
HAL Id: hal-04424705
https://hal.science/hal-04424705v2

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning GAI-decomposable Utility Models for
Multiattribute Decision Making

Margot Herin, Patrice Perny, Nataliya Sokolovska

To cite this version:
Margot Herin, Patrice Perny, Nataliya Sokolovska. Learning GAI-decomposable Utility Models for
Multiattribute Decision Making. The 38th Annual AAAI Conference on Artificial Intelligence (AAAI
2024), Feb 2024, Vancouver, Canada. �10.1609/aaai.v38i18.30024�. �hal-04424705v2�

https://hal.science/hal-04424705v2
https://hal.archives-ouvertes.fr


LEARNING GAI-DECOMPOSABLE UTILITY MODELS FOR
MULTIATTRIBUTE DECISION MAKING

Margot Herin, Patrice Perny
LIP6

Sorbonne University,
Paris

{margot.herin, patrice.perny}@lip6.fr

Nataliya Sokolovska
LCQB

Sorbonne University,
Paris

nataliya.sokolovska@sorbonne-universite.fr

ABSTRACT

We propose an approach to learn a multiattribute utility function to model, explain or predict the
value system of a Decision Maker. The main challenge of the modeling task is to describe human
values and preferences in the presence of interacting attributes while keeping the utility function as
simple as possible. We focus on the generalized additive decomposable utility model which allows
interactions between attributes while preserving some additive decomposability of the evaluation
model. We present a learning approach able to identify the factors of interacting attributes and to learn
the utility functions defined on these factors. This approach relies on the determination of a sparse
representation of the ANOVA decomposition of the multiattribute utility function using multiple
kernel learning. It applies to both continuous and discrete attributes. Numerical tests are performed
to demonstrate the practical efficiency of the learning approach.

1 Introduction

An increasing number of AI systems is used to describe, explain or predict human behaviors in evaluation or decision
making tasks, but also to help one or more individuals to make a relevant choice in the light of their preferences [1, 2].
Intelligent decision systems can also be used to give machines the ability to make sophisticated decisions in complex
environments in an autonomous but controlled way [3]. These systems are often grounded on decision theory which
proposes preference models that verify normative properties guaranteeing the internal consistency of the value system
modeled and the resulting decisions [4, 5, 6, 7, 8].

One of the current research challenges in this area is to produce models that are sufficiently expressive to account for a
diversity of possible behaviors, but at the same time sufficiently simple to remain interpretable and allow the explanation
of evaluations or decisions [9]. There is also a need of automated mechanisms for preference assessment and tailoring
general models to specific users [10]. With this in mind, we focus in this paper on learning utility functions to efficiently
represent values and preferences on multiattribute objects. For this purpose, the most widely used preference model is
the so-called additive utility model [11]. It assumes a special kind of independence among attributes called “mutual
preferential independence” which ensures that the overall utility of multiattribute objects can be decomposed as the sum
of mono-attribute utility functions. Such decomposability significantly simplifies the construction of the model that
can be achieved componentwise. However, in practice, preferential independence is often violated, when interactions
among attributes are present, and the simple additive utility model does not fit. This is the reason why, in this paper, we
tackle the problem of learning a more general multiattribute utility function in the presence of interacting attributes,
with the aim of keeping the model as simple and decomposable as possible.

Les us consider a toy example involving a set of cars described using 3 attributes, namely car make, body color and seat
color. Let X1 = {Ferrari, Lamborghini, Porsche} be the car make domain, X2 = {Blue, Red, Yellow} be the body
color domain, and X3 = {Black, White} the seat color domain. Assume that an individual (named the Decision Maker
hereafter, DM for short) prefers a red body color for a Ferrari but a blue one for a Porsche. Then one cannot build a
mono-attribute utility function on body color because the preferences on body colors depend on the car make. This
is an example of interaction between two attributes. A similar problem appears when, in addition, the DM prefers a



black seat color for a red car and a white seat color for a blue car. This makes it impossible to define a mono-attribute
utility function on the seat color. Hence the DM’s preferences over X1 ×X2 ×X3 cannot be described by an additive
utility function of the form u(x1, x2, x3) = u1(x1)+u2(x2)+u3(x3) due to presence of interactions among attributes
{1, 2} on the one hand, and among attributes {2, 3} on the other. A less decomposable utility function can be used
instead, of the form: u(x1, x2, x3) = u1,2(x1, x2) + u2,3(x2, x3). Function u1,2 measures the attractiveness of the pair
(car make, body color) for the DM while function u2,3 measures car and seats color matching.

We can see that some additive decomposability still remains in this decomposition but utility factors now include several
interacting attributes and the factors may partially overlap (here x2 appears in both factors). Such a decomposition
over overlapping factors is called a GAI decomposition where GAI stands for Generalized Additive Independence [5].
It includes additive and multilinear decompositions as special cases [6], and also multiattribute utility models based
on Choquet integrals [12], but it is much more flexible as it does not make any assumption on the kind of interactions
between attributes. For this reason, it is widely used for preference modeling and decision support and was the subject
of various studies in the AI community [13, 14, 15, 16, 17, 18].

The construction of a GAI utility model from preference information (overall evaluations or pairwise comparisons)
remains a challenge. It requires the determination of the relevant factors to be used in the decomposition (groups
of interacting attributes) as well as the determination of sub-utility functions on these factors. Some contributions
focus on the elicitation of these sub-utility functions, assuming the decomposition of the utility into factors is known
[14, 15]. Some other tackle the problem of learning the decomposition. For example, a procedure to learn the GAI
model (structure + utility tables) has been proposed [18] in the case of boolean attributes and interactions limited to
subsets of bounded size (typically 2 elements). More recently, a procedure to determine a well-formed decomposition
of monotonic GAI models was proposed [19] wherein the interactions are limited to pairs of attributes.

However, until now, the learning of general GAI models with no prior assumption on the size of the interacting groups
of attributes is still understudied. All the above-mentioned contributions either assume that the structure of the GAI
decomposition is known or that it is limited to interactions involving very few attributes. Moreover, most of them
only consider the case of finite attribute domains. In this paper, we propose a more general procedure to learn a GAI
utility model, kept as simple as possible, with no prior restriction on the size of interactions, and that applies to both
continuous and discrete attribute domains.

The paper is organized as follows. In a first section we recall some background on multiattribute utility models and GAI
decompositions. Then, in the second section, we present an approach to construct a GAI decomposition from data using
multiple kernel learning. Finally, a third section provides the results of numerical tests on synthetic and real data.

2 Background and Notations

Let us consider a finite set N = {1, . . . , n} of attributes used to describe a set X of alternatives in a decision problem.
Every alternative x in X is characterized by a multiattribute evaluation vector x = (x1, . . . , xn) where xi is the
evaluation of x with respect to attribute i, for any i ∈ N . Let Xi be the attribute domain of i, i.e., the set of possible
values of alternatives on attribute i. This set can be continuous or discrete. The multiattribute description space is
denoted = X1 × . . .×Xn and X can be characterized as a subset of . Let denote the DM’s preference relation, which
is assumed to be a weak order over .

Under mild assumptions [20], it can be shown that is representable by a utility, i.e., there exists a utility function u :7→
such that xy ⇔ u(x) ≥ u(y) for all x, y ∈. As preferences are specific to each individual, utilities must be elicited
using sequences of preference queries or learned using databases of preference examples. Another use of multiattribute
utility functions can be to measure the intrinsic value of any alternative for the DM. In this case, the multiattribute utility
function can be learned from a labeled data set wherein overall utility values are assigned by the DM to elements of .

DM’s preferences usually have an underlying structure induced by independence among attributes that substantially
decreases the complexity of the model. This simplifies its interpretation and its use for optimization tasks [21]. The
simplest case is obtained when values or preferences over = X1 × . . . × Xn are represented by an additive utility.
When DM’s preferences are more complex and may include interaction among attributes, a more elaborate model is
needed, as illustrated in the introduction. This motivates the introduction of GAI decompositions:

Definition 1 Let F be a collection of subsets of N = {1, . . . , n}. A utility function u(·) is GAI-decomposable w.r.t. F
if there exist functions uS : XS →, S ∈ F such that:

u(x1, ..., xn) =
∑
S∈F

uS(xS), for all (x1, . . . , xn) ∈,

where xS is the tuple formed by the xj’s, j ∈ S.

2



Note that, in the above definition, the condition N =
⋃

S∈F S is not required because some components xi in the
model may appear to be unessential to explain the available preference information and could be removed to produce a
more compact model.

Given a multiattribute utility function u defined on X there may exist multiple distinct GAI decompositions of this
function. This raises a problem of identifiability [22], as shown in the following example:

Example 1 Function u(x1, x2, x3, x4) = (x1 − x2)
2 + 2x1(x2 + x3) + x4 could be seen as the sum of the three

following factors: u12(x1, x2) = (x1 − x2)
2, u1,2,3(x1, x2, x3) = 2x1(x2 + x3) and u4(x4) = x4 or rewritten as

the sum of four smaller factors, e.g., u′
1(x1) = x2

1, u′
2(x2) = x2

2, u′
13(x1, x3) = 2x1x3 and u′

4(x4) = x4. The latter
decomposition is simpler because it includes factors of smaller arity that are subsets of the factors used in the former
decomposition.

In order to further specify what would be a suitable representation of utilities and preferences we might consider
well-formed decompositions as proposed in [19].

Definition 2 A GAI decomposition is well-formed if each term uS appearing in the decomposition satisfies the following
conditions:

• each variable in S is active, i.e., the derivative of uS w.r.t. this variable is not identically 0,

• uS cannot be further decomposed into terms involving a proper subset of variables

Coming back to Example 1, the decomposition of u into u′
1+u′

2+u′
13+u′

4 is well-formed and refines the decomposition
u = u12 + u123 + u4 that is therefore not-well formed.

Unfortunately, there may exist multiple well-formed decompositions of the same GAI utility function due to possible
utility transfers from a factor to another. This is well illustrated by the following example:

Example 2 u(x1, x2) = x1+x2 can be rewritten as uα
1 (x1)+uα

2 (x2) with uα
1 (x1) = (x1−α) and uα

2 (x2) = (x2+α)
for any constant α, thus providing an infinity of possible decompositions of the same utility function.

In order to avoid such utility transfers and obtain a uniquely defined decomposition of the utility function, we shall
consider the ANOVA decomposition as suggested in [23]:

Definition 3 An ANOVA decomposition of a function u(x1, . . . , xn) defined on [0, 1]n and integrable on this domain is
a representation of u in the form:

u(x) = f∅ +
∑

S⊆N\∅

fS(xS) (1)

where fS are factors such that
∫ 1

0
fSdxi = 0 for all non-empty S in N and all i ∈ S.

In this definition, the multiattribute space X is identified to [0, 1]n for simplicity, as in [23]. This is not restrictive since
the attribute domains Xi, i ∈ N can be numerically encoded and normalized. Thus, in the following, the integrals are
always computed between 0 and 1.

The name ANOVA comes from ANalysis Of VAriance. Indeed, if u is square integrable and the attributes xi are
random variables uniformly distributed in [0, 1], the ANOVA representation of u allows deriving a decomposition of the
variance of u(x).

It is important to note that the ANOVA decomposition of a utility function is uniquely defined, which guarantees its
identifiability without any ambiguity. We indeed have f∅ =

∫
u(x)dx1 . . . dxn by integrating Equation 1 on [0, 1]n.

Then, by integrating the same equation over all variables except xi we obtain fi(xi) =
∫
u(x)Πk ̸=idxk−f∅. Now, if we

integrate Equation 1 on all variables except xi and xj we obtain fij(xi, xj) =
∫
u(x)Πk ̸=i,jdxk−fi(xi)−fj(xj)−f∅.

The process can be continued similarly to identify the factors of higher arity. For instance, the ANOVA decomposition

3



of the utility function introduced in Example 2 is:

f∅ =

∫ 1

0

∫ 1

0

(x1 + x2)dx1dx2 = 1

f1(x1) =

∫ 1

0

(x1 + x2)dx2 − f∅ = x1 −
1

2

f2(x2) = x2 −
1

2
f12(x1, x2) = x1 + x2 − f1(x1)− f2(x2)− f∅ = 0

Now, if we consider the model given in Example 1, the same process leads to the following ANOVA decomposition:

f∅ =
5

3
, f1(x1) = x1 + x2

1 −
5

6
, f2(x2) = x2

2 −
1

3
(2)

f3(x3) = x3 −
1

2
, f4(x4) = x4 −

1

2
(3)

f13(x1, x3) = 2x1x3 − x1 − x3 −
1

3
(4)

In the next section, we propose a method for learning a sparse GAI decomposition of a utility function based on the
identification of its ANOVA decomposition. To this end, we use the framework of multiple kernel learning (MKL) that
we introduce hereafter.

3 A MKL Algorithm for Learning a GAI Decomposition

We want to learn utility function u from a set of examples {(xj , yj), j ∈ E} where xj ∈ X is an alternative and yj ∈ R
denotes its overall evaluation. An efficient approach to learn a multivariate function from regression examples is to use
a Support Vector Regression (SVR) algorithm [24]. This algorithm consists in searching u as a linear model in some
high-dimensional space H, attached to a mapping function ϕ : Rn → H such that u(x) = ⟨w, ϕ(x)⟩+ b. Function ϕ
makes it possible to go beyond the linear model and to fit more complex utility shapes. The learning is performed by
minimizing both the error on the regression examples and the oscillation of the utility function (to maximize flatness) in
the space generated by ϕ. This can be achieved by minimizing the L2 norm of w along with the ϵ−sensitive loss as
follows:

(PSV R) min C
∑
j∈E

(ϵ+j + ϵ−j ) +
1

2
∥w∥22

yj − ⟨w, ϕ(xj)⟩ − b ≤ ϵ+ ϵ+j , j ∈ E
⟨w, ϕ(xj)⟩+ b− yj ≤ ϵ+ ϵ−j , j ∈ E

ϵ+j , ϵ
−
j ≥ 0, j ∈ E

where C > 0 controls the tradeoff between flatness and data fitting and ϵ > 0 is a tolerance threshold.

The efficiency of this method is due to the compact dual formulation of PSV R, the size of which only depends on the
number of regression examples |E|. It can be obtained using Lagrangian duality and reads as follows:

(DSV R) max− 1

2

∑
j,l∈E

(α+
j − α−

j )(α
+
l − α−

l )K(xj , xl)

+
∑
j∈E

(α+
j − α−

j )y
j − ϵ

∑
j∈E

(α+
j + α−

j )∑
j∈E

α+
j − α−

j = 0

α+
j , α

−
j ∈ [0, C], j ∈ E

where K(xj , xl) = ⟨ϕ(xj), ϕ(xl)⟩ and K is referred to as the kernel associated with ϕ. This approach relies on
polynomial computations of the values K(x, x′) that do not require the computation of the high dimensional vectors

4



ϕ(x). For instance, a widely used kernel is the Gaussian radial basis function (RBF) kernel. While involving a projection
function ϕ of infinite dimension, it can be simply computed as follows: K(x, x′) = e−∥x−x′∥2

2/2σ
2

. More generally,
any symmetric positive definite bi-variate function K can be used since they always represent a scalar product in some
feature space H [25]. Finally, using the KKT conditions, the coefficients w and the intercept b can be recovered from
the dual optimal variables, and the learned utility function is: u(x) =

∑
j∈E(α

+
j − α−

j )K(xj , x) +b.

Such kernel-based machine learning methods have proved to be effective for utility elicitation from preference statements
[26, 27, 28]. In our case, we propose to use the particular framework of multiple kernel learning (MKL) [29] to derive a
GAI-decomposition of the utility function u. In general, MKL methods replace the kernel K with a convex combination
of kernels K =

∑
l dlKl (the weights dl are positive and preserve the property of definite positiveness), in order to

either combine multiple kernels with different properties or combine different sources of information. Here, we consider
a basis of kernel functions (KS)S⊆N where for any S ⊆ N \ ∅, KS is a kernel attached to the sub-utility uS depending
on, and only on, the attributes in S. By convention, K∅ is a constant function equal to one. Let d = (dS)S⊆N\∅ denote
the kernel weights and d∅ the intercept of the model. Since the product of positive definite kernels is also a positive
definite kernel, this basis can be constructed using a univariate kernel k : R× R → R and defining KS(x, x

′) as the
product

∏
j∈S k(xj , x

′
j) for any x, x′ ∈ X and any S ⊆ N \ ∅.

Note that for d = (1, . . . , 1), the kernel K =
∑

S⊆N\∅ KS coincides with the well-known ANOVA kernel [30, 31].
However, if the name is related to the ANOVA’s core idea of decomposing a function in terms depending on subsets of
variables, this kernel does not provide an ANOVA decomposition since nothing guarantees that

∫
uSdxi = 0, for any

S ⊆ N \ ∅ and i ∈ S (See Definition 3). Also, the ANOVA kernel uses all the possible subsets of N (or all until a given
size p) and does not perform a selection of the most important subsets. In order to select the most useful coalitions and
provide a simple ANOVA decomposition, we need to learn a sparse representation of the weight vector d. The objective
of selecting only a few kernels in the kernel basis is at the core of MKL and the need for a simultaneous optimization
over the weights d and the dual variables α+

j , α
−
j has led to the development of many optimization algorithms (see [32]

for an overview). Here, we use L1 regularization to obtain sparsity in d, as in [33, 34].

In order to implement the multiple kernel learning approach on problem PSV R with the kernel K =
∑

S⊆N\∅ dSKS

and the intercept b = d∅, we first make explicit the associated mapping function of K. Let ϕS denote the mapping
function attached to the kernel KS for any S ⊆ N \ ∅, then ϕ = (

√
dSϕS)S⊆N\∅ is the mapping function associated to

K. Indeed, for any x, x′ ∈ X , we have:

K(x, x′) =
∑

S⊆N\∅

dSKS(x, x
′) =

∑
S⊆N\∅

dS⟨ϕS(x), ϕS(x
′)⟩

=
∑

S⊆N\∅

⟨
√
dSϕS(x),

√
dSϕS(x

′)⟩ = ⟨ϕ(x),ϕ(x′)⟩

Thus, using the kernel K amounts to searching a utility function of the form u(x) = ⟨w,ϕ(x)⟩ + d∅ =∑
S⊆N\∅

√
dS⟨wS , ϕS(x)⟩+ d∅ where w = (wS)S⊆N\∅. Finally, we introduce an L1-regularization term on weight

vector d in the initial problem PSV R. Since the weights are positive, the L1-penalty is simply the sum of the weights.
Then, the obtained approximation problem, denoted P , is the following:

(P) min C
∑
j∈E

(ϵ+j + ϵ−j ) +
∑

S⊆N\∅

1

2
∥wS∥22 + λ

∑
S⊆N\∅

dS

yj −
∑

S⊆N\∅

√
dS⟨wS , ϕS(x

j)⟩ − d∅ ≤ ϵ+ ϵ+j , j ∈ E (5)

∑
S⊆N\∅

√
dS⟨wS , ϕS(x

j)⟩+ d∅ − yj ≤ ϵ+ ϵ−j , j ∈ E (6)

ϵ+j , ϵ
−
j ≥ 0, j ∈ E , dS ≥ 0, S ⊆ N \ ∅ (7)

where λ > 0 is a regularization hyper-parameter that controls the level of sparsity we want to enforce on d.

Similarly to the SVR algorithm, one can apply Lagrangian duality to recover a dual formulation of this problem. Let
α+ = (α+

j )j∈E , α
− = (α−

j )j∈E denote the positive dual variables respectively attached to the sets of constraints (5) and
(6) and β+ = (β+

j )j∈E , β
− = (β−

j )j∈E , µ = (µS)S⊆N\∅ the positive dual variables respectively attached to the sign
constraints on the primal variables ϵ+ = (ϵ+j )j∈E , ϵ

− = (ϵ−j )j∈E and d (constraints (7)). Let 1 denote the vector whose
components are all equal to one. Then, the vectorial formulation of the Lagrangian function is L = C⟨1, ϵ+ + ϵ−⟩+

5



1
2∥w∥22+λ⟨1, d⟩+⟨α+,−ϵ1−ϵ++Y −ϕ̃w−d∅1⟩+⟨α−,−ϵ1−ϵ−−Y +ϕ̃w+d∅1⟩−⟨β+, ϵ+⟩−⟨β−, ϵ−⟩−⟨µ, d⟩
with ϕ̃ = (ϕ(xj))j∈E the matrix that vertically stacks the vectors ϕ(xj) and Y = (yj)j∈E . Also, the dual problem,
denoted D, is the following problem:

(D) max
(α+,α−,β+,β−,µ)∈(R+)t

min
ϵ+,ϵ−,w,d,d∅

L

where t = 4|E|+ 2n − 1 is the number of dual variables. Due to the square roots
√
dS present in the mapping function

ϕ, L is not differentiable w.r.t. d. However, since L is differentiable w.r.t ϵ+, ϵ−,w and d∅, we have the following
necessary optimality conditions:

∂L
∂w

= w − ϕ̃
⊤
(α+ − α−) = 0 (8)

∂L
∂ϵ+

= C1− α+ − β+ = 0,
∂L
∂ϵ−

= C1− α− − β− = 0 (9)

∂L
∂d∅

= ⟨1, α+ − α−⟩ = 0 (10)

Using Equations 8, 9 and 10, we obtain that for any d: g(d) = minϵ+,ϵ−,w,d∅ L = ⟨α+ − α−, Y ⟩ − ϵ⟨1, α+ + α−⟩+∑
S⊆N\∅ dS(λ− µS − 1

2 (α
+ − α−)⊤K̃S(α

+ − α−)) with K̃S = (KS(x
j , xl))j,l∈E for any S ⊆ N \ ∅. Function g

is differentiable w.r.t d, and thus for any S ⊆ N \ ∅, we can derive the last necessary conditions:
∂g

∂dS
= λ− µS − 1

2
(α+ − α−)⊤K̃S(α

+ − α−) = 0 (11)

Then, using Equations 8, 9, 10 and 11, and the positivity of µ, β+, β−, the dual Problem D boils down to the following
optimization problem:

(D) max⟨α+ − α−, Y ⟩ − ϵ⟨1, α+ + α−⟩

λ− 1

2
(α+ − α−)⊤K̃S(α

+ − α−) ≥ 0, S ⊆ N \ ∅ (12)

⟨α+ − α−,1⟩ = 0, (13)

α+
j , α

−
j ∈ [0, C], j ∈ E

Provided that the kernel basis (KS)S⊆N\∅ is constructed with a positive definite univariate kernel k, the matrices K̃S

are positive semi-definite, and the dual problem is convex. Then it is a convex quadratically constrained optimization
problem and thus can be solved in polynomial time with interior points methods using standard solvers. We can recover
the optimal weight values dS for any S ⊆ N \ ∅ and the intercept d∅ by respectively accessing the dual values of the
set of constraints (12) and (13). Finally, using Equation 8, we recover the learned utility function as follows:

u(x) =
∑

S⊆N\∅

dS
∑
j∈E

(α+
j − α−

j )KS(x
j
S , xS) + d∅

=
∑

S⊆N\∅

uS(xS) + d∅

with uS(xs) = dS
∑

j∈E(α
+
j −α−

j )KS(x
j
S , xS), the sub-utility attached to the group of attributes S. Then the presence

of a sub-utility uS in the decomposition of the utility function u is equivalent to a non-null weight dS . We thus recover
simple decompositions by increasing the L1-penalty hyper-parameter λ in problem D.

3.1 Retrieving an ANOVA Decomposition

Finally, we guarantee the identification of an ANOVA decomposition by constraining the model so that
∫
uSdxi = 0

holds for all sub-utility factors uS , S ⊆ N \ ∅ and all i ∈ S. This is achieved by constructing an univariate kernel
k0(x, y) the integral of which (w.r.t x or y) equals zero, as proposed in [35]:

k0(x, y) = k(x, y)−
∫
s
k(s, y)ds

∫
t
k(x, t)dt∫

s

∫
t
k(s, t)dsdt

(14)

Then for any x ∈ R,
∫
k0(x, s)ds = 0. Also, under mild hypothesis on kernel k, it can be shown that the attached

kernel k0 is still positive definite [35]. Then, we can construct the associated basis of kernels (K0
S)S⊆N\∅, defined by:

K0
S(xs, ys) =

∏
i∈S

k0(xi, yi)

6



For any x, y ∈ [0, 1]n, S ⊆ N \ ∅ and i ∈ S we have:∫
K0

S(xS , yS)dyi =
∏

j∈S\{i}

k0(xj , yj)

∫
k0(xi, yi)dyi = 0

Then, using the centered kernel basis (K0
S)S⊆N\∅, each sub-utility uS(xS) = dS

∑
j∈E(α

+
j − α−

j )K
0
S(x

j
S , xS) is

guaranteed to have a zero integral with respect to xi whatever i ∈ S. Thus, the obtained decomposition is an ANOVA
decomposition.

Remark that, in addition to be positive definite, the univariate kernel k is now required to verify
∫
k(s, x)ds < ∞ for

any x ∈ X and
∫ ∫

k(s, t)dsdt < ∞ so that k0 is well defined (See Equation 14). Also, in practice, these integrals
have to be approximated with numerical integration. To avoid unnecessary repeated computations, we use a discretized
representation of function x 7→

∫
k(s, x)ds that has been computed beforehand. Standard examples of univariate kernels

that can be used here are the Gaussian RBF kernel k(x, y) = e−(x−y)2/2σ2

, the odd order B-spline kernel k(x, y) =
B2m+1(x− y),m ∈ N or the first order infinite spline kernel k(x, y) = 1 + xy + 1

2 |x− y|min(x, y)2 + 1
3 min(x, y)3

[25, 36].

As mentioned before, the advantage of the ANOVA decomposition is that it is uniquely defined for a given u and its
factors can be learned from examples as explained above. However, although the use of penalization promotes the
emergence of sparse ANOVA representations, the obtained representation can be further simplified by keeping only the
maximal factors (i.e., factors having a maximal scope with respect to set inclusion), the others being included as subsets.
More precisely, the non-maximal factors can be aggregated with the maximum factors containing them to reduce the
number of factors without loosing the well-formed nature of the decomposition (see Definition 2). In the presence
of two or more maximal factors with a non-empty intersection S, the factors whose scope is included in S could be
indifferently aggregated to any maximal factor containing them or spread into all or part of them. Whatever the chosen
option, it yields to a well-formed GAI decomposition of u that is possibly more compact than the learned ANOVA
decomposition. Multiple GAI representations are therefore possible, sharing the same maximal factors as ANOVA
decomposition.

For the sake of illustration, let us come back to Example 1 and consider the ANOVA decomposition given in Equations
(2-4). By aggregating f1(x1) and f3(x3) to f13(x1, x3) and remarking that the sum of constant terms equals zero,
function u can be rewritten, after simplification, as the sum of 3 terms: u′′

2(x2) = x2
2, u

′′
4(x4) = x4 and u′′

13(x1, x3) =
x2
1 + 2x1x3.

4 Numerical Experiments

This section presents the results of numerical tests performed on synthetic and real-world preference data. We implement
our method, called SMKGAI for Sparse Multiple Kernel GAI, with the Gaussian RBF kernel using σ = 1. The tolerance
threshold ϵ is set to 0.01 and the regularization hyper-parameters C and λ are selected by cross-validation using a
number of folds equal to 3. All tests are conducted on a 2.8 GHz Intel Core i7 processor with 16GB RAM and we used
the mathematical programming Gurobi solver (version 9.1.2).

4.1 Synthetic Data

We first show the result of the learning on synthetic data generated using a 6-dimensional model u(x) = u1(x1) +
u2(x2) + u34(x3, x4) + u45(x4, x5). The factors u1 and u2 are taken as quadratic spline functions and u34 and u45 are
bivariate tensor products of quadratic splines. To generate the factors we use a basis of B-splines functions of zero
integral forming an ANOVA decomposition of u. We generate a set E of overall evaluations of size 70 from the hidden
utility function u, with a random uniform draw of alternatives xj in [0, 1]n. The data is then perturbated with a centered
Gaussian noise with standard error σ = 0.05. In Figure 1 we represent the ground truth utility factors in grey and the
learned utility factors in green.

Secondly, we conduct an experiment using a model with a high degree of interaction: u(x) =
∑n

i=1 xi +1000
∏n

i=1 xi

for n = 6. In order to assess the benefit of allowing high interactions in the learning of a GAI decomposition, we
compare SMKGAI with p-additive GAI utilities that do not use L1 regularization to select the most useful factors but
that include factors of size at most p for p ∈ {1, 2, 3, 4}. The case p = 1 corresponds to the learning of an additive
utility. This is done using the SVR algorithm, i.e., by solving the dual formulation of the initial problem PSV R, and
using the ANOVA kernel of degree p: K =

∑
S⊆N,|S|≤p K

0
S . As in the previous experiment, we generate, from the

hidden utility function u, random training sets E of noisy overall evaluations of size 70. In Table 1, we compare the
generalizing performances of SMKGAI and the one obtained with dense p-additive GAI models (p-GAI) over 20

7



Figure 1: Learned and ground truth utility factors u1(top left), u2 (top right), u34 (bottom left) and u45 (bottom right).

simulations. The generalized performances are measured as the mean absolute errors (MAE), i.e. the average absolute
differences between the normalized ground truth utility and the predicted utility over test sets of size 150. We also
provide the computing times (sec.) for all the methods. We observe that SMKGAI, by capturing the interaction of size
n, nearly divides by 10 the MAE compared to the p-additive models. This is achieved for a time that is only multiplied
by 2 compared to the additive model (1-GAI).

SMKGAI 1-GAI 2-GAI 3-GAI 4-GAI
MAE 0.0065 ± 0.0016 0.0381± 0.0088 0.0456± 0.0106 0.0560± 0.0129 0.0543± 0.0121

Training time (sec.) 75.48± 6.78 34.89 ± 2.35 42.92± 3.35 58.01± 4.73 70.75± 7.06

Table 1: Comparisons of the generalizing performances (MAE) and training times over 20 simulations for the product
model.

Dataset Linear Regression 2-add Choquet Integral 1-GAI 2-GAI SMKGAI
ESL 0.08198 ± 0.00588 0.08488± 0.00498 0.08266 ± 0.00619 0.08426± 0.00725 0.08419± 0.00697
LEV 0.23540± 0.00551 0.25417± 0.01449 0.23163± 0.01295 0.17093± 0.01212 0.12381 ± 0.02662
ERA 0.24255± 0.00536 0.24256± 0.00698 0.20071± 0.01115 0.11817± 0.00932 0.04749 ± 0.00200
CPU 0.02795± 0.00357 0.01792± 0.00654 0.00888± 0.00209 0.00796 ± 0.00475 0.00805 ± 0.00455
MPG 0.06399± 0.00331 0.10113± 0.00557 0.05628± 0.01115 0.05355 ± 0.00656 0.05212 ± 0.00666
CITY 0.06282± 0.00861 0.06707± 0.00768 0.04855 ± 0.00916 0.05127± 0.00899 0.05054 ± 0.00893

Table 2: Mean absolute error (MAE) averaged over 20 random splits for SMKGAI and baseline methods.

Finally, we perform an experiment on synthetic data generated with more general models for n = 10. The models
are randomly generated as sums of 10 tensor products of quadratic splines. In order to increase the complexity of the
hidden models, the maximal size of the factors (max. size) is increased from 1 (additive utility) to 5. We perform 20
simulations and each time, we generate a set E of overall evaluations of size 140 perturbated with a Gaussian centered
noise of standard error σ = 0.05. In Table 3 is represented the MAE on test sets of size 150 along with the maximal
size of the learned factors and the False Discovery Rate (FDR), which is computed as the percentage of selected factors
in the learned ANOVA decomposition that are not included in any of the factors of the hidden function. We consider
that a factor S ⊆ N is selected as soon as the attached weight dS is higher than 0.01. As expected, we observe that the
MAE increases as the interaction degree (max size) of the hidden model increases. However, our learning approach is
able to capture these interactions since the maximal size of the learned factors increases similarly to the ground truth,
with a percentage of false inclusion (FDR) in the model that stays below 20%.

8



Max size MAE Max size FDR
(true)

1 0.026± 0.012 1.0± 0.0 0.0± 0.0
2 0.036± 0.012 2.0± 0.4 0.011± 0.033
3 0.067± 0.013 3.0± 1.4 0.078± 0.115
4 0.085± 0.020 4.1± 1.0 0.198± 0.165
5 0.082± 0.015 4.2± 1.2 0.156± 0.124

Table 3: Model recovery assessment for growing interaction degree of the hidden models in average over 20 simulations.

4.2 Real-world Datasets

In this subsection, we test our method on real preference datasets. We use standard multi-criteria decision-making
benchmarks containing overall evaluations of alternatives described by continuous or discrete attributes. We use
Employee Selection (ESL) which contains profiles and overall psychological evaluations of job candidates, Lecture
Evaluation (LEV), containing examples of anonymous lecturer evaluations and Employee Rejection/Acceptance (ERA)1,
which contains the judgment of a decision-maker w.r.t candidate profiles. Then from the UCI repository, we use CPU
and Car MPG (MPG) which respectively contain the performances of CPU and the fuel consumption of cars, along
with attributes describing the objects. Finally, we use the Movehub city ranking2 (CITY) dataset which contains overall
evaluations of cities quality. The number of evaluations |E| and the number of attributes n of each dataset is given in
Table 4.

Dataset ESL LEV ERA CPU MPG CITY
n 4 4 4 6 7 5
|E| 488 1000 1000 209 392 216

Table 4: Datasets’ number of attributes n and examples E .

We compare SMKGAI to standard baselines from preference modeling such as the linear regression, the 2-additive
Choquet Integral [12], and p-additive GAI (p-GAI) for p = 1 and p = 2. The attribute values are normalized using a
linear max-min normalization. Each dataset is split to produce a training set containing 80% of the examples and a test
set with the 20% left. For 20 random splits, we compute the MAE obtained on the test set for each method and present
the averaged results in Table 2. For each dataset, the best result is displayed in bold and if there is another performance
close to this result, it is also displayed in bold. We can see that SMKGAI is attached to the best average MAE or is
very close to the optimal result, except on the dataset ESL where the linear regression and the additive utility (1-GAI)
provide the best results. In particular, for the datasets LEV and ERA, SMKGAI outperforms the baseline methods,
showing the presence of interactions between more than two attributes in the data. Also, for the datasets CPU, MPG
and CITY, it seems that SMKGAI is able to adapt its complexity to the underlying data since it provides results similar
to the additive utility (1-GAI) or 2-additive GAI (2-GAI) depending on the case.

5 Conclusion

We have presented a multiple kernel learning approach that constructs a sparse GAI model from evaluation examples to
describe and explain the value system of a decision maker. The core of the approach relies on the determination of a
sparse ANOVA decomposition of utilities obtained thanks to the use of zero integral kernels. This decomposition can
be simplified afterward to produce a more compact and still well-formed GAI decomposable utility that well fits the
available preference information. The advantage of the proposed approach is to be able to capture general interactions
among continuous or discrete attributes without prior restrictions on the size of interacting factors. It makes it possible
to fit model complexity to the available preference information. The regularization used in the objective function ensures
that model complexity is kept as low as possible, given the descriptive constraints imposed by preference data. As far as
we know, this is the first learning method able to learn both the structure of the GAI decomposition (by identification of
the factors that really matter), and the utility functions defined on these factors, that can handle continuous attributes
and that does not use prior restrictions on the cardinality of the interactions. Also, note that the same approach can be
easily implemented to extract the utility function from pairwise preference/indifference examples.

1www.openml.org (ESL, LEV and ERA)
2www.kaggle.com/datasets/blitzr/movehub-city-rankings

9



In order to go further, some directions are worth investigating. In particular, for an interaction term fS present in the
ANOVA decomposition, it is likely that the subterms fS′ for S′ ⊆ S also appear in the ANOVA decomposition. Thus,
it could be of interest to implement a grouped hierarchical regularization [37] that would simultaneously cancel fS and
its sub terms fS′ , S′ ⊆ S, as suggested in [35]. Another direction is to enhance the scalability of the method w.r.t the
number of attributes, since the number of possible factors grows exponentially. One path could be to bound from above
the size of possible interacting factors. Another possible path is to use an iterative optimization procedure based on
projected gradient descent that successively optimizes over the variables α+

j , α
−
j and the weights d, as proposed in [38].

Acknowledgments

This work is supported by the ANR project ANR-20-CE23-0018 THEMIS of the French National Research Agency.

References

[1] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. Preferences in ai: An overview. Artificial
Intelligence, 175(7-8):1037–1052, 2011.

[2] Gabriella Pigozzi, Alexis Tsoukias, and Paolo Viappiani. Preferences in artificial intelligence. Annals of
Mathematics and Artificial Intelligence, 77:361–401, 2016.

[3] Kathleen L Mosier and Linda J Skitka. Human decision makers and automated decision aids: Made for each
other? In Automation and human performance, pages 201–220. CRC Press, 2018.

[4] Howard Raiffa. Decision analysis: introductory lectures on choices under uncertainty. 1968.
[5] P. C. Fishburn. Utility Theory for Decision Making. Wiley, 1970.
[6] Ralph L Keeney, Howard Raiffa, and Richard F Meyer. Decisions with multiple objectives: preferences and value

trade-offs. Cambridge university press, 1993.
[7] Bernard Roy. Multicriteria methodology for decision aiding, volume 12. Springer Science & Business Media,

1996.
[8] Peter P Wakker. Prospect theory: For risk and ambiguity. Cambridge university press, 2010.
[9] Christophe Labreuche. A general framework for explaining the results of a multi-attribute preference model.

Artificial Intelligence, 175(7-8):1410–1448, 2011.
[10] Darius Braziunas and Craig Boutilier. Elicitation of factored utilities. AI Magazine, 29(4):79–79, 2008.
[11] D Krantz, R D Luce, P Suppes, and A Tversky. Foundations of Measurement (Additive and Polynomial Represen-

tations), volume 1. Academic Press, 1971.
[12] Michel Grabisch and Christophe Labreuche. A decade of application of the choquet and sugeno integrals in

multi-criteria decision aid. Annals of Operations Research, 175:247–286, 2010.
[13] F Bacchus and A Grove. Graphical models for preference and utility. In UAI’95, 1995.
[14] C Gonzales and P Perny. GAI networks for utility elicitation. In KR’04, pages 224–234, 2004.
[15] D Braziunas and C Boutilier. Local utility elicitation in GAI models. In UAI’05, 2005.
[16] Darius Braziunas and Craig Boutilier. Minimax regret based elicitation of generalized additive utilities. In UAI’07,

pages 25–32, 2007.
[17] Ronen I Brafman and Yagil Engel. Directional decomposition of multiattribute utility functions. In Algorithmic

Decision Theory: First International Conference, ADT 2009, pages 192–202. Springer, 2009.
[18] Damien Bigot, Hélene Fargier, Jérôme Mengin, and Bruno Zanuttini. Using and learning gai-decompositions for

representing ordinal rankings. In ECAI’2012 workshop on Preference Learning (PL 2012), pages 5–10. Fürnkranz
Johannes Hüllermeier Eyke, 2012.

[19] Michel Grabisch, Christophe Labreuche, and Mustapha Ridaoui. Well-formed decompositions of generalized
additive independence models. Annals of Operations Research, 312(2):827–852, 2022.

[20] G Debreu. Continuity properties of paretian utility. Int. Econ. Review, 5:285–293, 1964.
[21] Christophe Gonzales and Patrice Perny. Gai networks for decision making under certainty. In IJCAI’05–Workshop

on Advances in Preference Handling, pages 100–105, 2005.
[22] Thomas J Rothenberg. Identification in parametric models. Econometrica: Journal of the Econometric Society,

pages 577–591, 1971.

10



[23] Ilya M Sobol’. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates.
Mathematics and computers in simulation, 55(1-3):271–280, 2001.

[24] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and computing,
14:199–222, 2004.

[25] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, 2002.

[26] Carmel Domshlak and Thorsten Joachims. Unstructuring user preferences: Efficient non-parametric utility
revelation. arXiv preprint arXiv:1207.1390, 2012.

[27] Sébastien Lahaie. Kernel methods for revealed preference analysis. In ECAI, pages 439–444, 2010.
[28] Olivier Chapelle and Zaid Harchaoui. A machine learning approach to conjoint analysis. Advances in neural

information processing systems, 17, 2004.
[29] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic duality, and the smo

algorithm. In Proceedings of the twenty-first international conference on Machine learning, page 6, 2004.
[30] Mark Stitson, Alex Gammerman, Vladimir Vapnik, Volodya Vovk, Chris Watkins, and Jason Weston. Support

vector regression with anova decomposition kernels. Advances in kernel methods—Support vector learning, pages
285–292, 1999.

[31] Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning algorithm in dual variables.
1998.

[32] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. The Journal of Machine Learning
Research, 12:2211–2268, 2011.

[33] Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance trade-off. In 2007 IEEE 11th
International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[34] Steve R. Gunn and Jaz S. Kandola. Structural modelling with sparse kernels. Machine learning, 48:137–163,
2002.

[35] Nicolas Durrande, David Ginsbourger, Olivier Roustant, and Laurent Carraro. Anova kernels and rkhs of zero
mean functions for model-based sensitivity analysis. Journal of Multivariate Analysis, 115:57–67, 2013.

[36] Rauf Izmailov, Vladimir Vapnik, and Akshay Vashist. Multidimensional splines with infinite number of knots as
svm kernels. In The 2013 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2013.

[37] Francis Bach. Exploring large feature spaces with hierarchical multiple kernel learning. Advances in neural
information processing systems, 21, 2008.

[38] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. More efficiency in multiple kernel
learning. In Proceedings of the 24th international conference on Machine learning, pages 775–782, 2007.

11


	Introduction
	Background and Notations
	A MKL Algorithm for Learning a GAI Decomposition
	Retrieving an ANOVA Decomposition

	Numerical Experiments
	Synthetic Data
	Real-world Datasets

	Conclusion

