

A, have been determined with Eq. (6), using the experi-
mental thickness profiles at each time, averaged over all
the experiments, and with the integration boundaries dis-
cussed below. As the angle between n and the y-direction
is negligible, we have ξ = ±y, respectively, for the left
and right parts of the profile. The thickness gradients
are negligible in the thin film, so we impose ℓ−∞ = 0.
The relevant upper boundary is more difficult to chose:
the inset of Fig. 4A shows the partial tension values ob-
tained when using an arbitrary upper integration bound
ℓint in Eq. (6) instead of ℓ∞. A plateau value is obtained
for ℓint between 2 and 3 mm, so we choose ℓ∞ = 3 mm to
define the experimental tension. Additionally, the width
of the transition domain is defined as ℓ80(t), the upper
boundary value for which the tension reaches 80% of its
total value.
In this frame, the dynamical effects of thickness varia-

tions are captured by a line tension acting along the line
C∗ located in the middle of the transition domain at the
distance ℓ80/2 from C (see Fig. 4B). The resulting force
(per unit line) acting on the film is −Tκ∗(s)n+(∂T/∂s)t,
with κ∗(s) the boundary curvature of C∗.
The gradient ∂T/∂s is experimentally unknown. How-

ever, the thick film extraction velocity is very homoge-
neous all around the thin film, as well as the meniscus
size. We can thus safely assume that the initial transition
profile, and consequently T (t = 0), does not depend on
s. A strong assumption of the model is that the tension
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FIG. 4. (A) Line tension T as a function of time, determined
from the thickness profiles using Eq. (6), with ℓ−∞ = 0,
ℓ∞ = 3 mm and ξ = y. The vertical dotted lines are color-
matched in time with the thickness profiles of Fig. 3C. Inset:
partial values of the tension as a function of the integration
upper bound ℓint, obtained for the profile at t = 1 s. The
tension reaches 80% of its total value for ℓint = ℓ80. (B)
Mapping of the observed flow on the problem solved in [15].
The thickness transition is shown in gray, with its center line
C∗ (bold black line), at the distance ℓ80/2 outside C (red line).
The subdomains Ω± are the red discs.

remains invariant at longer times. In that case, the cap-
illary force vanishes outside the region of the thin film
tips and an analytical solution can be obtained.

To this end, we define around each thin film tip a
subdomain Ω± limited by a flat cylinder, centered at
rM± = [±(L − R), 0] and of radius R∗ = R + ℓ80/2 so
that the curved parts of C∗ are in Ω± (see Fig. 4B).
The deformations of the tips, associated to the increase
of R∗ with time, are much slower than dL/dt and the
whole subdomains Ω± are moving at the uniform veloc-
ity ∓dL/dt.

Outside these domains Eq. (3) becomes

2∇δγ + 2ηs∆v + 2fg = 0 . (7)

The gas Reynolds number is of the order of
R(dL/dt)ρg/ηg ∼ 1, with ρg = 1.2 kg/m3 and ηg =
1.8 10−5 kg/m/s the density and viscosity of air. To ob-
tain an analytical prediction for the air damping force
fg, we will neglect the air inertia, which should be taken
into account in a more refined model.

In this viscous limit, and if only Ω− moves, Eq. (7) can
be solved by a simple mapping on the problem solved in
[15], i. e. a flat cylinder translating in a viscous liquid
membrane, as discussed in [19]. The corresponding ve-
locity field has been determined numerically in [22], and
scales as dL/dt R∗/r with r the distance to the center
of Ω−. As R∗/(2L) ≪ 1 during the time range of mea-
sure, the velocity induced by the Ω− motion at the Ω+

FIG. 5. Experimental value of the tip velocity dLexp/dt,
divided by its theoretical value given by Eq. (8), in which
R∗ = R + ℓ80/2 (bold line), R∗ = R (bottom thin line) and
R∗ = R + ℓ80 (top thin line). Each curve is plotted with a
shaded area showing its standard deviation.

position is negligible and the flow is thus the superposi-
tion of the flows induced by the motion of each subdo-
main separately. The force FD acting on the boundary
of Ω−, due to the viscous friction of the gas phase and
of the soap film, is determined in [15] and expressed as
FD = ζdL/dt ex, with ζ a friction coefficient which de-
pends on the Boussinesq number Bq = ηs/(Rηg) (see
[19]). The force balance on the subdomain Ω− involves
this friction force FD and the driving force 4Tex due to
the 4 intersections between C∗ and the boundary of Ω−.
This imposes ζdL/dt+ 4T = 0.
Assuming ηs < 10−8 kg/s as measured in [13], and

using R∗ ∼ 2 mm we find Bq < 0.25. In this low Boussi-
nesq limit, the friction coefficient ζ reaches its asymptotic
value ζ0 = 16ηgR

∗ [15], leading to

dL

dt
= − 4T

16ηgR∗ (8)

which involves only experimentally known quantities.
The experimental relaxation velocity dLexp/dt is ob-
tained by differentiation of L(t) shown in Fig. 3A. Its
theoretical value dLth/dt, given by Eq. (8), is obtained
from the independent measurements of T and R∗. The
largest uncertainty arises from R∗, and is of the order
of the width ℓ80 of the thickness transition domain. We
thus plot in Fig. 5 the predictions obtained with R∗ = R
and R∗ = R+ ℓ80.
We find that (dL/dt)exp/(dL/dt)th = 1 is within our

error bar for the time range [0.5, 1.5], which validates
our line tension measurement, and its role as the driving
force for the relaxation dynamics. At shorter times, the
relaxation velocity is larger than predicted. A potential
explanation for this reproducible deviation could be a
residual air motion due the mobile edge, that may last a
fraction of second after the motor stop as Regas ∼ 1.
To conclude, this experiment quantifies the forces in-

duced by thickness fluctuations, in a regime where dis-
joining pressure is negligible, and shows that a localized
thickness gradient results into a line tension acting per-
pendicularly to the thickness gradient. As this tension
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is of purely geometrical nature, its expression Eq. (6)
should remain valid for nonhorizontal films, in the pres-
ence of gravity. In foam films, z-invariant in-plane mo-
tions occur with nearly no damping, and a tiny line ten-
sion, of the order of 0.1 nN for our thickness profile, in-
duces a thickness pattern relaxation toward a circular
shape at a velocity reaching 10 mm/s, only damped by
the air friction. An extension of our analysis, based on
the result of [15], relates the pattern relaxation velocity
to the value of the Boussinesq number. We show in [19]
that for foaming solutions having an interface viscosity
above 4×10−8 kg/s, the interface viscosity should be the
dominant damping factor. In that case, a measure of a

thickness pattern relaxation may provide a measure of
the interface viscosity, which is an appealing application
of our device.
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INTERFACIAL STRESS TENSOR

We consider the piece of film represented in Fig. 1.
It is limited by the two interfaces and by the vertical
planes which intersect the plane z = 0 along the elemen-
tary lengths dξ n⃗ and ds t⃗. The unit vector n⃗ is chosen
along the thickness gradient and the unit vector t⃗ is per-
pendicular to n⃗ (both are in the (x, y) plane):

n⃗ = (hx, hy, 0)/
√

h2
x + h2

y t⃗ = (−hy, hx, 0)/
√
h2
x + h2

y .

(1)
The 2D film stress tensor σf can be built on this sys-

tem, by considering the forces exerted on the lateral faces.
Note that the air pressure is taken as the pressure refer-
ence, so that no forces are exerted on the top and bottom
interfaces. The norm of the thickness gradient is a small
parameter in the problem, as classically used in the lu-
brication approximation. To build the film stress tensor,
we anticipate that the forces exerted on the system are
of order 2 in this parameter (as will be shown below),
and we thus drop higher order terms. Especially δγ is of
order 2. The differential operators ∇ and ∆ are the 2D
gradient and laplacian in the (x, y) plane.
Let us first consider the face 1 defined in Fig. 1. It is a

rectangle of area dS1 = 2hds and of normal n⃗. The pres-
sure in the film is P = −γ0∆h, leading to the pressure

force df⃗P
1 = 2γ0h∆h ds n⃗. The local tension is γ0 + δγ,

acting on the length ds, at the top and bottom interfaces.
The force orientation differs between both interfaces: it
is along n⃗ top/bot = (n⃗ ± ∥∇h∥e⃗z)/(1 + (∇h)2)1/2. The

resulting force is thus df⃗T
1 = 2(γ0(1−(∇h)2/2)+δγ)dsn⃗.

The face 2 is a trapezoid of area dS2 = 2hdξ and of nor-

mal t⃗. The pressure force is df⃗P
2 = 2γ0h∆h dξ t⃗. The ten-

sion acts along the elementary length dξ(1 + (∇h)2)1/2,

FIG. 1. Scheme of the film element ds dξ used for the de-
termination of the stress tensor. The face 1, of normal n⃗, is
in green, the face 2, of normal t⃗, is in blue. The thickness
gradient is oriented along n⃗.

and the force is oriented along t⃗, leading to the force

df⃗T
2 = 2(γ0(1 + (∇h)2/2) + δγ)dξt⃗.
The interfacial stress tensor σcap associated to these

capillary forces verifies by definition df⃗1 = df⃗T
1 + df⃗P

1 =

σcap · n⃗ds and similarly df⃗2 = σcap · t⃗dξ. Its expression in

the basis Be = (n⃗, t⃗) is thus

σcap = γ0

(
−(∇h)2 0

0 (∇h)2

)
Be

+ 2 (γ0(1 + h∆h) + δγ) I

(2)
We thus get

σcap = σ∗
cap + σfI , (3)

with the film tension σf defined as the isotropic part of
the interfacial stress

σf = 2 (γ0(1 + h∆h) + δγ) , (4)

and σ∗
cap defined as its deviatoric part, which expression

in the initial basis B0 = (e⃗x, e⃗y) is

σ∗
cap = −γ0

(
h2
x − h2

y 2hxhy

2hxhy h2
y − h2

x

)
B0

. (5)

The capillary force acting on the film element is Fc =
div σcap. We thus compute

div(σfI) = 2γ0h∇∆h+ 2γ0∇h∆h+ 2∇(δγ) , (6)

and

divσ∗
cap · e⃗x = −γ0 (2hxhxx − 2hyhxy + 2hyhxy + 2hxhyy)

= −2γ0hx∆h

divσ∗
cap · e⃗y = −γ0 (2hxhxy + 2hyhxx + 2hyhyy − 2hxhxy)

= −2γ0hy∆h

divσ∗
cap = −2γ0∇h∆h (7)

Finally we obtain

divσcap = 2γ0h∇∆h+ 2∇(δγ) , (8)

which is used to obtain eq. (3) in the main article.

LINE TENSION

The capillary forces are localized in the vicinity of a
curve C, in a domain of width ℓ. In the limit of small ℓκ,
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with κ the curvature of C, a line tension T can be defined
(for each interface). With this definition, 2T is the excess
force exerted by one side of the film on the other one,
across a line oriented along the normal to the boundary.
This excess is considered with respect to the force field
far from C, where the thickness is homogeneous and the
surface tension equals to γ0 at the dominant order. This
implies

T =
1

2

∫ ℓ∞

ℓ−∞

t · (σcap − 2γ0I) · tdξ . (9)

A first step is to determine the surface tension within the
transition domain. In this domain, the capillary forces
dominate the viscous forces, and thus control the surface
tension value. In the small ℓκ limit the force balance on
a film element within the transition domain becomes

2γ0h∇(∆h) + 2∇δγ = 0 , (10)

which can be simplified at leading order in ℓκ into

γ0h ∂ξξξh+ ∂ξδγ = 0 .

By integration between ℓ−∞ and ξ we get∫ ξ

ℓ−∞

(γ0h∂ξξξh+ ∂ξδγ) dξ
′ = 0 ,

leading to, after integration by part,

δγ(ξ)

γ0
=

∫ ξ

ℓ−∞

∂ξh ∂ξξh dξ
′ − [h∂ξξh]

ξ
ℓ−∞

=
1

2

(
∂h

∂ξ

)2

− h
∂2h

∂ξ2
. (11)

We can now determine

t · (σcap − 2γ0I) · t = 2γ0h∆h+ 2δγ + γ0(∇h)2

= γ0
(
2h∂ξξh+ (∂ξh)

2 − 2h∂ξξh+ (∂ξh)
2
)

= 2γ0(∂ξh)
2 . (12)

Inserting this expression into eq. (9) we obtain

T = γ0

∫ ℓ∞

ℓ−∞

(
∂h

∂ξ

)2

dξ . (13)

VISCOSITY UPPER BOUND

The paper [1] addresses the problem of a disc of radius

â and uniform thickness ĥ moving at the velocity Û e⃗x in
the plane (x, y) of a thin sheet of liquid of same thickness
and viscosity η̂ (the symbol ·̂ indicates notations used in
[1], see Fig. 2). The bulk phases above and below this
liquid sheet are fluids of viscosity µ̂.

FIG. 2. Scheme of the problem solved in [1]. A cylindrical

solid moves at the velocity Û in a liquid sheet (adapted from
the Fig. 1 of [1]).

In the viscous regime, the equation of motion of the
thin sheet is (from eq. (2.18) of [1])

ĥη̂∇2ûM − ĥ∇p̂M + F̂ = 0 (14)

with ûM and p̂M the velocity and the pressure of the
sheet, which are assumed to be uniform across the film,
and F̂ the force exerted by the fluid phases above and
below the sheet. These fluids verify the Stokes law.

Using the transformations v = ûM, 2ηs = ĥη̂,

2δγ = −ĥp̂M , 2fg = 2F̂ we recover the equation (7) of
our paper. With the assumption that the whole domain
Ω− moves at the uniform velocity −dL/dt, it can be
identified with the solid disc, with the transformation
−dL/dt = Û and R∗ = â. The solution obtained in
[1] for the total force exerted on the disc, due to the
viscous friction of the top and bottom fluid phases
and to the viscous thin sheet itself, can therefore be
directly identified with the viscous forces acting on Ω−.
This force is given in [1] as a function of ε̂ = 1/Bq,
with Bq = ηs/(R

∗ηg) a Boussinesq number. Using our
notations, the result becomes FD = ζdL/dt ex, with
ζ = 8πηgR

∗Λ(Bq) a friction coefficient, and Λ(Bq) a
semi-analytical function plotted in Fig. 2 of [1]. In the
limit of small Bq the friction coefficient is ζ0 = 16ηgR

∗.

We define our experimental friction ζexp as

ζexp = − 4T

(dL/dt)exp
(15)

Comparing this value with the theoretical friction
ζth(Bq) we can determine an upper value for the inter-
face viscosity of the film.
In Fig. 5 of the main article, we plot the ratio

ζexp

ζ0
= − 4T

16ηgR∗(dL/dt)exp
=

(dL/dt)th

(dL/dt)exp
(16)

as a function of time. A stable behavior is obtained for
t ∈ [0.5, 1.5]s and, in this time range, the values com-
patible with our error bars verify ζexp/ζ0 ∈ [0.3, 2.2].
This acceptable range is shown in Fig. 3 and compared
to ζth(Bq)/ζ0. From the upper bound, we deduce that
in our experimental condition the Boussinesq number is
necessarily lower than 1. Using R∗ ∼ 2 mm, we obtain
that ηs < 4 × 10−8 kg/s, similar to the upper limit ob-
tained in [2].
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FIG. 3. Friction coefficient ζ, renormalised by its value at low
Boussinesq number. The black line is the theoretical predic-
tion obtained from the Fig. 2 in [1]. The blue domain is the
value range compatible with the experimental values shown
in the Fig 5 of the main paper, for the time range [0.5− 1.5]
s. From the maximal acceptable value (the blue line at the
top of blue domain) we deduce that Bq < 1.
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