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Abstract

To ensure correct filling in the resin transfer molding (RTM) process, ad-
equate numerical models have to be developed in order to correctly capture
its physics, so that this model can be considered for process optimization.
However, the complexity of the phenomenon often makes it impossible for
numerical models to accurately predict its behavior, limiting its usage. To
overcome this limitation, numerical models are enriched with measured data
to ensure their correct predictability. Nevertheless, the data used is often
limited due to practical constraints, such as a limited number of sensors or
the high costs of experimental campaigns. In this context, the present paper
demonstrates the implementation of a numerical model enriched with data,
called Hybrid Twin applied to the RTM process when few sensors are consid-
ered in the mold to be injected. The performances of the developed hybrid
twin are tested in a virtual test for the injection of a 2D mold, where the hy-
brid twin constructed using a simplified numerical model allows to accurately
predict a complex model’s resin flow-front over its entire time history.

Keywords : Resin transfer molding, Virtual twin, Hybrid twin, sparse - Proper Gen-
eralized Decomposition, Model-order reduction, Inverse analysis.

1 Introduction

Over the years, composite materials have become more and more trendy, espe-
cially in industrial applications, where they are applied in various fields such as
automotive, aeronautics, etc. Their advantageous mechanical properties, functional
performances and reduced weight make them an attractive material for many high-
tech applications. In this sense, the optimization of their manufacturing process is
presented as a key aspect in the coming years, where manufacturing defects and
production times must be minimized. Among the main manufacturing process of
composite structures is Resin Transfer Molding (RTM) process [1, 2]. This process
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consists of having a preform of the mold composed of fibrous material, to which a
resin matrix is added by injection as illustrated in Figure 1.

Figure 1: Illustration of the resin transfer molding (RTM) process.

To ensure correct filling in the RTM process, numerical models have to be used,
where these models have to be rich enough to being able to predict this process
under different operational conditions. For this reason, these models are usually
built by considering real measured data, in order to correctly capture the physics
of the procedure. However, in real-world situations, the data that can be used is
limited due to practical constraints or high-sensing cost. In this context, the present
paper focus in the development and implementation of a numerical model enriched
with data applied to RTM when few sensors are considered, which is able to correctly
predict the real flow-front of the process.

Numerical models based on physics laws and mathematics are able to perform nu-
merical predictions efficiently. These models involves the use of well-known tech-
niques as the Finite Element Method (FEM) [3], Finite Difference Method [4], etc.
Along with detailed and well understood constitutive behaviors. This type of nu-
merical model is here denoted as virtual twin [5]. Although numerical models help
to predict many real systems, in many of them, especially those involving complex
physical mechanisms, numerical simulations are limited in providing a correct pre-
diction of the system. Additionally, as numerical models consider more complex
and nonlinear behaviors in their formulations, their computational efforts to pro-
duce predictions increase, thus slowing down the design process and optimization of
the system under study, something capital, for instance, when performing control of
a manufacture process.

For this reason, at the end of the 20th century, data irrupted in scientific fields,
where data-based models based on the use of linear and nonlinear regressions, ma-
chine learning [6], deep learning techniques [7, 8, 9], etc. Progressively helped to
solved problems whose virtual twin counterpart where not able to correctly simu-
late due to the increase in complexity. Even more, these models were able to give
predictions under real-time constraints [10, 11, 12], which is an important aspect
when performing control of a system. These pure data-based models are commonly
denoted as digital twin. However, these data-based models have a great disadvan-
tage, which corresponds to the high quantity of data required for their construction
and calibration, being a great limitation especially when experimental campaigns
are expensive. Moreover, they are difficult to explain and to certify. Another risk
is associated with their ability to be extrapolated far from the domain where they
were learnt.

For this reason, a new type of twin has been proposed in [5], the hybrid twin (HT),
which combines a physics-based model (virtual twin) with data, capable of over-
coming the limitations of their virtual and digital counterparts [13, 14, 15]. The
main idea is to fit a virtual twin with respect to the data measured by sensors in

2



real-time, allowing the numerical simulation to better predict the experience, by es-
timating and correcting on the fly the difference between the numerical predictions
and reality. Indeed, this difference can be coarsely simulated by an ignorance model.
In simple terms this means:

Real experience ≈ Hybrid twin = Virtual twin + Ignorance model (1)

This ignorance model needs fewer experimental measurements for its construction,
since much of the prediction of the experience is captured by the calibrated numer-
ical model. The only inconvenience of the above-mentioned requirements for the
construction of the hybrid twin consists in the need to perform a calibration of the
numerical model with respect to the measured data in real-time, which is not always
possible due to the complexity of the model. This limitation is overcome by the use
of model-order reduction (MOR) techniques applied to the numerical model (virtual
twin). MOR techniques allows compressing and approximating the model and thus
obtaining real-time predictions in function of the different parameters, allowing a
real-time calibration with respect to the measured data. The MOR technique here
is used as an efficient interpolation technique. It allows approximating a given so-
lution under a specific format that permits the real-time feedback constraints while
maintaining a good accuracy in the predicted solution.

The principal idea of model-order reductions methods consists in reducing the di-
mensionality of the original space where a given data lives, by capturing their prin-
cipal features such as it can be approximated on a reduced space. Among the
most powerful techniques that allow this compression while constructing an inter-
polated model, one finds the Proper Generalized Decomposition (PGD). The PGD
was first introduced in the context of the Large Time Incremental (LATIN) method
[16] under the vocable of radial approximation. It was originally applied to ap-
proximate a nonlinear solution in the space-time domain as a sum of product of
functions with separate space-time variable representations by using the LATIN
solver [17, 18, 19, 20, 21, 22, 23]. Since then, the PGD method has been extended
from the approximation of space-time problems to deal with parametric problems
[24, 25, 26], optimal transport problems [27], temporal multiscale decomposition
[28, 29, 30, 31, 23], among many others.

The PGD method can be implemented in an intrusive or a non-intrusive way. The
intrusive way consists in directly modifying the partial differential equation of a given
problem in order to approximate its solution under a separate variable format, while
the non-intrusive one simple consists in performing an “offline” calculation using the
high fidelity model and then compressing its results. The non-intrusive version of the
PGD is generally considered for the construction of a hybrid twin, where an offline
computation over a parametric space using the virtual twin must be performed.
Unfortunately, this offline calculation can be really expensive if a large number of
parameters are taken into account due to the so-called curse of dimensionality [32].
In this context, a new version of the PGD has been introduced in order to overcome
this difficulty, the so-called sparse-PGD [33, 34], allowing to compress and compute
the PGD decomposition using unstructured and sparse data over a parametric space
[35] while keeping the offline computations inexpensive.

Two principal advantages can be summarized when using a hybrid twin: (i) efficient
inverse analysis and (ii) real-time control and optimization of a system. The first is
a natural consequence of achieving real-time feedbacks of the virtual twin prediction
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as a function of parameters when using model reduction techniques. The second is
a direct consequence of the hybrid twin itself by allowing to correctly approximate
a complex system, where its use is crucial for the application of control techniques
to guide the real phenomena to a specific solution. The advantages of the hybrid
twin, especially in the reduction of the data required for its construction, make it a
really attractive technique for a wide range of applications, both in the area of solid
and fluid mechanics, as well as in the improvement and monitoring of production
processes. It is this advantage, which makes its application to the Resin Transfer
Molding (RTM) process really attractive.

The first introduction of the hybrid twin framework for the RTM process was pre-
sented in [36], for the case of a single injection nozzle that allowed a radial spread
of the resin inside the mold. Also in that work a camera was used for continuous
monitoring of the resin inside the mold, having rich information about the process at
every moment. The work presented in this paper deals with a more complicated set-
up, since it is an injection process that first (i) produces a complex resin flow-front
and second (ii) limited sensors are distributed along the mold.

In particular, the reference problem considered herein consists on a 2D problem. Al-
though the ideas presented in this article are applied to this 2D case, their extension
to 3D problems can be developed without major difficulties. The mold taken into
account have an injection zone, where a unique source of pressure pimp is imposed,
the pressure of the empty part pout, a preform zone where the “skeleton” of the piece
composed of fibers is situated at the center of the mold and finally a “race-track
zone” all along the boundary of the preform. The purpose of this zone is to induce a
high permeability in it, so that the resin can flow faster through it. The data coming
from the “real” experience used to enrich the numerical simulations are measured
by some sensors distributed along the mold, which provide information on the ar-
rival times of the resin in them. The mold is considered to contain ns,xns,y sensors
in total, ns,y sensors along the y axis and ns,x sensors along the x axis. The main
considerations of the 2D model are illustrated in Figure 2.

Figure 2: 2D mold with ns,x = ns,y = 5 sensors represented by red dots; the yellow
color represents the race-track zone.

In this sense, this work presents the construction of a hybrid twin of the RTM pro-
cess when limited data are available to correctly approximate the complex process.
The present work serves, therefore, as a starting point for future developments to
improve the RTM process, which may contemplate the minimization of defects in the
manufactured part [37], while minimizing production times in an industrial scenario.

The present paper is structured as follows: section 2 presents the virtual twin related
to the RTM process, section 3 presents the construction of the hybrid twin along with
all the different algorithms used for its implementation. Following section 4 presents
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a numerical example showing the performance of the hybrid twin for predicting a
complex RTM process. Finally section 5 gives some conclusions and perspectives.

2 Virtual twin of the RTM process

The virtual twin corresponds to the physics-based model of the RTM process. The
model considered here consists of a fixed-mesh formulation using finite element
method (FEM) based on the work of [38, 39]. The idea consists in dividing the do-
main of the mold Ω on a domain occupied by the fluid resin and the empty domain
denoted respectively Ωf (t) and Ωe(t), which evolves in time such as Ω = Ωf (t)∪Ωe(t)
(the inlet domain is considered in Ωf at time t = 0). This strategy considers two
variational formulations, one applied to the fluid domain, which considers all the
boundary conditions of the problem and the other applied to the empty part of
the mold, where an empty pressure is imposed, which is considered here as a null
value. A weighting formulation is considered in the partially filled elements, where
the weighting function depends on the fluid fraction in each element. This fluid frac-
tion is updated for each time instant (allowing the simulation of fluid propagation).
More details can be found on [38]. The governing equations are detailed below.

2.1 Governing equations

The phenomena of fluid passing throw a porous media is modelized by using Darcy’s
law. This law gives the velocity v(x, t) of the fluid in function of the permeability
tensor K of the filled material and the pressure p(x, t) of the fluid as follows:

v(x, t) = −
K

µ
∇p(x, t) , ∀x ∈ Ωf (t) (2)

where the vector x denotes the Cartesian coordinates and µ the fluid viscosity.
In addition, the fluid under consideration must also verify the incompressibility
condition, which states:

∇ · v(x, t) = 0 , ∀x ∈ Ωf (t) (3)

where ∇ · • denotes the divergence of •. The fluid domain is characterized by a
variable I(x, t) representing the fraction of fluid contained in each spatial point x at
a given time t. This variable results from the solution of the transport equation:

∂I(x, t)

∂t
+ v(x, t) · ∇I(x, t) = 0 (4)

and takes values in between 0 and 1, where 0 denotes no presence of fluid and 1 that
the point is fully filled with fluid.

I(x, t) =

{
1 if x ∈ Ωf (t)

0 if x ∈ Ωe(t)
(5)

The details for the solution of the transport equation (4), which involves the use of
volume of fluid technique and the Total Variation Diminishing (TVD) method can
be found in [38].

As exposed previously, here one considers modeling the fluid and the empty part of
the mold at the same time in the same variational formulation. Since the pressure
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in the empty zone verifies a null pressure, one can write the variational formulation
associated to the empty region as:

Find p ∈ Ωe(t) such that ∀p∗ ∈ U(0),∫
Ωe(t)

p∗p(x, t) dΩ = 0 , with p(x, t) = pout = 0 , ∀x ∈ Ωe(t) (6)

where U(0) denotes the pressure space with null boundary conditions. On the other
hand the variational formulation associated to the fluid is given by:

Find p ∈ Ωf (t) such that ∀p∗ ∈ U(0),∫
Ωf (t)

∇p∗
K

µ
∇p dΩ = 0 (7)

By combining both variational formulations (6) and (7) and by using the fraction
of fluid I, one finally obtain the variational formulation that must be solved, which
is defined in the whole domain Ω as:

Find p ∈ Ω such that ∀p∗ ∈ U(0),∫
Ω

(
(I)∇p∗

K

µ
∇p + (1− I)p∗p

)
dΩ = 0 (8)

The time evolution of the RTM process is obtained by simply solving equation (8)
together with the updating of the domain occupied by the fluid by solving equation
(4) for each time instant until the fluid eventually occupies the entire domain Ω.

3 Hybrid twin of RTM process

At this point, a physics-based numerical model that allows us to simulate the RTM
process has been presented. However, even a numerical model that includes all
types of physics in the system in the vast majority of situations is not capable
of providing accurate predictions with respect to a real process. The hybrid twin
provides an answer to this need. The details and fundamental ingredients related
to the construction of this hybrid twin are presented in the following sections.

3.1 Main ingredients for the construction of the hybrid twin

As presented in [36, 40, 5], the hybrid twin is constructed by modeling the ignorance
between the virtual twin predictions and the real measurements for a set of given
parameters. The main hypothesis in order to perform this consists in that the
virtual twin even if it does not gives accurate results compared to the reality, gives
a prediction that catches the principal aspects or behavior of a system. Due to the
last, the ignorance model is considered to add a coarse correction to the virtual twin,
where all together becomes the hybrid twin that allows to reproduce close predictions
compared to the reality. Mathematically speaking, the governing equation of a
hybrid twin [5] is given by:

ẋ(t; ν) = A(x, t; ν) +B(x, t; ν) (9)

which expresses the rate of change of the system state here noted ẋ(t; ν) at time
t by considering any parameter set ν of the system. Here, the state of the system
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corresponds to the resin flow-front inside the mold, and as will be shown in the
following sections, this flow-front is reconstructed using the measurement of resin
arrival times at sensors. This equation is composed of two principal contributions:
(i) the rate of change of the virtual twin for any parameter set ν (A(x, t, ν)) and (ii) a
data-based model describing the rate of change of the gap between the prediction of
the virtual twin and the measured data for the parameter set ν (B(x, t; ν)). Figure
3 summarizes the main ideas of the hybrid twin applied to the RTM process.

Since in real life, experimental measurements are in general very expensive, from
the above, the ignorance model should be as coarse as possible. To ensure this, the
virtual twin must first be fitted the best as possible with respect to an experimental
measurement by identifying the best process parameters. In addition, since the
hybrid twin is aiming to be used for the prediction of a real RTM process, its usage
and construction should be performed online, since different pieces (with potentially
different material properties) have to be manufactured. In this sense, it is of primal
importance to be able to identify the parameters of the process under real-time
constraints, to fit the virtual twin to the data and use the existing hybrid twin model
associated to that parameter. To achieve this, the use of model-order reduction
techniques is key for the real-time feedback and optimized inverse algorithms for
fast determination of parameters. These techniques are presented in the following
sections.

Figure 3: Hybrid twin methodology diagram applied to the RTM process.
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3.2 Model-order reduction technique: the Proper General-
ized Decomposition

Proper Generalized Decomposition is a model-order reduction technique, whose
main objective consists in approximating a given data on a reduced space (com-
pared to the original one) and represent the approximation in a separate variable
multiplication format [26]. In the general case, one intends to approximate a given
quantity f(ν1, ν2, ..., νn) ∈ Rn → R in the following format:

f(ν1, ν2, ..., νn) ≈
m∑
k=1

Xk
1 (ν1)X

k
2 (ν2) ... X

k
n(νn) (10)

where m denotes the number of multiplied terms that need to be summed up to
approximate the reference function f , this variable is denoted as modes of the de-
composition in the model-order reduction community. The PGD functions are built
using adequate shape functions over each parametric dimension, interpolating the
approximation over the whole parametric space.

However, its classical construction is performed over structured data (i.e the func-
tion f should be known at specific values in the parameter space, such as the known
data is structured). This requirement impose a limitation when dealing with large
amount of parameters since the number of data needed explodes with the num-
ber of parameters (the computation time needed to obtain the function f on those
parameters grows exponentially too). This phenomenon is known as curse of dimen-
sionality. Therefore, a more suitable version of the PGD decomposition is needed
to solve the aforementioned limitation, especially if the virtual twin considered de-
pends on many parameters. This improved version corresponds to the sparse-PGD
[33]. This variant of the PGD allows to construct a low-rank approximation by
considering non-structured data over a parametric space. This method is presented
in detail in Appendix 6.

3.2.1 Compression and approximation of virtual twin by using sparse -
PGD

The strategy used to compress the parametric results from the offline calculation
of the virtual twin simply consists of approximating the arrival times of the resin
at each sensor in the mold, which are illustrated in Figure 2. In detail, a sPGD
approximation is applied to each sensor to approximate the arrival time of the resin
on the sensor, depending on the parameters considered in the numerical model, such
as injection pressure, permeability of the preform, viscosity of the resin, etc. In this
sense, lets define the sPGD approximation of the arrival times on sensor i as follows:

T [i](ν1, ν2, ... , νn) ≈ T [i]
mi
(ν1, ν2, ... , νn) =

mi∑
k=1

Xk,i
1 (ν1)X

k,i
2 (ν2) ... X

k,i
n (νn) (11)

where νj with j ∈ [1, ..., n] represents any of the parameters considered and T [i] the
measured arrival times of the resin over the different sensors.

3.3 Modeling the gap between virtual twin and measured
data

The second major ingredient of the hybrid twin, which concerns the construction
of the ignorance model is presented in this section. The modeling of the difference
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between the virtual twin prediction and the measured data is performed in two main
stages. On the one hand, the first step (i) is to identify the process parameters of
the system so that the error between the virtual twin and the measured data is
minimized. This is performed in order to ensure that the ignorance can be correctly
approximated in a coarse way possible. Second (ii), once the optimal parameters
are determined, the ignorance for this point in the parameter space is stored and the
ignorance model is built or enriched online. This construction raises two possible
scenarios. On the one hand, the set of parameters determined lies within the param-
eter interval of the hybrid twin definition, where this new point is simply considered
to enrich the model. On the other hand, if the identified parameter set lies outside
the domain of definition, an special treatment should be taken into account since
the hybrid twin can’t gives a prediction. These two scenarios are treated in the
following sections.

3.3.1 Real-time inverse analysis

In order to perform the inverse analysis and determine the RTM parameters in real
time throughout the process, the sPGD model reduction technique presented in
section 3.2.1 is combined with a nonlinear optimization technique.

The use of the MOR technique sPGD with a nonlinear curve fitting technique was
first exploited in [41] for thermal problems. There, the nonlinear optimization
algorithm chosen and proven to gives best results corresponds to the Levenberg-
Marquardt algorithm [42]. As presented in [41], the combination of model reduc-
tions along with high optimized nonlinear least squares curve-fitting models as the
Levenberg-Marquardt algorithm allows to identify model parameters at very low
computing times, in the order of milliseconds or seconds depending on the number
of parameters considered, achieving the desired real-time identification. In our case,
the method minimizes the following error:

{ν̂} = arg min
{ν}

Nsensors∑
i=1

[
T [i] − T

[i]
mi(ν)

T [i]

]2

(12)

which involves the arrival times of the resin measured from the real experience (T [i])
over all the sensors (Nsensors) considered and the one coming from the compressed

virtual twin by using the sPGD (T
[i]
mi).

The Levenberg-Marquardt algorithm combines two numerical minimization algo-
rithms: the gradient descent method and the Gauss-Newton method. More details
about the LM method can be found in [43]. Both gradient-descent and Gauss-
Newton method requires the derivative of the considered function, here is where
the advantage of the PGD format arises, in fact, any derivative applied to a PGD
approximation in a general format can be simply expressed as follows:

∂f(ν1, ν2, · · · , νn)
∂νi

≈
m∑
k=1

Xk
1 (ν1)X

k
2 (ν2) · · ·

∂Xk
i (νi)

∂νi
· · ·Xk

n(νn) (13)

This means that to perform the derivative of the considered function with respect
to a parameter, it is only necessary to perform the derivative on the respective
PGD function related to this parameter. Moreover, the obtained expression is also
decomposed by the PGD, making its determination really efficient. This property
offers many numerical advantages, which together allow fulfilling the identification
restrictions in real-time.

9



3.3.2 Modeling the discrepancy between the virtual twin and experience

Up to now, the tools to build a model of the so-called ignorance have been in-
troduced. Once some experiment realizations and their respective identification of
parameters is performed, the information of the gap between the virtual twin pre-
diction and the measurement is stored, which is given by:

∆T [i](ν̂) = T [i](ν̂)︸ ︷︷ ︸
Measurement

−T [i]
mi
(ν̂)︸ ︷︷ ︸

sPGD

(14)

Once a sufficient amount of data have been collected, the ignorance model is inter-
polated along the parametric space using these points. The reader may note that
these points are potentially unstructured in nature. From this, it can be quickly
concluded that the ignorance model must be built using some algorithm that can
create a meta-model from the unstructured data. From here there exists two options
for the creation of the ignorance model, on the one hand (i) one can use the model
reduction technique sPGD, or on the other hand (ii) Deep Learning techniques can
be used. In this paper, the sPGD is used to model this gap, where one defines the
approximation as ∆T

[i]
m̃i
(ν), such as:

∆T [i](ν) ≈ ∆T
[i]
m̃i
(ν) (15)

where for this case m̃ corresponds to the number of modes considered for the sPGD
approximation of the ignorance corresponding to sensor i.

3.4 Flow-front prediction for parameters inside the defini-
tion domain

When the identified parameters of a process lies inside the parameter domain of the
current hybrid twin, the flow-front prediction of the real process at these parameters
is constructed by using the arrival times.

Figure 4: 2D mold with sensors, i denotes the index of the vertical sensors while j
the index of the horizontal sensors.

Here, due to the complexity of the problem, where a complex flow-front can occur
during the filling of the mold, the position of the flow-front is determined for each
line of sensors separately. This is, the rate of change is defined for each of the i
sensors located along the y direction (see Figure 4), where the rate of change of the
flow-front positioned along the x coordinate associated with the line i of sensors
denoted x[i](t), is approximated as follows:
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∀i ∈ [1, ..., ns,y], ∀j ∈ [1, ..., ns,x − 1],

ẋ[i](t; ν) =
x
[i,j+1]
s − x

[i,j]
s

T̂ [i,j+1](ν)− T̂ [i,j](ν)
when x[i](t) ∈ [x[i,j+1]

s − x[i,j]
s ] (16)

where x
[i,j]
s corresponds to the x coordinate of sensor (i, j) (see Figure 4), ns,x and

ns,y the number of sensors considered in the x and y direction respectively, and
where it is defined:

T̂ [i,j](ν) = T [i,j]
mi

(ν)︸ ︷︷ ︸
sPGD

+ ∆T
[i,j]
m̃i

(ν)︸ ︷︷ ︸
sPGD of the gap

(17)

The last expression simply state that the velocity of the flow-front along the line of
sensor i, when the flow-front is located in between the interval defined by sensors
(i, j) and (i, j + 1), is given its horizontal separation divided by the time it takes.
Where this time is predicted by the hybrid twin. This approximation is considered
since there is no knowledge of the velocity between two horizontally arranged sensors.

Lets note that expression (16) considers the prediction of the real flow-front for each
sensor i, therefore, the whole flow-front in the x and y coordinates is reconstructed
by simply interpolating the response on the y direction. The accuracy of the recon-
struction is illustrated in Figure 5, where the flow-front given by a FEM simulation
is correctly approximated using the arrival times knowledge at sensors.

Figure 5: Comparison between the flow-front given by the FEM resolution and the
one obtained by interpolation using the arrival times when ns,x = ns,y = 5, for two
different time instants.

3.5 Flow-front prediction for parameters outside the defini-
tion domain

In certain situations the identified parameters or the value of a used parameter may
lie outside the construction range of the actual hybrid twin. In this situation, no
information is available on the gap between reality and the virtual twin, for this
reason a different strategy must be considered. This strategy simply consists in
directly approximating the arrival times on sensors for this new set of parameters.

The main idea consists in assuming that the response of the real system for this new
set of parameters lives in a reduced space common to all the solutions of the real
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system measured up to the present time, so that the new solution can eventually also
be approximated in this space, i.e. by the appropriate use of basis functions. These
basis functions can be determined in different ways, however, the most direct and
efficient way to obtain them is simply by applying the Proper Orthogonal Decom-
position (POD) method to all the solutions of the real system obtained previously.

The POD method is a model reduction technique that allows to obtain optimal
orthonormal basis that better allows to approximate a given data set [44, 45]. By
denoting as νout the parametric vector that lies outside the hybrid twin definition,
and considering the POD, the arrival times can be approximated as follows:

T (νout) ≈ Φ α with Φ =
[
ϕ

1
,ϕ

2
, ...,ϕ

m

]
(18)

whereT (νout) denotes the arrival times on all the sensors distributed along the mold,
Φ the matrix that contains the POD basis ϕi ∀i ∈ [1, ...,m] and α the coefficients
that must be determined in order to correctly predict these arrival times for the
new parametric set. In view of taking real-time actions (particularly in the case
of RTM process control), it is necessary to determine these constants only taking
into account part of the arrival time information, that is, as the flow advances in
the mold, in order to quickly predict what will be the arrival times in the following
sensors. Therefore, for the approximate determination of the vector of coefficients
α, the method called Gappy POD [46] is used here.

The Gappy POD approximate the decomposition (18) when the data is not available
over the whole domain. In this sense, lets define ϕ̂

i
= ϕ

i
(b), ∀i ∈ [1, ...,m], where b

represent the selection of the DOFs associated to the known data, i.e. sensors where
there is a measurement of arrival times. In this way, one can define:

T̂ (νout) = T (b; νout) and Φ̂ =
[
ϕ̂

1
, ϕ̂

2
, ..., ϕ̂

m

]
(19)

where T̂ (νout) denotes the measured arrival times on few sensors (the sensors touched
by the flow-front at the instant when the Gappy-POD is applied). In this situation,
the problem to be solved in order to obtain the approximation of coefficients can be
written as:

{αapprox} = arg min
{α}

∥∥∥T̂ (νout)− Φ̂ α
∥∥∥2

2
(20)

with ∥•∥22 the Euclidean norm. The main idea consists in determining in an ap-
proximate way the vector of coefficients by minimizing (20). By minimizing one
obtains:

M αapprox = f (21)

where M = Φ̂
T
Φ̂ and f = Φ̂

T
T̂ (νout). By solving equation (21) to obtain an

approximation of the vector of coefficients, the prediction of the arrival times at all
sensors in the mold can be simply recovered by applying the following expression:

T (νout) ≈ Φ αapprox (22)

where the prediction of the arrival times over all the sensors can be used to approx-
imate the flow-front velocity as presented in section 3.4.

Once the real process finish, the real arrival times are measured for this new param-
eter set and they are used to enrich the hybrid twin, i.e., an approximation of the
ignorance model is recalculated using this new data. In this way the hybrid twin
is incrementally enriched online, delivering better predictions of reality as new real
experiences of the RTM process under consideration continue to be made.
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4 Numerical example

In the present section, numerical examples are presented in order to show the capa-
bility of the hybrid twin to better approximate a complex system in the context of
the RTM manufacturing process, where the numerical model or virtual twin is en-
riched with sensor data. The numerical examples shown below are purely academic,
so the “real experience” here is simply considered as a numerical simulation where a
richer and more complex physical model is considered compared to the virtual twin
which will be considered as a more simplified model.

The virtual twin considered consists of a 2D mold that have an injection pressure
pimp(t) which can be constant or variable over time. The output pressure is consid-
ered to be null. The virtual twin consists of an uniform preform with a race-tracing
zone, on the other hand the real experience consists on a more complex model where
a preform with 3 different zones with different permeabilities are considered as well
as the race-tracing zone. For both cases we considered a number of sensors in the
x-direction ns,x = 5 and ns,y = 5 sensors in the y-direction. The virtual twin as well
as the complex model are depicted in Figures 6 and 7 respectively, for both cases
the sensor distribution is represented by red dots. The dimensions considered for
both the numerical model and the “reality” are the same and given as follows:

d1 = 0.8 [m] ; d2 = 0.35 [m] (23)

As presented in section 3.2.1, an offline calculation of the virtual twin must be first
performed in function of defined parameters in order to fit as best as possible the
virtual twin against some measured data. In this sense, this offline calculation is
performed considering as parameters the permeabilities kx and ky in the x and y
directions as well as the injection pressure, which is considered constant along the
injection process. For this, a sparse sampling of these parameters are considered in
order to apply the sPGD presented in section 6. The intervals considered for these
parameters are given below:

kx = [0.0980, 0.9800]× 10−8 [m2]

ky = [0.0980, 0.9800]× 10−9 [m2]

pimp = [8, 32] [bar]

(24)

It also considered a preform angle equals to 50 degrees (see section 2), a viscosity
of the resin equals µ = 0.16 [Pa s] and a high and constant permeability over the
race-track zone (yellow zone of Figure 6) with a value of 2.25× 10−6 [m2]. For the
construction of the sPGD approximation of the virtual twin, 100 runs have been
performed by selecting the parameters in (24) using the Latin hypercube sampling
method.

The real experience emulation considered here corresponds to a more complex model.
The permeabilities considered for the real experience emulation are taken equals to:
The viscosity, the angle of the preforms and the permeabilities of the race-track

Table 1: Permeability constants for the emulation of the real experience ([m2])

kx,1 (10−8) kx,2 (10−8) kx,3 (10−8) ky,1 (10−9) ky,2 (10−9) ky,3 (10−9)

0.7595 0.3185 0.0980 0.7595 0.3185 0.0980

zone are taken equals as the virtual twin model in order to simplify the example.
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Figure 6: Simplified model considered.

Figure 7: System representing the “reality”. The zones with different permeabilities
are illustrated with different colors and separated by lines.

As presented in section 3, the hybrid twin is constructed using data from the real
experience. Due to this, the knowledge of 3 emulated RTM experiences for three
different pressures is considered, where the permeabilities are assumed to be equal
to those given in 1 for all the tests, and where the results of arrival times at the
sensors are stored. The pressures considered are the followings:

pimp = [8, 14, 20] [bar] (25)

The first step for building the hybrid twin consists in determining the process pa-
rameters that best fit the virtual twin prediction to the real experience. To do so,
only the first experience is considered. By applying the algorithm of section 3.3.1,
the following parameters are obtained:

k̂x = 0.2340× 10−8 [m2]

k̂y = 0.2090× 10−9 [m2]
(26)

where an error of 21[%] computed on the arrival times at the sensors is obtained.
By using these identified parameters, the hybrid twin is constructed by modeling
the gap between the virtual twin and the real experience emulation for the three
experiences, following the strategy presented in section 3.4.

4.1 Prediction for parameters inside the HT definition

The hybrid twin constructed using the pressures values from equation (25) (which
consists only on 3 measures and constants pressure values over time) can be used
to predict the flow-front when the injection pressure varies within this domain of
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definition in a continuous way. To illustrate this, consider a time-varying inlet
pressure as shown in Figure 8.

Figure 8: Pressure versus time considered.

For this case, the prediction of the flow-front using only the virtual twin is presented
in Figure 9 (using only the virtual twin contribution in equation (16)) while the one
using the constructed hybrid twin in Figure 10.

Figure 9: Comparison between the flow-front prediction of the virtual twin and the
simulated experience for two different time instants.

Figure 10: Comparison between the flow-front prediction of the hybrid twin and the
simulated experience for two different time instants.

For the considered example, the hybrid twin achieved to approximate with an error
of 2[%] the flow-front of the considered “real” process.
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4.2 Prediction for parameters outside the HT definition

Now let us consider that the experience takes into account a time-varying pressure
that does not belong to the pressure definition domain under consideration to build
the hybrid twin. This pressure is presented in Figure 11, where the pressure con-
sidered surpass the interval of pressure (see (25)) used to build the hybrid twin. In
fact the interval used here takes values in between 0 [bar] and 32 [bar]. In this situ-
ation, resin arrival times for this new pressure cannot be predicted using the hybrid
twin, so to give predictions in this situation the algorithm presented in section 3.5,
which is based on Gappy POD, must be applied. For this situation, the predicted

Figure 11: Pressure versus time considered.

(a) Flow-front of hybrid twin. (b) Flow-front of hybrid twin.

Figure 12: Comparison between the flow-front prediction when using the Gappy
POD and the simulated experience for two different time instants.

flow-front achieved an error of 1.5[%] with respect to the real process. As can be
seen from the above results, using a known reduced basis determined by previous
arrival times measurements on the sensors allows to correctly predict the history of
the flow-front for the new parameter set that lies outside the definition domain of
the current hybrid twin.

5 Conclusions

This paper shows the main developments and numerical strategies that allow the
construction of a hybrid twin applied to the resin transfer molding process. The
hybrid twin is a numerical model capable of approximating a real process, which
is built by making use of a physics-based model and real-world data measured by
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sensors. The physics-based model used allows to capture much of the behavior of
a real system as a function of any parameter considered, while the measured real-
world data is used to model the difference between the physical model and reality,
called the ignorance model, allowing the required amount of sensed information to
be small.

Because the hybrid twin is built to be used during a real process, a real-time pre-
diction of the physics-based model and the ignorance during the process must be
given. For this reason, the physics-based model is approximated using the sparse-
PGD model reduction technique and the process parameters are obtained by fitting
in real-time this model against measured data using a highly optimized Levenberg-
Marquardt algorithm.

The hybrid twin presented in this paper is capable of correctly predicting the RTM
process when dealing with a complex system for the manufacture of mechanical parts
when using synthetic data. However, its capabilities have yet to be tested in a real
process, which is considered as a prospect for future works. Here, its performance
was demonstrated by correctly approximating the resin flow-front inside a mold
whose permeabilities changes along its domain by enriching a model that considered
uniform permeabilities through a limited use of experimental setups and number of
sensors.

Finally, the advantages of the hybrid twin applied to the RTM process open inter-
esting perspectives. For instance, a natural one is to control the injection process by
considering more than one inlet pressure, where the spread and shape of the flow-
front could be controlled by changing the inlet pressures, which could considerably
improve the quality of the manufactured parts and reduce their production time.
Additionally, more physical phenomena of RTM such as curing during the filling
process [39] could be taken into account to extend the capabilities of the hybrid
twin and improve the manufacturing process in this aspect as well.
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6 Appendix A: Approximation of sparse data; the

sparse - PGD

In real-life situations, having access to abundant and structured data is not always
possible. In this situation a direct application of the PGD method is unfortunately
not possible. To solve this limitation, in [33] an extension of the PGD method was
proposed to deal with unstructured data and overcome in this sense the curse of
dimensionality. This method is called sparse-PGD.

To illustrate the main ideas on how to determine the PGD decomposition for the
case of sparse data, an approximation of a function f(ν1, ν2) ∈ R2 → R is considered
here, where its value is known over some P sampling points. In this case, the PGD
decomposition is simply determined by solving the following minimization problem:

min ∥um(ν1, ν2)− f(ν1, ν2)∥22 (27)

with ∥•∥22 =
∫
Ω
(•)2 dν1dν2 and Ω = Ων1 × Ων2 . From the last expression, um(ν1, ν2)

corresponds to the PGD decomposition of f(ν1, ν2), where m terms are considered,
this is:

um(ν1, ν2) =
m∑
k=1

Xk
1 (ν1)X

k
2 (ν2) (28)

with Xk
1 (ν1) and Xk

2 (ν2), ∀k ∈ [1, ...,m] the separate variable functions to be deter-
mined. Here the PGD functions are not interpolated using, for example, the Finite
Element Method (FEM) [3], in this case the functions used are globally defined over
the whole interval considered for each variable. The functions that can be used could
be for instance, Kriging interpolants functions [33] or radial basis functions [47], just
to cite a few. In this context, the PGD functions for the 2D case are constructed as
follows:

Xk
1 (ν1) =

ncp∑
j=1

Nk
j (ν1)a

k
ν1,j

= (N k
ν1
)Tak

ν1
(29)

Xk
2 (ν2) =

ncp∑
j=1

Nk
j (ν2)a

k
ν2,j

= (N k
ν2
)Tak

ν2
(30)

where Nk
j (νi) and akνi,j denotes the shape functions and its respective nodal value for

variable νi evaluated on the control point j at PGD mode k. If the shape functions
are considered to be radial functions of multiquadric type [47], they are given as
follows:

Nj(νi) =

√
c2 [(νi)j − (νi)]

2 + 1 for j ∈ [1, ..., ncp] and i ∈ [1, 2] (31)

with (νi)j the coordinate of the control point associated to variable νi and c a
parameter that drives the shape of the function, chosen such as it allows a non
over-fitted PGD approximation. These PGD functions are classically determined
one after the other in an incremental way, also denoted Greedy process. That
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is, one considers as known m − 1 terms of the decomposition (28), and seeks the
determination of the mode m, i.e., um(ν1, ν2) = um−1(ν1, ν2) + Xm

1 (ν1)X
m
2 (ν2). In

this case one reformulates (27) as follows:

{Xm
1 (ν1), X

m
2 (ν2)} = arg min

{Xm
1 (ν1),Xm

2 (ν2)}
∥Xm

1 (ν1)X
m
2 (ν2)− fres(ν1, ν2)∥22 (32)

with fres(ν1, ν2) = f(ν1, ν2)−um−1(ν1, ν2). By minimizing the expression (32) yields:

∀w∗(ν1, ν2), ∫
Ω

w∗(ν1, ν2) [X
m
1 (ν1)X

m
2 (ν2)− fres(ν1, ν2)] dν1dν2 = 0 (33)

However since the information is just known at P sampling points ((ν1)i, (ν2)i),∀i ∈
[1, ..., P ], the test function w∗(ν1, ν2) is expressed as a set of Dirac delta functions
collocated at these points, this is:

w∗(ν1, ν2) = u∗(ν1, ν2)
P∑
i=1

δ((ν1)i, (ν2)i)

= [X1
∗(ν1)X

m
2 (ν2) +Xm

1 (ν1)X2
∗(ν2)]

P∑
i=1

δ((ν1)i, (ν2)i)

(34)

where δ((ν1)i, (ν2)i) here denotes the Dirac delta function evaluated at points ((ν1)i, (ν2)i).
By replacing w∗(ν1, ν2) by its sparse version of equation (34) into (33), and devel-
oping the expression yields the problems that must be solved to obtain the PGD
functions:

Compute Xm
1 (ν1) by solving:∫

Ω

X1
∗(ν1)

P∑
i=1

[
Xm

1 (ν1)X
m
2 (ν2)

2 −Xm
2 (ν2)fres(ν1, ν2)

]
δ((ν1)i, (ν2)i) dν1dν2 = 0

(35)

Compute Xm
2 (ν2) by solving:∫

Ω

X2
∗(ν2)

P∑
i=1

[
Xm

2 (ν2)X
m
1 (ν1)

2 −Xm
1 (ν1)fres(ν1, ν2)

]
δ((ν1)i, (ν2)i) dν1dν2 = 0

(36)
Equations (35) and (36) should be solved alternatively following a fixed-point strat-
egy, where for the resolution of equation (35) one considers known the value of
function Xm

2 (ν2), and for the resolution of (36) one considers Xm
1 (ν1) known. To

illustrate this resolution, but only for the determination of Xm
1 (ν1), lets define:

Akl

(ν1)i
= N k

ν1
((ν1)i)⊗N l

ν1
((ν1)i)

Akl

(ν2)i
= N k

ν2
((ν2)i)⊗N l

ν2
((ν2)i)

(37)

where ⊗ denotes a Kronecker tensor product. By using the operators defined in (37)
and approximations (29) and (30), one obtains the following system of equations
needed to be solved to compute the discretized DOFs related to Xm

1 (ν1) (a
m
ν1
).

M
ν1
am

ν1
= f

ν1
(38)
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where the matrix and vector are respectively given as:

M
ν1

=
P∑
i=1

[
(am

ν2
)TAmm

(ν2)i
am

ν2

]
A

(ν1)i

f
ν1

=
P∑
i=1

fres((ν1)i, (ν2)i)N
m
ν1
((ν1)i)N

m
ν2
((ν2)i)

Tam
ν2

(39)

The extension of the above method to the case of a multidimensional function is
straightforward and follows the same methodology, for this case one has:

min ∥um(ν1, ν2, ... , νn)− f(ν1, ν2, ... , νn)∥22 (40)

where:

um(ν1, ν2, ... , νn) =
m∑
k=1

Xk
1 (ν1)X

k
2 (ν2) ... X

k
n(νn) (41)

with ∥•∥22 =
∫
Ω
(•)2 dν1dν2 ... dνn, where for this case Ω = Ων1 ×Ων2 × ...×Ωνn . For

this case the same resolution procedure by the fixed-point technique must be applied.
The determination of the nodal values of the m PGD function corresponding to
parameter νq with q ∈ [1, ..., n] is simply given as:

M
νq
am

νq = f
νq

(42)

where the respective matrix and vector are computed as follows:

M
νq

=
P∑
i=1

Amm

(νq)i

∏
∀j ̸=q

[
(am

νj
)TAmm

(νj)i
am

νj

]
f
νq

=
P∑
i=1

fres(νi)N
m
νq((νq)i)

∏
∀j ̸=q

Nm
νj
((νj)i)

Tam
νj

(43)

with fres(ν1, ν2, ... , νn) = f(ν1, ν2, ... , νn)− um−1(ν1, ν2, ... , νn).
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generalized decomposition of time-multiscale models. International Journal for
Numerical Methods in Engineering, 90(5):569–596, 2012.
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Jean-Louis Duval, and Francisco Chinesta. A separated representation involving
multiple time scales within the proper generalized decomposition framework.
Advanced Modeling and Simulation in Engineering Sciences, 8(1):1–22, 2021.
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González, Eĺıas Cueto, Antonio Huerta, Jean Louis Duval, and Francisco
Chinesta. A multidimensional data-driven sparse identification technique: the
sparse proper generalized decomposition. Complexity, 2018, 2018.

22



[34] Abel Sancarlos, Victor Champaney, Jean-Louis Duval, Elias Cueto, and
Francisco Chinesta. Pgd-based advanced nonlinear multiparametric regres-
sions for constructing metamodels at the scarce-data limit. arXiv preprint
arXiv:2103.05358, 2021.

[35] Abel Sancarlos, Elias Cueto, Francisco Chinesta, and Jean-Louis Duval. A
novel sparse reduced order formulation for modeling electromagnetic forces in
electric motors. SN Applied Sciences, 3(3):1–19, 2021.

[36] Giacomo Quaranta, Emmanuelle Abisset-Chavanne, Francisco Chinesta, and
Jean-Louis Duval. A cyber physical system approach for composite part: From
smart manufacturing to predictive maintenance. In AIP conference proceedings,
volume 1960, page 020025. AIP Publishing LLC, 2018.
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[41] Ch Ghnatios, Françoise Masson, Antonio Huerta, Adrien Leygue, Eĺıas Cueto,
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