
HAL Id: hal-04424985
https://hal.science/hal-04424985

Submitted on 29 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recognition of arithmetic line segments and hyperplanes
using the Stern-Brocot tree

Bastien Laboureix, Isabelle Debled-Rennesson

To cite this version:
Bastien Laboureix, Isabelle Debled-Rennesson. Recognition of arithmetic line segments and hyper-
planes using the Stern-Brocot tree. Discrete Geometry and Mathematical Morphology, Andrea Frosini,
Apr 2024, Florence, Italy. �hal-04424985�

https://hal.science/hal-04424985
https://hal.archives-ouvertes.fr

Recognition of arithmetic line segments and
hyperplanes using the Stern-Brocot tree

Bastien Laboureix1 and Isabelle Debled-Rennesson1

Université de Lorraine, CNRS, LORIA, 54000 Nancy, France
bastien.laboureix@loria.fr

isabelle.debled-rennesson@loria.fr

Abstract. The classic problem of discrete structure recognition is re-
visited in this article. We focus on naive digital straight segments (DSS)
and, more generally, naive arithmetic hyperplanes, and we present a new
approach to recognise these discrete structures based on the Stern-Brocot
tree. The algorithm for DSS recognition proposes an alternative method
to the state of the art, keeping the linear complexity and incremental
character. While most of the concepts can be generalised to planes in
dimension 3 and hyperplanes in higher dimensions, certain points in the
process of descending in the Stern-Brocot tree need to be explored fur-
ther. The proposed algorithm calculates separating chords characterising
the membership of planes to cones generated by the branch of the Stern-
Brocot tree. This generalisation shows the close link between arithmetic
hyperplanes and the generalised Stern-Brocot tree and opens up interest-
ing perspectives for the recognition of pieces of arithmetic hyperplanes.

Keywords: digital straight segments, arithmetic hyperplanes, recogni-
tion algorithm, Stern-Brocot tree

1 Introduction

Discrete geometry is concerned with various structures of space Zd. This article
focuses on arithmetic discrete lines, introduced in [16] and their generalisation
to any dimension: arithmetic hyperplanes [1]. Our problem is to decide, given a
finite subset S of Zd, whether S is a piece of arithmetic hyperplane and, if so,
to compute its minimal parameters.

In dimension 2, the problem of naive digital straight segment (DSS) recog-
nition was first addressed from the point of view of symbolic dynamics and the
study of Sturmian words: see [15] for the initial article, [3] for a review of the
links between discrete geometry and symbolic dynamics. A history of the DSS
recognition problem can be found in [11]. The arithmetic definition of discrete
lines and their geometric structures were used to obtain the incremental and lin-
ear algorithm for DSS recognition presented by I. Debled-Rennesson and J.-P.
Réveillès in [8].

While the hyperplane recognition problem is largely solved in dimension 2,
the problem remains difficult in dimensions 3 and higher. In dimension 3, numer-
ous studies of discrete planes have been carried out using different approaches

2 B. Laboureix, I. Debled-Rennesson

(see the survey [4]). A generalisation of I. Debled-Rennesson’s 2D algorithm was
presented in 1994 in [9,14], but the algorithm, restricted to pieces of rectangular
planes, loses in simplicity and the number of cases to be processed rapidly ex-
plodes. In 2005, Y.Gerard et al’s algorithm [10] solves the recognition problem
for any finite set of points and in any dimension, using the properties of the con-
vex hull of the chord space. However, the algorithm announces a high complexity
for dimension 3 and does not guarantee to obtain the minimum parameters. In
2008, the Charrier et al’s algorithm ([6]) proposed a linear optimisation approach
to the problem. This method provides a quasi-linear algorithm in terms of the
number of points, but does not allow the minimal parameters of the hyperplane
to be obtained (the complexity would then revert to that of the simplex algo-
rithm: exponential). Finally, a serie of articles has been written on plane probing
([12] for the first version), which makes it possible to obtain the characteristics
of the plane from successive oracles.

In this paper, we propose another DSS recognition algorithm based on the
Stern-Brocot tree (introduced in [17] and [5]). The successive points of the seg-
ment are then taken into account, allowing us to go down the tree until we
find the slope corresponding to the minimal parameters of the segment. While
I. Debled-Rennesson’s algorithm can be interpreted as a descent down the tree
(see [7] and [18]), the method proposed in this article differs. We also obtain
linear complexity while maintaining the incremental character.

The approach of recognition by descent down the Stern-Brocot tree can also
be extended to higher dimensions. In [13], H. Lennerstad generalises the Stern-
Brocot tree to any finite dimension d. We introduce a new concept: the notion
of separating chord, used to determine the branch of descent down the tree
corresponding to a location of the normal vector of the plane to be recognised.
Each step of the algorithm now requires

(
d
2
)

tests to determine in which of the
d! branches to continue the search. The proposed method recognises discrete
hyperplanes and opens up interesting prospects for recognising pieces of discrete
planes.

2 Discrete lines

We are working in Rd with its canonical scalar product. In particular, in this
section d = 2. In 1991, J.-P. Réveillès defined the concept of a discrete line in
[16]. We are interested here in a version of the naive discrete line where the
thickness parameter is fixed to guarantee good connectedness properties:

Definition 1 (Naive discrete line) Let a, b, µ ∈ R with (a, b) ̸= (0, 0).
The naive discrete line with slope a

b (we agree that a slope 1
0 is a vertical slope)

and shift µ is the set D(a, b, µ) def= {(x, y) ∈ Z2 | 0 ⩽ ax − by + µ < ∥(a, b)∥∞}

Definition 2 (8-neighbourhood and 8-connectedness) We say that 2 points
p, q ∈ Z2 are 8-neighbours iff ∥p − q∥∞ = 1. A set A ⊂ Z2 is then 8-connected
iff every pair of points of A is connected by a path for the 8-neighbourhood. A

Title Suppressed Due to Excessive Length 3

naive digital straight segment (DSS) is an 8-connected part of a naive line.

Naive lines are 8-connected and minimise thickness for this property ([16]), so
they are widely used in discrete geometry. The terms "naive" and "8-connected"
will be omitted for convenience. The DSS recognition problem is then to decide,
given a set S ⊂ Z2, whether or not S is a DSS. Note that there is no uniqueness of
the parameters (a, b, µ) of a segment: we therefore ask, if necessary, to calculate
the minimal integer parameters of a naive DSS, i.e. those minimising ∥(a, b)∥∞.

I. Debled-Rennesson and J.-P. Réveillès’s recognition algorithm presented in
[8] proposes a linear algorithm in |S| and incremental, in the sense that adding
a point updates the parameters of the segment in O(1). The algorithm is based
on the notion of leaning point :

Definition 3 (Leaning points) Let D be a naive discrete line with parameters
(a, b, µ) and p = (x, y) a point of S. We say that p is a lower (resp. upper) leaning
point of D iff ax− by +µ = ∥(a, b)∥∞ −1 (resp. ax− by +µ = 0). In a DSS, It is
said to be extremal iff it is the lower (or upper) leaning point with the minimum
or maximum abscissa.

3 Recognition using the Stern-Brocot tree

Our segment recognition algorithm is based on a descent into the Stern-Brocot
tree, presented in [17] and [5]. This tree lists all positive irreducible fractions and
presents them in tree form (see Figure 1). We define the Stern-Brocot tree Bn

truncated at level n by recurrence on n :

– B0 consists of 2 nodes labelled 0
1 and 1

0 called inputs.

– given a truncated tree Bn, we list all the fractions it contains using the
prefix depth traversal. Between 2 fractions a

b and c
d , we insert into the tree

the fraction a
b ⊕ c

d

def= a+c
b+d .

Remark 4 This addition of fractions is actually the addition of the pairs (a, b)
and (c, d). The irreducible fraction a

b and the pair (a, b) will later be happily
confused.

Theorem 5 (Stern-Brocot [17,5]) The Stern-Brocot tree obtained by the union
of (Bn)n∈N contains exactly once each irreducible fraction of Q+.

The principle of the algorithm is then to find the slope a/b of the segment S
in the Stern-Brocot tree. By symmetry and translation, we can always assume
that S lies in the first octant (i.e. verifies 0 ⩽ a ⩽ b) and has point of minimum
abscissa (0, 0). Note that, from then on, the abscissas of the points of S are
indexed on J0, n − 1K where n

def= |S|.

4 B. Laboureix, I. Debled-Rennesson

0/1 1/0
1/1

2/1

3/1

4/15/2

3/2

5/34/3

1/2

2/3

3/43/5

1/3

2/51/4

Fig. 1. Stern-Brocot tree

We first propose a naive version of the algorithm, before optimising it. If the seg-
ment is neither horizontal nor diagonal (extremal cases), we start with the 1/2
slope. At each stage of the algorithm, we look at points pmin and pmax of mini-
mum and maximum scalar products for the slope a/b under consideration, and
δ = (x, y) def= pmax − pmin. If r a

b
(x, y) def= ax − by < b, the difference between the

maximum and minimum scalar products is small enough: the slope is therefore
suitable and the shift is calculated using pmin. Otherwise, to determine whether
the slope is too small or too large, we look at the sign of the δ coordinates. The
2 coordinates have the same sign because S is in the first octant. Note also that,
despite the non-uniqueness of pmin and pmax, the sign of δ does not depend on
the choice of pmin and pmax, according to the algorithm’s proof of correctness.
If this is positive, pmax is to the right of pmin: decreasing the difference in the
scalar product between pmin and pmax means decreasing the slope, which is done
by a descent to the left in Stern-Brocot. Similarly, if the sign of the coordinates
of δ is negative, pmax is to the left of pmin, so we increase the slope by going to
the right in the Stern-Brocot tree. The detailed algorithm can be found in the
appendix B.

For example, let’s look at the flow of the naive algorithm (see Figure 2) on
the segment with parameters (5, 8, 3) and length 11. The algorithm starts with
the slope 1

2 in the Stern-Brocot tree. The minimum r 1
2

value of −3 is obtained
in (9, 6) and the maximum r 1

2
value of 0 is obtained in (0, 0). So δ = (−9, −6).

Then r 1
2
(δ) = 3, which is greater than 2, so the slope is unsuitable. As δ has

negative coordinates, we increase the slope by going down the right-hand side
of the tree to arrive at a slope of 2

3 . For the slope 2
3 , δ = (3, 1). The slope is

still unsuitable (r 2
3
(δ) = 3 ⩾ 3) and δ is positive, so the slope is too steep: we

go down the left-hand side of the tree to 3
5 . For this new slope, δ = (−5, −4),

r 3
5
(δ) = 5 ⩾ 5. As δ is negative, we increase the slope by going down to the right

towards 5
8 . Finally, for 5

8 , r 5
8
(δ) = 7, which is strictly smaller than 8, so the slope

is appropriate. The shift is then the opposite of the minimum r 5
8

value, so the
DSS parameters are (5, 8, 3).

Title Suppressed Due to Excessive Length 5

Test for 1/2 Test for 2/3 Test for 3/5 Test for 5/8

Fig. 2. Flow of the algorithm on the segment with parameters (5, 8, 3) and length 11

Theorem 6 The naive recognition algorithm decides whether a finite set S of
the first octant is a DSS, returns its minimum parameters if it is, and then
terminates in O(nh) where n = |S| and h is the height of the parameters of S
in the Stern-Brocot tree.

Sketch of proof : The formal proof is in appendix A. An invariant ensures
that the slope of the piece studied is always between the lower and upper slopes
given by the Stern-Brocot tree. The sign of the observed chord can then be used
to choose the right descent branch in the Stern-Brocot tree.

This naive version is not particularly interesting in terms of complexity and
is not an incremental method. However, it is easily optimised (see algorithm 3
for the full detailled incremental algorithm) based on the following observations:

– you can add the points of the segment one by one and calculate the param-
eters of the new segment by starting again from the old parameters in the
Stern-Brocot tree: the method then becomes incremental;

– there is no point in calculating the remainders (i.e. values of r a
b
(M)) for

all the points M in the segment. The remainders associated with the at
most 4 extremal upper and lower leaning points (which can be calculated in
O(1)) are sufficient to guarantee that an equation is satisfied for all points
on the segment (by convexity). The most that can be done is to calculate
a constant number of remainders in the Extremal-rests function: the call is
therefore made in O(1). The complexity therefore drops to O(n+h) = O(n).

The incremental algorithm 3 thus provides an efficient version of segment
recognition using the Stern-Brocot tree. However, the advantage of the naive
algorithm is that it can be generalised to finite subsets of Z2 that are not neces-
sarily connected, using the same method of descent in the tree.

4 Stern-Brocot tree in higher dimensions

The notion of a discrete line naturally extends to higher dimensions : The notion
of a discrete line extends naturally into higher dimensions, as does the notion of
a multidimensional Sturmian word presented in [2]:

Definition 7 (Naive arithmetic hyperplane [1]) Let v ∈ Rd be non-zero
and µ ∈ R. The naive arithmetic (or discrete) hyperplane with normal vector v

and shift µ is the set P(v, µ) def= {x ∈ Zd | 0 ⩽ ⟨x, v⟩ + µ < ∥v∥∞}

6 B. Laboureix, I. Debled-Rennesson

The general problem of plane or hyperplane recognition then consists in deciding
whether a finite subset S of Zd is part of a naive discrete plane or hyperplane,
and computing, if so, its minimal integer parameters i.e. minimising ∥v∥∞. We
then propose an algorithm based on an extension of the Stern-Brocot tree in d
dimension.

The Stern-Brocot tree naturally extends into 3D and higher dimensions, as
presented in [13]. This tree lists the d-uplets of natural integers that are prime to
each other in their set. Instead of using 2 end points as before, we use d. These
points are represented in (d − 1)-simplex form as follows (illustrated in Figure
5 (a) and (b) ; with normalisation, the sum of 2 vectors is represented by their
barycentric sum) :

– Initially, the d endpoints are the points ei of the canonical basis of Zd.
– Given d endpoints p1, ..., pd (affinely independent in Rd−1 by induction on

the tree), we construct the (d − 1)-simplex Γ with endpoints p1, ..., pd.
– Given a permutation σ of Sd, consider the simplex Γ [σ] formed by the points

q1, ..., qd where qj
def=

j∑
i=1

pσ(i).

– The children of the simplex Γ in the tree are then the simplexes Γ [σ] for
σ ∈ Sd.

By symmetry, we can assume that the normal vector v of the piece of hyper-
plane under study has positive coordinates. The d initial ends of the Stern-Brocot
tree are then the ei vectors of the canonical basis. The question is then, given d
ends of the tree, to know into which of the d! subtrees to descend. For example,
initially, the permutation to choose is the coordinate sorting permutation. For
the rest of this paper, we will consider dimension 3, as the results obtained can
be generalised without any problem to any finite dimension.

In order to choose the right sub-simplex, we define the notions of chord and
separation (by chords) as follows:

Definition 8 (Chord) Let v ∈ Zd and µ ∈ Z. We say that the chord δ ∈ Zd

appears (see Figure 6) in the plane P(v, µ) iff there exist x, y ∈ P(v, µ) such
that δ = y − x. Note that, by Bézout’s theorem (in the rational v case) or by
density (in the irrational v case), this definition does not depend on the µ shift
considered.

Remark 9 Let us note that a chord δ appears in a plane of normal vector v iff

there exist x, y ∈ P(v, µ) such that δ = y − x and
{

0 ⩽ ⟨x, v⟩ + µ < ∥v∥∞
0 ⩽ ⟨y, v⟩ + µ < ∥v∥∞

.

So, by subtracting, δ appears in a plane with normal vector v iff |⟨δ, v⟩| < ∥v∥∞.

Definition 10 (Separation (by chord)) Let p1, p2, p3 ∈ N3 be Stern-Brocot
endpoints. We say that a pair (δ(i)

− , δ
(i)
+) is a separation (see Figure 5 (c)) for

(p1, p2, p3) according to pi iff for all v ∈ C(p1, p2, p3) (convex cone generated by
p1, p2, p3):

Title Suppressed Due to Excessive Length 7

Algorithm 3: Incremental DSS recognition algorithm
Input: S ⊂ Z2, set of points indexed from 0 to n− 1 in the first octant
Output: Decide whether S is a segment and, if so, return its minimum

parameters (a, b, µ).
Incremental recognition(S):
i← 0 (maximum points index considered) ;
while the piece of segment considered is horizontal or diagonal and i < n. do

i← i + 1 ;
if i = n then

Return (0, 1, 0) or (1, 1, 0) depending on whether the piece in question is
horizontal or diagonal. ;

else
test← {(0, 0), (i− 1, 0)} or {(0, 0), (i− 1, i− 1)} either horizontal or
diagonal ;

penteinf ← 0
1 (lower limit) ;

pentesup ← 1
1 (upper limit) ;

a
b
← penteinf ⊕ pentesup (current slope initially 1/2) ;

µ← 0 ;
while i < n (we have not yet considered the entire segment) do

correct ← FALSE (indicates whether the current slope is suitable) ;
while b < n and not correct do

pmin, pmax ← Extremal-rests(a, b, test ∪ {S[i]}) (minimum and
maximum residual points for the a/b slope) ;

δ ← pmax − pmin ;
if ⟨δ, (a,−b)⟩ < b (the slope a/b is suitable) then

µ← −⟨pmin, (a,−b)⟩ ;
i← i + 1 (if the slope is suitable, move on to the next point);
test← all the extremal leaning points using the parameters
(a, b, µ) of the equation for the current segment piece ;

correct ← TRUE ;
if not correct then

if δ has an abscissa > 0 (the current slope is too steep) then
pentesup ← a

b
;

if δ has an abscissa < 0 (the current slope is too shallow) then
penteinf ← a

b
;

a
b
← penteinf ⊕ pentesup (new current slope) ;

if not correct and b ⩾ n then
Return "Not a segment"

Return(a, b, µ)

Algorithm 4: Extremal rests
Input: a, b parameters of the slope tested, test set of points to be tested
Output: pmin, pmax points of test having the minimum and maximum

residues with the slope a
b
.

Extremal-rests(test, a, b):
pmin, pmax ← first element of test ;
for p in test do

p← S[i] ;
if ⟨p, (a,−b)⟩ < ⟨pmin, (a,−b)⟩ then

pmin ← p ;
if ⟨p, (a,−b)⟩ > ⟨pmax, (a,−b)⟩ then

pmax ← p ;
Return(pmin, pmax) ;

8 B. Laboureix, I. Debled-Rennesson

(a) (b) (c) (d)

Fig. 5. (a) a step in the construction of the tree in dimension 3. The points p1, p2, p3 are
the extremities of the simplex. The points mi represent the points pi+1 + pi+2 (where
the indices are taken modulo 3). Point c represents p1 + p2 + p3. The permutation σ
such that σ(i) = (i + 1) mod 3 then gives the simplex with extremities pσ(1) = p2,
pσ(1) + pσ(2) = p2 + p3 = m1 and pσ(1) + pσ(2) + pσ(3) = c, i.e. the triangle p2, m1, c at
the top right of the figure.
(b) an example with initialisation at pi = ei.
(c) illustration of a separation along p1. In the sub-triangles marked −, the plane
contains the chord δ

(1)
− but not the chord δ

(1)
+ . In the triangles marked +, the plane

contains the chord δ
(1)
+ but not the chord δ

(1)
− . On the dividing line in green, neither

chord appears.
(d) partition of the triangle according to the chords appearing in the planes. In green,
blue and red, the boundary lines. The signs then correspond to the chords appearing
in the planes of each sub-zone.

– the δ
(i)
− chord appears in P(v, µ) iff v ∈ C(pi, mi, pi−1) \ C(pi, mi) (triangle

pi, mi, pi−1 without side pi, mi).
– the chord δ

(i)
+ appears in P(v, µ) iff v ∈ C(pi, mi, pi+1) \ C(pi, mi).

The δ
(i)
− and δ

(i)
+ chords are then said to be separating.

By symmetry, we place ourselves in the case where the vector v has increasing
positive coordinates. Thus, the chord δ appears in the plane of normal vector v iff
0 ⩽ |⟨v, δ⟩| < |⟨v, e3⟩|. Given extremities p1, p2, p3, in order to find a separation
for pi, it suffices to place the following constraints on (δ(i)

− , δ
(i)
+):

〈
pi, δ

(i)
−

〉
= ⟨pi, e3⟩〈

mi, δ
(i)
−

〉
= ⟨mi, e3⟩〈

pi−1, δ
(i)
−

〉
= ⟨pi−1, e3⟩ − 1

and


〈

pi, δ
(i)
+

〉
= ⟨pi, e3⟩〈

mi, δ
(i)
+

〉
= ⟨mi, e3⟩〈

pi+1, δ
(i)
+

〉
= ⟨pi+1, e3⟩ − 1

The first two conditions for each system ensure that the limit of appearance of
the chords δ

(i)
− and δ

(i)
+ is the green line passing through pi and mi (see Figure 5

(c)).The last condition ensures that δ
(i)
− appears in the plane with normal vector

pi−1 (resp. δ
(i)
+ in the plane with normal vector pi+1). The characterisation by

equivalence of the separation (δ(i)
− , δ

(i)
+) then follows immediately from these

observations by convexity. Finally, let us add that the both systems each admit
a unique solution because they have determinant ±1 (by induction on the tree).

Title Suppressed Due to Excessive Length 9

Fig. 6. Chords in the plane with normal vector (7, 17, 57). The plane contains, among
others, the chords (7, 0, 0) (green), (2, 3,−1) (blue) and (6, 4,−2) (red). However, the
plane does not contain the chords (0, 0, 1) or (0, 4, 0).

By separating the zones according to each pi, we obtain a partition of the triangle
p1, p2, p3 into 6 sub-triangles (see Figure 5 (d)).

Remark 11 The condition
〈

pi+1, δ
(i)
+

〉
= ⟨pi+1, e3⟩ − 1 can be replaced by〈

pi+1, δ
(i)
+

〉
= ξ for any ξ in the interval J−(⟨pi+1, e3⟩ − 1), ⟨pi+1, e3⟩ − 1K. How-

ever, choosing ξ = ⟨pi+1, e3⟩−1 results a priori in smaller separating chords and
is therefore generally more relevant.

The separations can therefore be used to characterise the membership of planes
to certain cones. For example, we can look at the separation for the Stern-Brocot
tree in dimension 2, with extremities 0 and 1/2 and center 1/3. After solving the
system, we obtain δ− = (3, 0) and δ+ = (3, 2). The straight lines whose slope is
between 0 and 1/2 are therefore :

– in the interval [0, 1/3[iff they contain the chord (3, 0), i.e. a level of size at
least 4.

– in the interval]1/3, 1/2] iff they contain the chord (3, 2), i.e. a level of size
exactly 2

– the 1/3 slope is the only one not to contain any of the 2 chords: the levels
are all exactly 3 in size.

We can then return to the Stern-Brocot tree in dimension 2 with the various
separations obtained for the interval [0, 1], as in Figure 7.

5 Recognition algorithm in arbitrary dimension

Using the separations, we can choose the appropriate sub-triangle for descending
the Stern-Brocot tree. We then obtain a recognition algorithm (see algorithm 8).

10 B. Laboureix, I. Debled-Rennesson

1
2

2
3

3
4

4
5

5
7

3
5

5
8

4
7

1
3

2
5

3
7

3
8

1
4

2
7

1
5

(2, 2)

(3, 3)

(4, 4)(4, 2)

(3, 1)

(5, 4)(5, 2)

(2, 0)

(3, 2)

(5, 3)(5, 1)

(3, 0)

(4, 2)(4, 0)

Fig. 7. Stern-Brocot tree labelled by separations

Before looking at the tricky points of the algorithm (in bold), let’s look
at 2 runs of the algorithm on square pieces of planes with parameters v =
(4, 7, 11), µ = 2, size = 12 and v = (7, 8, 10), µ = 8, size = 10 in Figure 10
and 11. Note that the algorithm can also be applied to any piece of plan, not
necessarily rectangular. The chords detected are indicated in the plane. The sub-
triangle to descend to is indicated by a point. In the second example, the chords
(7, −10, 4) and (9, −9, 0) belong to the whole P(v, µ) plane but not to the piece
shown, which is too small for this. The algorithm therefore fails and returns
"Inconsistency in the chords", even though the piece is indeed that of a plane.
Finally, the algorithm may only detect 2 chords and no third: this means that
there is a dividing line and 2 possible sub-triangles. The algorithm presented
here then chooses one of the 2 triangles, but it would also be possible to write a
version that performs a Stern-Brocot in dimension 2 on the line in question.

The above algorithm has a few tricky points that need to be explained in
detail:

In its current version, the algorithm necessarily stops, either because it
reaches the parameters of the plane under consideration, or because the sep-
arating chords it has to deal with lead to inconsistency. In fact, their length
increases at each stage, so they end up exceeding the size of the considered piece
of plane. The "While" stopping condition deserves a simple bound on the coor-
dinates of v. The leaning points algorithm presented in [14] allows us to obtain
a bound in dimension 3 for rectangular pieces of plane. The simplex algorithm
used in [6] gives a bound in the general case, but much larger. This part of our
algorithm is therefore easy to modify.

Detecting chords in a finite set is much more problematic. First of all, the
naive method is not optimal (all pairs of points are tested). However, this stage
can be improved by taking into account only the leaning points of each level
(zone of constant z height), thus bringing us back to a constant number of points
per level. Nevertheless, after a certain stage, the chords force us to leave the S

Title Suppressed Due to Excessive Length 11

Algorithm 8: Plane recognition
Input: S ⊂ Z3 finished in the first 48th of space
Output: Decides whether S is a piece of discrete plane and, if so, returns

parameters corresponding to a plane containing it
Plane-recognition(S):
p1, p2, p3 ← (0, 0, 1), (0, 1, 1), (1, 1, 1) (extremities) ;
while TRUE do

m1, m2, m3, c← p2 + p3, p1 + p3, p1 + p2, p1 + p2 + p3 (middle and central
points) ;

for v ∈ {m1, m2, m3, c} (testing the different points of the triangle) do
(pmin, pmax)← Extremal-rests(S, v) ;
if ⟨pmax − pmin, v⟩ < ∥v∥∞ then

µ← −⟨pmin, v⟩ ;
Return(v, µ)

Calculate the separations (δ(i)
− , δ

(i)
+) for each pi. ;

See which chords appear in S ;
if the chords observed are inconsistent (see Figure 5 (d)) then

Return("Inconsistency in the chords")
Select the sub-triangle corresponding to the chords observed (see Figure 5
(d)) and update p1, p2, p3 ;

Algorithm 9: Extremal rests
Input: S ⊂ Z3 finite, v ∈ Z3

Output: Calculate the minimum and maximum remainders of the points pmin
and pmax of S according to v (with a simple loop).

subset under consideration. We therefore observe the same problem as with plane
probing algorithms (see [12] for the first version). Generally speaking, the deeper
the algorithm dives into the Stern-Brocot tree, the larger the separating chords
become and the greater the risk of them leaving the study space. When the
algorithm returns "Incoherence in the chords", there are two possible outcomes:

– the piece under consideration is not a piece of plane. Such an entry inevitably
leads to the set of separating chords which appear in the plane not having
an associated sub-triangle (see Figure 5 (d)), hence the inconsistency.

– the piece under consideration is indeed a piece of plane but is too small for
some separating chords to appear on the piece. The incoherence of chords
detected then simply means that the algorithm cannot conclude without
considering more points.

Note that, on a sufficiently large piece of plane (a fortiori on an infinite plane),
the second case mentioned cannot occur. Therefore, the reference "Incoherence
in chords" implies that the input is not a plane.

The set of solution parameters of the problem forms a convex. In dimension
2, this property demonstrates that the algorithm will necessarily stop at the
minimal parameters, and that there is uniqueness of the descent branch in the

12 B. Laboureix, I. Debled-Rennesson

Fig. 10. Flow of the algorithm on the piece of square plane with normal vector (4, 7, 11),
shift 2 and size 12.

Fig. 11. Flow of the algorithm on the piece of square plane with normal vector (7, 8, 10),
shift 2 and size 10.

algorithm. In dimension 3, a convex may not intersect any remarkable point of
the triangle and may straddle several zones. There are therefore configurations
where the zone to be chosen for descent is not unique.

6 Conclusion

This paper presents a new approach for detecting pieces of arithmetic hyper-
planes from the Stern-Brocot tree. In dimension 2, for DSS, the proposed algo-
rithm is incremental and has linear complexity. The Stern-Brocot tree can also
be used to characterise the various slope intervals of discrete straight lines using
separating chords. The extension of the algorithm to dimensions 3 and higher
retains the idea of separations, with greater combinatorial complexity. Unfortu-
nately, although they appear in the infinite planes studied, the chords considered

Title Suppressed Due to Excessive Length 13

may be too large to be recognisable in a piece of plane. Even if this algorithm de-
serves a more accomplished version, it still creates a deep link between arithmetic
hyperplanes and the generalised Stern-Brocot tree, via the separating chords.

In our opinion, the notion of separating chord deserves to be explored in
greater depth, in particular to make more explicit the fact that hyperplanes
belong to Stern-Brocot cones. In addition, as the enumeration of the tree vertices
is governed by a simple induction relation, we would like in a future work to take
an interest in the induction relations induced on the set of separating chords.

References
1. E. Andres, R. Acharya, and C. Sibata. Discrete analytical hyperplanes. Graphical

Models and Image Processing, 59(5):302–309, 1997.
2. Sebastián Barbieri and Sébastien Labbé. Indistinguishable asymptotic pairs and

multidimensional sturmian configurations. arXiv preprint arXiv:2204.06413, 2022.
3. V. Berthé. Discrete geometry and symbolic dynamics. In The Kiselmanfest: An

International Symposium in Complex Analysis and Digital Geometry, 2006.
4. V. E. Brimkov, D. Coeurjolly, and R. Klette. Digital planarity - A review. Discret.

Appl. Math., 155(4):468–495, 2007.
5. A. Brocot. Calcul des rouages par approximation: nouvelle méthode. A. Brocot,

1862.
6. E. Charrier and L. Buzer. An efficient and quasi linear worst-case time algorithm

for digital plane recognition. In International Conference on Discrete Geometry
for Computer Imagery, pages 346–357. Springer, 2008.

7. I. Debled-Rennesson. Etude et reconnaissance des droites et plans discrets. PhD
thesis, Université Louis Pasteur (Strasbourg)(1971-2008), 1995.

8. I. Debled-Rennesson and J.-P. Reveillès. A linear algorithm for segmentation of
digital curves. Int. J. Pattern Recognit. Artif. Intell., 9(4):635–662, 1995.

9. I. Debled et J.P. Reveillès. An incremental algorithm for digital plane recognition.
In 4th International Conference DGCI’94, 1994.

10. Y. Gérard, I. Debled-Rennesson, and P. Zimmermann. An elementary digital plane
recognition algorithm. Discrete Applied Mathematics, 151(1-3):169–183, 2005.

11. R. Klette and A. Rosenfeld. Digital straightness - a review. Discret. Appl. Math.,
139(1-3):197–230, 2004.

12. J.-O. Lachaud, X. Provençal, and T. Roussillon. An output-sensitive algorithm
to compute the normal vector of a digital plane. Theoretical Computer Science,
624:73–88, 2016.

13. H. Lennerstad. The n-dimensional Stern-Brocot tree. 2012.
14. M. M. Mesmoudi. A simplified recognition algorithm of digital planes pieces. In

Discrete Geometry for Computer Imagery: 10th International Conference, volume
2301 of LNCS, pages 404–416, 2002.

15. Marston Morse and Gustav A Hedlund. Symbolic dynamics ii. sturmian trajecto-
ries. American Journal of Mathematics, 62(1):1–42, 1940.

16. J.-P. Reveillès. Géométrie discrete, calcul en nombres entiers et algorithmique.
PhD thesis, Université Louis Pasteur, 1991.

17. M. Stern. Über eine zahlentheoretische funktion. 1858.
18. F. De Vieilleville and J.-O. Lachaud. Revisiting digital straight segment recogni-

tion. In Discrete Geometry for Computer Imagery: 13th International Conference,
volume 4245 of LNCS, pages 355–366. Springer, 2006.

14 B. Laboureix, I. Debled-Rennesson

A Proof of Theorem

Theorem 6 : The naive recognition algorithm below decides whether a finite set
S of the first octant is a segment, returns its minimum parameters if it is, and
then terminates in O(nh) where n = |S| and h is the height of the parameters
of S in the Stern-Brocot tree.

Proof. The algorithm terminates because n − b is a strictly decreasing vari-
ant with positive values.

Correction of returned parameters : Let us first show that if the algo-
rithm returns (a, b, µ) then (a, b, µ) are parameters of the segment S. Suppose
the algorithm returns (a, b, µ). If b = 1 then the algorithm has concluded on a
horizontal or diagonal segment, hence the result.
Otherwise, let us call pmin, pmax the output of Extremal-rests(S, a, b). We then
have ⟨pmax − pmin, (a, −b)⟩ < b and µ = − ⟨pmin, (a, −b)⟩.
Let p be a point on S. By obvious Extremal-rests correction, ⟨pmin, (a, −b)⟩ ⩽
⟨p, (a, −b)⟩ ⩽ ⟨pmax, (a, −b)⟩.
So 0 ⩽ ⟨p, (a, −b)⟩ − ⟨pmin, (a, −b)⟩ ⩽ ⟨pmax, (a, −b)⟩ − ⟨pmin, (a, −b)⟩ < b.
So 0 ⩽ ⟨p, (a, −b)⟩ + µ < ∥(a, b)∥∞, which proves that S is a segment with pa-
rameters (a, b, µ).
In particular, if S is not a segment, the algorithm returns "Not a segment".

It remains to show that if S is a segment then the algorithm returns its minimal
(aS , bS , µS) parameters. If S is horizontal or diagonal, the result is trivial.

Otherwise, we show the following invariant: penteinf < aS

bS
< pentesup.

The invariant is initially true because S is in the first octant and is neither hor-
izontal nor diagonal.
Assuming the invariant is verified, let’s perform an additional loop for the cur-
rent slope a

b . Let pmin, pmax be the output of Extremal-rests(S, a, b) and let
δ = (x, y) def= pmax − pmin.
Note first of all that, as S is in the first octant, the abscissa x of δ is non-zero.
As pmin = (xmin, ymin) and pmax = (xmax, ymax) are points of S, 0 ⩽ aSxmin −
bSymin + µS < bS and 0 ⩽ aSxmax − bSymax + µS < bS .
By subtracting the 2 identities, we deduce −bS < aSx − bSy < bS .
So aS

bS
x − y < 1.

In addition, ⟨δ, (a, −b)⟩ ⩾ b so ax − by ⩾ b hence a
b x − y ⩾ 1 > aS

bS
x − y.

So a
b x > aS

bS
x.

If x > 0 then a
b > aS

bS
so ainf

binf
< aS

bS
< a

b which proves the invariant.
If x < 0 then a

b < aS

bS
so a

b < aS

bS
<

asup
bsup

which proves the invariant.

End of proof of correction. Once the invariant has been proved, note that
bS < n. In fact, according to [7], the slope aS

bS
is characterised from the slope

between 2 lower (or upper) leaning points of the segment. The denominator bS

of this slope cannot therefore exceed the greatest difference in abscissa in the

Title Suppressed Due to Excessive Length 15

segment, i.e. n−1.Ṡo the fraction aS

bS
appears in the Stern-Brocot tree. The frac-

tion aS

bS
will therefore necessarily be visited by the invariant and the algorithm

will then conclude.

Minimality : Finally, let us show that the parameters (a, b, µ) returned are
indeed the minimal parameters (aS , bS , µS) of the segment. Let a′

b′ be the com-
mon ancestor of a

b and aS

bS
in the Stern-Brocot tree. a′

b′ is therefore a convex
combination of a

b and aS

bS
, i.e. a′

b′ = λ1
a
b + λ2

aS

bS
.

Let (x, y) ∈ S.
0 ⩽ a

b x + µ
b − y < 1 et 0 ⩽ aS

bS
x + µS

bS
− y < 1.

Taking the convex combination of the 2 equations, we obtain 0 ⩽
(

λ1
a
b + λ2

aS

bS

)
x+

(λ1
µ
b + λ2

µS

bS
) − y < 1.

So, if we assume µ′ def= λ1
µ
b +λ2

µS

bS
, we obtain 0 ⩽ a′

b′ x+ µ′

b −y < 1. So (a′, b′, µ′)
are parameters of S.
These parameters were visited by the algorithm, so (a, b, µ) = (a′, b′, µ′). In
addition, since (a′, b′, µ′) is an ancestor of (aS , bS , µS), b′ ⩽ bS therefore, by
minimality, (aS , bS , µS) = (a′, b′, µ′).
So the parameters returned by the algorithm are indeed minimal.

Complexity : the algorithm moves down the Stern-Brocot tree at each loop
iteration. The number of loop iterations is therefore O(h). In a loop, the only
costly part is the call to the Extremal-rests function, which is an array traversal,
so the cost is O(n). The total complexity is therefore O(nh).

B Naive segment recognition algorithm

16 B. Laboureix, I. Debled-Rennesson

Algorithm 12: Naive segment recognition
Input: S ⊂ Z2

Output: Decide whether S is a segment and if so return its minimum
parameters (a, b, µ).

Naive recognition(S):
if S is horizontal (resp. diagonal) then

Return (0, 1, 0) (resp. (1, 1, 0)) ;
n← |S| ;
if the abscissas of S are not indexed by J0, n− 1K then

Return "Not a segment" ;
penteinf ← 0

1 (lower limit) ;
pentesup ← 1

1 (upper limit) ;
a
b
← penteinf ⊕ pentesup (current slope initially worth 1/2) ;

while b < n do
pmin, pmax ← Extremal-rests(S, a, b) (minimum and maximum residual
points for the slope a/b) ;

δ ← pmax − pmin ;
if ⟨δ, (a,−b)⟩ < b (the slope a/b is suitable) then

µ← −⟨pmin, (a,−b)⟩ ;
Return((a, b, µ))

if δ has an abscissa > 0 (the current slope is too steep) then
pentesup ← a

b
;

if δ has an abscissa < 0 (the current slope is too small) then
penteinf ← a

b
;

a
b
← penteinf ⊕ pentesup (new current slope) ;

Return "Not a segment ;

Algorithm 13: Extremal rests
Input: S ⊂ Z2, a, b parameters of the slope tested
Output: pmin, pmax points of S having the minimum and maximum residues

with the slope a
b
.

Extremal-rests(S, a, b):
pmin, pmax ← S[0], S[1] ;
for i going from 1 to n− 1 do

p← S[i] ;
if ⟨p, (a,−b)⟩ < ⟨pmin, (a,−b)⟩ then

pmin ← p ;
if ⟨p, (a,−b)⟩ > ⟨pmax, (a,−b)⟩ then

pmax ← p ;
Return(pmin, pmax) ;

	Recognition of arithmetic line segments and hyperplanes using the Stern-Brocot tree

